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Let K be a finite extension of Qp which contains a prim-
itive pth root of unity ζp. Let L/K be a totally ramified
(Z/pZ)2-extension which has a single ramification break b.
In [2] Byott and Elder defined a “refined ramification break”
b∗ for L/K. In this paper we prove that if p > 2 and the in-
dex of inseparability i1 of L/K is not equal to p2b − pb then
b∗ = i1 − p2b + pb + b.
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1. Introduction

Let K be a finite extension of Qp, let L/K be a finite Galois extension, and let πL be
a uniformizer for L. For simplicity we assume that L/K is a totally ramified extension
of degree pn for some n � 1. The (lower) ramification breaks of L/K are the integers
vL(σ(πL) − πL) − 1 for σ ∈ Gal(L/K), σ �= idL. The extension L/K has at most n
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distinct ramification breaks; if there are fewer than n breaks then L/K may be viewed
as having degenerate ramification data.

There have been several attempts to supply the “missing” ramification data in the
cases where L/K has fewer than n breaks. The indices of inseparability i0, i1, . . . , in of
L/K were defined by Fried [6] in characteristic p and by Heiermann [7] in characteristic 0.
The indices of inseparability determine the ramification breaks of L/K in all cases. As
for the opposite direction, if L/K has n distinct ramification breaks then the breaks
determine the indices of inseparability, but if L/K has fewer than n breaks then the
indices of inseparability are not completely determined by the breaks. Thus the indices
of inseparability give extra information about the extension L/K which can be viewed
as the missing ramification data.

In [1,2], Byott and Elder described an alternative method for supplying missing rami-
fication data by defining refined lower ramification breaks for extensions with fewer than
n ordinary breaks. Suppose L/K is a totally ramified (Z/pZ)2-extension with a single
(ordinary) ramification break b. Then L/K has one refined break b∗, which is computed
in [2] under the assumption that K contains a primitive pth root of unity. Byott and
Elder also showed that the Galois module structure of OL determines b∗ in certain cases.

In this paper we study the relationship between the index of inseparability i1 of L/K
and the refined ramification break b∗. In particular, when p > 2 and i1 �= p2b − pb we
give a formula which expresses b∗ in terms of i1. Our approach is based on the methods
given in [8] for computing i1 in terms of the norm group NL/K(L×). We relate these
methods to the Byott–Elder formula for b∗ using Vostokov’s formula [9] for computing
the Kummer pairing 〈 , 〉p : K× ×K× → μp. The calculations are simplified somewhat
through the use of the Artin–Hasse exponential series Ep(X).

The author would like to thank the referee for writing a very careful and thorough
review of this paper.

Notation.

K = finite extension of Qp.
K0/Qp = maximum unramified subextension of K/Qp.
vK = valuation on K normalized so that vK(K×) = Z.
e = vK(p) = absolute ramification index of K.
OK = {α ∈ K: vK(α) � 0} = ring of integers of K.
MK = {α ∈ K: vK(α) � 1} = maximal ideal of OK .
Fq

∼= OK/MK = residue field of K.
U c
K = 1 + Mc

K for c � 1.
Kab = maximal abelian extension of K.
L/K = totally ramified (Z/pZ)2-subextension of Kab/K with one ramification
break b.
πL = uniformizer for L.
πK = NL/K(πL) = uniformizer for K.
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ζn = primitive nth root of unity in Kab.
μn = 〈ζn〉.
Zp2 = Zp[μp2−1].

2. The Artin–Hasse exponential series and truncated exponentiation

In this section we study the relation between the Artin–Hasse exponential series and
the “truncated exponentiation” polynomials of Byott–Elder. We also use the Artin–
Hasse exponential series to obtain a new version of a formula from [8] for the index of
inseparability i1 of a (Z/pZ)2-extension with a single ramification break.

The Artin–Hasse exponential series is defined by

Ep(X) = exp
(
X + 1

p
Xp + 1

p2X
p2

+ · · ·
)
, (2.1)

where exp(X) ∈ Q�X� is the usual exponential series. Let μ denote the Möbius function.
Then, by Lemma 9.1 in [5, I] we have

Ep(X) =
∏
p�c

(
1 −Xc

)−μ(c)/c
.

Thus the coefficients of Ep(X) lie in Z(p) = Q ∩ Zp. For each i � 1 the power series
Ep(X) = 1 + X + · · · induces a bijection from Mi

K onto U i
K . For κ, λ ∈ MK we have

Ep(κ) ≡ Ep(λ) (mod Mi
K) if and only if κ ≡ λ (mod Mi

K). Let Λp : U1
K → MK denote

the inverse of the bijection from MK to U1
K induced by Ep(X). Then for u, v ∈ U1

K we
have Λp(u) ≡ Λp(v) (mod Mi

K) if and only if u ≡ v (mod Mi
K).

Let ψ(X) ∈ XK�X� and α ∈ K. The α power of 1+ψ(X) is a series in K�X� defined
by

(
1 + ψ(X)

)α =
∞∑

n=0

(
α

n

)
ψ(X)n,

where (
α

n

)
= α(α− 1)(α− 2) . . . (α− (n− 1))

n! .

