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Abstract

Let p be a prime number, λ be an integer. We obtain new results related to the congruence x1x2 ≡
x3x4 + λ (mod p).
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1. Introduction

The congruence

x1x2 ≡ x3x4 (mod p), (1)

where p is a large prime, arises in many problems of number theory. Distribution properties of
its solutions are proved to be important in many applications, see, for example, [1,5,7,9,13,14].
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Let Li , Ni , 1 � i � 4, be integers with 0 � Li < Li + Ni < p. Denote by J the number of
solutions of congruence (1) in the box

Li + 1 � xi � Li + Ni (1 � i � 4). (2)

In view of the identity

∑
χ

χ(u) =
{

0, if u �≡ 1 (mod p),

p − 1, if u ≡ 1 (mod p),

where χ runs through the set of multiplicative characters modulo p, the value J can be expressed
in terms of character sums

J = 1

p − 1

∑
χ

∑
x1,x2,x3,x4

χ
(
x1x2x

∗
3x∗

4

)
,

where x∗ denotes the multiplicative inverse of x (mod p) and the range for the variables in
summations over x1, x2, x3, x4 is defined by (2). The principal character χ = χ0 contributes to
the sum the quantity N1N2N3N4/(p − 1), which in many occasions indicates the asymptotic
behavior of the value J. Ayyad, Cochrane and Zheng [1] proved that

J = N1N2N3N4

p
+ O

(√
N1N2N3N4 log2 p

)
. (3)

They expressed the hope that the factor log2 p can be replaced by logp which would be the best
possible error term in general settings, see the discussion [1, p. 399]. In the special case N1 = N2,
N3 = N4 or N1 = N3, N2 = N4, they proved that

J ≈ N1N2N3N4

p
+ O(

√
N1N2N3N4 logp), (4)

saving one factor logp at the cost of the asymptotic formula.
As consequences of (3) and (4) the authors of [1] claimed the following bounds for the fourth

moments of character sums: for any integers L and N > 0 we have

1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L+N∑

x=L+1

χ(x)

∣∣∣∣∣
4

� N2 log2 p; (5)

if in addition N � √
p logp, then

1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L+N∑

x=L+1

χ(x)

∣∣∣∣∣
4

� N2 logp. (6)

These results sharpen the one of Friedlander and Iwaniec [6, Lemma 3] where they had N2 log6 p

instead of N2 log2 p in the right-hand side of (5); we remark that the proof of [6, Lemma 3] seems
to contain a minor omission in the power of the logarithmic factor when Hölder’s inequality is
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applied and there apparently should be N2 log8 p instead of N2 log6 p. Similar estimates can be
found in Vaughan [16, p. 184], see also Harman [11, Lemma 2]. The methods of [6,11] and [16]
apply for general modulus, but restricted to L = 0.

As it was mentioned in [1], the work of Montgomery and Vaughan [12] implies the bound

1

p − 1

∑
χ �=χ0

max
N

∣∣∣∣∣
N∑

x=1

χ(x)

∣∣∣∣∣
4

� p2;

in particular, when N is close to p in (5) one can remove the factor log2 p. The work of
Burgess [4] implies the inequality

1

p

p∑
L=1

{
1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L+N∑

x=L+1

χ(x)

∣∣∣∣∣
4}

� N2,

which illustrates that on average over L one also can remove the factor log2 p.

2. New error term for J

The first result of our present paper is as follows:

Theorem 1. The following asymptotic formula holds:

J = N1N2N3N4

p
+ O

(√
N1N2N3N4

(√
logp + δ(N1N2)

)(√
logp + δ(N3N4)

))
, (7)

where

δ(X) =
{

0, if X � p,

log X
p
, if X � p.

The equality in (7) also holds if the products N1N2 and N3N4 are replaced with any other pairing
of the Ni.

Theorem 1 implies the following bound on the fourth moment of character sums:

1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L+N∑

x=L+1

χ(x)

∣∣∣∣∣
4

� N2
(

logp + log2 N2

p

)
.

In particular, estimate (6) holds in the range N � p1/2ec
√

logp for any fixed positive constant c.

