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Text. This paper concerns some novel features of maximal
parabolic Eisenstein series at certain special values of their
analytic parameter, s. These series arise as coefficients in the
R4 and ∂4R4 interactions in the low energy expansion of
the scattering amplitudes in maximally supersymmetric string
theory reduced to D = 10− d dimensions on a torus, Td (0 �
d � 7). For each d these amplitudes are automorphic functions
on the rank d + 1 symmetry group Ed+1. Of particular
significance is the orbit content of the Fourier modes of these
series when expanded in three different parabolic subgroups,
corresponding to certain limits of string theory. This is of
interest in the classification of a variety of instantons that
correspond to minimal or “next-to-minimal” BPS orbits. In
the limit of decompactification from D to D + 1 dimensions
many such instantons are related to charged 1

2 -BPS or 1
4 -BPS

black holes with euclidean world-lines wrapped around the
large dimension. In a different limit the instantons give non-
perturbative corrections to string perturbation theory, while
in a third limit they describe non-perturbative contributions
in eleven-dimensional supergravity. A proof is given that
these three distinct Fourier expansions have certain vanishing
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Coadjoint nilpotent orbits coefficients that are expected from string theory. In particular,
the Eisenstein series for these special values of s have markedly
fewer Fourier coefficients than typical maximal parabolic
Eisenstein series. The corresponding mathematics involves
showing that the wavefront sets of the Eisenstein series in
question are supported on only a limited number of coadjoint
nilpotent orbits – just the minimal and trivial orbits in
the 1

2 -BPS case, and just the next-to-minimal, minimal and
trivial orbits in the 1

4 -BPS case. Thus as a byproduct we
demonstrate that the next-to-minimal representations occur
automorphically for E6, E7, and E8, and hence the first two
nontrivial low energy coefficients in scattering amplitudes can
be thought of as exotic θ-functions for these groups. The proof
includes an appendix by Dan Ciubotaru and Peter E. Trapa
which calculates wavefront sets for these and other special
unipotent representations.

Video. For a video summary of this paper, please click here
or visit http://youtu.be/QHhgpfOy_ww.

© 2013 Published by Elsevier Inc.
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1. Introduction

String theory is expected to be invariant under a very large set of discrete symmetries
(“dualities”), associated with arithmetic subgroups of a variety of reductive Lie groups.
For example, maximally supersymmetric string theory (type II superstring theory), com-
pactified on a d-torus to D = 10 − d space–time dimensions, is strongly conjectured to
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Table 1
The symmetry groups of maximal supergravity in D = 10 − d � 10 dimensions. The group Ed+1(R) is a
split real form of rank d+ 1, and Kd+1 is its maximal compact subgroup. In string theory these groups are
broken to the discrete subgroups, Ed+1(Z), as indicated in the last column (see [37] and its updated version
in [36]). The split real form Ed+1(R) is determined among possible covers or quotients by its maximal
compact subgroup Kd+1, which shares the same fundamental group. The terminology 10A and 10B in the
first column refers to the two possible superstring theories (types IIA and IIB) in D = 10 dimensions.

D Ed+1(R) Kd+1 Ed+1(Z)

10A R+ 1 1
10B SL(2,R) SO(2) SL(2,Z)
9 SL(2,R) × R+ SO(2) SL(2,Z)
8 SL(3,R) × SL(2,R) SO(3) × SO(2) SL(3,Z) × SL(2,Z)
7 SL(5,R) SO(5) SL(5,Z)
6 Spin(5, 5,R) (Spin(5) × Spin(5))/Z2 Spin(5, 5,Z)
5 E6(R) USp(8)/Z2 E6(Z)
4 E7(R) SU(8)/Z2 E7(Z)
3 E8(R) Spin(16)/Z2 E8(Z)

be invariant under Ed+1(Z), the integral points of the rank d+ 1 split real form1 of one
of the groups in the sequence E8, E7, E6, Spin(5, 5), SL(5), SL(3)× SL(2), SL(2)×R+,
SL(2) listed in Table 1.2

These symmetries severely constrain the dependence of string scattering amplitudes
on the symmetric space coordinates (or “moduli”), φd+1, which parametrize the coset
Ed+1/Kd+1, where the stabilizer Kd+1 is the maximal compact subgroup of Ed+1. The
list of these symmetry3 groups and stabilizers is given in Table 1. These moduli are scalar
fields that are interpreted as coupling constants in string theory. A general consequence
of the dualities is that scattering amplitudes are functions of φd+1 that must transform
as automorphic functions under the appropriate duality group Ed+1(Z). It is difficult
to determine the precise restrictions these dualities impose on general amplitudes, but
certain exact properties have been obtained in the case of the four-graviton interactions,
where a considerable amount of information has been obtained for the first three terms
in the low energy (or “derivative”) expansion of the four graviton scattering amplitude
in [24] (and references cited therein). These are described by terms in the effective action
of the form

1 The split real forms are conventionally denoted En(n), but in this paper we will truncate this to En

except when other forms of En are needed.
2 Unfortunately the literature contains some disagreement over precisely which groups Ed+1(R) occur

here, an ambiguity amongst the split real groups having the same Lie algebra. For example some authors
have SO(5, 5,R) instead of its double cover Spin(5, 5,R); in general possible groups are related by taking
quotients by a subgroup G0 of the center of the larger group. The choices listed here, which represent the
current consensus, are each the real points of an (algebraically) simply connected Chevalley group. (The
real groups Ed+1(R) and Kd+1 are not topologically simply connected, except in the trivial D = 10A case.)

Although we will try to be precise in our definitions, this discrepancy does not affect the results in this
paper. We note, in particular, that Ed+1(Z) is mathematically defined as the stabilizer of the Chevalley
lattice in the Lie algebra ed+1 under the adjoint action. Since the center acts trivially under the adjoint
action, the integral points of the larger group factors as the direct product of G0 with the integral points of
the smaller group. In particular the Eisenstein series for the two groups are the same (see for example (2.13)).
3 The continuous groups, Ed+1(R), will be referred to as symmetry groups while the discrete arithmetic

subgroups, Ed+1(Z), will be referred to as duality groups.
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Fig. 1. The Dynkin diagram for the rank d + 1 Lie group Ed+1, which defines the symmetry group for
D = 10 − d.

E(D)
(0,0)(φd+1)R4, E(D)

(1,0)(φd+1)∂4R4, and E(D)
(0,1)(φd+1)∂6R4, (1.1)

where the symbol R4 indicates a contraction of four powers of the Riemann tensor
with a standard rank 16 tensor. The coefficient functions, E(D)

(p,q)(φd+1), are automorphic
functions that are the main focus of our interests (the notation is taken from [24,26] and
will be reviewed later in (2.3)). More precisely we will focus on the three terms shown
in (1.1) that are protected by supersymmetry, which accounts for the relatively simple
form of their coefficients.

The coefficients of the first two terms satisfy Laplace eigenvalue equations (2.6)–(2.7)
and are subject to specific boundary conditions that are required for consistency with
string perturbation theory and M-theory. The solutions to these equations are particular
maximal parabolic Eisenstein series that were studied in [26] (for the cases with rank
� 5) and [24] (for the E6, E7 and E8 cases), and will be reviewed in the next section.
The required boundary conditions in each limit amount to conditions on the constant
terms in the expansion of these series in three limits associated with particular maximal4
parabolic subgroups of relevance to the string theory analysis. Such subgroups have the
form Pα = LαUα, where α labels a simple root, Uα is the unipotent radical and Lα =
GL(1)×Mα is the Levi factor.5 The three subgroups of relevance here have Levi factors
Lα1 = GL(1)×Spin(d, d), Lα2 = GL(1)×SL(d+1), and Lαd+1 = GL(1)×Ed, respectively.
In each case the GL(1) parameter, r, can be thought of as measuring the distance to the
cusp,6 as will be discussed in the next section. A key feature of the boundary conditions
is that they require these constant terms to have very few components with distinct
powers of the parameter r. These conditions pick out the unique solutions to the Laplace
equations, which are,7

E(10−d)
(0,0) = 2ζ(3)EEd+1

α1; 32
, (1.2)

4 The D = 8 case is degenerate and also involves non-maximal parabolics (see Table 1).
5 For clarity, we emphasize that its usage here indicates that every element of Lα can be written as an

element of GL(1) times an element of Mα (and not that Lα is the direct product of the two factors, which
is a stronger statement).
6 Each of the groups we are considering has a single cusp. The various limits correspond to different ways

of approaching this cusp.
7 In [24,26,27] the series were indexed by the label [1 0 · · · 0] of the root α1. In the present paper, we

will index the series according to the labeling of the simple root in Fig. 1. We have as well changed the
normalizations of the Eisenstein series, since our series there was instead EEd+1

[10···0];s = 2ζ(2s)EEd+1
α1;s .
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for the groups E1, E4, E5, E6, E7, and E8 [24,26] and

E(10−d)
(1,0) = ζ(5)EEd+1

α1; 52
, (1.3)

for the groups E1, E6, E7, and E8 [24]. Here EG
β;s is the maximal parabolic Eisenstein

series for a parabolic subgroup Pβ ⊂ G that is specified by the node β of the Dynkin
diagram (see (2.12) for a precise definition). This generalizes results for the SL(2,Z)
case (relevant to the ten-dimensional type IIB string theory). The functions E(10−d)

(0,0)

and E(10−d)
(1,0) in the intermediate rank cases involve linear combinations of Eisenstein

series [26], which will be discussed later in Section 4. The third coefficient function,
E(10−d)
(0,1) satisfies an interesting inhomogeneous Laplace equation and is not an Eisenstein

series [24,31]. Its constant terms in the three limits under consideration were also ana-
lyzed in the earlier references but it will not be considered in this paper, which is entirely
concerned with Eisenstein series.

In other words, our previous work showed that the particular Eisenstein series in
(1.2) and (1.3) have strikingly sparse constant terms as required to correctly describe
the coefficients of the 1

2 -BPS and 1
4 -BPS interactions. But the string theory boundary

conditions also determine the support of the non-zero Fourier coefficients in each of the
three limits under consideration. In string theory, the non-zero Fourier modes describe
instanton contributions to the amplitude. These are classified in BPS orbits obtained by
acting on a representative instanton configuration with the appropriate Levi subgroup.
A given instanton configuration generally depends on only a subset of the parameters of
the Levi group, Lα = GL(1) ×Mα, so that a given orbit depends on the subset of the
moduli that live in a coset space of the form Mα/H

(i), where H(i) ⊂ Mα denotes the
stabilizer of the i-th orbit. The dimension of the i-th orbit is the dimension of this coset
space.

In particular, the coefficients in the s = 3/2 cases covered by (1.2) must be localized
within the smallest possible nontrivial orbits (“minimal orbits”) of the Levi actions, as
required by the 1

2 -BPS condition. Furthermore, in the s = 5/2 cases covered by (1.3) the
coefficients are shown to be localized within the “next-to-minimal” (NTM) orbits (see
Section 2.2). The role of next-to-minimal orbits was also considered in [58]. However,
the specific suggestion there was based on the next-to-minimal representations of Gross
and Wallach [32,33], who did not consider the split groups of relevance to the duality
symmetries of type IIB string theory, which have very distinctive properties (as we shall
see).

This provides motivation from string theory for the following

String motivated vanishing of Fourier modes of Eisenstein series.

(i) The non-zero Fourier coefficients of EEd+1
α1; 32

(d = 5, 6, 7) in any of the three parabolic
subgroups of relevance are localized within the smallest possible nontrivial orbits
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(“minimal orbits”) of the action of the Levi subgroup associated with that parabolic,
as required by the 1

2 -BPS condition.
(ii) The non-zero Fourier coefficients of EEd+1

α1; 52
(d = 5, 6, 7) are localized within “next-

to-minimal” (NTM ) orbits, as required by the 1
4 -BPS condition.

While the special properties of the Fourier coefficients of the s = 3/2 series are implied
by the results in [19], the corresponding properties for the NTM orbits at s = 5/2 are
novel. One of the main mathematical contributions of this paper is to give a rigorous
proof of these statements using techniques from representation theory, by connecting
these automorphic forms to small representations of the split real groups Ed+1. The
Fourier coefficients in the intermediate rank cases not covered by (1.2) and (1.3) satisfy
analogous properties as we will determine by explicit calculation later in this paper.

2. Overview of scattering amplitudes and Eisenstein series

Since this paper covers topics of interest in both string theory and mathematics, this
section will present a brief description of the background to these topics from both points
of view followed by a detailed outline of the rest of the paper.

2.1. String theory background

We are concerned with exact (i.e., non-perturbative) properties of the low energy
expansion of the four-graviton scattering amplitude in dimension D = 10− d, which is a
function of the moduli, φd+1, as well as of the particle momenta kr (r = 1, . . . , 4) that are
null Lorentz D-vectors (k2

r = kr ·kr = 0) which are conserved (
∑4

r=1 kr = 0). They arise
in the invariant combinations (Mandelstam invariants), s = −(k1 +k2)2, t = −(k1 +k4)2
and u = −(k1 +k3)2 that satisfy s+ t+u = 0. At low orders in the low energy expansion
the amplitude can usefully be separated into analytic and nonanalytic parts

AD(s, t, u) = Aanalytic
D (s, t, u) + Anonanalytic

D (s, t, u) (2.1)

(where the dependence on φd+1 has been suppressed). The analytic part of the amplitude
has the form

Aanalytic
D (s, t, u) = TD(s, t, u)�6DR4, (2.2)

where �D denotes the D-dimensional Planck length scale and the factor R4 represents
the particular contraction of four Riemann curvature tensors, tr(R4) − (trR2)2/4, that
is fixed by maximal supersymmetry in a standard fashion [28]. The scalar function TD

has the expansion (in the Einstein frame8)

8 The Einstein frame is the frame in which lengths are measured in Planck units rather than string units,
and is useful for discussing dualities.
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TD(s, t, u) = E(0,−1)σ
−1
3 +

∑
p,q�0

E(D)
(p,q)σ

p
2σ

q
3

= 3σ−1
3 + E(D)

(0,0) + E(D)
(1,0)σ2 + E(D)

(0,1)σ3 + · · · . (2.3)

Symmetry under interchange of the four gravitons implies that the Mandelstam invari-
ants only appear in the combinations σ2 and σ3 with σn = (sn + tn + un)(�2D/4)n.
Since s, t, u are quadratic in momenta the successive terms in the expansion are of order
n = 2p + 3q in powers of (momenta)2. The degeneracy, dn = �(n + 2)/2� − �(n + 2)/3�,
of terms with power n is given by the generating function,9

1
(1 − x2)(1 − x3) =

∞∑
n=0

dnx
n, (2.4)

so d0 = 1, d1 = 0 and dn = 1 for 2 � n � 5.
The coefficient functions in (2.3), E(D)

(p,q)(φd+1), are automorphic functions of the moduli
φd+1 appropriate to compactification on Td. The first term on the right-hand side of
(2.3) is identified with the tree-level contribution of classical supergravity and has a
constant coefficient given by E(D)

(0,−1)(φd+1) = 3. The terms of higher order in s, t, u

represent stringy modifications of supergravity, which depend on the moduli in a manner
consistent with duality invariance. This expansion is presented in the Einstein frame so
the curvature, R, is invariant under Ed+1(Z) transformations, whereas it transforms
nontrivially in the string frame since it is nonconstant in φd+1 ∈ Ed+1(R)/Kd+1.