Motivated by this formula, Byott and Elder [1, 1.1] defined truncated exponentiation by

(
1 + ψ(X)

)[α] =
p−1∑
n=0

(
α

n

)
ψ(X)n.

Thus (1+X)[α] is a polynomial with coefficients in K; if α ∈ OK then the coefficients of
(1 +X)[α] lie in OK . For u ∈ U1

K define u[α] to be the value of (1 +X)[α] at X = u− 1.
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Lemma 2.1. Let α ∈ K. Then Ep(X)[α] ≡ Ep(αX) (mod Xp).

Proof. We have Ep(X)[α] ≡ exp(X)α ≡ exp(αX) ≡ Ep(αX) (mod Xp). �
Proposition 2.2. Let i � 1, let u, v ∈ U i

K , and let α ∈ OK . Then

Λp(uv) ≡ Λp(u) + Λp(v)
(
mod Mpi

K

)
Λp

(
u[α]) ≡ αΛp(u)

(
mod Mpi

K

)
.

Proof. Set κ = Λp(u) and λ = Λp(v). Then κ, λ ∈ Mi
K , so by Eq. (6) in [4, p. 52] we

have

Ep(κ)Ep(λ) ≡ Ep(κ + λ)
(
mod Mpi

K

)
.

In addition, by Lemma 2.1 we get

Ep(κ)[α] ≡ Ep(ακ)
(
mod Mpi

K

)
.

Applying Λp to these congruences gives the desired results. �
Corollary 2.3. Let i � 1. The scalar multiplication α · u = u[α] induces an OK-module
structure on the group U i

K/Upi
K . Furthermore, Λp induces an isomorphism of OK-modules

from U i
K/Upi

K onto Mi
K/Mpi

K .

Corollary 2.4. Let u ∈ U i
K and α ∈ Zp. Then uα ≡ u[α] (mod Mpi

K).

Proof. For n � 1 we have Λp(un) ≡ nΛp(u) ≡ Λp(u[n]) (mod Mpi
K). �

Corollary 2.5. Let i � 1 and let A be a subgroup of U i
K which contains Upi

K . Then Λp(A)
is a Zp-module.

Corollary 2.6. Let i � 1 and let A, B be subgroups of U i
K such that Upi

K ⊂ B. Then
Λp(AB) = Λp(A) + Λp(B).

Proof. We clearly have Λp(AB) ⊃ Λp(A) and Λp(AB) ⊃ Λp(B). Hence, by Corollary 2.5
we get Λp(AB) ⊃ Λp(A)+Λp(B). Let a ∈ A, b ∈ B. Then Λp(ab) = Λp(a)+Λp(b)+m for
some m ∈ Mpi

K . Let b′ ∈ U i
K be such that Λp(b′) = Λp(b) + m. Then b ≡ b′ (mod Mpi

K),
so b′ ∈ B. Hence Λp(AB) ⊂ Λp(A) + Λp(B). We conclude that Λp(AB) = Λp(A) +
Λp(B). �

Let Qp2 = Qp(ζp2−1) denote the unramified extension of Qp of degree 2, and let Zp2

denote the ring of integers of Qp2 .
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Corollary 2.7. Assume μp2−1 ⊂ K and let A be a subgroup of U i
K which contains Upi

K .
Then Λp(A) is a Zp2-module if and only if A is stable under the map a �→ a[η] for every
η ∈ μp2−1.

Proof. This follows from Proposition 2.2 and the fact that Zp2 = Zp[μp2−1]. �
Proposition 2.8. Let i, j be positive integers such that pj � i and e + 
 j

p� � i, and let
K0/Qp be the maximum unramified subextension of K/Qp. Then Λp((K×)p∩U j

K)+Mi
K

is an OK0-module.

Proof. If i � j then the claim is obvious, so we assume i � j + 1. Then

i � e +
⌈
i− 1
p

⌉
� e + i + p− 2

p
.

It follows that i � pe
p−1 + p−2

p−1 , and hence that i � 
 pe
p−1�. By applying Corollary 2.6 with

i replaced by j, A = (K×)p ∩ U j
K , and B = U i

K we get

Λp

(((
K×)p ∩ U j

K

)
· U i

K

)
= Λp

((
K×)p ∩ U j

K

)
+ Mi

K .

Hence, by Corollary 2.5 we see that Λp((K×)p ∩ U j
K) + Mi

K is a Zp-module. Let u ∈
(K×)p∩U j

K with c = vK(u−1) < i. Then there is γ ∈ MK such that u = Ep(γ)p. Using
(2.1) we get

u = exp
(
pγ + γp + 1

p
γp2

+ · · ·
)

= exp(pγ) · Ep

(
γp

)
.

Since c < 
 pe
p−1� and c is an integer we have c < pe

p−1 , so p | c and vK(γ) = c
p . Therefore

vK(pγ) = e + c
p � e + 
 j

p� � i, and hence u ≡ Ep(γp) (mod Mi
K). On the other

hand, for each γ ∈ MK such that vK(γp) � j, the computations above show that
Ep(γp) = Ep(γ)p · exp(−pγ) lies in ((K×)p ∩ U j

K) · U i
K . It follows that

Λp

((
K×)p ∩ U j

K

)
+ Mi

K =
{
γp: γ ∈ MK , vK

(
γp

)
� j

}
+ Mi

K . (2.2)

Let q be the cardinality of the residue field of K. Then μq−1 ⊂ OK , so the right side
of (2.2) is stable under multiplication by elements of μq−1. Since OK0 = Zp[μq−1], the
proposition follows. �
3. Two invariants of L/K

Let L/K be a totally ramified (Z/pZ)2-extension with a single ramification break b.
Then 1 � b < pe and p � b (see for instance [3, p. 398]). In this section we define two
p−1
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further invariants of L/K: the refined ramification break b∗ and the index of inseparabil-
ity i1. We also show how i1 can be computed in terms of the valuations of the coefficients
of the minimum polynomial over K of a uniformizer for L.

