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Text. In this note we characterize all regular tetrahedra whose
vertices in R

3 have integer coordinates. The main result is a con-
sequence of the characterization of all equilateral triangles having
integer coordinates [R. Chandler, E.J. Ionascu, A characterization
of all equilateral triangles in Z

3, Integers 8 (2008), Article A19].
Previous work on this topic begun in [E.J. Ionascu, A parametriza-
tion of equilateral triangles having integer coordinates, J. Integer
Seq. 10 (2007), Article 07.6.7]. We will use this characterization to
point out some corollaries. The number of such tetrahedra whose
vertices are in the finite set {0,1,2, . . . ,n}3, n ∈ N, is related to
the sequence A103158 in the Online Encyclopedia of Integer Se-
quences [Neil J.A. Sloane, The On-Line Encyclopedia of Integer Se-
quences, published electronically at: http://www.research.att.com/
~njas/sequences/, 2005].

Video. For a video summary of this paper, please visit http://
www.youtube.com/watch?v=LT3aAUUFMFk.

Published by Elsevier Inc.

1. Introduction

In this paper we give a solution to the following system of Diophantine equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(xa − xb)
2 + (ya − yb)

2 + (za − zb)
2 = (xa − xc)

2 + (ya − yc)
2 + (za − zc)

2,

(xa − xb)
2 + (ya − yb)

2 + (za − zb)
2 = (xa − xd)

2 + (ya − yd)
2 + (za − zd)

2,

(xa − xb)
2 + (ya − yb)

2 + (za − zb)
2 = (xb − xc)

2 + (yb − yc)
2 + (zb − zc)

2,

(xa − xb)
2 + (ya − yb)

2 + (za − zb)
2 = (xb − xd)

2 + (yb − yd)
2 + (zb − zd)

2,

(xa − xb)
2 + (ya − yb)

2 + (za − zb)
2 = (xc − xd)

2 + (yc − yd)
2 + (zc − zd)

2

(1)
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where xa , ya , za , xb , yb , zb , xc , yc , zc , xd , yd , zd are in Z. If A(xa, ya, za), B(xb, yb, zb), C(xc, yc, zc),
and D(xd, yd, zd) are considered as points in R3 the Diophantine system (1) represents exactly the
condition that makes ABC D a regular tetrahedron with vertices having integer coordinates. Clearly
(1) is invariant under translations in R3 by vectors having integer coordinates. So, without loss of
generality we are interested in the case, A = O , where O is the origin. Since each of the faces O BC ,
O C D and O B D is an equilateral triangle it is necessary to solve for instance the following system:

{
x2

b + y2
b + z2

b = x2
c + y2

c + z2
c ,

x2
b + y2

b + z2
b = (xb − xc)

2 + (yb − yc)
2 + (zb − zc)

2.
(2)

This problem was solved in [1]. We recall the following facts from [1,3]. Every equilateral triangle
in R3 whose vertices have integer coordinates, after a translation that brings one of its vertices to
the origin, must be contained in a plane with a normal vector (a,b, c) (a,b, c ∈ Z) satisfying the
Diophantine equation

a2 + b2 + c2 = 3d2 (3)

where d ∈ N. Moreover, a, b, c, and d can be chosen so that the sides of such a triangle have
length of the form d

√
2(m2 − mn + n2) with m and n integers. A more precise statement is the next

parametrization of these triangles.

