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A Pólya field is a number field K , with ring of integers OK , such
that the OK -module formed by the integer-valued polynomials on
OK has a regular basis. We are interested here by Pólya fields of
small degree. We give a complete characterization of cyclic cubic,
quartic and sextic Pólya fields (quadratic Pólya fields are known
for a long time). Moreover, we prove that, with few exceptions, the
compositum of two quadratic Pólya fields is a biquadratic Pólya
field. Finally, we study sextic Pólya fields which are the Galoisian
closure of pure cubic fields.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We first recall the definition of a Pólya field and some basic characterizations. Let K be an al-
gebraic number field and denote by OK its ring of integers. We consider the ring of integer-valued
polynomials on OK , that is

Int(OK ) = {
P ∈ K [X] ∣∣ P (OK ) ⊆ OK

}
.

The OK -module Int(OK ) is free [4, Remark II.3.7] but describing a basis often constitutes an arduous
task. Thus, Pólya [13] and Ostrowski [12] tried to characterize the fields K such that Int(OK ) admits
a “regular basis” in the following sense:

Definition 1.1. (See Zantema [17].) A number field K is said to be a Pólya field if the OK -module
Int(OK ) admits a regular basis, that is, a basis ( fn)n∈N such that, for each n, the polynomial fn has
degree n.
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There are several ways to characterize Pólya fields. The first way is by considering the characteristic
ideals. For each n ∈ N, let In(K ) be the subset of K formed by 0 and the leading coefficients of the
polynomials in Int(OK ) with degree n. This is a fractional ideal of OK called the characteristic ideal
of K of index n [4, Proposition I.3.I]. The field K is a Pólya field if and only if the characteristic ideals
In(K ) are principal [4, II.1.4]. Of course, a number field K with class number hK equal to 1 is a Pólya
field. But the converse does not hold: for instance, every cyclotomic field is a Pólya field (see [17]).

The second way is the study of the Pólya group of K which can be considered as a measure of the
obstruction for a field K to be a Pólya field. Indeed, denote by Cl(K ) the class group of K , that is the
quotient Cl(K ) = I(K )/P (K ) of the group of fractional ideals I(K ) of K by the group P (K ) of nonzero
principal ideals. The Pólya group of K is the subgroup Po(K ) of Cl(K ) generated by the classes of the
characteristic ideals In(K ) of K . In fact, Po(K ) is also the subgroup of Cl(K ) generated by the classes
of the ideals Πq(K ) defined below [5, Proposition 2.2]:

Notation. For each q � 2, let Πq(K ) be the product of all the maximal ideals of OK with norm q:

Πq(K ) =
∏

m∈Max(OK )
N(m)=q

m.

If q is not the norm of an ideal, then Πq(K ) =OK .

We resume all these assertions in the following proposition:

Proposition 1.2. The field K is a Pólya field if and only if one of the following assertions is satisfied:

(1) Int(OK ) has a regular basis;
(2) for each n ∈N, the ideal In(K ) is principal;
(3) for each q � 2, the ideal Πq(K ) is principal;
(4) Po(K ) = {1}.

Quadratic Pólya fields are completely characterized [17]:

Proposition 1.3. A quadratic field Q[√d ] is a Pólya field if and only if d is of one of the following forms where
p and q denote two distinct odd prime numbers:

(1) d = 2, or d = −1, or d = −2, or d = −p where p ≡ 3 (mod 4), or d = p,
(2) d = 2p, or d = pq where pq ≡ 1 (mod 4) and, in both cases, the fundamental unit has norm 1 if p ≡

1 (mod 4).

We believe this is the only characterization of Pólya fields of a given degree to be found in the
literature. Here, we wish to characterize Galoisian Pólya fields with small degree, namely less than
six. Indeed, several results about Pólya groups in Galoisian extensions stated in [5] suggest that such
characterizations are obtained more easily for Galoisian fields. The simplicity of those characteriza-
tions depends on the properties of the Galois group G(K/Q) and also on the ramification in the
extension K/Q.

This work has been undertaken in [11] for biquadratic fields through the following proposition
that we will use later for our characterization.

Notation. For every finite extension L/K , denote by εL
K the natural morphism

εL
K :I ∈ Cl(K ) �→ IOL ∈ Cl(L).
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Proposition 1.4. (See [11, Proposition 4.2].) Let K , K1 and K2 be Galoisian extensions of Q such that K1 ∩ K2 =
K and denote by L = K1 K2 the compositum of K1 and K2 . If, for each prime ideal p of K , the ramification
indices of p in the extensions K1/Q and K2/Q are coprime, then:

εL
K1

(
Po(K1)

)
.εL

K2

(
Po(K2)

) = Po(L).

In particular, if K1 and K2 are Pólya fields, then L is a Pólya field.

The first characterization is obtained when G(K/Q) is cyclic and its order is an odd prime number:
K is a Pólya field if and only if there is only one prime which is ramified in K/Q. We describe in
Section 3 all cyclic cubic Pólya fields.

If G(K/Q) is still cyclic but if its order is not prime, Proposition 1.4 leads us to consider the case of
cyclic Galois groups whose order is a prime power. We characterize in Section 4 cyclic quartic Pólya
fields.