To motivate the definition of b∗ we first reformulate the definition of i(σ) for σ ∈
Gal(L/K). It is easily seen that

i(σ) = min
{
vL

(
σ(α) − α

)
− vL(α): α ∈ OL, α �= 0

}
.

Thus i(σ) may be viewed as the valuation of the operator σ − 1 on OL. Now let σ1, σ2
be generators for Gal(L/K) ∼= (Z/pZ)2. Since b is the unique ramification break of L/K,
for i = 1, 2 we have σi(πL) − πL = βi with vL(βi) = b + 1. Let δ ∈ μq−1 be such that
β1/β2 ≡ δ (mod ML). Then

σ
[−δ]
2 =

p−1∑
n=0

(
−δ

n

)
(σ2 − 1)n

is an element of the group ring OK0 [Gal(L/K)]. We define

b∗ = min
{
vL

(
σ1 ◦ σ[−δ]

2 (α) − α
)
− vL(α): α ∈ OL, α �= 0

}
.

Thus b∗ = i(σ1 ◦ σ[−δ]
2 ) is the valuation of the operator σ1 ◦ σ[−δ]

2 − 1 on OL. It is proved
in [2] that b∗ does not depend on the choice of generators σ1, σ2 for Gal(L/K).

We now define the indices of inseparability of L/K, following Heiermann [7]. Let πL

be a uniformizer for L. Then πK = NL/K(πL) is a uniformizer for K, and there are
unique ch ∈ μq−1 ∪ {0} such that

πK =
∞∑
h=0

chπ
h+p2

L .

For 0 � j � 2 set

i∗j = min
{
h � 0: ch �= 0, vp

(
h + p2) � j

}
ij = min

{
i∗j′ + p2e ·

(
j′ − j

)
: j � j′ � 2

}
.

Then i∗j may depend on the choice of πL, but ij does not (see [7, Th. 7.1]). Furthermore,
we have 0 = i2 < i1 � i0. The relation between the indices of inseparability and the
ordinary ramification data of L/K is given by [7, Cor. 6.11]. In particular, we have
i0 = p2b− b.

As in [8] we let

g(X) = Xp2
+ a1X

p2−1 + · · · + ap2−1X + ap2

be the minimum polynomial for πL over K. Then, by [8, (3.5)] we get
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i1 = min
({

p2vK(ai) − i: 1 � i � p2 − 1
}
∪
{
i2 + p2e

})
= min

({
p2vK(api) − pi: 1 � i � p− 1

}
∪
{
i2 + p2e, i0

})
= min

({
p2vK(api) − pi: 1 � i � p− 1

}
∪
{
p2e, p2b− b

})
.

For j > p2 write j = p2u + i with 1 � i � p2 and set aj = πu
Kai. Then vK(api+p2c) =

vK(api) + c, so for every l � 0 we have

i1 = min
({

p2vK(api) − pi: l < i � l + p, p � i
}
∪
{
p2e, p2b− b

})
. (3.1)

Let H = NL/K(L×) be the subgroup of K× which is associated to the abelian exten-
sion L/K by class field theory. Since b is the only ramification break of L/K we have
U b+1
K � H and

U b
K/

(
H ∩ U b

K

) ∼= K×/H ∼= Gal(L/K). (3.2)

Theorem 3.1. Let p > 2, let L/K be a totally ramified (Z/pZ)2-extension with a single
ramification break b � 1, and set H = NL/K(L×). If μp2−1 �⊂ K let k = b; otherwise let
k be the smallest nonnegative integer such that Λp(H ∩ Uk+1

K ) is a Zp2-module. Then

i1 = min
{
p2b− pk, p2e, p2b− b

}
.

Proof. Let i � 1 satisfy p � i. Then, by [8, (3.25)] we have

NL/K

(
Ep

(
rπi

L

))
≡ Ep

(
πi
Krp

2) ·Ep

(
−iapir

p − iair
) (

mod Mb+1
K

)
.