Theorem 1.1. Let a, b, c, d be odd integers such that a2 + b2 + c2 = 3d2 and gcd(a,b, c) = 1. Then for every
m,n ∈ Z the points P (u, v, w) and Q (x, y, z), whose coordinates are given by

⎧⎨
⎩

u = mum − nun,

v = mvm − nvn,

w = mwm − nwn,

and

⎧⎨
⎩

x = mxm − nxn,

y = mym − nyn,

z = mzm − nzn,

(4)

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mx = −1

2

[
db(3r + s) + ac(r − s)

]
/q, nx = −(rac + dbs)/q,

my = 1

2

[
da(3r + s) − bc(r − s)

]
/q, ny = (das − bcr)/q,

mz = (r − s)/2, nz = r,

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mu = −(rac + dbs)/q, nu = −1

2

[
db(s − 3r) + ac(r + s)

]
/q,

mv = (das − rbc)/q, nv = 1

2

[
da(s − 3r) − bc(r + s)

]
/q,

mw = r, nw = (r + s)/2,

(5)

where q = a2 + b2 and (r, s) is a suitable solution of 2q = s2 + 3r2 that makes all the numbers in (5) integers,
together with the origin (O (0,0,0)) forms an equilateral triangle in Z3 contained in the plane

Pa,b,c := {
(α,β,γ ) ∈ R3

∣∣ aα + bβ + cγ = 0
}

and having sides-lengths equal to d
√

2(m2 − mn + n2).
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Fig. 1. Lattice generated by (4) with m,n ∈ Z in the plane Pa,b,c := {(α,β,γ ) ∈ R | aα + bβ + cγ = 0}.

Conversely, there exists a choice of the integers r and s such that given an arbitrary equilateral triangle
in R3 whose vertices, one at the origin and the other two having integer coordinates and contained in the
plane Pa,b,c , then there also exist integers m and n such that the two vertices not at the origin are given by (4)
and (5).

In Fig. 1 we show a few triangles that can be obtained, using (4), for various values of m and n. Out
of all these equilateral triangles only a few are faces of regular tetrahedra with integer coordinates.
The restriction comes from the following characterization given as Proposition 5.3 in [3].

Proposition 1.1. A regular tetrahedron having side lengths l and with integer coordinates exists, if and only if
l = λ

√
2 for some λ ∈ N.

Given a λ ∈ N, we are interested in finding a characterization of all such tetrahedra having side
lengths equal to λ

√
2. Let us denote this class of objects by Tλ and its subset of tetrahedra that have

the origin as a vertex by T0
λ . Obviously we have Tλ = ⋃

v∈Z3 (T0
λ + v) but this union is not a partition.

In what follows we will use the notation T := ⋃
λ∈N

(Tλ). This latter union is, on the other hand,
a partition.

Next we are going to concentrate on T0
λ . It turns out that T0

λ is numerous if λ is divisible by many
prime factors of the form 6k + 1, k ∈ N, as one can see from the following. First we recall Euler’s
6k + 1 theorem (see [5, pp. 568] and [2, pp. 56]).

Proposition 1.2. An integer t can be written as s2 − sr + r2 for some s, r ∈ Z if and only if in the prime
factorization of t, 2 and the primes of the form 6k − 1 appear to an even exponent.

The following result seems to be known but we could not find a reference for it.

Proposition 1.3. Given k = 3α(a2)b where a does not contain any prime factors of the form 6� + 1, b is the
product of such primes, say b = pr1

1 pr2
2 · · · p

r j

j , then the number of representations of k, k = m2 − mn + n2 ,
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Fig. 2. Regular tetrahedron.

counting all possible pairs (m,n) of integers that satisfy this equation, is equal to

6(r1 + 1)(r2 + 1) · · · (r j + 1).

For a proof of this proposition one can use arguments similar to those in the proof of Gauss’s
Theorem about the number of representations of a number as sums of two squares of integers [5]. In
this case one has to replace Gaussian integers with Eisenstein integers, i.e. the ring of numbers of the

form m + nω, m,n ∈ Z, where ω = −1+i
√

3
2 . Related to Proposition 1.3, we found a conjecture in a pa-

per posted on the mathematics archives (see [4]). This article refers to the number of representations
of a number as m2 + mn + n2 with m,n ∈ N.