The group G(K/Q) may be Abelian but not cyclic. Proposition 1.4 leads us again to consider
Abelian Galois groups whose order is a prime power. We study in Section 4 biquadratic fields ob-
tained as a compositum of two quadratic Pólya fields.

Finally, we consider the case where G(K/Q) is not Abelian. Such a case does not happen until
degree 6 with a Galois group isomorphic to the symmetric group S3. These sextic extensions are in
fact the Galoisian closures of non-cyclic cubic fields. We characterize in Section 5 sextic extensions
that are Galoisian closure of pure cubic fields, that is, fields of the form Q[ j, 3

√
m ].

We begin this work with a general study on the number of primes that are ramified in a Galoisian
Pólya field.

2. A bound for the number of ramified primes in a Pólya field

Let K be a number field which is a Galoisian extension of Q. Denote by sK the number of primes
which are ramified in K/Q, and, for each prime number p, denote by ep the index of ramification of
p in K/Q. Recall a result from Zantema:

Proposition 2.1. (See [17].) If K/Q is Galoisian with Galois group G, the following sequence of Abelian groups
is exact:

1 → H1(G,O×
K

) → ⊕p∈PZ/epZ → Po(K ) → 1.

In particular,

∣∣Po(K )
∣∣ × ∣∣H1(G,O×

K

)∣∣ =
∏
p∈P

ep .

Thus, if K/Q is a Galoisian extension, K is a Pólya field if and only if |H1(G,O×
K )| = ∏

p∈P ep . More-

over, since for cyclic extensions, the order of H1(G,O×
K ) is known, we have:

Proposition 2.2. (See [5, Corollary 3.11].) Assume that the extension K/Q is cyclic of degree n.

(1) If K is real and N(O×
K ) = {1}, then |Po(K )| = 1

2n × ∏
p ep .

(2) In all other cases, |Po(K )| = 1
n × ∏

p ep .

One deduces easily the following property:

Proposition 2.3. If K/Q is a cyclic extension whose degree is an odd prime number q, then Po(K ) = qsK −1

where sK denotes the number of primes which are ramified in K/Q. In particular, K is a Pólya field if and only
if there is exactly one prime which ramifies in K/Q.
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Proof. A prime number which ramifies in a cyclic extension K/Q whose degree is a prime number
is totally ramified in this extension. Thus, as q 
= 2 and as the cardinality of Po(K ) is an integer,
following Proposition 2.2, Po(K ) = qsK −1. �
Remarks.

(1) Note that the case where q = 2 corresponds to quadratic number fields and the cardinality of
Po(K ) was given by Hilbert [9, §75]:
• |Po(K )| = 2sK −2 if K is real and N(O×

K ) = {1} and
• |Po(K )| = 2sK −1 in the other cases.
Consequently, for a quadratic Pólya field K , sK = 1 or 2.

(2) If K/Q is not cyclic with an odd prime degree, not only sK may be distinct from 1 but sK may be
arbitrarily large. Indeed, Proposition 1.4 enables us to construct Pólya fields that have a number
of ramified prime numbers as large as we wish. For instance, the field Q[√p1, . . . ,

√
pr ], where r

is any positive integer and the pi ’s are primes such that pi ≡ 1 (mod 4), is the compositum of r
quadratic Pólya fields K1 = Q[√p1 ], . . . , Kr = Q[√pr ] (see Proposition 1.3). Since the ramification
indices of the primes pi in the extensions Ki/Q are coprime, by Proposition 1.4, we obtain that
L := ∏r

i=1 Ki = Q[√p1, . . . ,
√

pr ] is a Pólya field with r ramified primes. In this construction, in
order to obtain r ramified prime numbers, we have to consider an extension of degree � 2r .

On the other hand, if the degree n of K/Q is fixed, we may give an upper bound for sK . For this
purpose, we recall a result from Brumer and Rosen:

Proposition 2.4. (See [3, Proposition 3.3].) Let K/Q be a Galoisian extension with group G and degree n. Let
n = ∏

p pv p(n) be a factorization of n into prime powers. Then |H1(G,O×
K )| divides

∏
p|n pR p(n) where

R p(n) = n

(
1

p
+ 1

p2
+ · · · + 1

pv p(n)

)
+ v p(n).

Proposition 2.5. The number sK of prime which are ramified in a Pólya field K which is a Galoisian extension
of Q is bounded by a function which depends only on the degree n of the extension K/Q. More precisely,

sK �
∑
p|n

R p(n) where R p(n) = n

(
1

p
+ 1

p2
+ · · · + 1

pv p(n)

)
+ v p(n).

Proof. Assume that K/Q is a Pólya field. Following Proposition 2.1, |H1(G,O×
K )| = ∏

p∈P ep , and the

previous proposition shows that
∏

p∈P ep | ∏
p|n pR p(n) . The number of irreducible factors of

∏
p∈P ep

is � sK , while the number of irreducible factors of
∏

p|n pR p(n) is exactly
∑

p|n R p(n). Consequently,
sK �

∑
p|n R p(n). �

Application 1. Assume that K is a Pólya field which is a Galoisian extension of degree n. It follows
from Proposition 2.5 that, if n = 2 (respectively 3, 4, 6), then sK � 2 (respectively 2, 5, 7). The first
bound agrees with the previous remark, the second bound is larger than the exact value 1 given by
Proposition 2.3. We will see that the others are rough bounds.