By [8, Lemma 3.2] we have

vK(ai) � b− b− i

p2 =
(

1 − 1
p2

)
b + 1

p2 · i

vK(api) � b− pb− pi

p2 =
(

1 − 1
p

)
b + 1

p
· i. (3.3)

Hence, if i � b then vK(ai) � i and vK(api) � i, with strict inequalities if i < b. It
follows that

NL/K

(
Ep

(
rπi

L

))
≡ Ep

(
βi(r)

) (
mod Mb+1

K

)
, (3.4)

with βi(r) = πi
Krp

2 − iapir
p − iair. In addition, we have vK(βi(r)) � i, with equality if

i < b and r �= 0.
Since Λp(H ∩ U b+1

K ) = Mb+1
K we have k � b. We claim that vK(api) � b + 1 for all

i � k + 1 such that p � i. If k = b this follows from (3.3). Let k < b and suppose the
claim is false. Let h � k + 1 be maximum with the property that p � h and vK(aph) � b.
Since ap(h+p) = πKaph we see that a maximum h exists, and that vK(aph) = b. Since
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H ∩ Uk+1
K ⊃ U b+1

K , it follows from (3.4) and Corollary 2.6 that Ep(βh(r)) ∈ H ∩ Uk+1
K

for all r ∈ μq−1 ∪ {0}. By the definition of k, Λp(H ∩Uk+1
K ) is a Zp2-module. Hence, for

every r ∈ μq−1 and η ∈ μp2−1,

ηβh(r) − βh(ηr) = haphr
p
(
ηp − η

)
lies in Λp(H ∩Uk+1

K ). Since every coset of Mb+1
K in Mb

K is represented by an element of
this form, and

Λp

(
H ∩ Uk+1

K

)
⊃ Λp

(
U b+1
K

)
= Mb+1

K ,

it follows that Λp(H ∩ Uk+1
K ) ⊃ Mb

K . Hence H ⊃ Ep(Mb
K) = U b

K , which contradicts
(3.2). This proves our claim, so we have

p2b− pk � p2vK(api) − pi (3.5)

for all i such that k < i � k + p and p � i.
Set m = min{p2b − pk, p2e, p2b − b}. Suppose m = p2b − b. Then k � b

p , so by the
preceding paragraph we have vK(api) � b + 1 for all i > b

p such that p � i. Hence, by
(3.1) we get

i1 = min
({

p2vK(api) − pi: b

p
< i � b

p
+ p, p � i

}
∪
{
p2e, p2b− b

})
= p2b− b.

Suppose m = p2e. Then k � p(b− e), so vK(api) � b+ 1 for all i > p(b− e) such that
p � i. Hence, by (3.1) we have

i1 = min
({

p2vK(api) − pi: p(b− e) < i < p(b− e) + p
}
∪
{
p2e, p2b− b

})
= p2e.

Suppose m = p2b− pk with p2b− pk < min{p2e, p2b− b}. We claim that p � k. In fact
if p | k then k < b < pe

p−1 , so we have

H ∩ Uk
K =

((
K×)p ∩ Uk

K

)
·
(
H ∩ Uk+1

K

)
.

Since pk � b + 1 and H ∩ Uk+1
K ⊃ U b+1

K it follows from Corollary 2.6 that

Λp

(
H ∩ Uk

K

)
= Λp

((
K×)p ∩ Uk

K

)
+ Λp

(
H ∩ Uk+1

K

)
. (3.6)

Since p2b − pk < p2e we have e + k
p � b + 1. Therefore, by Proposition 2.8 we see that

Λp((K×)p∩Uk
K)+Mb+1

K is an OK0 -module. Furthermore, Λp(H∩Uk+1
K ) is a Zp2 -module
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by the definition of k. Since Zp2 ⊂ OK0 and Λp(H ∩Uk+1
K ) ⊃ Mb+1

K , it follows from (3.6)
that Λp(H ∩ Uk

K) is a Zp2 -module. This contradicts the definition of k, so p � k.
Suppose apk ∈ Mb+1

K . Then for every η ∈ μp2−1 and r ∈ μq−1 we have

ηβk(r) ≡ βk(ηr)
(
mod πb+1

K

)
. (3.7)

If μp2−1 ⊂ K this implies ηβk(r) ∈ Λp(H ∩Uk
K). Since Λp(H ∩Uk+1

K ) is a Zp2 -module it
follows that Λp(H∩Uk

K) is a Zp2 -module, contrary to assumption. Therefore apk /∈ Mb+1
K

in this case. If μp2−1 �⊂ K then k = b and it follows from (3.7) that the set

S =
{
r ∈ μq−1 ∪ {0}: βb(r) ≡ 0

(
mod Mb+1

K

)}
is stable under multiplication by elements of μp2−1. Hence S = {0}. Since

βb

(
r + r′

)
≡ βb(r) + βb

(
r′
) (

mod Mb+1
K

)
for r, r′ ∈ μq−1 ∪ {0} this implies that every coset of Mb+1

K in Mb
K is represented by

βb(r) for some r ∈ μq−1∪{0}. It follows that Λp(H∩U b
K) = Mb

K , a contradiction. Hence
apk /∈ Mb+1

K in this case as well.
Since p � k + p, by (3.5) we have πKapk = ap(k+p) ∈ Mb+1

K . Thus vK(apk) = b. Using
(3.1) and (3.5) we get

i1 = min
({

p2vK(api) − pi: k � i < k + p, p � i
}
∪
{
p2e, p2b− b

})
= p2b− pk.

We conclude that i1 = m in every case. �
Remark 3.2. Suppose μp2−1 ⊂ K. Then it follows from Corollary 2.3 and class field
theory that all values of k such that b/p < k � b and p � k can be realized by extensions
L/K satisfying the conditions of Theorem 3.1.