Furthermore, Theorem 1 implies the asymptotic behavior J ∼ N1N2N3N4/p in a wider range
of parameters than the one suggested by (3). For example, if N1 = N2 = N3 = N4 = N and if

N

1/2 1/2
→ ∞, p → ∞,
p (logp)
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then

J = N4

p

(
1 + o(1)

)
,

while formula (3) implies this asymptotic formula when

N

p1/2 logp
→ ∞, p → ∞.

Using our Theorem 1 we can get the following result on the representability of residue classes
by products of small integers.

Theorem 2. Let N1N2 = Δp logp, where Δ = Δ(p) → ∞ as p → ∞. Then the set

{
xy (mod p): L1 + 1 � x � L1 + N1, L2 + 1 � y � L2 + N2

}
contains (1 + O( 1

Δ
+ log2 Δ

Δ logp
))p residue classes modulo p. In particular, this set contains almost

all residue classes modulo p.

We recall that the work of Tenenbaum [15] implies that if

L1 = L2 = 0, N1 = N2 = N � p1/2(logp)0.5κ−ε,

where κ = 1 − (log(e log 2))/ log 2 ≈ 0.08607 . . . , then the set defined in Theorem 2 contains
only o(p) residue classes modulo p. The result of [9] implies that the set

{
qy (mod p): q � p1/2, L + 1 � y � L + Δp1/2 logp

}
,

where q denotes prime numbers, contains (1 + O(Δ−1))p residue classes modulo p. This result
can be stated in more general settings and has its version for composite modulus as well. For
further information on this subject we refer the reader to [9], to the works of Shparlinski [13,14],
and therein references.

3. Combinatorial properties and solvability

From (3) it is immediate that if N1N2N3N4 > cp2 log4 p, where c is a suitable constant, then
the box (2) contains a solution of (1). Ayyad, Cochrane and Zheng [1] asked whether the factor
log4 p can be removed altogether. Our next result shows that the factor log4 p can be relaxed to
logp. In the case if N1N3 and N2N4 are of the same order of magnitude, we will prove that one
indeed can remove log4 p altogether.

Theorem 3. There exists a constant c such that if N1N2N3N4 > cp2 logp then the box (2) con-
tains a solution of (1).

The proof of Theorem 3 uses an idea from [9, Theorem 1.7] and relies upon trigonometric
sums.
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It is to be remarked that in a series of papers the problem of representability of the zero by a
nonsingular quadratic form Q(x1, x2, x3, x4) (mod p) in short intervals has been investigated. It
is known that in the problem of solvability of the congruence

Q(x1, x2, x3, x4) ≡ λ (mod p)

the case λ �≡ 0 (mod p) essentially differs from the case λ ≡ 0 (mod p), see the question raised
in [5, p. 176]. A similar situation occurs in our problem as well. Consider the equation

x1x2 ≡ x3x4 + λ (mod p). (8)

Theorem 3 corresponds to the case λ ≡ 0 (mod p). For arbitrary λ, Theorems 1, 2 together with
Lemmas 3, 4 imply that for some numerical constant c > 0, if N1N2N3N4 > cp2 log3 p, then for
any integer λ the box (2) contains a solution of (8). The question is whether the factor log3 p can
be removed altogether (note that if, for example, N1N2 is about of the same order of magnitude
as N3N4, one can change log3 p to log2 p). A possible approach to this question is the study of
combinatorial aspects of Eq. (8). For given subsets U and V of the residue field Fp, we recall
that

U + V = {u + v: u ∈ U, v ∈ V}, U − V = {u − v: u ∈ U, v ∈ V},
kU = {u1 + · · · + uk: ui ∈ U, 1 � i � k}, UV = {uv: u ∈ U, v ∈ V}.

By |U | we denote the cardinality of U . Glibichuk [10] proved that if A and B are subsets of Fp

with |A||B| � 2p, then

8AB = Fp.

One can observe that the result of [10] (see the inequality at the end of the proof of [10, Theo-
rem 1]) also implies that

2(2A)(2B) = Fp, (2A)(2B) − (2A)(2B) = Fp.

In particular, for any integer λ, if N1N2 > 10p, the congruence (8) is solvable with

L1 + 1 � x1, x3 � L1 + N1, L2 + 1 � x2, x4 � L2 + N2.

This observation naturally leads to the following conjecture.

Conjecture 1. There exists a positive constant c such that if A,B,C,D are subsets of Fp \ {0}
with |A||B||C||D| > cp2, then

(2A)(2B) + (2C)(2D) = Fp.