3. Cyclic cubic Pólya fields

Let K be a cubic field. We denote by D K the discriminant of K . One knows that K is a cyclic cubic
field if and only if the discriminant D K of K is a square in Q. We recall the complete description of
cyclic cubic fields that one may find in [6]:
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Proposition 3.1. (See [6, Lemma 6.4.5].) For any cyclic cubic field K , there exists a unique pair of integers e and
u such that e is equal to a product of distinct primes congruent to 1 modulo 3, u ≡ 2 (mod 3) and such that

K = Q(θ) where θ is a root of the polynomial Q (X) = X3 − 3e X − eu. Moreover e = u2+3v2

4 where v ∈ N∗ .
Conversely, a field K of the aforementioned type is a cyclic cubic field. Furthermore, if 3 � v then D K = 81e2 ,
and if 3|v then D K = e2 .

Proposition 3.2. Let K be a cyclic cubic field. Then, K is a Pólya field if and only if K = Q(θ) where θ is a root
of a polynomial P such that:

either P = X3 − 3X + 1,

or P = X3 − 3p X − pu

where p is a prime such that p = u2+27w2

4 with u ≡ 2 (mod 3) and w ∈N∗ .

Proof. Following Proposition 2.3, K is a cyclic cubic Pólya field if and only if there is only one prime
which ramifies in the extension K/Q. Assume that 3 ramifies in K/Q. Using notation of the previous
proposition, the prime 3 is thus the only possible prime divisor of e. But e ≡ 1 (mod 3) and as a
consequence e = 1, u = ±1 and v = 1. Since u ≡ 2 (mod 3) then u = −1 and P = X3 − 3X + 1. Now,
if 3 does not ramify in K/Q, then we have 3|v and D K = e2. Thus e = p where p is a prime number
such that p ≡ 1 (mod 3). We conclude that

P = X3 − 3p X − pu

where p is a prime such that p = u2+27w2

4 with u ≡ 2 (mod 3) and w ∈N∗ . �
Example 3.3. For p = 13, u = 5 and w = 1, the previous proposition shows that the field K = Q(θ)

where θ is a root of X3 − 39X − 65 is a cyclic cubic Pólya field.

4. Cyclic quartic Pólya fields

Next, we carry on the study with cyclic quartic fields. We find a complete description of cyclic
quartic fields in [8] and their discriminants are computed in [16]. We first recall these properties.

Proposition 4.1. A cyclic quartic extension K/Q can be expressed uniquely in the following form K =
Q(

√
A(D + B

√
D ) ) where A, B, C and D are integers such that A is squarefree and odd, D = B2 + C2 is

squarefree, B > 0, C > 0, gcd(A, D) = 1.
The discriminant D K of such a field K is given by

D K =

⎧⎪⎨
⎪⎩

28 A2 D3, if D ≡ 0 (mod 2),

26 A2 D3, if D ≡ 1 (mod 2) and B ≡ 1 (mod 2),

24 A2 D3, if D ≡ 1 (mod 2) and B ≡ 0 (mod 2), A + B ≡ 3 (mod 4),

A2 D3, if D ≡ 1 (mod 2) and B ≡ 0 (mod 2), A + B ≡ 1 (mod 4).

Remark that k = Q(
√

D ) is the unique quadratic subfield of K . Moreover, K is totally real if A > 0
and totally imaginary if A < 0.

Notations. For each n ∈ N, denote by ω(n) the number of distinct prime numbers dividing n. Let αK

be the integer defined by
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{
αK = 1 if K is real and if N(O×

K ) = {1},
αK = 0 else.

In order to study the ramification in a cyclic quartic extension K/Q, we precise the notion of a
minimal extension: a non-trivial extension M/K is said to be a minimal extension of K if, for each
field L such that K ⊂ L ⊂ M , L = M or L = K .

Lemma 4.2. Let L/K be a Galoisian extension of number fields. A prime ideal p of K is totally ramified in L/K
if and only if it ramifies in every minimal extension of K contained in L.

Proof. One assertion is obvious. We prove the other one. Assume that p is not totally ramified in
the extension L/K . Let P be a prime ideal of L lying over p, the inertial group I of P in L/K is a
strict subgroup of the Galois group of L/K . Denote by LI the subfield of L fixed by I . The prime ideal
p does not ramify in the extension LI/K and LI/K contains a minimal extension where p does not
ramify. �
Proposition 4.3. Let K = Q(

√
A(D + B

√
D ) ) be a cyclic quartic field. The order |Po(K )| of the Pólya group

of K is given by:

(1) |Po(K )| = 4ω(D)−12ω(A)−αK if D ≡ 0 (mod 2) or A + B ≡ 1 (mod 4).
(2) |Po(K )| = 4ω(D)−12ω(A)−αK +1 in the other cases.

Proof. By Proposition 2.2,

∣∣Po(K )
∣∣ = 1

4
× 1

2αK
×

∏
p

ep .