Remark 3.3. Using Theorem 3.1 we obtain the bounds p2b − pb � i1 � p2b − b. These
inequalities can also be derived from Corollary 6.11 in [7]. It follows from these bounds
that the condition i1 > p2b− pb is equivalent to i1 �= p2b− pb.

4. Kummer theory

Let p > 2 and let K be a finite extension of Qp which contains a primitive pth
root of unity ζp. Let Kab be a maximal abelian extension of K and let L/K be a totally
ramified (Z/pZ)2-subextension of Kab/K with a single ramification break b. In [2], Byott
and Elder gave a method for computing the refined ramification break b∗ of L/K in terms
of Kummer theory. In this section we use Vostokov’s formula for the Kummer pairing
to express b∗ in terms of the index of inseparability i1, under the assumption that i1 is
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not equal to p2b− pb. The proof is based on a symmetry relation involving the Kummer
pairing and truncated exponentiation.

The Kummer pairing 〈 , 〉p : K× ×K× → μp is defined by 〈α, β〉p = σβ(α1/p)/α1/p,
where α1/p ∈ Kab is any pth root of α and σβ is the element of Gal(Kab/K) that
corresponds to β under class field theory. The Kummer pairing is Z-bilinear and skew-
symmetric, with kernel (K×)p on the left and right (see for instance Proposition 5.1
in [5, IV]). For 1 � i � pe

p−1 the orthogonal complement of U i
K with respect to 〈 , 〉p is

(U i
K)⊥ = (K×)p · U

pe
p−1−i+1
K (see [3, §1]).

Recall that K0/Qp is the maximum unramified subextension of K/Qp. In [9] Vostokov
gave a formula for computing 〈 , 〉p in terms of residues of elements of

K0{{X}} =
{ ∞∑

n=−∞
anX

n: an ∈ K0, lim
n→−∞

vK0(an) = ∞, ∃m ∀n vK0(an) � m

}
.

The set K0{{X}} has an obvious operation of addition, and the conditions on the co-
efficients imply that the natural multiplication on K0{{X}} is also well-defined. These
operations make K0{{X}} a field. Let OK0{{X}} denote the subring of K0{{X}} consisting
of series whose coefficients lie in OK0 . Also let Res(ψ(X)) denote the coefficient of X−1

in ψ(X) ∈ K0{{X}}.
For each α ∈ U1

K choose α̃(X) ∈ OK0 �X� so that α̃(0) = 1 and α̃(πK) = α. Of course
there are many series α̃(X) with this property, but for our purposes it will not matter
which we choose. Let φ : K0 → K0 be the p-Frobenius map and define α̃Δ(X) = α̃φ(Xp)
and l(α̃) = log(α̃) − p−1 log(α̃Δ), where

log
(
1 + ψ(X)

)
= ψ(X) − 1

2ψ(X)2 + 1
3ψ(X)3 − · · ·

for ψ(X) ∈ XK0�X�. By Proposition 2.2 in [5, VI] we have l(α̃) ∈ XOK0 �X�.
Let α, β ∈ U1

K . Following [5, p. 241] we define

Φα,β(X) = α̃′

α̃
· l(β̃) − (β̃Δ)′

pβ̃Δ
· l(α̃).

Then Φα,β(X) ∈ OK0 �X�. Let s(X) = ζ̃p(X)p − 1. Then, by Proposition 3.1 in [5, VI],
s(X) is a unit in OK0{{X}}. Since p > 2 and α, β ∈ U1

K , by Theorem 4 in [5, VII] we
have

〈α, β〉p = ζ
TrK0/Qp (Res(Φα,β/s))
p . (4.1)

Theorem 4.1. Let p > 2 and let K be a finite extension of Qp which contains a primitive
pth root of unity. Let i, j be positive integers such that i + pj > pe

p−1 and pi + j > pe
p−1 .

Let α ∈ U i
K , β ∈ U j

K , and η ∈ OK0 . Then 〈α[η], β〉p = 〈α, β[η]〉p.
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Proof. By the linearity and continuity of the Kummer pairing we may assume that
α = Ep(uπc

K), β = Ep(vπd
K), α̃(X) = Ep(uXc), and β̃(X) = Ep(vXd) with u, v ∈ μq−1,

c � i, and d � j. It follows from (2.1) that l(α̃(X)) = uXc and l(β̃(X)) = vXd. Using
(2.1) and Lemma 2.1 we get

α̃′(X)
α̃(X) ≡ cuXc−1 (

mod Xpc−1)
(β̃Δ)′(X)
pβ̃Δ(X)

≡ 0
(
mod Xpd−1)

(α̃(X)[η])′

α̃(X)[η] ≡ c(ηu)Xc−1 (
mod Xpc−1)

l
(
β̃(X)[η]) ≡ ηvXd

(
mod Xpd

)
.