Apart from the first term, the power series expansion in (2.3) translates into a sum
of local interactions in the effective action. The first two of these have the form

�8−D
D

∫
dDx

√
−G(D)E(D)

(0,0)R
4, �12−D

D

∫
dDx

√
−G(D)E(D)

(1,0)∂
4R4. (2.5)

The three interactions with coefficient functions E(D)
(0,0), E

(D)
(1,0) and E(D)

(0,1) displayed in the
second equality in (2.3) are specially simple since they are protected by supersymmetry
from renormalization beyond a given order in perturbation theory. In particular, the R4

interaction breaks 16 of the 32 supersymmetries of the type II theories and is thus 1
2 -BPS,

while the ∂4R4 interaction breaks 24 supersymmetries and is 1
4 -BPS; likewise, the ∂6R4

interaction breaks 28 supersymmetries and is 1
8 -BPS. The next interaction is the p = 2,

q = 0 term in (2.3), E(D)
(2,0)∂

8R4. Naively this interaction breaks all supersymmetries, in
which case it is expected to be much more complicated, but it would be of interest to
discover if supersymmetry does constrain this interaction.10

It was argued in [26], based on consistency under various dualities, that the coefficients
E(D)
(0,0), E

(D)
(1,0) and E(D)

(0,1) satisfy the equations

9 This is the same as the well-known dimension formula for the space of weight 2n holomorphic modular
forms for SL(2,Z), which are expressed as polynomials in the (holomorphic) Eisenstein series G4 and G6.
10 A discussion of the properties of E(9)

(2,0) in nine dimensions can be found in [25, Section 4.1.1].
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(
Δ(D) − 3(11 −D)(D − 8)

D − 2

)
E(D)
(0,0) = 6πδD,8, (2.6)(

Δ(D) − 5(12 −D)(D − 7)
D − 2

)
E(D)
(1,0) = 40ζ(2)δD,7, (2.7)(

Δ(D) − 6(14 −D)(D − 6)
D − 2

)
E(D)
(0,1) = −

(
E(D)
(0,0)

)2 + 120ζ(3)δD,6, (2.8)

where Δ(D) is the Laplace operator on the symmetric space E11−D/K11−D. The discrete
Kronecker δ contributions on the right-hand side of these equations arise from anomalous
behavior and can be related to the logarithmic ultraviolet divergences of loop amplitudes
in maximally supersymmetric supergravity [27].

Recall that automorphic forms for SL(2,Z) have Fourier expansions (i.e., q-expansions)
in their cusp. For higher rank groups, automorphic forms have Fourier expansions com-
ing from any one of several maximal parabolic subgroups Pαr

, where the simple root
αr corresponds to node r in the Dynkin diagram for Ed+1 in Fig. 1. We are particu-
larly interested in this Fourier expansion for r = 1, 2, or d + 1, because each of these
expansions has a distinct string theory interpretation in terms of the contributions of
instantons in the limit in which a special combination of moduli degenerate. These three
limits are:

(i) The decompactification limit in which one circular dimension, rd, becomes large. In
this case the amplitude reduces to the D + 1-dimensional case with D = 10 − d.
The BPS instantons of the D = (10− d)-dimensional theory are classified by orbits
of the Levi subgroup GL(1) × Ed. Apart from one exception, these instantons can
be described in terms of the wrapping of the world-lines of black hole states in
the decompactified D + 1-dimensional theory around the large circular dimension
(the exception will be described later). This limit is associated with the parabolic
subgroup Pαd+1 .

(ii) The string perturbation theory limit of small string coupling constant, in which the
string coupling constant, √yD, is small, and string perturbation theory amplitudes
are reproduced. The instantons are exponentially suppressed contributions that are
classified by orbits of the Levi subgroup GL(1)×Spin(d, d). This limit is associated
with the parabolic subgroup Pα1 .

(iii) The M-theory limit in which the M-theory torus has large volume Vd+1, and
the semi-classical approximation to eleven-dimensional supergravity is valid.
This involves the compactification of M-theory from 11 dimensions on the
(d+ 1)-dimensional M-theory torus, where the instantons are classified by orbits of
the Levi subgroup GL(1) × SL(d + 1). This limit is associated with the parabolic
subgroup Pα2 .

The special features of the constant terms that lead to consistency of all perturbative
properties in these three limits appear to be highly nontrivial, and indicate particularly
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special mathematical properties of the Eisenstein series that define the coefficients of the
R4 and ∂4R4 interactions. The solutions to Eqs. (2.6)–(2.8) satisfying requisite boundary
conditions on the constant terms (zero modes) in the Fourier expansions in the limits
(i), (ii), and (iii) were obtained for 7 � D � 10 in [26], and for 3 � D � 6 in [24]. In
particular, (1.2) and (1.3) were found to be solutions for the cases with duality groups
E6, E7 and E8. Whereas the coefficient functions E(D)

(0,0) and E(D)
(1,0) are given in terms

of Eisenstein series that satisfy Laplace eigenvalue equations on the moduli space, the
coefficient E(D)

(0,1), of the 1
8 -BPS interaction ∂6R4, is an automorphic function that satisfies

an inhomogeneous Laplace equation. Various properties of its constant terms in these
three limits were also determined in [24,26].

Whereas the earlier work concerned the zero Fourier modes of the coefficient func-
tions, in this paper we are concerned with the non-zero modes in the Fourier expansion in
any of the three limits listed above. These Fourier coefficients should have the exponen-
tially suppressed form that is characteristic of instanton contributions. In more precise
terms, the angular variables involved in the Fourier expansion with respect to a maxi-
mal parabolic subgroup Pα come from the abelianization11 Uα/[Uα, Uα] of the unipotent
radical Uα of Pα, and are conjugate to integers that define the instanton “charge lat-
tice”. Asymptotically close to a cusp a given Fourier coefficient is expected to have an
exponential factor of exp (−S(p)), where S(p) is the action for an instanton of a given
charge, as will be defined in Section 3.1. In the case of fractional BPS instantons the
leading asymptotic behavior in the cusp is the real part of S(p), and is related to the
charge (B.4), which enters the phase of the mode.

In each limit the 1
2 -BPS orbits are minimal orbits (i.e., smallest nontrivial orbits)

while the 1
4 -BPS orbits are “next-to-minimal” (NTM) orbits (i.e., smallest nonminimal

or nontrivial orbits). The next largest are 1
8 -BPS orbits, which only arise for groups

of sufficiently high rank; in the E8 case there is a further 1
8 -BPS orbit beyond that.

These come up again as “character variety orbits”, a major consideration in Sections 5
and 6. They are closely related to – but not to be confused with – the minimal and
next-to-minimal coadjoint nilpotent orbits that are attached to the Eisenstein series
that arise in the solutions for the coefficients, E(D)

(0,0) and E(D)
(1,0) in (1.2) and (1.3), respec-

tively.

Note on conventions. Following [24, Section 2.4], the parameter associated with the
GL(1) factor that parametrizes the approach to any cusp will be called r and is nor-
malized in a mathematically convenient manner. It translates into distinct physical
parameters in each of the three limits described above, that correspond to parabolic
subgroups defined at nodes d+1, 1 and 2, respectively, of the Dynkin diagram in Fig. 1.
These are summarized as follows:

Limit (i) r2 = rd/�11−d, rd = radius of decompactifying circle,

11 See (4.3).
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Limit (ii) r−2 = √
yD = string coupling constant,

Limit (iii) r
2(1+d)

3 = Vd+1/�
d+1
11 , Vd+1 = vol. of M-theory torus. (2.9)

The D-dimensional string coupling constant is defined by yD = g2
s�

d
s/Vd, where D =

10 − d and gs is either the D = 10 IIA string coupling constant, gA, or the IIB string
coupling constant, gB , and Vd is the volume of Td in string units.12 The Planck length
scales in different dimensions are related to each other and to the string scale, �s, by(

�A10
)8 = �8sg

2
A,

(
�B10
)8 = �8sg

2
B , �11 = g

1
3
A�s,

(�D)D−2 = �D−2
s yD = (�D+1)D−1 1

rd
, for D � 8 (d � 2),

�79 = �7sy9 =
(
�A10
)8 1

rA
=
(
�B10
)8 1

rB
(2.10)

(note the two distinct Planck lengths in the ten-dimensional case and the distinction
between r1 = rA and r1 = rB in the two type II theories).

2.2. Mathematics background

Let us begin by recalling some notions from the theory of automorphic forms that
are relevant to the expansion (2.3), specifically from [24, Section 2]. Let G denote the
split real Lie group En, n � 8, defined in Table 1. For convenience we fix (as we may)
a Chevalley basis of the Lie algebra g of G, and a choice of positive roots Φ+ for its root
system Φ. Letting Σ ⊂ Φ+ denote the positive simple roots, the Lie algebra g has the
triangular decomposition

g = n⊕ a⊕ n−, (2.11)

where n (respectively, n−) is spanned by the Chevalley basis root vectors Xα for α ∈ Φ+
(respectively, α ∈ Φ−), and a is spanned by their commutators Hα = [Xα, X−α]. Let
N ⊂ G be the exponential of n; it is a maximal unipotent subgroup. Likewise A = exp(a)
is a maximal torus, and is isomorphic to rank(G) copies of R+. The group G has an
Iwasawa decomposition G = NAK, where K = Kn is the maximal compact subgroup of
G listed in Table 1. There thus exists a logarithm map H : A → a which is inverse to the
exponential, and which extends to all g ∈ G via its value on the A-factor of the Iwasawa
decomposition of g. The integral points G(Z) are defined as all elements γ ∈ G such that
the adjoint action Ad(γ) on g preserves the integral span of the Chevalley basis.

The standard maximal parabolic subgroups of G are in bijective correspondence with
the positive simple roots of G. Given such a root β and a standard maximal parabolic Pβ ,
the maximal parabolic Eisenstein series induced from the constant function on Pβ is

12 We will use the symbol Td to denote the string theory d-torus while using the symbol T d+1 for the
corresponding M-theory (d + 1)-torus expressed in eleven-dimensional units.
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defined by the sum

EG
β;s :=

∑
γ∈(Pβ∩G(Z))\G(Z)

e2sωβ(H(γg)), Re s 	 0, (2.12)

where ωβ , the fundamental weight associated to β, is defined by the condition
〈ωβ , α〉 = δα,β . These series generalize the classical non-holomorphic Eisenstein series
(the case of G = SL(2)), and more generally the Epstein Zeta functions (the case of
G = SL(n) and β either the first or last node of the An−1 Dynkin diagram). Because of
this special case, we often refer to the β = α1 series (in the numbering of Fig. 1) as the
Epstein series for a particular group, even if it is not SL(n). These series are the main
mathematical objects of this paper.

As we remarked in footnote 2 changing G to another Chevalley group with Lie algebra
g changes G(Z) by a central subgroup, and so Eisenstein series for the cover descend to
the corresponding Eisenstein series on the quotient. For example,

E
Spin(d,d)
β;s (g) = E

SO(d,d)
β;s

(
π(g)

)
, (2.13)

where π : Spin(d, d,R) → SO(d, d,R) is the covering map. We shall sometimes refer to
either as EDd

β;s when we wish to emphasize that a particular statement applies to both
E

Spin(d,d)
β;s and E

SO(d,d)
β;s .

As shorthand, we often denote a root by its “root label”, that is, stringing together
its coefficients when written as a linear combination of the positive simple roots Σ. Thus
α2+α3+2α4+α5 could be denoted 0112100 · · · or [0112100 · · ·], with brackets sometimes
added for clarity. Note that Eisenstein series of the type (2.12) are parametrized by a
single complex variable, s, whereas the more general minimal parabolic series in (5.3)
has rank(G) complex parameters.

The series (2.12) is initially absolutely convergent for Re s large, and has a mero-
morphic continuation to the entire complex plane as part of a more general analytic
continuation of Eisenstein series due to Langlands. Its special value at s = 0 is the con-
stant function identically equal to one. This corresponds to the trivial representation of
G(R), and clearly has no nontrivial Fourier coefficients. The main mathematical content
of this paper extends this phenomenon to other special values of s which are connected to
small representations of real groups (see Sections 2.2.2 and 5), and which have very few
nontrivial Fourier coefficients. This will be demonstrated to be in complete agreement
with a number of string theoretic predictions, in particular the one stated at the end of
Section 1.

The main results of [24] were the identifications (1.2) and (1.3) of E(D)
(0,0) and E(D)

(1,0),
respectively, in terms of special values of the Epstein series, for 3 � D = 10 − d � 5.
The more general automorphic function E(D)

(0,1) which satisfies (2.8) was also analyzed
in [24], but will not be relevant in this paper. The case of Spin(5, 5) was also covered
in [24], but is somewhat more intricate; it will be explained separately. We will show
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in a precise sense that these Epstein series at the special values at s = 0, 3/2, and
5/2 correspond, respectively, to the three smallest types of representations of G (see
Theorem 2.14) below.

2.2.1. Coadjoint nilpotent orbits
Let g be the Lie algebra of a matrix Lie group G, whether over R or C. An el-

ement of g is nilpotent if it is nilpotent as a matrix, i.e., some power of it is zero.
The group G acts on its Lie algebra g by the adjoint action Ad(g)X = gXg−1, and
hence dually on linear functionals λ : g → C through the coadjoint action given by
(Coad(g)λ)(X) = λ(Ad(g−1)X) = λ(g−1Xg). Actually g is isomorphic to its space of
linear functionals via the Killing form, and so the coadjoint action is equivalent to the
adjoint action. Following common usage, we thus refer to the orbits of the adjoint ac-
tion of G on g as coadjoint nilpotent orbits (even though they are, technically speaking,
adjoint orbits).

The book [12] is a standard reference for the general theory of coadjoint nilpotent
orbits. When G is a real or complex semisimple Lie group there are a finite number
of orbits, each of which is even dimensional. The smallest of these is the trivial orbit,
{0}. On the other hand, there is always an open, dense orbit, usually referred to as the
principal or regular orbit. Another orbit which will be important for us is the minimal
orbit, the smallest orbit aside from the trivial orbit. Since our groups G are all simply
laced, it can be described as the orbit of any root vector Xα, for any root α.

Table 2 gives a list of some orbits that are important to us, along with their base-
points.

2.2.2. Automorphic representations
The right translates of an automorphic function by the group G span a vector space

on which G acts. For a suitable basis of square-integrable automorphic forms and most
Eisenstein series, this action furnishes an irreducible representation. As we discussed
in [24, Section 2], the Eisenstein series are specializations of the larger “minimal parabolic
Eisenstein series” defined in (5.3). The automorphic representations connected to the
latter are generically principal series representations, an identification which can be made
by comparing the infinitesimal characters (that is, the action of all G-invariant differential
operators). However, at special points the principal series reduces, and the Eisenstein
series is part of a smaller representation. See Fig. 2.