By Lemma 4.2, p is totally ramified in K/Q if and only if p is ramified in k/Q, that is, ep = 4 if and
only if p|Dk . Consequently,

∏
p

ep = 4ω(Dk) × 2ω(D K )−ω(Dk).

Since D is a sum of two squares, one has D ≡ 1 or 2 (mod 4), and hence, ω(Dk) = ω(D). Since A is
an odd number coprime to D , it follows from Proposition 4.1 that:

• if D ≡ 0 (mod 2) or if A + B ≡ 1 (mod 4), then ω(D K ) − ω(Dk) = ω(A),
• in the other cases, ω(D K ) − ω(Dk) = ω(A) + 1. �

Theorem 4.4. Let K = Q(

√
A(D + B

√
D ) ) be a cyclic quartic field where A, B, C , D are integers such that A

is squarefree and odd, D = B2 + C2 is squarefree, B > 0, C > 0, gcd(A, D) = 1. Then K is a Pólya field if and
only if one of the following conditions is satisfied (p and q denote distinct odd prime numbers):

(1) K =Q(
√

2 + √
2 ) or K = Q(i

√
2 + √

2 ).

(2) K =Q(

√
q(2 + √

2 ) ) with N(O×
K ) = {1}.

(3) K =Q(
√

p + B
√

p ) with p ≡ 1 (mod 4), B ≡ 0 (mod 4) and p = B2 + C2 .
(4) K =Q(i

√
p + B

√
p ) with p ≡ 1 (mod 4), B ≡ 2 (mod 4) and p = B2 + C2 .

(5) K =Q(
√

p + B
√

p ) with p ≡ 1 (mod 4), B ≡ 1,2,3 (mod 4), p = B2 + C2 and N(O×
K ) = {1}.

(6) K =Q(
√

q(p + B
√

p ) ) with p ≡ 1 (mod 4), p = B2 + C2 , q + B ≡ 1 (mod 4) and N(O×
K ) = {1}.
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Proof. Assume that K is a Pólya field. From Proposition 4.3, we deduce that ω(D) = 1 and ω(A) = 0
or 1. Since D ≡ 1,2 (mod 4), one has D = 2 or D = p with p ≡ 1 (mod 4).

Consider the case D = 2. Thus ω(A) = αK . For αK = 0, one has A = ±1 and K is one of the
following fields: K =Q(

√
2 + √

2 ) and K = Q(i
√

2 + √
2 ). Conversely, these two fields are Pólya fields

since there is only one prime which ramifies, namely 2. If αK = 1, then A > 0, ω(A) = 1 and A = q, q

being an odd prime number. We obtain the field Q(

√
q(2 + √

2 ) ). Such a field is a Pólya field under

the condition N(O×
K ) = {1}.

Now we consider the case D = p ≡ 1 (mod 4). If A + B ≡ 1 (mod 4), then ω(A) = αK . Assume
that αK = 0, we have A = ±1 and we get the fields K = Q(

√
p + B

√
p ) (A = 1, B ≡ 0 (mod 4)) and

K = Q(i
√

p + B
√

p ) (A = −1 and B ≡ 2 (mod 4)). Conversely these two fields are Pólya fields since
p is the only ramified prime. If αK = 1, then A > 0, ω(A) = 1. We deduce that A = q where q is an
odd prime number. Hence, we get the field Q(

√
q(p + B

√
p ) ). Such a field is a Pólya field under the

condition N(O×
K ) = {1}.

Assume that A + B 
≡ 1 (mod 4), we have ω(A) = αK − 1 = 0. Thus αK = 1 and A = 1 (B 
≡
0 (mod 4)). We get a field of the form Q(

√
(p + B

√
p ) ). Such a field is a Pólya field under the

condition N(O×
K ) = {1}. �

Sometimes, one may specify the previous theorem about the norm of units thanks to the following
proposition:

Proposition 4.5. (See [7].) Let K be a real finite Galoisian extension. Suppose the conductor f of K is composite.

Let M f be the maximal real subfield of Q(e
2iπ

f ). If [M f : K ] is odd (i.e. if ϕ( f )
2[K :Q] is odd), then N(O×

K ) = {1}.

Following [15], the conductor f of a cyclic quartic field K = Q(

√
A(D + B

√
D ) ) is

f = 2l|A|D

where

l =
{3, if D ≡ 2 (mod 4) or D ≡ 1 (mod 4), B ≡ 1 (mod 2),

2, if D ≡ 1 (mod 4), B ≡ 0 (mod 2), A + B ≡ 3 (mod 4),

0, if D ≡ 1 (mod 4), B ≡ 0 (mod 2), A + B ≡ 1 (mod 4).

Then, we can refine assertions (5) and (6) of Theorem 4.4

Corollary 4.6.

(1) Let K = Q(
√

p + B
√

p ) be a cyclic quartic field such that p ≡ 1 (mod 4), B ≡ 2 (mod 4) and p =
B2 + C2 . If p ≡ 5 (mod 8), then K is a Pólya field.