Note that α̃(X)[η], β̃(X)[η] are elements of 1 + XOK0 �X� such that α̃(πK)[η] = α[η],
β̃(πK)[η] = β[η]. Hence we may take α̃[η](X) = α̃(X)[η] and β̃[η](X) = β̃(X)[η]. Using the
computations from the preceding paragraph and the lower bounds for i + pj and pi + j

we get

Φα,β(X) ≡ α̃′

α̃
· l(β̃)

(
mod X

pe
p−1

)
Φα[η],β(X) ≡ c(ηu)vXc+d−1 (

mod X
pe

p−1
)

(4.2)

Φα,β[η](X) ≡ cu(ηv)Xc+d−1 (
mod X

pe
p−1

)
. (4.3)

It follows from Proposition 3.1 in [5, VI] that the image of s(X) ∈ OK0{{X}}× in

(OK0/MK0)((X)) ∼= Fq((X))

has X-valuation pe
p−1 . Therefore, by (4.2) and (4.3) we have

Φα[η],β(X) − Φα,β[η](X)
s(X) = γ(X) + pδ(X)

for some γ(X) ∈ OK0 �X� and δ(X) ∈ OK0{{X}}. It follows that

Res
(
Φα[η],β(X)

s(X)

)
≡ Res

(
Φα,β[η](X)

s(X)

)
(mod MK0).

Therefore, by (4.1) we get 〈α[η], β〉p = 〈α, β[η]〉p. �
Corollary 4.2. Let K, i, j satisfy the hypotheses of Theorem 4.1. Let A be a subgroup
of U i

K such that A contains Upi
K and Λp(A) is a Zp2-module. Then Λp(A⊥ ∩ U j

K) is a
Zp2-module.
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Proof. Let α ∈ A. By Corollary 2.7 we have α[η] ∈ A for every η ∈ μp2−1. Hence, for
β ∈ A⊥ ∩ U j

K we see that 〈α, β[η]〉p = 〈α[η], β〉p = 1. Since this holds for every α ∈ A

we get β[η] ∈ A⊥ ∩ U j
K . Since pj � pe

p−1 − i + 1 we have A⊥ ∩ U j
K ⊃ Upj

K . Therefore, it
follows from Corollary 2.7 that Λp(A⊥ ∩ U j

K) is a Zp2 -module. �
Recall that H = NL/K(L×) is the subgroup of K× that corresponds to L/K under

class field theory, and let R = (L×)p ∩K× denote the subgroup of K× that corresponds
to L/K under Kummer theory. Then R contains (K×)p, and it follows from the basic
properties of the Kummer pairing that R = H⊥ and H = R⊥. Furthermore, R/(K×)p

and K×/H are both elementary abelian p-groups of rank 2. Let R0 = R∩U
pe

p−1−b

K . Since
the only ramification break of L/K is b we see that R = R0 · (K×)p and

R0/
((
K×)p ∩ U

pe
p−1−b

K

) ∼= R/
(
K×)p

(cf. [3]).
For a ∈ OK we let a = a + M

pe
p−1−b+1
K denote the image of a in OK/M

pe
p−1−b+1
K .

Then R0 ∼= R/(K×)p is an elementary abelian p-group of rank 2. Let 1 + ρ1, 1 + ρ2 be
elements of R0 such that 1 + ρ1, 1 + ρ2 generate R0. Then vK(ρ1) = vK(ρ2) = pe

p−1 − b.
Let θ ∈ μq−1 be such that θ ≡ ρ2/ρ1 (mod MK). Then θ /∈ μp−1 and

(1 + ρ1)[θ] ≡ 1 + ρ2
(
mod M

pe
p−1−b+1
K

)
.

Let s � pe
p−1 be maximum such that (1 + ρ1)[θ] ∈ R0 ·Us

K , and set t = pe
p−1 − s. Then, by

[2, Prop. 10] we have

b∗ = pb− max
{
pt− b,

(
p2 − 1

)
b− p2e, 0

}
. (4.4)

Lemma 4.3. Let p > 2 and assume that K contains a primitive pth root of unity. Let L/K
be a totally ramified (Z/pZ)2-subextension of Kab/K with a single ramification break b.
Then the following are equivalent:

1. θ ∈ μp2−1.
2. Λp(R0) + M

pe
p−1−b+1
K is a Zp2-module.

3. Λp(H ∩ U b
K) is a Zp2-module.

4. i1 > p2b− pb.

Proof. To prove the equivalence of the first two statements we note that Λp(1 + ρ1)
and Λp(1 + ρ2) = θ ·Λp(1 + ρ1) generate the rank-2 elementary abelian p-group Λp(R0).
Hence, θ lies in μp2−1 if and only if Λp(R0) is a vector space over Fp2 , which holds if
and only if Λp(R0) + M

pe
p−1−b+1
K is a Zp2-module. The equivalence of statements 3 and
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4 follows from Theorem 3.1. To prove the equivalence of statements 2 and 3 we observe
that if Λp(R0) + M

pe
p−1−b+1
K is a Zp2-module then it follows from Corollary 4.2 that

Λp

((
R0 · U

pe
p−1−b+1
K

)⊥ ∩ U b
K

)
= Λp

(
H ∩ U b

K

)
is a Zp2 -module. Conversely, if Λp(H ∩ U b

K) is a Zp2 -module then it follows from Corol-
lary 4.2 that

Λp

((
H ∩ U b

K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp

(
R0 · U

pe
p−1−b+1
K

)
= Λp(R0) + M

pe
p−1−b+1
K

is a Zp2 -module. �
For the rest of this paper we restrict our attention to extensions L/K which satisfy

the conditions of Lemma 4.3. Our goal is to compute b∗ in terms of i1 for this class of
extensions. The following proposition will allow us to make a connection between Λp(R0)
and the definition of s.