Validity of this conjecture would remove the logarithmic factors in the above mentioned re-
sults and, in particular, would affirmatively solve the mentioned question from [1]. The use of
trigonometric sums in conjunction with combinatorial arguments from [2,3,10] allows us to es-
tablish Conjecture 1 in certain important cases.
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Theorem 4. Let A,B,C,D be subsets of Fp \ {0} such that

|A||C| > (2 + √
2)p, |B||D| > (2 + √

2)p.

Then

(2A)(2B) + (2C)(2D) = Fp.

In particular, if N1N3 > 15p, N2N4 > 15p, then for any integer λ the box (2) contains a
solution of the congruence

x1x2 ≡ x3x4 + λ (mod p).

4. Notations and lemmas

Throughout the text we will use the abbreviation

ep(z) = exp(2πiz/p).

For a given nonzero element x ∈ Fp we use x∗ to denote its multiplicative inverse. We also recall
the basic identity

p−1∑
a=0

ep(au) =
{

0, if u �≡ 0 (mod p),

p, if u ≡ 0 (mod p),

which is useful in calculations of the number of solutions of various congruences.
The underlying idea of the proof of Theorem 1 is based on the combination of the methods

from [1] and [8]. In particular, we need the following lemma from [1].

Lemma 1. The following bound holds:

J � N1N2N3N4

p
+ (p + N1N2 logp)1/2(p + N3N4 logp)1/2.

Moreover, the inequality holds if the products N1N2 and N3N4 are replaced with any other
pairing of the Ni.

Lemma 2. In order to prove Theorem 1 it is sufficient to establish (7) in the case L1 = L3,
L2 = L4, N1 = N3, N2 = N4.

Proof. The proof is similar to the argument described in [1, p. 408]. We have

J = 1

p − 1

∑
χ

L1+N1∑ L2+N2∑ L3+N3∑ L4+N4∑
χ

(
x1x2x

∗
3x∗

4

)
.

x1=L1+1 x2=L2+1 x3=L3+1 x4=L4+1
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Picking up the term corresponding to the principal character χ = χ0 and then applying the
Cauchy–Schwarz inequality, we obtain

J − N1N2N3N4

p − 1
� √

S1S2,

where

S1 = 1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L1+N1∑

x1=L1+1

L2+N2∑
x2=L2+1

χ(x1x2)

∣∣∣∣∣
2

,

S2 = 1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L3+N3∑

x3=L3+1

L4+N4∑
x4=L4+1

χ
(
x∗

3x∗
4

)∣∣∣∣∣
2

.

Clearly,

S1 = J ′ − N2
1 N2

3

p − 1
, S2 = J ′′ − N2

2 N2
4

p − 1
,

where J ′ is the number of solutions of the congruence

x1x2 ≡ y1y2 (mod p), L1 + 1 � x1, y1 � L1 + N1, L2 + 1 � x2, y2 � L2 + N2

and J ′′ is the number of solutions of the congruence

x3x4 ≡ y3y4 (mod p), L3 + 1 � x3, y3 � L3 + N3, L4 + 1 � x4, y4 � L4 + N4.

Therefore, assuming that (7) holds in the case L1 = L3, L2 = L4, N1 = N3, N2 = N4, we obtain

S1 � N1N2
(√

logp + δ(N1N2)
)2

, S2 � N3N4
(√

logp + δ(N3N4)
)2

.

The case of pairing δ(N1N3) and δ(N2N4) is dealt with analogously; the only difference is
that in this case we define S1, S2 as

S1 = 1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L1+N1∑

x1=L1+1

L3+N3∑
x3=L3+1

χ
(
x1x

∗
3

)∣∣∣∣∣
2

,

S2 = 1

p − 1

∑
χ �=χ0

∣∣∣∣∣
L2+N2∑

x2=L2+1

L4+N4∑
x4=L4+1

χ
(
x2x

∗
4

)∣∣∣∣∣
2

. �

The following well-known statement is very useful in estimating of cardinalities of sets via
the number of solutions of the associated equation.
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Lemma 3. Let sn be any sequence of elements (not necessarily distinct) of the residue field Fp .
Let M � 1 be an integer. If I denotes the number of solutions of the equation

sn = sm, 1 � n,m � M,

then

#{sn: 1 � n � M} � M2

I
.