2. Main results

Let us begin by refining the argument used in the proof of Proposition 5.3 in [3]. That proposition
referred to Fig. 2 representing a regular tetrahedron whose vertices are given by the origin, P (u, v, w),
Q (x, y, z) and R:

By the characterization of equilateral triangles in Theorem 1.1 we may assume that the coordinates
of P and Q are given by (4) and (5).

If E denotes the center of the face �O P Q , then from Theorem 1.1 we know that
�E R

| �E R| =
(a,b,c)√

a2+b2+c2
= 1√

3d
(a,b, c) for some a,b, c,d,m,n ∈ Z, gcd(a,b, c) = 1, d odd satisfying a2 + b2 + c2 =

3d2 and l = d
√

2(m2 − mn + n2). Let us denote m2 − mn + n2 by ζ(m,n). The coordinates of E are
( u+x

3 ,
y+v

3 , z+w
3 ).

From the Pythagorean theorem one can find easily that |R E| = l
√

2
3 . Since �O R = �O E + �E R , the

coordinates of R must be given by

(
u + x

3
± l

√
2

3

1√ a,
y + v

3
± l

√
2

3

1√ b,
z + w

3
± l

√
2

3

1√ c

)

3d 3d 3d
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or

(
u + x

3
± 2a

√
ζ(m,n)

3
,

y + v

3
± 2b

√
ζ(m,n)

3
,

z + w

3
± 2c

√
ζ(m,n)

3

)
.

Since these coordinates are assumed to be integers we see that ζ(m,n) must be a perfect square,
say k2, k ∈ N.

It is worth mentioning that this leads to the Diophantine equation

m2 − mn + n2 = k2 (6)

whose positive solutions are known as Eisenstein triples, or Eisenstein numbers. A primitive solution
of (6) is one for which gcd(m,n) = 1. These triples can be characterized in a similar way to the
Pythagorean triples.

Theorem 2.1. Every primitive solution of the Diophantine equation (6) is in one of the two forms:

m = t2 − s2, n = 2st − s2 and k = s2 − st + t2, with t > s, or

m = 2st − s2, n = 2st − t2 and k = s2 − st + t2, with 2t > s > t/2, (7)

where s, t ∈ N, gcd(s, t) = 1, and s + t �≡ 0 (mod 3). Conversely, every triple given by one of the alternatives
in (7) is a primitive solution of (6).

We leave the proof of this theorem to the reader.
Next, let us introduce the notation Ω(k) := {(m,n) ∈ Z2: ζ(m,n) = k2}. If the primes dividing k are

all of the form p ≡ 2 (mod 3) then we have simply

Ω(k) = {
(k,0), (k,k), (0,k), (−k,0), (−k,−k), (0,−k)

}
but in general this set can be a much larger as one can see from Proposition 1.3. For instance if
k = 7 then one can check the nontrivial representation 49 = ζ(8,3). For each solution (m,n) ∈ Ω(k),

in general, one can find eleven more by applying the following transformations: (m,n)
τ1� (m − n,m),

(m,n)
τ2� (m,n −m), then their permutations (m,n)

τ3� (n,m), (m,n)
τ4� (m,m −n), (m,n)

τ5� (n −m,n),

and finally the reflections into the origin of all the above maps (m,n)
τ6� (−m,−n), (m,n)

τ7� (n −
m,−m), (m,n)

τ8� (−m,m − n), (m,n)
τ9� (−n,−m), (m,n)

τ10� (−m,n − m), (m,n)
τ11� (m − n,−n).

Hence, the coordinates of R depend on (m,n) ∈ Ω(k) and two possible choices of signs:

R =

⎛
⎜⎜⎜⎝

(mx+mu)m
−(nx+nu)n

±2ak

3
,

(my+mv )m
−(ny+nv )n

±2bk

3
,

(mz+mw )m
−(nz+nw )n

±2ck

3

⎞
⎟⎟⎟⎠ , (m,n) ∈ Ω(k). (8)

We would like to show that for every primitive solution of Eq. (3), every k ∈ N, and every (m,n) ∈
Ω(k) one has either integer coordinates in (8) or can choose the signs in order to accomplish this.
A primitive solution of (3) is a solution that satisfies the conditions gcd(a,b, c) = 1. We begin with a
few lemmas.