Proposition 4.4. Let L/K be an extension which satisfies the conditions of Lemma 4.3,
and let i satisfy 1 � i � p( pe

p−1 − b) and i � pe
p−1 −� b

p�. Then (1 + ρ1)[θ] ∈ R0 ·U i
K if and

only if Λp(R0) + Mi
K is a Zp2-module.

Proof. If i � pe
p−1−b then both statements are certainly true, so we assume i > pe

p−1−b. If
Λp(R0)+Mi

K is a Zp2 -module then it follows from Proposition 2.2 that (1+ρ1)[θ] ∈ R0 ·
U i
K . Conversely, suppose that (1+ρ1)[θ] ∈ R0 ·U i

K . Thanks to the upper bounds on i, the
hypotheses of Proposition 2.8 are satisfied with j = pe

p−1 − b. It follows that Λp((K×)p ∩
U

pe
p−1−b

K )+Mi
K is an OK0 -module, and hence a Zp2 -module. By Proposition 2.2 we have

θ · Λp(1 + ρ1) ∈ Λp(R0) + Mi
K . Therefore the rank-2 elementary abelian p-group

(
Λp(R0) + Mi

K

)
/
(
Λp

((
K×)p ∩ U

pe
p−1−b

K

)
+ Mi

K

)
(4.5)

is generated by the cosets represented by Λp(1+ρ1) and θ ·Λp(1+ρ1). Since θ ∈ μp2−1�

μp−1, it follows that (4.5) is a vector space over Fp2 . We conclude that Λp(R0) +Mi
K is

a Zp2 -module. �
We now reformulate the Byott–Elder formula for b∗ in terms of Λp(R0).

Theorem 4.5. Let L/K be an extension which satisfies the conditions of Lemma 4.3,
let R be the subgroup of K× that corresponds to L/K under Kummer theory, and set
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R0 = R ∩ U
pe

p−1−b

K . Let s′ � pe
p−1 be maximum such that Λp(R0) + Ms′

K is a Zp2-module
and set t′ = pe

p−1 − s′. Then

b∗ = pb− max
{
pt′ − b,

(
p2 − 1

)
b− p2e, 0

}
. (4.6)

Proof. Recall that t = pe
p−1 − s, where s is the smallest nonnegative integer such that

(1 + ρ1)[θ] ∈ R0 · Us
K . Set

M = max
{
pt− b,

(
p2 − 1

)
b− p2e, 0

}
M ′ = max

{
pt′ − b,

(
p2 − 1

)
b− p2e, 0

}
.

By (4.4) we have b∗ = pb−M . Therefore, to prove the theorem it suffices to show that
M ′ = M . We divide the proof into three cases, depending on the value of M .

If M = (p2 − 1)b − p2e then t � p(b − e), and hence (1 + ρ1)[θ] ∈ R0 · U
pe

p−1−p(b−e)
K .

Since (p2 − 1)b− p2e � 0 we have

p

(
pe

p− 1 − b

)
= pe

p− 1 − p(b− e) � pe

p− 1 −
⌊
b

p

⌋
.

Therefore, by Proposition 4.4 we see that Λp(R0)+M
pe

p−1−p(b−e)
K is a Zp2 -module. Hence

t′ � p(b− e), so M ′ = M in this case.
If M = 0 then t � � b

p� and hence (1+ρ1)[θ] ∈ R0 ·U
pe

p−1−� b
p �

K . Since (p2−1)b−p2e � 0
we have p( pe

p−1 − b) � pe
p−1 − � b

p�. Therefore, by Proposition 4.4 we see that Λp(R0) +

M
pe

p−1−� b
p �

K is a Zp2 -module. Hence t′ � � b
p�, so pt′ � b. It follows that M ′ = M in this

case.
If M = pt − b > max{(p2 − 1)b − p2e, 0} then t > p(b − e) and t > b

p . Hence
s < p( pe

p−1 − b) and s < pe
p−1 −� b

p�. Since (1+ρ1)[θ] ∈ R0 ·Us
K and (1+ρ1)[θ] /∈ R0 ·Us+1

K ,
it follows from Proposition 4.4 that Λp(R0)+Ms

K is a Zp2 -module, but Λp(R0)+Ms+1
K

is not. Therefore s′ = s, so M ′ = M in this case as well. �
Now that we have formulas for computing b∗ and i1 in terms of Λp(R0), we can

determine the relationship between these two invariants.

Theorem 4.6. Let p > 2 and let K be a finite extension of Qp which contains a primitive
pth root of unity. Let L/K be a totally ramified (Z/pZ)2-extension with a single ramifi-
cation break b. Assume that the index of inseparability i1 of L/K is not equal to p2b−pb.
Then the refined ramification break b∗ of L/K is given by b∗ = i1 − p2b + pb + b.

Proof. As above we let H denote the subgroup of K× that corresponds to the extension
L/K under class field theory. By Theorem 3.1 we have

i1 = min
{
p2b− pk, p2e, p2b− b

}
, (4.7)
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where k is the smallest nonnegative integer such that Λp(H ∩ Uk+1
K ) is a Zp2 -module.