Proof. Indeed, for a given λ ∈ {sn: 1 � n � M} denote by I (λ) the number of solutions of the
equation sn = λ. Then,

∑
λ

I (λ) = M,
∑
λ

I 2(λ) = I,

where in the summations λ runs through the set {sn: 1 � n � M}. The required estimate now
follows from the Cauchy–Schwarz inequality. �

The following lemma is a weaker form of the mentioned in Section 1 result from [1].

Lemma 4. If N1 = N2, N3 = N4 and N2N4 � p, then

J � N2N4 logp.

Note that Lemma 4 can also be viewed as a particular case of Theorem 1.

5. Proof of Theorem 1

According to Lemma 2 it is sufficient to deal with the case

L1 = L3, L2 = L4, N1 = N3, N2 = N4.

Thus, in this case J denotes the number of solutions of the congruence

x1x2x
∗
3 ≡ x4 (mod p)

with variables subject to the conditions

L1 + 1 � x1, x3 � L1 + N1, L2 + 1 � x2, x4 � L2 + N2.

Our aim is to prove that

J − N2
1 N2

2 � N1N2
(
logp + (

δ(N1N2)
)2)

.

p
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We can assume that N1 � 10,N2 � 10. Following the idea of [8], we first take two positive
integer parameters M1 � N1/2, M2 � N2/2, to be explicitly defined later on. Define J1 to be the
number of solutions of the congruence

(x1 + y1)x2x
∗
3 ≡ x4 + y4 (mod p)

subject to the conditions

L1 + 1 � x1 � L1 + N1 − M1, 1 � y1 � M1,

L2 + 1 � x2 � L2 + N2, L1 + 1 � x3 � L1 + N1,

L2 + 1 � x4 � L2 + N2 − M2, 1 � y4 � M2. (9)

By J2 we denote the number of solutions of the congruence

(x1 − y1)x2x
∗
3 ≡ x4 − y4 (mod p)

subject to the conditions

L1 + 1 � x1 � L1 + N1 + M1, 1 � y1 � M1,

L2 + 1 � x2 � L2 + N2, L1 + 1 � x3 � L1 + N1,

L2 + 1 � x4 � L2 + N2 + M2, 1 � y4 � M2. (10)

Then,

J1

M1M2
� J � J2

M1M2
. (11)

We shall prove that for suitably chosen M1 and M2 the following estimates hold:

J1

M1M2
− N2

1 N2
2

p
� N1N2

(
logp + (

δ(N1N2)
)2)

,

J2

M1M2
− N2

1 N2
2

p
� N1N2

(
logp + (

δ(N1N2)
)2)

.

This will finish the proof of Theorem 1.
We express J1 in terms of trigonometric sums, that is

J1 = 1

p

∑
−(p−1)/2�a�(p−1)/2

∑
x1,x2,x3,x4,y1,y4

ep

(
a
(
(x1 + y1)x2x

∗
3 − x4 − y4

))
,

where the variables are subject to (9). Picking up the term corresponding to a = 0, we obtain
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J1 − N1N2(N1 − M1)(N2 − M2)M1M2

p

� 1

p

∑
1�a�(p−1)/2

f (a)

∣∣∣∣ ∑
x1,x2,x3,y1

ep

(
a(x1 + y1)x2x

∗
3

)∣∣∣∣,
where

f (a) = min
(
N2,p/|a|)min

(
M2,p/|a|).

For 1 � |b| � (p − 1)/2 let I (a, b) be the number of solutions of the congruence

ax2x
∗
3 ≡ b (mod p), L2 + 1 � x2 � L2 + N2, L1 + 1 � x3 � L1 + N1.

Then,

J1 − N1N2(N1 − M1)(N2 − M2)M1M2

p

� 1

p

∑
1�a�(p−1)/2

∑
1�|b|�(p−1)/2

f (a)g(b)I (a, b),

where

g(b) = min
(
N1,p/|b|)min

(
M1,p/|b|).

Without loss of generality, we can remove the sign of the modulus from |b| (by reflecting the
interval of the range of x3 with respect to the point p/2). Define the following intervals:

A1 = [1,p/N2] ∩ Z, A2 = [p/N2,p/M2] ∩ Z, A3 = [
p/M2, (p − 1)/2

] ∩ Z,

B1 = [1,p/N1] ∩ Z, B2 = [p/N1,p/M1] ∩ Z, B3 = [
p/M1, (p − 1)/2

] ∩ Z.