(2) Let K = Q(
√

q(p + B
√

p ) ) be a cyclic quartic field such that p ≡ 1 (mod 4), B ≡ 0 (mod 2) and p =
B2 + C2 , q + B ≡ 1 (mod 4). If p ≡ 5 (mod 8) and q ≡ 3 (mod 4), then K is a Pólya field.

Proof.

(1) The conductor f of K is equal to f = 22 p. If p ≡ 5 (mod 8), then ϕ( f )
2[K :Q] = p−1

4 is odd.

(2) The conductor f of K is equal to f = qp. If p ≡ 5 (mod 8) and q ≡ 3 (mod 4), then ϕ( f )
2[K :Q] =

(p−1)(q−1)
8 is odd. �
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5. About biquadratic Pólya fields

In this section, we prove that, with few exceptions, biquadratic fields obtained by composition of
two quadratic Pólya fields are Pólya fields. This study has been undertaken in [11] and we pursue it
in this section. We prove the following result:

Theorem 5.1. Let m and n be two squarefree integers such that Q[√m ] and Q[√n ] are quadratic Pólya fields.
The biquadratic field Q[√m,

√
n ] is a Pólya field except for the following fields, where p and q denote odd

primes and p ≡ 3 (mod 4):

(1) Q[i√2,
√

p ] is not a Pólya field;
(2) Q[i,√2q ] is not a Pólya field;
(3) Q[√p,

√
2q ] is not always a Pólya field. If it is a Pólya field, then:

(a) either p ≡ −1 (mod 8) and q ≡ ±1 (mod 8),
(b) or p ≡ 3 (mod 8) and q ≡ 1,3 (mod 8).

But these necessary conditions are not sufficient.

Notations. Let m and n be two squarefree integers. We let l = gcd(m,n) and write m = lm1, n = ln1,
so that gcd(m1,n1) = 1.

These exceptions are due to the prime 2 which may not satisfy the hypothesis of Proposition 1.4.
More precisely:

Proposition 5.2. (See [11, Proposition 4.3].) If K1 = Q[√m ] and K2 =Q[√n ] are two distinct quadratic Pólya
fields such that 2 is ramified in at most two of the three extensions Q[√m ]/Q, Q[√n ]/Q and Q[√m1n1 ]/Q,
then the field Q[√m,

√
n ] is a Pólya field.

Thus, when Q[√m ] and Q[√n ] are quadratic Pólya fields, Q[√m,
√

n ] may not be a Pólya field
only if 2 is ramified in each extension Q[√m ]/Q, Q[√n ]/Q and Q[√m1n1 ]/Q.

Lemma 5.3. The prime 2 is ramified in each quadratic extension Q[√m ]/Q, Q[√n ]/Q and Q[√m1n1 ]/Q if
and only if two of the three integers m,n,m1n1 are congruent to 2 modulo 4 and the third is congruent to 3
modulo 4.

Proof. The prime 2 ramifies in the three quadratic extensions Q[√m ]/Q, Q[√n ]/Q and Q[√m1n1 ]/Q
if and only if m, n, m1n1 ≡ 2,3 (mod 4).

• If m,n ≡ 3 (mod 4), then mn ≡ 1 (mod 4), m1n1 ≡ 1 (mod 4) and 2 is not ramified in
Q[√m1n1 ]/Q.

• If m,n ≡ 2 (mod 4), then m1n1 
≡ 2 (mod 4) (otherwise 4 would divide m or n, but they are
squarefree). The prime 2 is ramified in Q[√m1n1 ]/Q if and only if m1n1 ≡ 3 (mod 4).

• If m ≡ 2 (mod 4) and n ≡ 3 (mod 4), then m1n1 ≡ 2 (mod 4). �
Then, using the characterization of quadratic Pólya fields (cf. Proposition 1.3), we state all the

biquadratic fields obtained by composition of quadratic Pólya fields such that 2 is ramified in each
quadratic subfield, and hence, which are not necessarily Pólya fields.

Lemma 5.4. Let Q[√m ] and Q[√n ] be two quadratic Pólya fields. The prime 2 is ramified in each quadratic
subextensions of L = Q[√m,

√
n ] if and only if L is one of the five following fields: Q[i,√2 ], Q[i,√2q ],

Q[√2,
√

p ], Q[√−2,
√

p ], Q[√p,
√

2q ] where p and q are two distinct odd prime numbers and p ≡
3 (mod 4).
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A biquadratic field L = Q[√m,
√

n ] among the five fields given in Lemma 5.4 is a Pólya field if and
only if Π2(L) is principal. Lemma 4.2 shows that 2 is totally ramified in these biquadratic fields. Thus
the ideal Π2(L) is principal if and only if L contains an integer with norm ±2.

Lemma 5.5. Let L = Q[√m,
√

n ] be one of the five biquadratic fields of Lemma 5.4. If L is a Pólya field, each
one of the three quadratic subextensions of L contains an integer with norm ±2.

It is an easy consequence of the following lemma:

Lemma 5.6. Let L and K be two number fields such that K ⊂ L. Let N be a maximal ideal of OL and M =
N∩OK . If N is principal and if e(N/M) = [L : K ], then M is also principal.