Let R be the subgroup of K× that corresponds to L/K under Kummer theory and
set R0 = R ∩ U

pe
p−1−b

K . Recall that R is equal to the orthogonal complement H⊥ of H
with respect to the Kummer pairing 〈 , 〉p. In addition, since R = R0 · (K×)p we have
R⊥

0 = R⊥ = H. As in Theorem 4.5 we let t′ be the smallest nonnegative integer such
that Λp(R0) + M

pe
p−1−t′

K is a Zp2-module.
Suppose i1 = p2b− b. Then

Λp

((
H ∩ U

� b
p �+1

K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp

((
R · U

pe
p−1−� b

p �
K

)
∩ U

pe
p−1−b

K

)
= Λp

(
R0 · U

pe
p−1−� b

p �
K

)
.

Since p( pe
p−1 − b) � pe

p−1 − � b
p�, it follows from Corollary 2.6 that

Λp

((
H ∩ U

� b
p �+1

K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp(R0) + M

pe
p−1−� b

p �
K . (4.8)

Since � b
p� + 1 > b

p � p(b− e), we have(⌊
b

p

⌋
+ 1

)
+ p

(
pe

p− 1 − b

)
>

pe

p− 1

p

(⌊
b

p

⌋
+ 1

)
+
(

pe

p− 1 − b

)
>

pe

p− 1 .

Therefore, by (4.8) and Corollary 4.2 with A = H ∩U
� b
p �+1

K , i = � b
p�+1, and j = pe

p−1 −b

we see that Λp(R0)+M
pe

p−1−� b
p �

K is a Zp2 -module. Hence t′ � � b
p�. Since (p2−1)b−p2e � 0,

it follows from Theorem 4.5 that b∗ = pb in this case.
Suppose i1 = p2e. Then

Λp

((
H ∩ U

p(b−e)+1
K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp

((
R · U

pe
p−1−p(b−e)
K

)
∩ U

pe
p−1−b

K

)
= Λp

(
R0 · U

pe
p−1−p(b−e)
K

)
.

Since b > p(b− e) and p( pe
p−1 − b) = pe

p−1 − p(b− e) it follows from Corollary 2.6 that

Λp

((
H ∩ U

p(b−e)+1
K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp(R0) + M

pe
p−1−p(b−e)
K . (4.9)

Since p2b− b � p2e we have

(
p(b− e) + 1

)
+ p

(
pe

p− 1 − b

)
>

pe

p− 1

p
(
p(b− e) + 1

)
+

(
pe − b

)
>

pe
.

p− 1 p− 1



16 K. Keating / Journal of Number Theory 142 (2014) 1–17
Therefore, it follows from (4.9) and Corollary 4.2 with A = H∩Up(b−e)+1
K , i = p(b−e)+1,

and j = pe
p−1 − b that Λp(R0) +M

pe
p−1−p(b−e)
K is a Zp2 -module. Hence t′ � p(b− e). Since

(p2 − 1)b − p2e � 0, it follows from Theorem 4.5 that b∗ = p2(e − b) + pb + b in this
case.

Suppose i1 = p2b − pk < min{p2b − b, p2e}. Since H ⊃ U b+1
K we have k � b, so

R0 · U
pe

p−1−k

K is contained in U
pe

p−1−b

K . Hence

Λp

((
H ∩ Uk+1

K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp

((
R · U

pe
p−1−k

K

)
∩ U

pe
p−1−b

K

)
= Λp

(
R0 · U

pe
p−1−k

K

)
.

Since k > p(b− e) we have p( pe
p−1 − b) > pe

p−1 − k. Therefore, by Corollary 2.6 we get

Λp

((
H ∩ Uk+1

K

)⊥ ∩ U
pe

p−1−b

K

)
= Λp(R0) + M

pe
p−1−k

K . (4.10)

It follows from the inequalities k > p(b− e) and pk > b that

k + p

(
pe

p− 1 − b

)
>

pe

p− 1

pk +
(

pe

p− 1 − b

)
>

pe

p− 1 .

Therefore, by (4.10) and Corollary 4.2 with A = H ∩ Uk+1
K , i = k + 1, and j = pe

p−1 − b

we see that Λp(R0) + M
pe

p−1−k

K is a Zp2 -module.
Suppose that Λp(R0) +M

pe
p−1−k+1
K is also a Zp2-module. Then, by Corollary 4.2 with

A = R0 · U
pe

p−1−k+1
K , i = pe

p−1 − b, and j = k we see that

Λp

((
R0 · U

pe
p−1−k+1
K

)⊥ ∩ Uk
K

)
= Λp

(
H ∩

(
K×)pUk

K ∩ Uk
K

)
= Λp

(
H ∩ Uk

K

)
is a Zp2 -module. Since k � 1 this contradicts the definition of k. Hence Λp(R0 ·U

pe
p−1−k+1
K )

is not a Zp2 -module, so t′ = k. Since pk − b > max{(p2 − 1)b − p2e, 0} we get b∗ =
pb − pk + b by Theorem 4.5. By comparing our formulas for b∗ with (4.7) we find that
b∗ = i1 − p2b + pb + b in all three cases. �
Remark 4.7. If i1 = p2b − pb then b∗ can take any of the values allowed by Theorem 5
in [2]. On the other hand, for a given b∗ we have either i1 = p2b− pb or i1 = b∗ + p2b−
pb− b.
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