An irreducible representation is related to coadjoint nilpotent orbits through its wave-
front set, also known as the “associated variety” of its “annihilator ideal”. It is a theorem
of Joseph [39] and Borho–Brylinski [9] that this set is always the closure of a unique coad-
joint nilpotent orbit. Thus a coadjoint nilpotent orbit is attached to every irreducible
representation of G.

Part (iii) of the following theorem is the main mathematical result of this paper, in
particular the cases of E7 and E8. Part (i) is trivial, while part (ii) is contained in results
of Ginzburg–Rallis–Soudry [19], following earlier work of Kazhdan–Savin [43].
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Table 2
Basepoints of the smallest coadjoint nilpotent orbits for the complexified En groups.
The notation Xα denotes the Chevalley basis root vector for the simple root α, which
is written here in terms of the root labels described in the text. The basepoints are
given as a description of the orbit but are not otherwise used. The SL(3)×SL(2) case
comes from the E3 Dynkin diagram, which is the E8 Dynkin diagram from Fig. 1 after
the removal of nodes 4, 5, 6, 7, and 8. Its Lie algebra is a product of two simple Lie
algebras and has a different orbit structure than the others; its smallest orbits come
from the respective factors.

Group Orbit dimension Basepoint

SL(2) 0 0
2 X1

SL(3) × SL(2) 0 0
2 an SL(2) root
4 an SL(3) root

SL(5) 0 0
8 X1111

12 X1110 + X0111

Spin(5, 5) 0 0
14 X12211

16 X11110 + X11101

20 X01111 + X11211

E6 0 0
22 X122321

32 X111221 + X112211

40 X011221 + X111210 + X112211

E7 0 0
34 X2234321

52 X1123321 + X1223221

54 X0112210 + X1112221 + X1122110

E8 0 0
58 X23465432

92 X23354321 + X22454321

112 X22343221 + X12343321 + X12244321

114 X11232221 + X12233211

Fig. 2. Schematic of small representations and Eisenstein special values.
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Theorem 2.14. Let G be one of the groups E6, E7, or E8 from Table 1. Then

(i) The wavefront set of the automorphic representation attached to the s = 0 Epstein
series is the trivial orbit.

(ii) The wavefront set of the automorphic representation attached to the s = 3/2 Epstein
series is the closure of the minimal orbit.

(iii) The wavefront set of the automorphic representation attached to the s = 5/2 Epstein
series is the closure of the next-to-minimal (NTM ) orbit.

The closure of the minimal orbit is simply the union of the minimal orbit and the
trivial orbit, while the closure of the next-to-minimal orbit is the union of itself, the
minimal orbit, and the trivial orbit. Theorem 2.14 will be used in proving Theorem 6.1,
which is the mathematical proof of the statement concerning vanishing Fourier modes
at the end of Section 1 that was motivated by string considerations.

2.3. Outline of paper

This paper combines information deduced from string theory with results in number
theory involving properties of Eisenstein series, which we hope will be of interest to
both string theorists and number theorists. In particular, each subject is used to make
nontrivial statements about the other. Sections 3–4 and Appendices B–D are framed
in string theory language and provide information concerning the structure expected of
the non-zero Fourier modes based on instanton contributions in superstring theory and
supergravity. The subsequent sections provide the mathematical foundations of these
observations and generalize them significantly.

Section 3 presents the classification of the expected orbits of fractional BPS instantons
in the three limits (i), (ii), and (iii) considered in Section 2.1, from the point of view
of string theory. The BPS constraints imply that these instantons span particular small
orbits generated by the action of the Levi subgroup acting on the unipotent radical
associated with the parabolic subgroup appropriate to a given limit. These orbits can
be thus thought of as character variety orbits, which are discussed at the beginning of
Section 4.

In the rest of Section 4 and Appendix H we will consider explicit low rank examples
(with rank d + 1 � 5) of the Fourier expansions of the functions E(10−d)

(0,0) and E(10−d)
(1,0)

in the parabolic subgroups corresponding to each limit. In the cases with d + 1 � 4
(D � 7), the definition (2.12) implies that the coefficient functions are combinations
of SL(n) Eisenstein series that can easily be expressed in terms of elementary lattice
sums. In these cases it is straightforward to use standard Poisson summation techniques
to exhibit the precise form of their Fourier modes. In particular, the non-zero Fourier
modes of E(10−d)

(0,0) will be determined in the three limits under consideration for the rank
d + 1 � 4 cases. These modes are localized within the minimal character variety orbits
that contain precisely the 1

2 -BPS instantons that are anticipated in Section 3. We will see,
in particular, that in the decompactification limit (i) the precise form for each of these
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coefficients matches in detail with the expression determined directly from a quantum
mechanical treatment of D-particle world-lines wrapped around an S1 ⊂ Td.13

Explicit examples of Fourier expansions of the coefficients of the 1
4 -BPS interactions,

E(D)
(1,0), will also be presented in Section 4 and Appendix H. In the D = 10B case (with

symmetry group SL(2)) this function is simply equal to ζ(5)ESL(2)
α1;5/2, and the extension to

D = 9 and D = 8 is also straightforward. But in the D = 7 case (with symmetry group
E4 = SL(5)) the coefficient function E(7)

(1,0) is a sum of the regularized Epstein series
ÊE4

α1;5/2 and the non-Epstein Eisenstein series ÊE4
α4;5/2 (coming from the third node of the

Dynkin diagram). The analysis of the Fourier modes of EE4
α4;s involves the use of several

lattice summation identities that are proved in Appendices E, F and G. In particular
we will derive an expression for the non-Epstein Eisenstein series coming from either
the second or second-to-last nodes as a Mellin transform of a certain lattice sum that
is closely related to the Spin(d, d) Epstein Eisenstein series, ESpin(d,d)

α1;s−d/2. In Appendix G
we will derive a theta lift between SL(d) and Spin(d, d) Eisenstein series. This relation
was presented in a less rigorous form in [26]. The resulting Fourier expansions contain
instanton contributions localized within the minimal (1

2 -BPS) character variety orbit and
the next-to-minimal (1

4 -BPS) character variety orbit, comprising precisely the instantons
anticipated in Section 3.

The coefficient E(6)
(0,0) is proportional to the series E

Spin(5,5)
α1;3/2 , which we will analyze by

using the integral representation proved in Proposition G.1. As expected, its non-zero
Fourier modes are supported within the minimal (1

2 -BPS) character variety orbits in any
of the three limits. On the other hand the 1

4 -BPS coefficient, E(6)
(1,0), involves the sum

of the regularized values of ÊSpin(5,5)
α1;5/2 and Ê

Spin(5,5)
α5;3 . Although we have not computed

the Fourier expansion of the second series, it is still possible to show that the non-zero
Fourier coefficients of this sum are supported within the minimal and next-to-minimal
(i.e., 1

2 - and 1
4 -BPS) character variety orbits in each of the three limits. This will be

discussed at the end of Section 4.
Sections 5, 6, and 7 are primarily concerned with the exceptional group cases, which

correspond to d � 5 and D � 5. Since classical lattice summation techniques are difficult
to apply in this context, we instead use results from representation theory to show that
a large number of the Fourier coefficients vanish. Indeed, avoiding explicit computations
here is one of the main novelties of the paper. Section 5 discusses aspects connected to
representation theory and contains a proof of theorem (2.13), which makes important
use of Appendix A by Ciubotaru and Trapa on special unipotent representations.

Section 6 then applies these results to Fourier expansions, using a detailed analysis of
character variety orbits. We will see that the spectrum of instantons that are expected
to vanish on the basis of string theory is precisely reproduced by the Eisenstein series in
(1.2) and (1.3). For the s = 3/2 case (the 1

2 -BPS case) we will reproduce the statements

13 The term D-particle refers to any point-like BPS particle state obtained by completely wrapping the
spatial directions of Dp-brane states.
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in [19,41,42] that only the minimal orbit and the trivial orbit contribute to the Fourier
expansions of the Eisenstein series. The relevance of this work to 1

2 -BPS states was
suggested by [54,58]. In addition, we will find that this generalizes for s = 5/2 (the 1

4 -BPS
case) to the statement that no orbits larger than the next-to-minimal (NTM) orbit can
contribute. The analysis in [24] showed the striking fact that the particular Eisenstein
series in (1.2) and (1.3) have constant terms with very few powers of r (defined in (2.9))
in their expansion around any of the three limits under consideration. The analysis in
this paper demonstrates analogous special features of the orbit structure of the non-zero
modes. Theorem 6.1 gives a precise statement about which Fourier modes automatically
vanish because of representation theoretic reasons. This set of vanishing coefficients is
exactly those that are argued to vanish for string theory reasons in Section 3.

It is important to point out that our methods show the vanishing of a precise set
of Fourier coefficients, but typically do not show the non-vanishing of the remaining
Fourier coefficients. However, this is accomplished in a number of low rank cases by
explicit calculations in Section 4 and Appendix H, and we hope to treat some of the
higher rank cases in the future. Section 7 discusses square-integrability of the coefficients
and conditions under which E(D)

(0,0) and E(D)
(1,0) are square-integrable for higher rank groups.

3. Orbits of supersymmetric instantons

From the string theory point of view our main interest is in the systematics of orbits of
BPS instantons that enter the Fourier expansions of the coefficients of the low order terms
in the low energy expansion of the four graviton amplitude. Before describing these orbits
in Sections 3.3–3.5 we begin with a short overview of the special features of such instan-
tons that follow from supersymmetry. A short summary of the M-theory supersymmetry
algebra and BPS particle states is given in Appendix B (although this barely skims the
surface of a huge subject), where the structure of the eleven-dimensional superalgebra is
seen to imply the presence of an extended two-brane (the M2-brane) and five-brane (the
M5-brane) in eleven dimensions. Compactification on a torus also leads to Kaluza–Klein
(KK ) point-like states and Kaluza–Klein monopoles (KKM ), one of which is interpreted
in string theory as a D6-brane. All the particle states in lower dimensions can be obtained
by wrapping the spatial directions of these objects around cycles of the torus.

3.1. BPS instantons

One class of BPS instantons can be described from the eleven-dimensional semi-
classical M-theory point of view by wrapping euclidean world-volumes of M2- and
M5-branes around compact directions so that the brane actions are finite. These branes
couple to the three-form M-theory potential and its dual, and the BPS conditions con-
strain their charges, Q(p), to be proportional to their tensions, T (p), where p = 2 or 5 (as
briefly reviewed in Appendix B). Wrapping the world-volume of a euclidean M2-brane
around a 3-torus, T 3 ⊂ T d+1, or a euclidean M5-brane around a 6-torus, T 6 ⊂ T d+1,
gives a 1 -BPS instanton, which has a euclidean action of the form S(p) = 2π(T (p)+iQ(p)).
2
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This gives a factor in amplitude of the form e−S(p) that has a characteristic phase de-
termined by the charge of the brane.

In addition, the “KK instanton” is identified with the euclidean world-line of a KK
charge winding around a circular dimension. The magnetic version of this is the “KKM
instanton”, one manifestation of which appears in string theory as a wrapped euclidean
D6-brane. Recall that a KK monopole in eleven-dimensional (super)gravity with one
compactified direction labeled x# has a metric of the form [69]

ds2 = V −1(dx# + A · dy
)2 + V dy · dy − dt2 + dx2

6, V = 1 + R

2|y| , (3.1)

where ds2
7 = −dt2 + dx2

6 is the seven-dimensional Minkowski metric and the other four
dimensions, x#, y = (y1, y2, y3), define a Taub–NUT space, and |y|2 =

∑3
i=1 y

2
i . The

coordinate x# is periodic with period 2πR and the potential, A, satisfies the equation
∇×A = −∇V = B. Poincaré duality in the ten dimensions (t, x6,y) relates the 1-form
potential, A, to a 7-form, i.e., ∗dA = dC(7). If x# is identified with the M-theory circle,
C(7) couples to a D6-brane in the string theory limit. This gives an instanton when its
world-volume is wrapped around a 7-torus. More generally, x# can be identified with
other circular dimensions of the torus T d+1, giving a further d distinct KKM ’s, each one
of which appears as a finite action instanton when wrapped on an M-theory 8-torus, T 8

(i.e., when d = 7). When describing these in the string theory parametrization (on the
string torus T7) these will be referred to as “stringy KKM instantons”. Furthermore, it
is well understood how to combine wrapped branes to make 1

2 -, 1
4 - and 1

8 -BPS instantons
[6,35]14 in a manner analogous to combining p-branes to make states preserving a fraction
of the symmetry.

This description of instantons is directly relevant to the discussion of the semi-classical
M-theory limit (case (iii)) associated with the Fourier expansion in the parabolic sub-
group Pα2 in Section 3.5. This is the large-volume limit in which eleven-dimensional
supergravity is a valid approximation. Similarly, the instanton contributions in limits (i)
and (ii) can be described by translating from the M-theory description to the string the-
ory description of the wrapped branes. These wrapped string theory objects comprise: the
fundamental string and the Neveu–Schwarz five-brane (NS5-brane) that couple to BNS;
Dp-branes that couple to the Ramond–Ramond (p + 1)-form potentials C(p+1) (with
−1 � p � 9); and KK charges and KK monopoles that couple to modes of the metric
associated with toroidal compactification on Td.

Knowledge of this instanton spectrum is a valuable ingredient in understanding the
systematics of the Fourier modes of the Eisenstein series that enter into the definitions
of the coefficients of the low order interactions in the expansion of the scattering am-
plitude. In particular, it connects closely with the study of the Fourier expansions of
specific Eisenstein series that enter into E(D)

(0,0) and E(D)
(1,0) (that will be discussed later

14 We are concerned with compactification on tori, but more generally the BPS condition requires branes
to be wrapped on special lagrangian submanifolds (SLAGs) or on holomorphic cycles [6].
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in this paper), as well as with the Fourier expansion of the more general automorphic
function E(D)

(p,q) (that will not be discussed in this paper).

3.2. Fourier modes and orbits of BPS charges

The Fourier expansion associated with any parabolic subgroup, Pα = LαUα, of Ed+1
is a sum over integer charges that are conjugate to the angular variables that enter in
its unipotent radical Uα. These determine the phases of the modes. The Levi factor is
a reductive group that has the form Lα = GL(1) × Mα, where Mα is its semisimple
component.

The conjugation action on Uα of Lα – or more specifically, its intersection with the
discrete duality group Lα∩Ed+1(Z) – relates these charges by Fourier duality. Thus this
action carves out orbits within the charge lattice, with each given orbit only covering
a subset of the total charge space. This viewpoint is expanded upon in more detail in
Section 4.1. In this subsection we classify these orbits in cruder form, by considering the
action of the continuous group Lα on the charge lattice. Indeed, since we are mainly
interested in the algebraic nature of the group action, we sometimes look at the less
refined action of the complexification of Lα, e.g., in order to avoid subtle issues about
square roots. Though this loses information by grouping charges into broader families,
those families still retain some important common features.

As will be explained in Section 4.1, the action of Lα on the charge lattice is related
to the adjoint representation on the Lie algebra of Uα. This representation is irreducible
if and only if Uα is abelian. That is the case for the unipotent radicals we consider of
every symmetry group Ed+1(R) of rank d + 1 < 6. Otherwise, the Fourier expansion is
only well-defined after averaging over the commutator subgroup (see (4.3)), and hence
does not capture the full content of the function. We devote the rest of this section to
relating these orbits to BPS instantons in the three limits we consider. In each particular
case we will explain the origin of the non-abelian nature of the unipotent radicals, which
have charges that do not commute with the other brane charges. A discussion of such
effects within string theory can be found, for example, in [18].