Thus, we have

J1 − N1N2(N1 − M1)(N2 − M2)M1M2

p
�

3∑
ν=1

3∑
μ=1

Tνμ, (12)

where

Tνμ = 1

p

∑
a∈Aν

∑
b∈Bμ

f (a)g(b)
∑

ax2≡bx3 (mod p)
L2+1�x2�L2+N2
L1+1�x3�L1+N1

1.

In order to estimate Tνμ we use Lemma 1. For T11 we immediately get

T11 � N1N2M1M2 logp. (13)
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To estimate T12, we split the interval of summation of b into subintervals of the form
ej−1p/N1 � b � ejp/N1, where 1 � j � log N1

M1
. Then application of Lemma 1 gives

T12 � N2M1M2

∑
j�log

N1
M1

1

ej (p/N1)

∑
a�p/N2

∑
b�ej p/N1

∑
ax2≡bx3 (mod p)

L2+1�x2�L2+N2
L1+1�x3�L1+N1

1

� N1N2M1M2

p

∑
j�log

N1
M1

1

ej

(
ejp + ej/2p logp

) � N1N2M1M2 logp.

The same estimate holds for T21, so we get

T12 + T21 � N1N2M1M2 logp. (14)

For T13 we get

T13 � pN2M2

∑
j

1

e2j (p2/M2
1 )

∑
a�p/N2

∑
b�ej p/M1

∑
ax2≡bx3 (mod p)

L2+1�x2�L2+N2
L1+1�x3�L1+N1

1

� M2
1N2M2

p

∑
j

1

e2j

(
ejN1p

M1
+ ej/2(N1/M1)

1/2p logp

)
� N1N2M1M2 logp.

The same bound holds for T31; thus

T13 + T31 � N1N2M1M2 logp. (15)

Next, we estimate T22 which will produce the extra term δ(N1N2) that occurs in the statement of
Theorem 1. We have

T22 � pM1M2

∑
i�log(N2/M2)
j�log(N1/M1)

N1N2

ei+jp2

∑
a�eip/N2

∑
b�ej p/N1

∑
ax2≡bx3 (mod p)

L2+1�x2�L2+N2
L1+1�x3�L1+N1

1

� N1N2M1M2

p

∑
i�log(N2/M2)
j�log(N1/M1)

1

ei+j

(
ei+jp + e(i+j)/2p logp

)
,

whence we get

T22 � N1N2M1M2

(
logp + log

N1

M1
log

N2

M2

)
. (16)

Analogously we deal with T23 and T32:
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T23 � M2p
2

∑
i�log(N2/M2)

j

N2M
2
1

ei+2jp3

∑
a�eip/N2

∑
b�ej p/M1

∑
ax2≡bx3 (mod p)

L2+1�x2�L2+N2
L1+1�x3�L1+N1

1

� N2M2M
2
1

p

∑
i�log(N2/M2)

j

1

ei+2j

(
ei+jN1p

M1
+ e(i+j)/2p logp(N1/M1)

1/2
)

� N1N2M1M2 logp.

The same bound holds for T32, so we have

T23 + T32 � N1N2M1M2 logp. (17)

Finally, for T33 we obtain

T33 = p3
∑
i,j

M2
2M2

1

e2i+2jp4

∑
a�eip/M2

∑
b�ej p/M1

∑
ax2≡bx3 (mod p)

L2+1�x2�L2+N2
L1+1�x3�L1+N1

1

� M2
1M2

2

p

∑
i,j

1

e2i+2j

(
(eip/M2)N2(p/M1)e

jN1

p
+ e(i+j)/2

√
N1N2

N2M2
p logp

)
.

Thus,

T33 � N1N2M1M2 logp. (18)

Inserting (13)–(18) into (12), we deduce

J1

M1M2
− N2

1 N2
2

p
� N1N2

(
logp + log

N1

M1
log

N2

M2
+ N1M2

p
+ N2M1

p

)
,

provided that M1 � N1/2, M2 � N2/2.