Indeed, consider the norm morphism [14, Chapter I. §5]:

N K
L : I(L) �→ I(K )

which is determined by its value on the maximal ideals N of OL

N K
L (N ) = M fN (L/K )

where M=N ∩OK and fN (L/K ) = [OL/N :OK /M]. We know that the morphism N K
L generalizes

the norm NL/K (x) of an element x and the absolute norm of an ideal:

N K
L (xOL) = NL/K (x)OK and

∣∣NQ
K (I)

∣∣ = Card(OK /I),

for every x ∈ L and every entire ideal I of K .
We come back to the proof of the previous lemma: if N= αOL then N K

L (N) = M = NL/K (α)OK .
Now, we can check whether some fields considered in Lemma 5.4 are Pólya fields or not. First,

the field L = Q[√2, i ] is a Pólya field because its class number is 1 (see [2]). Then, we consider the
imaginary biquadratic fields Q[√−2,

√
p ] and Q[i,√2q ].

Proposition 5.7. For all primes p such that p ≡ 3 (mod 4) and all odd primes q, the fields Q[√−2,
√

p ] and
Q[i,√2q ] are not Pólya fields.

Proof. Denote by L the field Q[√−2,
√

p ] and K the subfield Q[√−2p ]. Following Lemma 5.6, if
the ideal Π2(L) is principal, the ideal Π2(K ) is principal too. Since the prime 2 is ramified in K/Q,
there exists an element of OK with norm ±2. However, the equation a2 + 2pb2 = ±2 has no integer
solutions. Similarly, since the equation a + 2qb2 = ±2 has no integer solutions, there is no ideal with
norm 2 in the subfield K ′ = Q[√−2q ] of L′ = Q[i,√2q ]. Consequently, for each odd prime q, the
field L′ = Q[i,√2q ] is not a Pólya field. �

The case of the fields L = Q[√2,
√

p ] where p ≡ 3 (mod 4) may be solved by [1, Theorem 1].
Indeed, Azizi and Mouhib are interested in real biquadratic fields K such that K = Q[√m,

√
d ] with

m = 2 or m is a prime number satisfying m ≡ 1 (mod 4) and d is a squarefree integer. Recall the part
of their theorem corresponding to m = 2:

Proposition 5.8. (See [1, Theorem 1].) Let k = Q(
√

2 ) and K = k(
√

d ) where d is a squarefree integer. Denote
by r the number of primes ideals in k = Q[√2 ] which are ramified in K and let e be such that 2e = [O×

k :
NK/k(K ∗) ∩O×

k ]. Then,

(1) The rank of the 2-class group Cl2(K ) of K is r − 1 − e.
(2) If there is an odd prime number q dividing d such that q ≡ 3 (mod 4), then e = 1 or e = 2.
(3) The rank of Cl2(K ) is r − 2 if and only if, for each odd prime number q dividing d, ( 2

q ) = 1 ⇒ (−1
q ) = 1.



68 A. Leriche / Journal of Number Theory 133 (2013) 59–71
Corollary 5.9. The biquadratic fields L = Q[√2,
√

p ] where p ≡ 3 (mod 4) are Pólya fields.

Proof. We use the previous proposition with d = p ≡ 3 (mod 4). Here, the rank of Cl2(K ) is r − 2 or
r − 3.

When ( 2
p ) = −1, there are r = 2 prime ideals of Q[√2 ] which are ramified in the extension

L/Q[√2 ]: the prime ideals of Q[√2 ] lying over 2 and p. The rank of the 2-class group of L is zero,
in other words, the 2-class group of L is trivial. Moreover, since 2OL = Π2(L)4, Π2(L) is principal.

If ( 2
p ) = 1, then there are exactly r = 3 prime ideals of Q[√2 ] ramified in L/Q[√2 ]: two

prime ideals in Q[√2 ] lying over the prime p and the prime ideal lying over the prime 2. Since

p ≡ 3 (mod 4), one has (−1
p ) = (−1)

p−1
2 = −1. Following the third assertion of the previous propo-

sition, the rank of Cl2(K ) is different from r − 2, thus it is r − 3 = 0. The 2-class group of L is also
trivial. �

Finally, we consider the last field L = Q[√2q,
√

p ] where p and q are two distinct primes and
p ≡ 3 (mod 4). If we take norm equations in Q(

√
2pq ), we obtain the following proposition:

Proposition 5.10. Let p and q be two distinct prime numbers such that p ≡ 3 (mod 4). If Q[√p,
√

2q ] is a
Pólya field, then:

(1) either p ≡ −1 (mod 8) and q ≡ 1,−1 (mod 8),
(2) or p ≡ 3 (mod 8) and q ≡ 1,3 (mod 8).

Proof. Assume that L = Q[√p,
√

2q ] is a Pólya field, then the ideal Π2(L) is principal. Following
Lemma 5.6, in the field K = Q[√2pq ], the ideal Π2(K ) is principal too. Since the prime 2 is ramified
in K/Q, there is an element in OK with norm ±2: the equation a2 − 2pqb2 = ±2 has a solution
(a,b) ∈ Z2. We obtain: (

2

p

)
=

(
2

q

)
= 1 or

(−2

p

)
=

(−2

q

)
= 1.