We now describe the adjoint action Vα̂ on the unipotent radical, where α̂ labels the
node immediately adjacent to α in the Dynkin diagram (Fig. 1). For the three parabolic
subgroups of interest to us the representations of the unipotent radical are as follows:

(i) The maximal parabolic Pαd+1 .
In this case α̂ = αd and Lαd+1 = GL(1)×Ed. The following lists the representations
Vαd

for each value of 2 � d � 7.

Ed+1 Mαd+1 Vαd

E8 E7 qi : 56, q : 1
E7 E6 qi : 27
E6 Spin(5, 5) Sα : 16
Spin(5, 5) SL(5) v[ij] : 10
SL(5) SL(3) × SL(2) via : 3 × 2
SL(3) × SL(2) SL(2) × R+ vva : 2
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The notation in the last column indicates the irreducible representations are in-
dexed by their dimensions. Both the fundamental representation and the trivial
representation of E7 occur, because the unipotent radical Uα8 is a Heisenberg group.
The lower dimensional representations are: the fundamental representation for E6;
a spinor representation for Spin(5, 5); the rank 2 antisymmetric tensor represen-
tation for SL(5); a bivector representation for SL(3) × SL(2); and a scalar-vector
representation for SL(2) × R+.

(ii) The maximal parabolic Pα1 .
In this case α̂ = α3, which is a spinor node (following the numbering of Fig. 1)
and Lα1 = GL(1) × Spin(d, d). The representation Vα̂ always includes a spinor
representation of Spin(d, d). It is irreducible except in the cases of d = 6, 7. The
case of Spin(6, 6) ⊂ E7 also includes a copy of the trivial representation, because
the unipotent radical is again a Heisenberg group; the case of Spin(7, 7) ⊂ E8 also
includes a copy of the standard 14-dimensional “vector” representation.

(iii) The maximal parabolic Pα2 .
In this case α̂ = α4 and Lα2 = GL(1) × SL(d + 1). The representation Vα̂ always
includes a rank 3 antisymmetric tensor of SL(d+1), vijk, of dimension 1

3! (d+1)d(d−
1). It is irreducible when the rank is less than 6 (see Table 3 for the dimensions in
the higher rank cases.)

In each case, the charges form a lattice within the first listed piece of Vα̂, that is,
the irreducible subrepresentation coming from the “abelian part” of Uα. More precisely,
these are the nontrivial representations in part (i), the spinor representations in part (ii),
and the rank 3 antisymmetric tensors vijk in part (iii). The space Vα̂ is identical with
the “character variety orbit” u−1 introduced in Section 4.1.

Before proceeding with the explicit list of orbits based on the counting of states and
instantons in the next three subsections, we will recall basic properties of the space of
nontrivial charges. Apart from the most trivial case (with duality group SL(2,Z)), the
1
2 -BPS orbits only fill a small fraction of the whole space. For the Ed+1 groups with
1 � d � 5 the complementary space to the 1

2 -BPS space is filled out by 1
4 -BPS orbits.

For E7 and E8 the full space is spanned by the union of 1
2 -, 1

4 - and 1
8 -BPS orbits.

The Fourier coefficients of the BPS protected operators will have non-vanishing Fourier
coefficients only associated to these nilpotent orbits. The classification of possible charge
orbits only depends on the semi-classical nature of the associated BPS configurations,
but does not provide any detailed information about strong quantum corrections. Such
information should be encoded in the precise form of the instanton contributions to the
Fourier modes.

The instanton spectrum will now be considered in each of these limits in turn. In each
case we will list the single BPS instantons that form basepoints of the charge orbits. The
dimension of the full spaces of charges spanned by the orbits in each case of interest is
shown in Table 3. For each of the three limits (i), (ii), (iii), the two columns in the table
show the dimensions of the abelian and non-abelian charge spaces, respectively. Since
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Table 3
Dimensions of the unipotent radical Uαi

for the standard maximal parabolic subgroup Pαi
where i = 1,

i = 2 and i = d + 1. For each node the first column gives the dimension of the character variety u−1 (see
Section 4.1), and the second column gives the dimension of the derived subgroup [U,U ]. The sum of the
two is the dimension of U . The unipotent radical U is abelian when the dimension in the second column is
zero; it is a Heisenberg group when this dimension equals 1 and even more non-abelian when it is > 1.

Group First node Second node Last node

SL(3) × SL(2) 2 0 1 0 3 0
SL(5) 4 0 4 0 6 0
Spin(5, 5) 8 0 10 0 10 0
E6 16 0 20 1 16 0
E7 32 1 35 7 27 0
E8 64 14 56 28 +8 56 1

we will be only interested in BPS (supersymmetric) orbits we will not discuss all the
possible nilpotent orbits of E7 and E8. A complete discussion of the orbit structure is
given in Section 6.1.

3.3. BPS instantons in the decompactification limit: Pαd+1

The parabolic subgroup of relevance to the expansion of the amplitude in D = 10− d

dimensions when the radius rd defined in (2.9) of one circle of the torus Td becomes
large is Pαd+1 , which has Levi factor Lαd+1 = GL(1) × Ed. In this limit there is a close
correspondence between the spectrum of instantons in D = 10 − d dimensions and the
spectrum of black hole states in D + 1 = 11 − d dimensions. This follows from the
identification of the euclidean world-line of a charged black hole of mass M wrapping
around a circular dimension of radius r with an instanton with action 2πMr that gives
rise to an exponential factor of e−2πMr in the amplitude. In addition to instantons of this
type, there can be instantons that do not decompactify to particle states in the higher
dimension because their actions are singular in the large-r limit. In any dimension there
are also instantons with actions independent of r that are inherited from the higher
dimension in a trivial manner.

The spectrum of BPS black hole states in compactified string theory has been studied
extensively. We will here follow the analysis in [15,16], which considered the spectrum
of branes wrapped on Td. This generates charged 1

2 - and 1
4 -BPS black hole states that

correspond to singular solutions in supergravity since they have zero horizon size and
hence zero entropy. In addition, for E6, E7 and E8 there are 1

8 -BPS states that correspond
to black holes that have non-zero entropy (as well as states with zero entropy), the
prototypes being the analysis of black holes in D = 5 dimensions (with E6 duality
group) in [11,66]. The discussion of the associated nilpotent orbits was given in [48]. Our
main interest is to extend the analysis in order to account for BPS instantons.

We shall, for convenience, use the M-theory description starting from eleven-
dimensional supergravity compactified on a (d + 1)-torus that will be denoted T d+1.
The BPS particle states in any dimension are obtained by wrapping all the spatial
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dimensions of the various extended objects in supergravity around the torus. These
include the M2-brane and the M5-brane, together with the Kaluza–Klein modes of the
metric and the magnetic dual Kaluza–Klein monopoles. The BPS instantons can be
listed by completely wrapping the euclidean world-volumes of these objects on these
tori.

Despite their similarities, there is a fundamental mathematical difference between the
orbits of BPS states and the orbits of BPS instantons. The former are orbits under
the semisimple part Mαd+1 of the Levi component Lαd+1 = GL(1) × Mαd+1 , while the
latter are orbits under the larger group Lαd+1 itself. Often these orbits coincide, but
not always: the 27-dimensional orbit of E6 and 56-dimensional orbit of E7 are actually
unions of infinitely many Mαd+1-orbits which are related by the GL(1) action. This
GL(1) action is reminiscent of the so-called trombone symmetry of supergravity [13].
Similar examples occur in other limits as well. The GL(1) parameter, r, described in
(2.9) is always normalized to act by the scalar factor of r2 on the BPS instantons,
and so never acts trivially. This action is typically compensated by a different GL(1)
factor in the stabilizer of a BPS instanton. When this happens we will shorten the orbit
notation by canceling these two factors, even though they are mathematically different.
We use a horizontal line to denote a quotient G

H of a group G by a stabilizer H, in
order to match orbit descriptions with those commonly found in the physics literature.
We have also made an attempt to correct mathematical imprecisions in some existing
descriptions. Since we do not use the explicit descriptions of these orbits this should
cause no confusion.

3.3.1. Features of Pαd+1 orbits
The details of the enumeration of BPS states and instantons in the decompactification

limit are reviewed in Appendix C, the results of which are summarized in this subsection.
These states are labeled by a set of charges that couple to components of the various
tensor potentials in the theory and span a space whose dimension is given in the second-
to-last column of Table 4 for each Levi group, Mαd+1 , with 0 � d � 7. Correspondingly,
the dimension of the space of instanton charges is given in the last column. Table 5 lists
the BPS orbits for each Levi group in the range 0 � d � 7.

Table 4 shows that, with one exception, the number of BPS instantons in dimension
D equals the sum of the number of BPS particle states and the BPS instantons in
dimension D + 1, as anticipated above. The exceptional case is the parabolic subgroup
with Mα8 = E7, where the number of instantons, 120, is one greater than the number
of BPS states, 56, plus instantons, 63 in D = 4. The string theory interpretation of this
extra state is discussed at the end of Section 3.4.1.

The BPS orbits for each value of d = 10 −D with Levi factor Lαd+1 = GL(1) × Ed

are shown in Table 5. The tensors v, va, via, vij and the spinor S were introduced in
Section 3.2. I3 and I4 are cubic and quartic invariants of E6 and E7, respectively, which
are defined in terms of the fundamental representation, qi, of E6 and E7, as reviewed



208 M.B. Green et al. / Journal of Number Theory 146 (2015) 187–309
Table 4
The dimensions of the spaces spanned by the BPS point-like charges and BPS instantons of maximal
supergravity for the Levi subgroups in Pαd+1 . The parentheses for Mα8 = E7 indicate that the number of
BPS states is one less than the dimension of the unipotent radical, Uα8 , of the parabolic subgroup Pα8

of E8.

D = 10 − d Mαd+1 = Ed dim point charges =
dimUαd+1

dim instanton charges =
# + ve roots of Ed

10A 1 1 0
10B SL(2) 0 1
9 SL(2) × R+ 3 1
8 SL(3) × SL(2) 6 4
7 SL(5) 10 10
6 Spin(5, 5) 16 20
5 E6 27 36
4 E7 56 (57) 63
3 E8 120 120

Table 5
The orbits of instantons associated with the parabolic subgroup Pαd+1 . With one exception these are orbits
of charged black hole states satisfying fractional BPS conditions that are generated by the action of the
Levi subgroup, GL(1) × Ed, on a representative BPS state. The notation is explained in the text. The
degenerate case with d = 0 is omitted here but will be discussed in Section 4.2. The information in the
third and fourth columns is taken from [16] and [48], respectively. The details are provided in Appendix C.
Note the presence of the non-abelian 33-dimensional unipotent radical R32 �R in the 1

4 -BPS entry for E7.

Mαd+1 = Ed BPS BPS condition Orbit Dim.

GL(1) 1
2 – GL(1) 1

SL(2) × R+ 1
2 vva = 0 Union of 2 orbits 1 and 2
1
4 vva �= 0 GL(1)×SL(2)

R
3

SL(3) × SL(2) 1
2 εabviavjb = 0 SL(3)×SL(2)

GL(2)�R3 4
1
4 εabviavjb �= 0 SL(3)×SL(2)

SL(2)�R2 6

SL(5) 1
2 εijklmvijvkl = 0 SL(5)

(SL(3)×SL(2))�R6 7
1
4 εijklmvijvkl �= 0 SL(5)

Spin(2,3)�R4 10

Spin(5, 5) 1
2 (SΓmS) = 0 Spin(5,5)

SL(5)�R10 11
1
4 (SΓmS) �= 0 Spin(5,5)

Spin(3,4)�R8 16

E6
1
2 I3 = ∂I3

∂qi = 0, and
∂2I3

∂qi∂qj �= 0

E6
Spin(5,5)�R16 17

1
4 I3 = 0, ∂I3

∂qi �= 0 E6
Spin(4,5)�R16 26

1
8 I3 �= 0 GL(1)×E6

F4(4)
27

E7
1
2 I4 = ∂I4

∂qi = ∂2I4
∂qi∂qj |AdjE7

= 0, and
∂3I4

∂qi∂qj∂qk �= 0

E7
E6(6)�R27 28

1
4 I4 = ∂I4

∂qi = 0, and
∂2I4

∂qi∂qj |AdjE7
�= 0

E7
Spin(5,6)�(R32�R) 45

1
8 I4 = 0, ∂I4

∂qi �= 0 E7
F4(4)�R26 55

1
8 I4 > 0 R

+×E7
E6(2)

56



M.B. Green et al. / Journal of Number Theory 146 (2015) 187–309 209
in Appendices C.6 and C.7. A general feature that is valid for d > 1 is that the 1
2 -BPS

states fill out orbits of the form

O 1
2 -BPS = Ed+1

Ed �Rnd+1
, (n3, . . . , n7) = (3, 6, 10, 16, 27). (3.2)

The integers nd+1 are the dimensions of the unipotent radicals, Uαd+1 , listed in Table 3;
they are also the dimensions of the spaces of BPS point charges for the symmetry groups
Ed+1 listed in Table 4, apart from the case of d = 7 where Uα8 is a non-abelian Heisenberg
group. As mentioned earlier, Uα8 has dimension 57 while the E7 point-like states (charged
black holes) are labeled by only 56 charges. The missing charge arises from the fact that
among the 120 instantons in D = 3 dimensions (see Table 4) there is one that is a
wrapped KKM with x# (the fiber coordinate in (3.1)) wrapped around the direction
that is identified with (euclidean) time. Since particle states in D = 4 dimensions are
obtained by identifying the decompactified direction with time, the exceptional instanton
is one for which x# grows in the cusp and its action becomes singular. By contrast, 56 of
the D = 3 instantons have action proportional to r7 and are seen as point-like states in
four dimensions, and the other 63 have no r7 dependence and decompactify to instantons
in four dimensions.

It is interesting to speculate about an additional line to Table 5 which we did not
list, namely one for Mα9 = E8 inside the affine Kac–Moody group E9. While this latter
group is infinite dimensional, one can still make sense of the orbits in terms of the finite
dimensional vector space u−1 in (4.5). Indeed, u−1 here is 248-dimensional and the action
of E8 is equivalent to the adjoint action on its Lie algebra. Thus the orbits there coincide
with the coadjoint nilpotent orbits for E8.

3.4. The string perturbation theory limit: Pα1

In this limit BPS instantons give non-perturbative corrections to string perturba-
tion theory. This involves an expansion in the parabolic subgroup Pα1 , with Levi factor
Lα1 = GL(1)×Spin(d, d). This limit is analogous to the limit considered in the previous
subsection with the role of the decompactifying circle radius, rd, replaced by the inverse
string coupling in D = 10 − d dimensions, which is denoted 1/√yD. In this case the
orbits of BPS charges do not correspond to black hole charge orbits.