If N1N2 � 10p, we define M1 = [N1/2], M2 = [N2/2] and obtain

J1

M1M2
− N2

1 N2
2

p
� N1N2 logp.

If N1N2 � 10p, then define M1 = [p/N2] < N1/2, M2 = [p/N1] < N2/2 and obtain

J1

M1M2
− N2

1 N2
2

p
� N1N2

(
logp + log2 N1N2

p

)
. (19)

Thus, estimate (19) holds in both cases.
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Analogously,

J2

M1M2
− N2

1 N2
2

p
� N1N2

(
logp + log2 N1N2

p

)
. (20)

Comparing (11), (19) and (20), we conclude the proof of Theorem 1.

6. Proof of Theorem 2

We can assume that Δ < p. Let J be the number of solutions of the congruence (1) under the
conditions

L1 + 1 � x1, x3 � L1 + N1, L2 + 1 � x2, x4 � L2 + N2,

and let I (λ) be the number of solutions of the congruence

x1x2 ≡ λ (mod p), L1 + 1 � x1 � L1 + N1, L2 + 1 � x2 � L2 + N2.

Then

p−1∑
λ=0

(
I (λ) − N1N2

p

)2

=
p−1∑
λ=0

I 2(λ) − N2
1 N2

2

p
.

Since
∑p−1

λ=0 I 2(λ) = J, from Theorem 1 we obtain

p−1∑
λ=0

(
I (λ) − Δ logp

)2 � N1N2
(
logp + log2 Δ

) = Δp
(
logp + log2 Δ

)
logp.

Let E ⊂ {0,1,2, . . . , p − 1} be such that I (λ) = 0 for λ ∈ E . Then

|E |Δ2 log2 p � Δp
(
logp + log2 Δ

)
logp

and the result follows.

7. Proof of Theorem 3

We can assume that N1N3 � N2N4. Denote

H1 = {
x1x

∗
3 (mod p): L1 � x1 � L1 + N1, L3 + 1 � x3 � L3 + N3

}
,

H2 = {
x4x

∗
2 (mod p): L2 � x2 � L2 + N2, L4 + 1 � x4 � L4 + N4

}
.

By the pigeon-hole principle it suffices to show that |H1| + |H2| > p. Let

R1 = {
h (mod p): h /∈ H1

}
.
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Then the congruence

x + t − (y + z)h ≡ 0 (mod p)

has no solutions in variables h,x, t, y, z with h ∈R1 and

[0.5L1] + 1 � x, t � [0.5L1] + [0.5N1],
[0.5L3] + 1 � y, z � [0.5L3] + [0.5N3]. (21)

Therefore,

p−1∑
a=0

∑
h∈R1

∑
x,t

∑
y,z

ep

(
a
(
x + t − h(y + z)

)) = 0,

where the range for the variables in summations over x, t, y, z is given by (21). Separating the
term corresponding to a = 0, we deduce

|R1|X2
1X

2
3 �

p−1∑
a=1

∣∣∣∣∑
x,t

ep

(
a(x + t)

)∣∣∣∣
∣∣∣∣∑

y,z

∑
h∈R1

ep

(
ah(y + z)

)∣∣∣∣,
where Xi = [0.5Ni]. On the other hand, for (a,p) = 1, we have

∣∣∣∣∑
y,z

∑
h∈R1

ep

(
ah(y + z)

)∣∣∣∣ �
p−1∑
h=0

∣∣∣∣∑
y,z

ep

(
ah(y + z)

)∣∣∣∣
=

p−1∑
n=0

∣∣∣∣∑
y,z

ep

(
n(y + z)

)∣∣∣∣ = pX3.

Also,

p−1∑
a=1

∣∣∣∣∑
x,t

ep

(
a(x + t)

)∣∣∣∣ � pX1.

Hence,

|R1|X2
1X

2
3 � p2X1X3.

Since p is large, we deduce

|H1| = p − |R1| � p − p2

X1X3
� p − 4.5p2

N1N3
. (22)

If N2N4 > 10p, then defining

R2 = {
h (mod p): h /∈H2

}
,
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and following the same lines as in the proof of inequality (22), we obtain

|H2| = p − |R2| � p − 4.5p2

N2N4
.

Therefore,

|H1| + |H2| � 2p − 4.5p2

N2N4
− 4.5p2

N1N3
> p,

and the result follows in the case N2N4 > 10p.