However, p ≡ 3 (mod 4) and as a consequence p ≡ −1 (mod 8) or p ≡ 3 (mod 8). Considering the
rules of calculus with the Legendre symbol, we obtain easily the conditions about q in the proposi-
tion. �
Remark 5.11. If p,q ≡ 3 (mod 8), one may compute that, for p,q < 100, Q[√p,

√
2q ] is always a

Pólya field. In the other cases, however, the previous conditions are not sufficient since we have, for
each aforementioned condition on p and q, a couple (p,q) such that Q[√p,

√
2q ] is not a Pólya field.

For example, the fields Q[√7,
√

62 ], Q[√7,
√

82 ] and Q[√3,
√

34 ] are not Pólya fields.
The question remains open to know whether there are biquadratic Pólya fields which are not

obtained by composition of two quadratic Pólya fields.

6. Sextic Pólya fields

Let K be a number field such that K/Q is a Galoisian extension of degree 6. Then, the Galois
group G(K/Q) is either cyclic or isomorphic to S3.

Proposition 6.1. Cyclic sextic Pólya fields are exactly those which are obtained by composition of a quadratic
Pólya field with a cyclic cubic Pólya field.

Proof. A cyclic sextic field K contains two non-trivial subfields: a quadratic subfield K1 and a cyclic
cubic subfield K2. Following Proposition 1.4, the field K is a Pólya field if and only if K1 and K2 are
Pólya field. �
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Now, we consider non-Abelian sextic number fields K . The group S3 contains only one subgroup
of order 3 and three subgroups of order 2. Thus, K has only one quadratic subfield K1 = Q[√d ] and
three conjugate cubic subfields K2,k (1 � k � 3) over Q. The field K is composed with K1 and any
subfield among K2,k . The sextic field K is also the Galoisian closure of these three non-cyclic cubic
fields, and conversely, the Galoisian closure of every non-cyclic cubic field is a sextic field with a
Galois group isomorphic to S3.

Here, we restrict our study to sextic fields K which contain a pure cubic field. This happens if and
only if the quadratic subfield K1 of K is the field Q[ j]. In other words, we are going to characterize
Pólya fields of the form Q[ j, 3

√
m ].

Theorem 6.2. Let m = ab2 where m is an integer � 2, a and b are squarefree and coprime. Let L = Q[ j, 3
√

m ],
K1 = Q[ j] and K =Q[ 3

√
m ]. The field L is a Pólya field if and only if

• when a2 
≡ b2 (mod 9), for each prime p dividing 3m, there is an element α ∈ K such that NK/Q(α) = ±p,
• when a2 ≡ b2 (mod 9), for each prime p dividing m, there is an element α ∈ K such that NK/Q(α) = ±p.

We begin with some useful lemmas and first give a general result:

Proposition 6.3. Let L/K be an extension of number fields of degree n and denote by Cl(K )n̂ the subgroup of
Cl(K ) formed by the elements whose order is coprime to n. The restriction of the morphism εL

K : I ∈ Cl(K ) �→
IOL ∈ Cl(L) to the subgroup Cl(K )n̂ is injective.

Proof. The morphism N K
L defined in Section 5 induces the morphism:

νK
L : I ∈ Cl(L) �→ N K

L (I) ∈ Cl(K ).

The following composed application is injective:

νK
L ◦ εL

K |Cl(K )n̂
: I ∈ Cl(K )n̂ �→ In ∈ Cl(K ). �

Lemma 6.4. Let m be a cubefree integer � 2, K = Q[ 3
√

m ] and L = Q[ j, 3
√

m ]. For every prime p dividing m,
p 
= 3, we have:

(1) Πp(K )OL = Πp(L) or Πp2 (L),
(2) Πp(K ) is principal if and only if Πp(L) (respectively Πp2 (L)) is principal.

Proof. Let K1 = Q[ j]. Following the decomposition of a prime number in a cyclotomic field [10,
Proposition 6.4.8], we have:

• If p ≡ 1 (mod 3) then pOK1 =m1m2 and N(m1) = N(m2) = p.
• If p ≡ 2 (mod 3) then pOK1 =m and N(m) = p2.

If p | m and p 
= 3, then, according to the decomposition in a pure cubic field [6, Theorem 6.4.16], p is
totally ramified in K/Q: pOK = p3 and N(p) = p.

Thus,

• if p ≡ 1 (mod 3), then pOL = Πp(L)3,
• if p ≡ 2 (mod 3), then pOL = Πp2 (L)3.

If p | m, p 
= 3 and p ≡ 1 (mod 3) (respectively p ≡ 2 (mod 3)), we obtain the equality Πp(K )OL =
Πp(L) (respectively Πp(K )OL = Πp2 (L)). Consequently, if the ideals Πp(K ) are principal, the ideals
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Πp(L) (respectively Πp2 (L)) are also principal. Conversely, if the ideals Πp(L) (respectively Πp2 (L))
are principal, using the norm morphism N K

L , one has, if p ≡ 1 (mod 3):

N K
L

(
Πp(L)

) = Πp(K )2.