The BPS instantons that enter in this limit are easiest to analyze in terms of the
wrapping of euclidean world-volumes of Dp-branes, the NS5-brane and stringy KKM
instantons. The Dp-branes enter for all values of d � 0 and their contribution alone leads
to an abelian unipotent radical, Uα1 . The NS5-branes contribute on tori of dimension
d � 6 and the KKM instantons contribute for d = 7. Both these kinds of instantons
render the unipotent radical non-abelian. In Section 3.4.1 and Appendix D we review
the classification of Dp-brane instantons in terms of the classification of Spin(d, d) chiral
spinor orbits, which leads to the following features:
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• For d � 3 there is only one nontrivial orbit, which is 1
2 -BPS.

• 1
4 -BPS orbits arise when d � 4. For d = 4 and 5 there is one orbit, namely the full
spinor space of dimension 2d−1. For d = 6 and d = 7 there is again a single 1

4 -BPS
orbit given by constrained spinors, which has dimensions 25 and 35, respectively.

• For d = 4 the 1
2 -BPS orbit is parametrized by a spinor satisfying the Spin(4, 4)

pure spinor constraint, S · S = 0, while the full eight-component spinor space (with
S · S �= 0) parametrizes the 1

4 -BPS orbit.
• For d = 5 the 1

2 -BPS orbit is parametrized by a Spin(5, 5) spinor satisfying the pure
spinor constraint,15 SΓ iS = 0, and once again the unconstrained spinor parametrizes
the 1

4 -BPS orbit.
• For d = 6 the 1

2 -BPS orbit is defined by a Spin(6, 6) spinor satisfying the pure spinor
constraint,

F2 := 1
2

12∑
i,j=1

SΓ ijS dxi ∧ dxj = 0, (3.3)

where the 1
4 -BPS orbit is parametrized by a spinor satisfying the weaker constraints

F2 �= 0, F2 ∧ F2 = 0. (3.4)

In addition there is a 1
8 -BPS orbit which is identified with the space of a spinor

satisfying

F2 ∧ F2 �= 0, ∗F2 ∧ F2 = 0, (3.5)

where ∗ is the Hodge star operator, and a second 1
8 -BPS orbit identified with the

space spanned by an unconstrained 32-component spinor.
• For d = 7 there are nine nontrivial orbits (in addition to the trivial orbit) that were

determined by Popov [62]. The 1
2 -BPS case is the smallest nontrivial orbit, which is

the space spanned by a spinor satisfying

F3 := 1
3!

14∑
i,j,k=1

SΓ ijkS dxi ∧ dxj ∧ dxk = 0, (3.6)

where S is a Spin(7, 7) spinor and Γ i (i = 1, . . . , 14) are corresponding Dirac matri-
ces. However, the description of the remaining orbits in terms of covariant constraints
involving F3 analogous to those of (3.4) and (3.5) is apparently unknown.

15 The Dirac matrices Γ i (i = 1, . . . , 2d) form a 2
d

2
−1×2

d

2
−1 representation of the Clifford algebra C
(d, d).

We will denote the antisymmetric product of r Dirac Γ matrices by Γ i1···ir = 1
r!
∑

σ∈Sr
(−)σΓ iσ(1) · · ·Γ iσ(r) ,

where (−)σ is the signature of the permutation σ.
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We now turn to a detailed description of these orbits, which draws from the informa-
tion in Section 6.1.

3.4.1. Classification of spinor orbits
A review of the method for classifying spinor orbits of G = Spin(d, d), when viewed as

the subgroup of even and invertible elements of the Clifford algebra C�(d, d) associated
with SO(d, d), can be found in [71] (based on the original work in [38] for d � 6, and[62]
for d = 7).

The following tables will summarize some facts about these orbits, which are typically
cosets of the form O = Spin(d, d)/H, H being the stabilizer of a point in the orbit; in
three particular cases the quotients are actually (GL(1) × G)/H for reasons similar to
those explained just above Section 3.3.1. Since we do not require any specific features
of these orbits we shall simplify their description by writing the real points the corre-
sponding complex algebraic variety. For each value of d we will give a representative
spinor of each orbit (labeled S0 in column 1 and defined in Appendix D), together with
its stabilizer (H in column 2), its dimension (dim(G/H) in column 3) and the fraction
of supersymmetry it preserves – i.e., its BPS degree N/2d−1, which is determined by the
number of linearly independent spinors N of the orbit representative S0. In the following
we will only list the BPS orbits appearing into the Fourier coefficients of the coefficients
we are interested in. A more complete discussion is given in Section 6.1.

The tables that follow have the following general properties:

• The bottom row is the trivial orbit and the top row is the dense orbit of a full spinor.
• The second to bottom row is the smallest nontrivial orbit, which is the 1

2 -BPS con-
figuration with orbit parametrized by the coset16

O 1
2 -BPS = Spin(d, d)

SL(d) �R
d(d−1)

2
(3.7)

of dimension 1 + d(d − 1)/2. This is the orbit of a spinor satisfying the pure spinor
constraint and can be obtained by acting on the ground state of the Fock space
representation of the spinor with SO(d, d) rotations.

• The third to bottom row is the second smallest nontrivial orbit (the NTM, or 1
4 -BPS,

orbit), which arises for d � 4 and is the coset

O 1
4 -BPS = Spin(d, d)

(Spin(7) × SL(d− 4)) � U (d−4)(d+11)
2

, (3.8)

where Us is a unipotent group of dimension s (which is non-abelian for d � 6).

16 Although the orbits listed in this section are over R or C, the structures are largely independent of
the ground field. For example, this particular orbit has the same form over any field k with characteristic
different from 2, but with the R factor replaced by k

d(d−1)
2 .
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In more detail, the specific orbits for each Spin(d, d) group are as follows:

� Spin(1, 1) is trivial. For Spin(2, 2) and Spin(3, 3) the action of the spin group is
transitive and there are only two orbits: the trivial one of dimension 0, and the Weyl
spinor orbit. This is in accord with the discussion in the previous subsection.

G = Spin(2, 2)
S0 Stabilizer H dim(G/H) BPS
1 SL(2) � R 2 1

2

0 Spin(2, 2) 0 –

G = Spin(3, 3)
S0 Stabilizer H dim(G/H) BPS
1 SL(3) � R3 4 1

2

0 Spin(3, 3) 0 –

� For d � 4 the action of the spin group is not transitive and there are several nontrivial
orbits represented by constrained spinors.17 The first orbit listed in the Spin(4, 4) table,
the full spinor orbit of dimension 8, is actually the quotient (GL(1)×Spin(4, 4))/Spin(7).
A similar GL(1) factor occurs for the largest orbit of the groups Spin(6, 6) and Spin(7, 7),
but not for Spin(5, 5) (see below).

G = Spin(4, 4)
S0 Stabilizer H dim(G/H) BPS
1 + e1234 Spin(7) 8 1

4

1 SL(4) � R6 7 1
2

0 Spin(4, 4) 0 –

G = Spin(5, 5)
S0 Stabilizer H dim(G/H) BPS
1 + e1234 Spin(7) � R8 16 1

4

1 SL(5) � R10 11 1
2

0 Spin(5, 5) 0 –

� The Spin(6, 6) case involves some non-commutative unipotent subgroups Us of dimen-
sion s. The full spinor orbit of dimension 32 is (GL(1) × Spin(6, 6))/SL(6).

G = Spin(6, 6)
S0 Stabilizer H dim(G/H) BPS
1 + e∗14 + e∗25 + e∗36 SL(6) 32 0
1 + e∗14 + e∗25 Sp(6) � R14 31 1

8

1 + e∗14 (SL(2) × Spin(7)) � U17 25 1
4

1 SL(6) � R15 16 1
2

0 Spin(6, 6) 0 –

17 The symbols ei1···ir and e∗i1···ir labeling the spinor S0 are defined in Appendix D.
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� For Spin(7, 7) the full spinor orbit of dimension 64 is (GL(1)×Spin(7, 7))/(G2×Z2G2),
where G2 is the exceptional group of rank 2 and where H1 ×Z2 H2 denotes the almost
direct product of two groups intersecting on Z2. Of the total of 10 orbits obtained in [62],
we quote only the ones relevant for the analysis of the Fourier modes discussed in this
paper:

G = Spin(7, 7)
S0 Stabilizer H dim(G/H) BPS
1 + e∗7 SL(6) � R12 44 1

8

1 + e∗147 + e∗257 (Sp(6) ×Z2 GL(1)) � R26 43 1
8

1 + e1234 (SL(3) × Spin(7)) � U27 35 1
4

1 SL(7) � R21 22 1
2

0 Spin(7, 7) 0 –

3.4.2. Neveu–Schwarz five-brane and stringy KKM instantons
The wrapped world-volume of the NS5-brane produces a new kind of instanton when

d � 6, which is a source of BNS flux. Whereas the Dp-brane instantons have actions
of the form C/gs with C independent of gs, the wrapped NS5-brane has an action
of the form C/g2

s . This means that such NS5-instantons are suppressed by e−C/g2
s ,

and so, in the string perturbation theory regime they are suppressed relative to the
Dp-brane instantons. The presence of the charge carried by this wrapped NS5-brane
instanton leads to a non-commutativity of the unipotent radical, Uα1 , which is a Heisen-
berg group (this is analogous to the fact that the KKM instanton in D = 3 led to
non-commutativity of the unipotent radical Uα8 in the Pα8 parabolic subgroup of E8).
The non-commutativity arises because the presence of an NS5-brane charge generates
a nontrivial BNS background. This affects the definition of the D-brane charges due
to the dependence on BNS of their field-strengths, F (4) := dC(3) + dBNS ∧ C(1) and
∗F (4) = dC(5) +C(3) ∧ dBNS − dC(3) ∧BNS. Since there is only one euclidean NS5-brane
configuration on a 6-torus (the D = 4 case) the non-commutative part of Uα1 is one-
dimensional, so the unipotent radical forms a Heisenberg group.

Upon further compactification on T7 to D = 3 there are 7 distinct wrapped NS5-brane
world-volume instantons, one for each six-cycle. In addition, there are 8 M-theory
KKM instantons that are distinguished from each other in the M-theory description
by identifying the coordinate x# with any one of the 1-cycles, as explained earlier.
In string language, one of these is the wrapped euclidean D6-brane that has been
counted as one of the 64 components of the SO(7, 7) spinor space and contributes
to the abelian part of the unipotent radical Uα1 . The other 7 are KKM instantons
with x# identified with a circle in one of the 7 other directions. These are T-dual
to the 7 wrapped NS5-branes. The presence of the D6-brane and KKM instantons
leads to a higher degree of non-commutativity of the unipotent radical, due for ex-
ample, to the non-linear dependence of the D6-brane field strength on BNS through
∗dC(1) = dC(7)+ 1BNS∧dC(5)− 1dBNS∧C(5)− 1BNS∧BNS∧dC(3)+ 1BNS∧dBNS∧dC(5).
2 2 3 3
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This counting coincides with that expected from a group theoretic analysis of the
dimension of the abelian and non-abelian (i.e., derived subgroup) parts of the unipotent
radical summarized in the columns labeled “first node” of Table 3 on page 206.

3.5. BPS instantons in the semi-classical M-theory limit: Pα2

This is the limit in which the volume, Vd+1, of the M-theory torus T d+1 becomes
large and semi-classical eleven-dimensional supergravity is a good approximation. The
Fourier modes of interest are those associated with the maximal parabolic subgroup
Pα2 , which has Levi subgroup Lα2 = GL(1) × SL(d + 1). The constant terms in the
Fourier expansion were considered in [24] and shown to match expectations based on
perturbative eleven-dimensional supergravity.

The instanton charge space can be described as follows. The wrapped KK world-lines
do not give instantons in this limit since their action is independent of the volume, Vd+1.
Wrapped euclidean M2-branes appear in D � 8 dimensions (corresponding to symmetry
groups with rank � 3), while the wrapped euclidean M5-brane arises for D � 5 dimen-
sions (corresponding to symmetry groups with rank � 6) and the wrapped world-volume
associated with the KKM enters first in D = 3 dimensions (i.e., for symmetry group E8).
These instanton actions have the exponentially suppressed form exp(−CVa

d+1), where C

is independent of Vd+1 in the limit Vd+1 → ∞, and a = 3/(d + 1) for the wrapped
M2-brane, a = 6/(d + 1) for the wrapped M5-brane and a = 7/(d+ 1) for the wrapped
KKM .

The space spanned by the 3-form, v[ijk] that couples to M2-brane world-sheets wrap-
ping 3-cycles inside the M-theory torus T d+1 has dimension

Dd+1
M2 = (d + 1)!

3!(d− 2)! , (3.9)

which equals 1, 4, 10, 20, 35, and 56, respectively, for tori of dimensions d + 1 = 3, 4,
5, 6, 7, and 8 (corresponding to the duality groups E3, . . . , E8). Similarly, the space of
euclidean five-branes wrapping 6-cycles inside T d+1 has dimension

Dd+1
M5 = (d + 1)!

6!(d− 5)! , (3.10)

which equals 1, 7, and 28, respectively, for d+ 1 = 6, 7, and 8 (corresponding to duality
groups E6, E7, and E8). Finally, a finite action KKM instanton only exists if there are 8
circular dimensions, so it only contributes for the E8 case. As argued earlier, there are 8
distinct objects of this kind since x# is distinguished from the other circular coordinates.

Again these dimensions can be compared with those listed in Section 6.1 and summa-
rized in Table 3 on page 206 under the heading “second node”. The wrapped euclidean
M2-branes contribute the dimensions of abelian part of the unipotent radical for this
maximal parabolic subgroup. In fact the numbers in the left-hand column of the second
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node heading are equal to Dd+1
M2 for all 0 � d � 7. The M5-brane charge space of dimen-

sion Dd+1
M5 , equals the dimension of the non-commutative part (i.e., derived subgroup) of

the unipotent radical for E6 and E7, while for E8 there is also a contribution of 8 from
the KKM instantons. In this case the non-abelian component of the unipotent radical
arises from the KKM instanton dependence on the 3-form A(3) configurations (analo-
gous to the way the BNS configurations induced the non-commutativity in the previous
section).

Although we have given a list of dimensions of the space spanned by the orbits, in
this case we have not analyzed the BPS conditions to discover how the complete space
decomposes into orbits with fractional supersymmetry. However, the latter part of this
paper analyzes the complete orbit structure for the subgroup Pα2 and the list of orbits is
given in Table 8 on page 243. From this we can identify, for each value of d, the minimal
(1
2 -BPS) and NTM (1

4 -BPS) orbits, as well as many others that arise when d � 5 (i.e.
for E6, E7 and E8).