Let now N2N4 � 10p. Let I denote the number of solutions of the congruence

x4x
∗
2 ≡ y4y

∗
2 (mod p), L2 + 1 � x2, y2 � L2 + N2, L4 + 1 � x4, y4 � L4 + N4.

From Lemma 4,

I � N2N4 logp.

Hence, by Lemma 3,

|H2| � N2
2 N2

4

I
� c0N2N4

logp
,

where c0 is an absolute constant. Combining this with (22), we obtain that

|H1| + |H2| � p − 4.5p2

N1N3
+ c0N2N4

logp
� p + c0N2N4

logp
− 4.5N2N4

c logp
.

Taking c = 5c0, we conclude that

|H1| + |H2| > p.

8. Proof of Theorem 4

Let H be the set of all distinct elements of the form (d1 + d2)(b1 + b2)
∗, where

d1 ∈D, d2 ∈D, b1 ∈ B, b2 ∈ B, b1 + b2 �= 0. (23)

Lemma 5. The following bound holds:

|H| � p − p2

|B||D| − p
.

Proof. The proof of Lemma 5 follows the same lines as the proof of Theorem 3. Let

R = Fp \H.
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Then the equation

d1 + d2 − (b1 + b2)h = 0 (24)

has no solutions with h ∈ R and d1, d2, b1, b2 subject to the conditions given by (23). Therefore,
since b1 + b2 = 0 implies that d1 + d2 = 0, Eq. (24) has at most |B||D||R| solutions subject to

d1 ∈ D, d2 ∈D, b1 ∈ B, b2 ∈ B, h ∈ R.

Thus,

1

p

p−1∑
a=0

∑
h∈R

∑
d1∈D
d2∈D

∑
b1∈B
b2∈B

ep

(
a
(
d1 + d2 − (b1 + b2)h

))
� |B||D||R|.

Separating the term corresponding to a = 0, we deduce

1

p
|R||D|2|B|2 � |B||D||R| + 1

p

p−1∑
a=1

p−1∑
h=0

∣∣∣∣ ∑
d∈D

ep(ad)

∣∣∣∣
2∣∣∣∣∑

b∈B
ep(ahb)

∣∣∣∣
2

.

Thus,

|R||D|2|B|2 � |B||D||R|p + |D||B|p2,

which implies that

|H| = p − |R| � p − p2

|B||D| − p
. �

To prove Theorem 4, denote by T the number of solutions of the equation

a1 + λc1 = a2 + λc2, a1 ∈ A, a2 ∈ A, c1 ∈ C, c2 ∈ C, λ ∈ H.

If c1 = c2, then a1 = a2 and λ can be an arbitrary element of H. Otherwise, for given
a1, a2, c1, c2 with c1 �= c2 we have at most one possible value for λ. Thus,

T � |A||C||H| + |A|2|C|2.

Hence, there exists an element λ ∈ H such that

I � |A||C| + |A|2|C|2
|H| ,

where I denotes the number of solutions of the equation

a1 + λc1 = a2 + λc2, a1 ∈A, a2 ∈ A, c1 ∈ A, c2 ∈ C.
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From this we get, by Lemma 3,

#{a + λc: a ∈ A, c ∈ C} � |A|2|C|2
I

� |A||C||H|
|A||C| + |H| . (25)

Since λ is a fixed element of H, there exist fixed elements d ′
0, d

′′
0 of D and fixed elements b′

0, b
′′
0

of B such that

λ = (
d ′

0 + d ′′
0

)(
b′

0 + b′′
0

)∗
.

Therefore, from (25) we derive that

#
{
a
(
b′

0 + b′′
0

) + c
(
d ′

0 + d ′′
0

)
: a ∈A, c ∈ C

}
� |A||C||H|

|A||C| + |H| .

Recalling the inequalities |A||C| > (2 + √
2)p, |B||D| > (2 + √

2)p and using Lemma 5, we get

|A||C||H|
|A||C| + |H| > p/2.

Hence, from the pigeon-hole principle we conclude that

{
(a1 + a2)

(
b′

0 + b′′
0

) + (c1 + c2)
(
d ′

0 + d ′′
0

)
: a1 ∈A, a2 ∈A, c1 ∈ C, c2 ∈ C

} = Fp.
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