Lemma 2.1. Every primitive solution (a,b, c,d) of (3) must satisfy

(i) a ≡ ±1 (mod 6), b ≡ ±1 (mod 6) and c ≡ ±1 (mod 6),
(ii) a2 + b2 ≡ 2 (mod 6).
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Fig. 3. All regular tetrahedra in T0
1.

Proof. One can see that all numbers a, b, c and d must be odd since gcd(a,b, c) = 1. Then an odd
perfect square is congruent to only 1 or 3 modulo 6. By way of contradiction if we have for instance
a ≡ 3 (mod 6) then 3 divides a2 = 3d2 − (b2 +c2). This implies that 3 divides b2 +c2 which is possible
only if 3 divides b and c. Therefore that would contradict the assumption gcd(a,b, c) = 1. Hence, (i) is
shown and (ii) is just a simple consequence of (i). �

Let us observe that (ii) in Lemma 2.1 implies in particular that q = a2 + b2 is coprime to 3.

Lemma 2.2. Let k ∈ N and (m,n) ∈ Ω(k).

(a) Then m and n must satisfy k ≡ ±(m + n) (mod 3).
(b) If k ≡ 0 (mod 3) then m ≡ n ≡ 0 (mod 3).

Proof. (a) This part follows immediately from the identities

k2 ≡ 4k2 = 4m2 − 4mn + 4n2 = 3n2 + (2m − n)2 ≡ (2m − n)2 ≡ (m + n)2 (mod 3).

(b) For the second part let us observe that if k ≡ 0 (mod 3) then by part (a) we must have
m = 3t − n for some t ∈ Z. This in turn gives 9k′ 2 = k2 = m2 − mn + n2 = 3(3t2 − 3nt + n2) which
shows that 3 divides 3t2 − 3nt + n2. So, finally n must be divisible by 3 and then so is m. �
Lemma 2.3. Let q = a2 + b2 with (a,b, c,d) a primitive solution of (3) and r, s ∈ Z a solution of the equation
2q = s2 + 3r2 . Then 1 ≡ a2 ≡ b2 ≡ c2 ≡ s2 (mod 3).

Proof. Since 2c2 = 6d2 − 2q ≡ −s2 − 3r2 ≡ −s2 (mod 3) then we have 2c2 ≡ 2s2 (mod 3) which
together with Lemma 2.1 gives the desired conclusion. �

For a = b = c = 1, we have 8 elements in T0
1 as shown in Fig. 3, one for each triangular face of a

cuboctahedron (Archimedean solid A1 or also known as a truncated cube):
The number of tetrahedra in T0

λ in general depends on λ. For instance, if λ = 3 then we calculated
that |T0

3| = 40.
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In general, the faces of an element in T0
λ must have normal vectors that satisfy (3). But these

equations can be very different and one has to go search far enough to find such an exam-
ple. For instance, the tetrahedron O ABC where A = (376,−841,2265), B = (−1005,−2116,701),
C = (1411,−1965,356) has the four faces with normal vectors

(−187,113,73), satisfying 1872 + 1132 + 732 = 3
(
1332),

(−343,−253,−37), satisfying 3432 + 2532 + 372 = 3(247)2,

(19,41,151), satisfying 192 + 412 + 1512 = 3(91)2 and

(391,−2461,1661), satisfying 3912 + 24612 + 16612 = 3(1729)2.

Theorem 2.2. Every tetrahedron in T0
λ can be obtained by taking as one of its faces an equilateral triangle

having the origin as a vertex and the other two vertices given by (4) and (5) with a, b, c and d odd integers
satisfying (3) with d a divisor of λ, and then completing it with the fourth vertex as in (8) for some (m,n) ∈
Ω(λ/d).