4. Explicit examples of Fourier modes for rank ��� 5

4.1. Fourier expansions for higher rank groups

Suppose that φ ∈ C∞(Γ\G) is an automorphic function, and that A ⊂ G is an abelian
subgroup which is isomorphic to Rm for some m > 0. If Γ ∩ A corresponds to a lattice
in Rm under this identification, then φ’s restriction to A, φ(a), has a Fourier expansion.
The same is true for any right translate φ(ag), for g fixed. A prime example of this is A

equal to the unipotent radical U of a maximal parabolic subgroup P = LU of G, when
U is abelian and Γ is arithmetically defined:

φ(ug) =
∑
χ

χ(u)φχ(g), φχ(g) =
∫

Γ∩U\U

φ(ug)χ(u)−1 du, (4.1)

where the sum is taken over all characters χ of U which are trivial on Γ ∩U . In particular
the special case u = e,

φ(g) =
∑
χ

φχ(g), (4.2)

reconstructs φ as a sum of its Fourier coefficients φχ. These Fourier coefficients are in
general distinct from Whittaker functions, which are Fourier coefficients for the minimal
parabolic. When U fails to be abelian the coefficients φχ defined by (4.1) still make sense,
though φ is no longer a sum of them. Instead, it is the integral of φ over the commutator
subgroup18 [U,U ] of U which has an expansion

18 The commutator subgroup [U,U ] is the smallest normal subgroup of U which contains all elements of
the form [u1, u2], for u1, u2 ∈ U .
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∫
Γ∩[U,U ]\[U,U ]

φ(ug) du =
∑
χ

φχ(g); (4.3)

in other words, the Fourier expansion only captures a small part of φ’s restriction to U –
the part which transforms trivially under [U,U ].

A character on U can be viewed as a linear functional on its Lie algebra u via the
differential. In our case, in which U is the unipotent radical of a maximal parabolic
subgroup P = Pαj

for some simple root αj , u has a graded structure

u = u1 ⊕ u2 ⊕ · · · (4.4)

where uk is the span of root vectors for roots of the form α =
∑

ckαk, with cj = k. The
Killing form B(·, ·) exhibits the dual u∗ of u as the complexification of the Lie algebra

u− = u−1 ⊕ u−2 ⊕ · · · . (4.5)

The commutator subgroup [U,U ] has Lie algebra u2 ⊕ u3 ⊕ · · · , so the differential of a
character is sensitive only to u1. Again through the bilinear pairing of the Killing form,
its dual space u∗1 is isomorphic to the complexification u−1 ⊗C of u−1. The exponential
of any such a linear functional is a character of U , and hence u−1 ⊗ C is known as the
character variety of U .

Now let χ be a character of U which is invariant under the discrete subgroup Γ ∩ U .
The above correspondence guarantees the existence of a unique

Y ∈ u−1 ⊗ C such that χ
(
eX
)

= eiB(Y,X). (4.6)

The set of all such Y produced from characters χ of (Γ ∩ U)\U forms the charge lattice
in u−1. Decompose P = LU , where L is the Levi component. Then formula (4.1) and
the automorphy of φ under any γ ∈ Γ ∩ L imply that

φχ(γg) =
∫

Γ∩U\U

φ
(
γ−1uγg

)
χ(u)−1 du

=
∫

Γ∩U\U

φ(ug)χ
(
γuγ−1)−1

du. (4.7)

Here we have changed variables u �→ γuγ−1, which preserves the measure du because γ

lies in the arithmetic subgroup Γ ∩ L. In terms of (4.6)

χ
(
γeXγ−1) = χ

(
eγXγ−1)

= eiB(Y,γXγ−1) = eiB(γ−1Y γ,X), (4.8)

because of the invariance of the Killing form under the adjoint action; the character
in the second line of (4.7) is hence equal to the character for the Lie algebra element
γ−1Y γ ∈ u−1 ⊗ C.
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Consequently, the Fourier coefficients (4.1) are related for characters χ which lie in
the same Γ ∩ L-orbit under the adjoint action on u−1 ⊗ C. It should be remarked that
u−1 – like each space uj – is invariant under the adjoint action of L, and in fact furnishes
an irreducible representation of L (a fact which can be verified in each example using
the Weyl character formula – see the tables in [51, §5], for example, for a complete
list). The complexification LC of L likewise acts on u−1 ⊗ C according to an irreducible
representation, and carves it up into finitely many complex character variety orbits.

Similarly, the adjoint action of Γ ∩L on the set of characters of U which are trivial on
Γ ∩U refines these complex orbits into myriad further “integral” orbits. Those characters
naturally form a lattice inside of iu−1 ⊂ u−1⊗C, and this last action is that of a discrete
subgroup of L on a lattice, e.g., the action of GL(n,Z) on Zn in a particular special case.
The integral orbits are more subtle to describe because of number-theoretic reasons;
indeed, even describing Γ ∩ L for a large exceptional group is quite complicated.

Each of these complex character variety orbits (and hence each of the Γ ∩L-orbits on
the set of characters that are trivial on Γ ∩ U) is thus contained in a single (complex)
coadjoint nilpotent orbit. It therefore makes sense to categorize the complex character
variety orbits by giving their basepoints and dimensions. Some of this information was
provided in Section 3, based on the analysis of BPS states in string theory. This analysis
focused on the supersymmetric orbits and did not cover all possible orbits. A systematic
and detailed analysis of the remaining orbits for the maximal parabolic subgroups we
study will be given in Section 6.1. These have long been known for the classical groups
by the study of “classical rank theory”; the paper [51] contains a listing for all maximal
parabolic subgroups of exceptional groups. In addition, the integral orbits are also known
in some important cases: Bhargava [8, Section 4] and Krutelevich [46] treat certain cases,
with additional cases to appear in forthcoming work of Bhargava.

Note that the calculation (4.7) shows that each coefficient φχ – which is determined
by its values on L – is automorphic under any γ that lies in both Γ and StabL(χ), the
stabilizer of χ within L. In terms of the differential, these are the elements of Γ ∩ L for
which the adjoint action fixes the element Y ∈ u−1 ⊗ C from (4.6). One can therefore
use (4.7) to write the sum of φχ(g) ranging over χ in one of the integral orbits, as the
sum of left γ-translates of a fixed φχ, where γ now ranges over cosets of Γ ∩ L modulo
the stabilizer of this fixed character. This shows that not all of the Fourier coefficients
need to be computed individually; knowing them for orbit representatives of characters
is tantamount to knowing them for all characters. Furthermore, the vanishing of any
Fourier coefficient φχ as a function of L is equivalent to that of all Fourier coefficients in
its orbit.

The following subsections (together with details that are presented in Appendix H)
concern some specific, explicit examples of the Fourier modes of the coefficient functions
E(D)
(0,0) and E(D)

(1,0) for the low rank duality groups with d � 4 (i.e. D � 6). In these
cases standard, classical techniques can be used to obtain exact expressions, including
the arithmetical divisor sums that appear. These techniques have the virtue of being
relatively simple in these special low rank cases; the higher rank cases of E6, E7 and
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E8 will be discussed in the later sections, although without precise calculations – our
chief contribution is to use representation theory to show that many of them vanish.
The divisor sums could also be calculated using Hecke operators, though we do not do
so here.

In each particular case we will explicitly identify the character χ, which lies in the
lattice of characters of U that are trivial on Γ ∩U , with a tuple of integral parameters mi,
and use the notation

F (D)α
(p,q) (�;mi) :=

(
E(D)
(p,q)

)
χ
(�) and FGα

β;s (�;mi) :=
(
EG

β;s
)
χ
(�) (4.9)

to refer to the Fourier modes of E(D)
(p,q) and EG

β;s, respectively. For brevity we shall some-
times drop the dependence on � ∈ L from the notation.

The precise details of these Fourier coefficients could, in principle, be independently
checked against an explicit evaluation of instanton contributions to the graviton scat-
tering amplitude, but in practice such a detailed verification is very difficult. However,
most details of the contribution of 1

2 -BPS instantons to these coefficients in limit (i),
the decompactification limit in which rd 	 1, can be motivated directly from string
theory. This is the limit in which, for these low rank cases, the instantons are identi-
fied with wrapped world-lines of small black holes of the (D + 1)-dimensional theory.
The asymptotic behavior can be understood by studying the fluctuations around 1

2 -BPS
D-particle configurations in a manner that generalizes the arguments of [22], leading to
an expression for the modes in D = 10 − d � 9 dimensions of the form

F (D)αd+1
(0,0) (k) =

(
rd

�D+1

)nD

σ7−D

(
|k|
) e−SD(k)

SD(k) 8−D
2

(
cD + O

(
�D+1

rd

))
. (4.10)

Here cD is a positive constant and SD(k) = 2π|k|rdm 1
2

is the action for the world-line
of the D-particle wound around the circle of radius rd and m 1

2
, which is a function of

the moduli, is the mass of a “minimal” 1
2 -BPS point-like particle state in D + 1 di-

mensions – that is, a state that is related by duality to the lightest mass single-charge
D-particle. Such states can form threshold bound D-particles of mass pm 1

2
. The divisor

sum, σn(k) = knσ−n(k) =
∑

q|k q
n, sums over the winding number q of the world-lines

of such D-particles (where k = p× q) and can be identified with a matrix model parti-
tion function. The factor of SD(k)(D−8)/2 comes from integration over the bosonic and
fermionic zero modes and nD is a constant that depends on the dimension D. Because
of the high degree of supersymmetry preserved by the 1

2 -BPS configuration it turns out
that this approximation is exact in several cases. In D = 6 our results are in agreement
with [58]. We have not completed an independent quantum calculation of the 1

4 -BPS
instanton contributions, which are more subtle. We do not know a general pattern for
the exponent nD, though it is easily computable in each of the examples below.

The Fourier coefficients for different characters satisfy a number of relations between
them due to (4.7). This phenomenon is particularly striking on the symmetry groups
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with D � 7, which are products of SL(n)’s. For example, the formula in (4.31) depends
on p1 and p2 only through the combination |p2 + p1Ω|, which is actually an instance of
the principle in (4.7) (see [10] for more details). Thus these coefficient functions (aside
from a substitution in their argument) are determined by the ones having (p1, p2) =
(1, 0). In general, a theorem of Piatetski-Shapiro [57] and Shalika [65] computes the
Fourier expansion of an automorphic form on SL(n) in terms of similarly simple Fourier
coefficients. In particular, they demonstrate that the “abelian Fourier coefficients” that
appear in (4.3) determine ones absent there that come from non-abelian charges.

However, this theorem is not true for groups other than SL(n). Certain features still
persist for the “small” automorphic representations which are the focus of this paper;
see [51, Section 4] for the analogous result for minimal automorphic representations of
E6 and E7. An expression that includes contributions from non-commutative charges
(which are not addressed in this paper) is presented in [58] in the case of D = 3. See
also [3,56,59] for a discussion of non-commutative contributions in a different context.

4.2. D = 10B: SL(2,Z)

The simplest nontrivial (but very degenerate) example arises in the case of the IIB
theory with D = 10, where the discrete duality group is SL(2,Z).19 In this case the 1

2 -
and 1

4 -BPS interactions, E(10)
(0,0) and E(10)

(1,0), are given by Eisenstein series [21,29]

E(10)
(0,0) = 2ζ(3)ESL(2)

3
2

(Ω), E(10)
(1,0) = ζ(5)ESL(2)

5
2

(Ω), (4.11)

where E
SL(2)
s (Ω) is a non-holomorphic Eisenstein series and Ω := Ω1 + iΩ2 = C(0) +

i/
√
y10.

It is useful to parametrize the coset space SL(2,R)/SO(2) (i.e., the upper half plane)
associated with the continuous symmetry group, SL(2,R), by matrix representatives of
the form

e2 =
(

1 Ω1
0 1

)(√
Ω2 0
0 1√

Ω2

)
. (4.12)

This matrix lies in the maximal parabolic subgroup of upper triangular matrices in
SL(2,R); its first factor is in the unipotent radical and the second factor lies in its
standard Levi component. The SL(2) Eisenstein series can be expressed as

2ζ(2s)ESL(2)
s (Ω) :=

∑
M2∈Z2\{0}

(
m2

SL(2)
)−s =

∑
(m,n)∈Z2\{0}

Ωs
2

|nΩ + m|2s , (4.13)

where the SL(2,Z)-invariant (mass)2 is defined by

19 The type IIA theory has no instantons, which means that only the 0-dimensional trivial orbit contributes.
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m2
SL(2) := M2G2M

t
2 = |nΩ + m|2

Ω2
, (4.14)

with G2 = e2e
t
2 and M2 = (n m) ∈ Z2\{0}.

It is straightforward to determine the Fourier coefficients using the standard expansion
of such series in terms of Bessel functions,

ESL(2)
s (Ω) =

∑
n∈Z

FSL(2)
s (n)e2iπnΩ1 . (4.15)

The zero Fourier mode is

FSL(2)
s (0) = Ωs

2 + ξ(2s− 1)
ξ(2s) Ω1−s

2 , (4.16)

where ξ(s) = π−s/2Γ (s/2)ζ(s). The non-zero mode with phase e2iπnΩ1 is

FSL(2)
s (n) = 2Ω

1
2
2

ξ(2s)
σ2s−1(|n|)
|n|s− 1

2
Ks− 1

2

(
2π|n|Ω2

)
, (4.17)

where σα(n) =
∑

0<d|n dα is a divisor sum. Thus the non-zero mode with frequency n is
proportional to Ks− 1

2
, which is a modified Bessel function of the second kind.

In this degenerate case the only limit to consider is Ω2 → ∞, which is the limit of
string perturbation theory organized as a power series in Ω−2

2 corresponding to the genus
expansion of a closed Riemann surface. In this limit the expansion of the coefficient
functions is dominated by the two power behaved constant terms in the zero mode
F

SL(2)
s (0) in (4.16), while the non-zero modes have asymptotic behavior at large Ω2,

FSL(2)
s (n) = σ2s−1(|n|)

ξ(2s)|n|s e−2π|n|Ω2
(
1 + O

(
Ω−1

2
))
, (4.18)

where the asymptotic expansion of the Bessel function

Kν(x) =
√

π

2xe
−x
(
1 + O

(
x−1)), x 	 1, (4.19)

has been used.
The two power behaved terms in (4.16) have the interpretation of terms in string

perturbation theory, which is an expansion in y10, the square of the string coupling
constant. Furthermore, the Eisenstein series with s = 3/2 and with s = 5/2 have the
correct power-behaved terms to account precisely for the known behavior of the R4 and
∂4R4 terms in the low energy expansion of the four graviton amplitude in 10 dimen-
sions. In [24] it was shown that this is in agreement with string perturbation theory and
extends to the higher rank cases where the pattern of constant terms is more elaborate.
Furthermore, the exponential terms in the expansion in (4.18) correspond to the ex-
pected D-instantons that arise in the D = 10 type IIB theory. This illustrates the fact,
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common to all BPS instanton processes, that the exponential decay of a Fourier mode is
proportional to the charge n that determines the phase of the mode. The correction term
of order Ω−1

2 in (4.18) indicates perturbative corrections to the instanton contribution
given by an expansion in powers of the string coupling constant that corresponds to the
addition of boundaries in the Riemann surface.

In this case the only instantons are 1
2 -BPS D-instantons – there are no 1

4 -BPS instan-
tons in the ten-dimensional type IIB theory. However, it is known from string theory
arguments that the Eisenstein series at s = 3/2 is associated with the 1

2 -BPS R4 term
while the series at s = 5/2 is associated with the 1

4 -BPS ∂4R4 contribution (4.11). This
leaves unresolved the question as to what features of these series at special values of s
encode the fraction of supersymmetry that these terms preserve? This must be encoded
in the measure. Indeed in the s = 3/2 case it was argued in [22,23] that the measure fac-
tor σ2(|n|) arises from the 1

2 -BPS D-instanton matrix model, which was verified in [53].
Presumably, the s = 5/2 measure should arise in a similar manner.