Similarly, if p ≡ 2 (mod 3), then N K
L (Πp2 (L)) = Πp(K )2. In both cases, Πp(K )2 is principal. This

means that the image of Πp(K ) is in the subgroup Cl(K )3̂ of Cl(K ) formed by the elements whose
order is coprime to 3. Following Proposition 6.3, we obtain that Πp(K ) is principal. �
Lemma 6.5. Let m = ab2 be a cubefree integer � 2 where a and b are coprime, K = Q[ 3

√
m ] and L =

Q[ j, 3
√

m ].

(1) If a2 ≡ b2 (mod 9), the ideal Π3(L) is principal.
(2) Otherwise, Π3(K ) is principal if and only if Π3(L) is principal.

Proof. One knows that there is only one maximal ideal m of K1 = Q[ j] with norm 3 such that
3OK1 = m2 = Π3(K1)

2. First, assume that 3OK = m1m
2
2 where N(mi) = 3. Following [6, Theo-

rem 6.4.16], this happens if and only if a2 ≡ b2 (mod 9). The extension L/Q is a Galoisian sextic
extension, the only possible decomposition of the prime 3 in L is the following one:

3OL = (n1n2n3)
2 where N(ni) = 3.

Since the extension L/K1 is Galoisian, one has

mOL = Π3(K1)OL = Π3(L) = n1n2n3.

Since K1 is a cyclotomic field, K1 is a Pólya field (see [17]). As a consequence, Π3(K1) is principal
and Π3(L) too.

Assume that 3OK = p3 = Π3(K )3. Following [6, Theorem 6.4.16], this happens if and only if a2 
≡
b2 (mod 9). In this case, 3OL = n6. Since the extensions L/K and L/K1 are Galoisian, we have:

mOL = Π3(K1)OL = Π3(L)3 = n3,

pOL = Π3(K )OL = Π3(L)2 = n2.

Since Π3(K1) is principal, Π3(L)3 is also principal. Thus, Π3(L) is principal if and only if Π3(L)2

is principal. But, if Π3(K ) is principal, since Π3(K )OL = Π3(L)2, the ideal Π3(L)2 is principal too.
Conversely, suppose that Π3(L)2 is principal, then the ideal N K

L (Π3(L)2) = N K
L (Π3(K )OL) = Π3(K )2

is principal, the equality 3OK = Π3(K )3 implies that Π3(K ) is also principal. Thus, Π3(L)2 is principal
if and only if Π3(K ) is principal. �
Proof of Theorem 6.2. The only prime which ramifies in K1/Q is 3, the primes which are ramified
in K2/Q are 3 and the prime divisors of m. Their decompositions are studied in the two previous
lemmas. The prime numbers distinct from 3 and from the divisors of m are not ramified in K1/Q,
nor in K2/Q, nor, a fortiori [11, Lemma 4.1], in L = K1 K2. Since the extension L/Q is Galoisian, the
ideals Πq(L) lying over these primes are principal (see [5, Proposition 3.1]). �
Corollary 6.6. Let p be a prime number. The field Q[ j, 3

√
p ] is a Pólya field if and only if

• either p2 ≡ 1 (mod 9),
• or there is an integer of Q[ 3

√
p ] with norm ±3.
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Proof. The prime p is totally ramified in Q[ 3
√

p ]/Q and:

• if p ≡ 1 (mod 3), then pOL = Πp(L)3 and Πp(L) = 3
√

pOL ,
• if p ≡ 2 (mod 3), then pOL = Πp2 (L)3 and Πp2 (L) = 3

√
pOL .

Thus Q[ j, 3
√

p ] is a Pólya field if and only if when p2 
≡ 1 (mod 9), the ideal Π3(K2) is principal, that
is equivalent with the existence of an integer of Q[ 3

√
p ] with norm ±3. �

Recall that we know bases of the ring of integers of a pure cubic field:

Proposition 6.7. (See [6, Theorem 6.4.13].) Let K = Q[ 3
√

m ] be a pure cubic field, where m � 2 is a cubefree
integer. Write m = ab2 where a, b are squarefree and coprime and let θ = 3

√
m.

(1) If a2 
≡ b2 (mod 9), then (1, θ, θ2

b ) is a basis of OK .

(2) If a2 ≡ b2 (mod 9), then (1, θ, θ2+mθ+b2

3b ) is a basis of OK .

If m = p where p is a prime number and p2 
≡ 1 (mod 9), a basis of the ring of integer of Q[ 3
√

p ]
is (1, 3

√
p, ( 3

√
p )2). An integer α = a + b 3

√
p + c( 3

√
p )2 has norm N(α) = a3 + p(b3 + pc3 − 3abc). Thus,

if OK has an element with norm 3, then 3 is a cube modulo p.

Example 6.8. For p = 7, we easily check that ±3 is not a cube modulo 7. Consequently Π3(K2) is not
principal. Moreover, K = Q[ 3

√
7 ] has a class number 3. Thus Po(K ) = Cl(K ) � Z/3Z and the Pólya

group of Q[ j, 3
√

7 ] is isomorphic to Z/3Z.

Example 6.9. For p = 17, 172 ≡ 1 (mod 9), the field Q[ j, 3
√

17 ] is a Pólya field.
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