Conversely, if we let a, b, c and d be a primitive solution of (3), let k ∈ N and (m,n) ∈ Ω(k), then the
coordinates of the point R in (8) are

(a) all integers, if k ≡ 0 (mod 3) regardless of the choice of signs or
(b) integers, precisely for only one choice of the signs if k �≡ 0 (mod 3).

Proof. The first part of the theorem follows from the arguments at the beginning of this section. For
the second part, the case in which k is a multiple of 3 follows from Lemma 2.2.

Let us look into a situation in which k �≡ 0 (mod 3). First we are going to analyze the third coor-
dinate of R . Since (5) gives mz + mw = r−s

2 + r = 3r−s
2 and nz + nw = 3r+s

2 we see that

2
[
(mz + mw)m − (nz + nw)n ± 2ck

] ≡ −s(m + n) ± ck (mod 3). (9)

By Lemmas 2.2 and 2.3 we get that

−s(m + n) ± ck ≡ ±k(s ± c) ≡ 0 (mod 3)

only for one choice of signs. So, the last coordinate of R satisfies the statement of our theorem
in part (b). If the coordinates of R are (xR , yR , zR) (which by (8) are rational numbers) we must
have x2

R + y2
R + z2

R = �2. So, it is enough to analyze just one other coordinate of R . From (5) we
obtain that 2q(mx + mu) = −db(3r + s) − ac(r − s) − 2(rac + dbs) ≡ acs (mod 3), and 2q(nx + nu) =
−2(rac + dbs) − db(s − 3r) − ac(r + s) ≡ −acs (mod 3). Therefore,

2q
[
(mx + mu)m − (nx + nu)n ± 2ak

] ≡ acs(m + n) ± qak (mod 3).

But q ≡ −1 (mod 3) by Lemma 2.1, and so

2q
[
(mx + mu)m − (nx + nu)n ± 2ak

] ≡ a
(
cs(m + n) ∓ k

)
(mod 3).

Because c2 ≡ 1 (mod 3), we can multiply the above relation by c to get

2qc
[
(mx + mu)m − (nx + nu)n ± 2ak

] ≡ −a
[−s(m + n) ± ck

]
(mod 3),

which shows, based on (9), that (mx + mu)m − (nx + nu)n ± 2ak is divisible by 3 if and only if zR is
an integer. Hence we have proved the last part of Theorem 2.2. �
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Fig. 4. Regular tetrahedra in the case k �≡ 0 (mod 3).

Fig. 4 shows how our tetrahedra look if we start from equilateral triangles as bases contained in a
plane and sharing a vertex. This configuration is as expected according to Theorem 2.2.

Remark. The alternating behavior that can be observed in Fig. 4 follows from Theorem 2.2 part (b).
Indeed, we can start with an equilateral triangle contained in a plane P which is one of the tiles and
the generator of a regular triangular tessellation. By Theorem 2.2 part (b) each such tile from this
tessellation is the face of a regular tetrahedron in T that is located in one and only one of the sides
of P. We denote the two half spaces by P+ and P− . Let us take one such tetrahedron, say in P+ ,
and translate this tetrahedron such that the fourth vertex, R , becomes the origin. The other vertices
give rise to three vertices of integer coordinates in P− that are each the fourth vertex R ′ for three
other tetrahedra living in P− as in Fig. 4. This type of translation can be repeated with one of the
tetrahedra in P− and one obtains the alternating pattern of tetrahedra as in Fig. 4.