In most of the higher rank examples that follow there is a less subtle distinction
between the 1

2 -BPS and 1
4 -BPS cases since in typical cases there are 1

4 -BPS instanton
configurations that break 3

4 of the supersymmetry. As will be shown in the following,
these generally enter into non-zero Fourier modes of the coefficient E(D)

(1,0) for 3 � D < 10
(although, as will also be seen later, only the 1

2 -BPS orbit contributes in the Pα1 parabolic
with D = 7, 8, 9). The subtleties of the measure factor are not required in order to identify
the fraction of supersymmetry preserved in such cases. However, there are no 1

8 -BPS
configurations for D > 5. Therefore, for D > 5 the distinction between the coefficient
E(D)
(0,1) and the ones which preserve more supersymmetry is again not determined by the

spectrum of instantons that contribute in the various limits under consideration. This
indicates that the 1

8 -BPS nature of E(D)
(0,1) must be encoded in the form of the measure

factor.

4.3. D = 9: SL(2,Z)

The coefficients of the R4 and ∂4R4 interactions in this case are [4,26,30]

E(9)
(0,0) = 2ζ(3)ν−

3
7

1 E
SL(2)
3
2

+ 4ζ(2)ν
4
7
1 , (4.20)

E(9)
(1,0) = ζ(5)ν−

5
7

1 E
SL(2)
5
2

+ 4ζ(2)ζ(3)
15 ν

9
7
1 E

SL(2)
3
2

+ 4ζ(2)ζ(3)
15 ν

− 12
7

1 , (4.21)

where ν1 = (�B10/rB)2 = g
7
8
A(rA/�A10)

3
2 with rB the radius of the compact dimension in

the IIB theory and rA = �2s/rB the radius in the IIA theory. The IIA string coupling,
gA, is related to that of the IIB theory by gA = gB�s/rB. Furthermore, the D = 9 theory
can be viewed as the compactification of M-theory from 11 dimensions on a 2-torus, T 2,
with volume V2 = ν

2/3
1 �211.

The limit ν1 → 0 is the limit in which the R+ parameter of the continuous symmetry,
SL(2,R) × R+, becomes infinite, which is the decompactification limit to the D = 10
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IIB theory (rB → ∞), while the limit ν1 → ∞ is the semi-classical M-theory limit in
which V2, the volume of T 2, becomes infinite. Eqs. (4.20) and (4.21) show that there
are no non-zero modes in either of these limits. Since Ω2 = g−1

A rA/�s, the perturbative
IIB limit, Ω2 → ∞, is also the D = 10 type IIA limit, rA → ∞. This is the limit in
the parabolic subgroup GL(1) × U of the SL(2) factor (given in (4.12)) in which the
parameter in the GL(1) Levi factor in the SL(2) becomes infinite. The non-zero Fourier
modes of the expression for E(9)

(0,0) in (4.20) that contribute in this limit are obtained by
using the mode expansion of E3/2 given in the previous section in (4.20), giving

F (9)
(0,0)(k) :=

∫
[0,1]

dΩ1 E(9)
(0,0)e

−2iπkΩ1

= 8πΩ
1
2
2 ν

− 3
7

1
σ2(|k|)
|k| K1(2π|k|Ω2). (4.22)

The limit Ω2 → ∞ in the Bessel function in the second line gives the D-instanton contri-
bution to the coefficient of the R4 interaction in the type IIB perturbative string theory
limit, which has the form, after reinstating the power of �9 in the effective action, (2.5),

1
�9
F (9)

(0,0)(k) = rB
�2s

√
8πσ−2

(
|k|
) e−2π|k|Ω2

(2π|k|Ω2)−
1
2

(
1 + O

(
Ω−1

2
))
, (4.23)

where the factor of rB/�s shows that this term survives the limit rB → ∞. Here we have
used the relations ν1 = (�10/rB)2, �79 = �810/rB, and �10 = �sΩ

−1/4
2 .

On the other hand, taking the large radius rA/�10 → ∞ limit in the IIA case gives

1
�9
F (9)

(0,0)(k) = 1
rA

√
8πσ−2

(
|k|
) e

−2π|k|rAm 1
2

(2π|k|rAm 1
2
)− 1

2

(
1 + O(�10/rA)

)
, (4.24)

where m 1
2

= 1/(�sgA). Here we have used the relations Ω2 = rA

sgA

, ν1 = g
1/2
A r

3/2
A �

−3/2
s ,

and �9 = g
2/7
A �

8/7
s r

−1/7
A . This expression reproduces the asymptotic behavior for the

1
2 -BPS contribution given in (4.10) with D = 9, nD = −8/7 and S9(k) = 2π|k|rAm 1

2
.

The exponent has the interpretation of the action of the euclidean world-line of a type
IIA D0-brane of charge p wrapped q times around the circle of radius r1 = rA, where
k = p× q (and the sum over q is in σ−2(|k|)).

A similar expansion of the two Eisenstein series in (4.21) gives the mode expansion of
the coefficient E(9)

(1,0) as the sum of two terms. The occurrence of both the s = 3/2 and
s = 5/2 series demonstrates that the ∂4R4 interaction contains a piece that is 1

4 -BPS as
well as a piece that is 1

2 -BPS. Repeating the above analysis for the 1
4 -BPS part of E(9)

(1,0)
(the E5/2 term in (4.21)) and making use of (4.18) with s = 5/2 gives (after multiplying
by �39 to reproduce the ∂4R4 interaction in (2.5))
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�39F
(9)
(1,0)(k)

∣∣
1
4 -BPS ∼

√
2π
3

(
�A10
)3
g
− 1

2
A

(
�A10
rA

)3

σ−4
(
|k|
) e−S9(k)

(S9(k))− 3
2
. (4.25)

As with the D = 10 examples, the distinction between the s = 3/2 and s = 5/2 Eisenstein
series is not seen in the instanton orbits (both series contain the same 1-dimensional
orbit) but must be encoded in the different measure factors, such as the divisor sum,
which takes the form σ−4(|k|) when s = 5/2. In contrast to the 1

2 -BPS case we have
not derived (4.25), or the analogous expressions for D < 9 obtained below, by explicitly
evaluating the 1

4 -BPS instanton contributions.

4.4. D = 8: SL(3,Z) × SL(2,Z)

The coefficient function E(8)
(0,0) is given in terms of Eisenstein series by [4,26,30,44]

E(8)
(0,0) := lim

ε→0

(
2ζ(3 + 2ε)ESL(3)

α1; 32+ε
+ 4ζ(2 − 2ε)ESL(2)

1−ε (U)
)
. (4.26)

It was shown in [26] that the poles in ε of the individual series in parentheses cancel and
the expression is analytic at ε = 0. The coefficient function E(8)

(1,0) is given by

E(8)
(1,0) = ζ(5)ESL(3)

α1; 52
+ 4ζ(4)

3 E
SL(3)
α1;− 1

2
E

SL(2)
2 (U). (4.27)

We have suppressed the dependence of the SL(3) series on the 5 parameters of the
SL(3)/SO(3) coset, but have indicated that the SL(2) series depends on U , the complex
structure of the 2-torus, T2 (see Appendix H.1 for details).

(i) The non-maximal parabolic20 Pα3 = GL(1) × SL(2) × R+ × Uα3 .
This is relevant for the decompactification limit r2/�9 → ∞. The Fourier modes, which

are integrals with respect to the Uα3 factor (H.12), get contributions from the sum of
the modes of the SL(3) and SL(2) Eisenstein series. The modes of E(8)

(0,0) are defined by

F (8)α3
(0,0)

(
kp1, kp2, k

′) :=
∫

[0,1]3

dC(2) dBNS dU1 e
−2iπk(p1C

(2)+p2BNS)−2iπk′U1E(8)
(0,0), (4.28)

where gcd(p1, p2) = 1 and C(2), BNS and U1 are the components of the unipotent radical
in (H.12). Using the definition in (4.26) the Fourier modes of E(8)

(0,0) are given by the sum
of the Fourier modes of the SL(3) and SL(2) series defined in (H.13) and (H.15):

F (8)α3
(0,0)

(
kp1, kp2, k

′) = 2ζ(3)FSL(3)β2
β1; 32

(kp1, kp2) + 4ζ(2)FSL(2)
1

(
k′
)
. (4.29)

We have used the notation β1 and β2 on the right-hand side to indicate the nodes of the
SL(3) Dynkin diagram that correspond to α1 and α3 (see Fig. 3).

20 In this somewhat degenerate case, the decompactification limit is associated with a non-maximal
parabolic so that its Levi matches the D = 9 duality group.
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Fig. 3. Correspondence between the labeling of the SL(3) nodes in the E3 Dynkin diagram according to
Fig. 1 (in terms of α1 and α3) and the conventional labeling of the SL(3) Dynkin diagram (in terms of β1
and β2).

Note that both contributions are nonsingular at ε = 0 despite the simple poles
in (4.26). The reason that these Fourier coefficients do not have poles is that the residues
of the series in (4.26) are constant. Using the expression (H.16) for the SL(2) Fourier
modes and setting U2 = r2/r1 = r2/rB we obtain21

4ζ(2)FSL(2)
1

(
k′
)

= 4πσ−1
(∣∣k′∣∣)e−2π|k′|r2× 1

r1 . (4.30)

The exponent can be identified with minus the action of the world-line of a 1
2 -BPS

charge p KK state wrapped q times around a circle of radius r2, with p × q = k′. The
divisor sum σ−1(|k′|) weights the different values of p with a factor of 1/p. The expression
(4.30) agrees with the general asymptotic formula (4.10), but it is notable that in this
case there are no perturbative corrections.

The SL(3) part is obtained from (H.14) with s = 3/2,

2ζ(3)FSL(3)β2
β1; 32

(kp1, kp2) = 4πσ−1
(
|k|
)
e
−2π|k| |p2+p1Ω|√

Ω2
1√
ν2 , (4.31)

where gcd(p1, p2) = 1. This expression reproduces the asymptotic behavior (which is
again exact) for the 1

2 -BPS contribution given in (4.10) with D = 8. The exponent can
be written as

−2π|k| |p2 + p1Ω|√
Ω2

1√
ν2

= −2π|k|r2mp1,p2 , (4.32)

where the k = 1 contribution is minus the action for the world-line of a state of mass

mp1,p2�s = |p2 + p1Ω|r1
�s
, (4.33)

wound around the circle of radius r2. This is the mass of a (non-threshold) bound state
of p2 fundamental strings and p1 D-strings wound around the dimension of radius r1.
In the limit r2/�9 → ∞ the Fourier coefficients with different p1’s and p2’s fill out
an orbit under the action of the discrete subgroup SL(2,Z) of the Levi factor, which
is the nine-dimensional duality group. This is made manifest by expressing mp1,p2 in
nine-dimensional Planck units,

21 Here, and in the following we will use the type IIB description, in which r1 = rB .
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mp1,p2�9 = |p2 + p1Ω|√
Ω2

ν
−3/7
1 , (4.34)

where SL(2,Z) acts with the usual linear fractional transformation on Ω and leaves ν1

invariant. When k > 1 (4.32) is minus the world-line action of a threshold bound state
of mass p ×mp1,p2 wound q times around the circle of radius r2, where k = p × q and
the divisor sum weights the contributions with a factor of 1/|q|.

Thus, in the decompactification limit these instantons correspond to the expected
contributions from the point-like 1

2 -BPS black hole states in nine dimensions listed in
Appendix C.2. The Kaluza–Klein 1

2 -BPS states in (4.30) are in the singlet v and the
(p, q)-string bound state in (4.31) in the doublet va of SL(2). These contributions come
from separate configurations (v = 0, va �= 0) and (v �= 0, va = 0) so that the condition
vva = 0 is satisfied.

The Fourier modes of the coefficient E(8)
(1,0) in the Pα3 parabolic are defined as

F (8)α3
(1,0)

(
kp1, kp2, k

′) :=
∫

[0,1]3

dC(2) dBNS dU1 e
−2iπk(p1C

(2)+p2BNS)−2iπk′U1E(8)
(1,0), (4.35)

where we have chosen to extract the greatest common divisor k of the coefficients of
C(2) and BNS so that gcd(p1, p2) = 1. Note that, unlike in the case of E(8)

(0,0), the integral
does not split into the sum of two terms even though Uα3 is block diagonal since E(8)

(1,0)

contains the product of two Eisenstein series. Substituting the expression (4.27) for E(8)
(1,0)

(which includes a term quadratic in Eisenstein series), it is straightforward to perform
the Fourier integration with the result

F (8)α3
(1,0)

(
kp1, kp2, k

′) = ζ(5)FSL(3)β2
β1; 52

(kp1, kp2)

+ 2π4

135F
SL(3)β2
β1;− 1

2
(kp1, kp2)FSL(2)

2
(
k′
)
. (4.36)

The k = 0 or k′ = 0 terms are determined by 1
2 -BPS instantons arising from the winding

of the nine-dimensional 1
2 -BPS states, listed in Appendix C.2, around the decompacti-

fying circle.
The 1

4 -BPS part is contained in the k �= 0, k′ �= 0 modes of the second contribution
in (4.36). For the physical interpretation we extract the greatest common divisor � =
gcd(k, k′), and set k = �q1, k

′ = �q2 with gcd(q1, q2) = 1. Applying (H.14) with s = −1/2
and (H.16) with s = 2, it can be written as

2
π

Ω
4
3
2

T
1
3
2

σ−3
(
|�q1|

)
σ−3

(
|�q2|

)1 + 2π|�q1||p2 + p1Ω|T2

|p2 + p1Ω|3
1 + 2π|�q2|U2

U2

× exp
(
−2π|�q1||p2 + p1Ω|T2 − 2π|�q2|U2

)
. (4.37)
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Taking the limit r2/�9 → ∞ and recalling that T2 = ν
− 3

7
1 Ω

− 1
2

2 r2/�9 and U2 = r2/r1 =
ν

4
7
1 r2/�9, the leading behavior of this expression is

8π �
4
9
�48
σ3
(
|�q1|

)
σ3
(
|�q2|

) exp(−2π�r2m 1
4
)

(|�q1| |p2+p1Ω|√
Ω2

ν
− 3

7
1 )2 × (|�q2|ν

4
7
1 )2

, (4.38)

where r2/�
7
9 = 1/�68 and the instanton action is described by the world-lines of the

constituents (in this case bound states of F and D strings and the KK charge) of 1
4 -BPS

bound states wound � times around the circle S1 of radius r2. The 1
4 -BPS mass is given

by

m 1
4
�9 = |q1|

|p2 + p1Ω|√
Ω2

ν
− 3

7
1 + |q2|ν

4
7
1 , (4.39)

or in string units

m 1
4
�s = |q1||p2 + p1Ω|r1

�s
+ |q2|

�s
r1

. (4.40)

Much as before, the divisor sums in (4.38) encode the combinations of winding numbers
and charges carried by these world-lines (although the combinatorics are here more
complicated than in the 1

2 -BPS case and deserve further study).
(ii) The maximal parabolic22 Pα1 = GL(1) × Spin(2, 2) × Uα1 .
This is relevant to the string perturbation theory limit, in which the string coupling

constant, y8, gets small. The unipotent factor Uα1 in (H.18) is parametrized by (C(2), Ω1).
In this case the non-zero Fourier modes of E(8)

(0,0) are obtained from (H.20) with s = 3/2,

F (8)α1
(0,0) (kp1, kp2) :=

∫
[0,1]2

dΩ1 dC
(2) e−2iπk(p1C

(2)+p2Ω1)E(8)
(0,0)

= 8π
√
y8

σ2(|k|)
|k|

√
T2

|p2 + p1T |
K1

(
2π|k| |p2 + p1T |√

T2y8

)
, (4.41)

where again gcd(p1, p2) = 1. Note that the second term in (4.26) does not contribute
since it is constant in (C(2), Ω1). Its asymptotic form for y8 → 0 is given by

lim
y8→0

F (8)α1
(0,0) (kp1, kp2) ∼

4π
y8

σ2
(
|k|
)( √

T2y8

|k||p2 + p1T |

) 3
2

e
−2π|k| |p2+p1T |√

T2y8 , (4.42)

where gcd(p1, p2) = 1 and the asymptotic form of the Bessel function (4.19) has been used
in the last line in order to extract the leading instanton contribution in the perturbative
limit, y8 → 0 with T2 fixed [26] (recall y8 = (Ω2

2T2)−1 is the square of the string coupling).