Proposition 2.1. For a regular tetrahedron in T0
λ each face lies in a plane with a normal vector ni =

(ai,bi, ci) ∈ Z3 , i = 1,2,3,4, which satisfy

a2
i + b2

i + c2
i = 3d2

i , di an odd integer dividing λ, 1 � i � 4,

aia j + bib j + cic j + did j = 0, 1 � i < j � 4. (10)

Proof. We are going to refer to Fig. 2. Let E be the center of the face O P Q , F be the center of the
face R P Q , G the midpoint of the side P Q , and H the center of the tetrahedron O R P Q (O being the
origin). Since O , R , E , F , G , and H are all coplanar, and F and E are the intersections of the medians
on each corresponding face we have R F

RG = 2
3 and EG

E O = 1
2 . By Menelaus’s theorem H O

H F · R F
RG · EG

E O = 1.

This gives H O
H F = 3 and from here we have H O = H R = 3

4

√
2
3 � =

√
3
8 �. Using the cosine law in the

triangle O R H gives: O R2 = 2H R2 − 2H R2 cos Ô H R which gives

cos Ô H R = −1

3
. (11)

So, if the normal exterior unit vectors of the faces R P Q and O P Q are, say (a1,b1,c1)√
3d1

and (a2,b2,c2)√
3d2

,

using (11) gives a1a2 + b1b2 + c1c2 + d1d2 = 0. The rest of the identities follow similarly or from what
we have mentioned so far. �
Remark. If we consider the matrix

MT := 1

2

⎡
⎢⎢⎢⎢⎢⎣

a1
d1

b1
d1

c1
d1

1

a2
d2

b2
d2

c2
d2

1

a3
d3

b3
d3

c3
d3

1

a4 b4 c4

⎤
⎥⎥⎥⎥⎥⎦ (12)
d4 d4 d4
1
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the restrictions in (10) can be reformulated in terms of MT by requiring it to be orthogonal, i.e.
MT (MT )t = (MT )t MT = I . It is known that the set of orthogonal matrices form a group. We also
want to point out that in (10) only two of the exterior normal vectors ni are essential. The other two
can be computed from the given ones.

An interesting question here is whether or not every two vectors (a,b, c) and (a′,b′, c′) which
satisfy the conditions

a2 + b2 + c2 = 3d2, a′ 2 + b′ 2 + c′ 2 = 3d′ 2, aa′ + bb′ + cc′ + dd′ = 0 (13)

for some d,d′ ∈ Z, correspond to a tetrahedron in T containing two faces normal to the given vectors.
It turns out that the answer is a positive one and the proof of it follows from Theorem 4 in [3].

Another corollary of Theorem 2.2 about solutions of a particular case of the Diophantine sys-
tem (13) is given next.

Corollary 2.1. For every odd integer d > 1, the Diophantine system

a2 + b2 + c2 = 3d2, a′ 2 + b′ 2 + c′ 2 = 3d2, aa′ + bb′ + cc′ = −d2 (14)

always has nontrivial solutions (one trivial solution is a = b = c = d and a′ = b′ = −d, c = d.)

Proof. We have shown in [3] that the Diophantine equation a2 + b2 + c2 = 3d2 always has nontrivial
solutions. We then take m = n = 1 in Theorem 1.1 to obtain an equilateral triangle contained in the
plane of normal vector (a,b, c). By Theorem 2.2, case k = 1, we can complete this equilateral triangle
to a regular tetrahedron in T. Taking the normals to the new faces will give four normals and say
(â, b̂, ĉ) is one of them. Let us assume that gcd(â, b̂, ĉ) = 1. We know that there is a d̂ such that â2 +
b̂2 + ĉ2 = 3d̂2. The side length of this tetrahedron is, by our choice of m and n, equal to d

√
2. Therefore,

from Theorem 1.1 applied to the plane normal to (â, b̂, ĉ), we get that d
√

2 = d̂
√

2(u2 − uv + v2)

for some u, v ∈ Z, which implies that d̂ divides d. Hence we can adjust (â, b̂, ĉ), if necessary, by a
multiplicative factor in order to satisfy (14). �
Supplementary material

The online version of this article contains additional supplementary material.
Please visit doi:10.1016/j.jnt.2009.01.003.
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