22 Note that Spin(2, 2) is isomorphic to SL(2) × SL(2).
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In this limit these non-perturbative effects behave as e−C/
√
y8 , as expected of D-brane

instantons. The p1 = 0 and p2 �= 0 terms are D-instanton contributions and those with
p1 �= 0 are the wrapped D-string contributions of charge (p1, p2) that are related by the
SL(2,Z) action on the T modulus, which is part of the perturbative T-duality symmetry.

The Fourier modes of E(8)
(1,0) are given by

F (8)α1
(1,0) :=

∫
[0,1]2

dΩ1 dC
(2) e−2iπk(p1C

(2)+p2Ω1)E(8)
(1,0)

= 16ζ(2)

y
2
3
8

σ4(|k|)
|k|2

T2

|p2 + p1T |2
K2

(
2π|k| |p2 + p1T |√

T2y8

)

+ 16ζ(4)ESL(2)
2 (U)

πy
1
6
8

σ2(|k|)
|k|

|p2 + p1T |√
T2

K1

(
2π|k| |p2 + p1T |√

T2y8

)
, (4.43)

with gcd(p1, p2) = 1. In the limit of small string coupling, y8 → 0 and recalling that
�8 = �sy

1/6
8 , the first line on the right-hand side behaves as

�4s
�48

8ζ(2)
y8

σ4
(
|k|
)( √

y8T2

|k||p2 + p1T |

) 5
2

exp
(
−2π|k| |p2 + p1T |√

T2y8

)
, (4.44)

which is characteristic of the 1
2 -BPS configuration due to a euclidean world-sheet of a

(p1, p2) D-string wrapped k times around T2.
The second line behaves in the small string coupling limit y8 → 0 as

�4s
�48

8ζ(4)
π

y8E
SL(2)
2 (U)σ−2

(
|k|
)( √

y8T2

|k||p2 + p1T |

)− 1
2

exp
(
−2π|k| |p2 + p1T |√

T2y8

)
, (4.45)

which is suppressed relative to (4.44) by y2
8 (which is itself four powers of the string

coupling). As in the D = 9 and D = 10 cases, the distinction between the 1
2 -BPS and

1
4 -BPS cases is not seen in the argument of the Bessel function, which determines the
exponential suppression at small y8. In other words, there are no 1

4 -BPS instantons so the
second term on the right-hand side of (4.43) has the same exponential suppression in the
y8 → 0 limit as the first term. The distinction between the 1

2 - and 1
4 -BPS contributions

in (4.43) again lies in the properties of the measure rather than in the spectrum of
instantons.

(iii) The maximal parabolic Pα2 = GL(1) × SL(3) × Uα2 .
This corresponds to the limit in which the volume of the M-theory 3-torus, V3, gets

large. The unipotent factor Uα2 in (H.21) depends only on U1 and the Fourier modes in
this case only involve the modes of the SL(2,Z) Eisenstein series,

F (8)α2
(0,0) :=

∫
dU1 e

−2iπkU1E(8)
(0,0) = 4πσ−1

(
|k|
)
e−2π|k|U2 . (4.46)
[0,1]
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Fig. 4. Different labelings of the A4 Dynkin diagram.

Recalling [26] that U2 = V3/�
3
P is the volume of the M-theory 3-torus, we see that

these coefficients are exponentially suppressed in V3, and correspond to the expected
contributions from euclidean M2-branes wrapped k times on the 3-torus.

Furthermore, the divisor sum reproduces the one derived from a direct partition func-
tion calculation in [67]. The form of this measure factor can also be seen from a simple
duality argument using the fact that the wrapped M2-brane instanton is related to the
Kaluza–Klein world-line instanton by the SL(2,Z) part of the duality group. This dual-
ity interchanges T and U and, hence, the factor exp(−2π|k|/

√
Ω2ν2) = exp(−2π|k|T2)

in (4.31) for p1 = 0 and p2 = 1 is related to exp(−2π|k|U2) in (4.46). This explains the
fact that the measure factor, σ−1(|k|), is the same in both these equations.

4.5. D = 7: SL(5,Z)

Convention on SL(d) labeling: In the following we will consider the maximal parabolic
series ESL(d)

βi;s associated with a node β1, . . . , βd−1 of the SL(d) Dynkin diagram using its
usual labeling. For example, in the particular case of SL(5) this labeling is shown on the
right-hand side of Fig. 4, whereas the previous labeling (coming from the E4 labeling in
Fig. 1) is shown on the left-hand side. The correspondence between the two labelings is
given by β1 = α1, β4 = α2, β2 = α3, β3 = α4.

In the case D = 7 the coefficient functions are given in terms of Eisenstein series
by23 [26]

E(7)
(0,0) = 2ζ(3)ESL(5)

β1; 32
, (4.47)

E(7)
(1,0) = lim

ε→0

(
ζ(5 + 2ε)ESL(5)

β1; 52+ε
+ 6ζ(4 − 2ε)ζ(5 − 2ε)

π3 E
SL(5)
β3; 52−ε

)
. (4.48)

It was shown in [26] that the poles of the individual series in the parenthesis cancel in
the limit ε → 0 and the resulting expression is analytic at ε = 0. The detailed analysis
of properties of the Fourier modes of Epstein series E

SL(5)
β1;s in the three limits of interest

is determined in Appendix H.2.1. The modes of the non-Epstein series, ESL(5)
β3; 52+ε

in these

three limits are obtained in Appendix H.2.2, making use of the representation of ESL(d)
β3;s

as a Mellin transform of the automorphic lift of a certain lattice sum (see Proposition 4.1
below).

23 In this work this non-Epstein series is related to the one in [26] by ESL(5)
β3;s = 2ζ(2s − 1)ζ(2s)ESL(5)

[0010];s.
The SL(d) nodes are labeled according to the natural order as indicated in Fig. 4.
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(i) The maximal parabolic Pα4 = GL(1) × SL(2) × SL(3) × Uα4 .
This is the decompactification limit in which r3/�8 = r2 → ∞ (where r is the GL(1)

parameter that parametrizes the approach to the cusp). Recalling the relation between
the volume of the 3-torus ν3 and the volume of the 2-torus ν2 [26], the limit under
consideration is one in which ν3 = ν

5
6
2 (r3/�8)−2 → 0. The unipotent radical is abelian

and has the form

Uα4 =
{(

I2 Q4
0 I3

)}
, (4.49)

where In is the rank n identity matrix and Q4 is the 2 × 3 matrix defined in (H.28). In
the discussion of this limit in this subsection we will write the Levi component as(

r6/5e2 0
0 r−4/5e3

)
, (4.50)

where e2 ∈ SL(2,R) and e3 ∈ SL(3,R).
Specializing the Fourier modes of EE4

α1;s = E
SL(5)
β1;s that are given in (H.31) to the

case s = 3/2 and using the relation between the GL(1) parameter and the radius of
compactification, r2 = r3/�8, gives the Fourier modes of E(7)

(0,0) in (4.47)

F (7)α4
(0,0) (k, Ñ4) :=

∫
[0,1]6

d6Q4 e
−2iπk tr(Ñ4·Q4)E(7)

(0,0)

=
(
r3
�8

) 6
5

8πσ0
(
|k|
)
K0
(
2π|k|r3m 1

2

)
, (4.51)

where gcd(Ñ4) = 1 and the support of the non-vanishing Fourier coefficients is equal to
the rank 1 integer-valued matrices kÑ4 in M3,2(Z); these have the form kntm with n =
(ni) ∈ Z3 and m = (ma) ∈ Z2 row vectors satisfying gcd(n1, n2, n3) = gcd(m1,m2) = 1.
This factorization is unique up to signs of the three factors. The matrix Ñ4 = ntm

satisfies the relation
2∑

a,b=1

εab(Ñ4)ia(Ñ4)jb = 0, ∀i, j = 1, 2, 3, (4.52)

with ε12 = −ε21 = 1 and ε11 = ε22 = 0, which is precisely 1
2 -BPS condition discussed in

Appendix C.3. The argument of the Bessel function in (4.51) is proportional to the mass
of 1

2 -BPS states, where

m 1
2
�8 := ‖me2‖ ×

∥∥n(et3)−1∥∥. (4.53)

This expression does not depend on the factorization N4 = kÑ4 = kntm, and trans-
forms covariantly under the SL(2) and SL(3) factors of the Levi component. This is
the mass of a 1

2 -BPS bound state of fundamental strings and D-strings with Kaluza–
Klein momentum. This expression is covariant under the action of the symmetry group
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SL(2) × SL(3) of the Levi factor. In the limit r3/�8 → ∞ the expression for the Fourier
modes F (7)α4

(0,0) takes the form

F (7)α4
(0,0) (k, Ñ4) =

(
r3
�8

) 6
5

4πσ0
(
|k|
)e−2π|k|r3m 1

2√
|k|r3m 1

2

(
1 + O(�8/r3)

)
, (4.54)

where �8/r3 is the inverse square of the GL(1) parameter (see (H.31)). The exponent
is proportional to r3m1/2 with r3 → ∞ and m1/2 fixed, which is in accord with the
behavior described in (4.10) with D = 7.

The Fourier modes of E(7)
(1,0) in (4.48) in this parabolic subgroup are defined as

F (7)α4
(1,0) (k, Ñ4) :=

∫
[0,1]6

d6Q4 e
−2iπk tr(Ñ4·Q4)E(7)

(1,0), (4.55)

with gcd(Ñ4) = 1. An expression for these Fourier modes is obtained by adding (H.31)
for the Epstein series E

SL(5)
β1;s to the modes of the non-Epstein series E

SL(5)
β3;s with the

correct proportionality constants and setting s = 5/2. Since each has a constant residue
at s = 5/2 we can directly use the formulas for the non-zero Fourier modes derived in
Appendix H.

The Fourier modes of ESL(5)
β3;s are computed via Appendix H.2.2 using the following

proposition, which represents this series as the Mellin transform of the lattice sum

G(τ,X) :=
∑

[m
n

]
∈M(2)

2,d(Z)

e−πτ−1
2 (m+nτ)X(m+nτ̄)t . (4.56)

Here as in the usual physics notation τ = τ1 + iτ2 ∈ H and X = G + B, with G a
positive definite symmetric d × d matrix and B an antisymmetric d × d matrix; M(i)

2,d
represents 2 × d matrices of rank i. This contribution is the rank 2 part of the lattice
sum Γ(d,d) for even self-dual Lorentzian lattices. The properties of this sum are studied
in Appendix E.2, and the proof of the proposition given at the end of Appendix E.3.

Proposition 4.1. For Re s large (and consequently for all s ∈ C by meromorphic contin-
uation)

∞∫
0

I(0, uG)u2s−1 du = 1
2ξ(2s)ξ(2s− 1)ESL(d)

β2;s (e)

= 1
2ξ(d− 2s)ξ(d− 2s− 1)ESL(d)

βd−2; d2−s
(e), (4.57)

where the function I(s,X) is defined as

I(s,X) :=
∫

ESL(2)
s (τ)G(τ,X) d

2τ

τ2
2
. (4.58)
SL(2,Z)\H
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The equality of the two formulas on the right-hand side of (4.57) represents a well-
known functional equation of Eisenstein series. There is an additional functional equation
between these two Eisenstein series coming from the diagram automorphism:

E
SL(d)
β2;s (e) = E

SL(d)
βd−2;s

(
wd

(
et
)−1

wd

)
, (4.59)

where wd is formed from the d× d identity matrix by reversing its columns. Unlike the
functional equation in (4.57), the functional equation (4.59) alters the group variable
e ∈ SL(d,R), and consequently relates Fourier coefficients of these series in different
parabolics.

The formulas for Fourier coefficients of ESL(5)
β2;s in Appendix H.2.2 can be adapted to

E
SL(5)
β3;s using either functional equation, resulting in different (yet of course equivalent)

formulas. Using (4.59) and (4.50) gives the identity

F
SL(5)β3
β3;s

(
r6/5e2, r

−4/5e3;N4
)

= F
SL(5)β2
β2;s

(
r4/5ẽ3, r

−6/5ẽ2;−w2N
t
4w3

)
, (4.60)

where N4 ∈ M3,2(Z). Here we have used the “contragredient” notation ẽ to represent
wd(et)−1wd (see (F.4)), and the relation

ẽ =
(
I3 −w3Q

tw2
I2

)(
r4/5ẽ3

r−6/5ẽ2

)
(4.61)

for e =
(

I2 Q
I3

)(
r6/5e2

r−4/5e3

)
.

Applying (H.79) we arrive at the formula

F
SL(5)β3
β3;s

(
r6/5e2, r

−4/5e3;N4
)

= 8r4+4s/5

ξ(2s)ξ(2s− 1)

∫
R

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

∑
m̂,n̂∈Z2

m̂p−n̂q=−w2N
t
4w3

(
‖(p + qτ1)ẽ3‖

‖ẽ−1
2 m̂‖

)1/2−s

×
(

‖qẽ3‖
‖ẽ−1

2 (n̂ + m̂τ1)‖

)3/2−s

Ks−1/2
(
2πr2∥∥(p + qτ1)ẽ3

∥∥∥∥ẽ−1
2 m̂

∥∥)
×Ks−3/2

(
2πr2‖qẽ3‖

∥∥ẽ−1
2 (n̂ + m̂τ1)

∥∥) dτ1
+

2Γ (s− 1
2 )

ξ(2s)ξ(2s− 1)r
1+14s/5

∑
p�=0
n �=0
m̂⊥n

m̂p=−w2N
t
4w3

(
‖ẽ−1

2 m̂‖
π‖nẽ2‖2‖pẽ3‖

)s−1/2

×Ks−1/2
(
2πr2∥∥ẽ−1

2 m̂
∥∥‖pẽ3‖

)
(4.62)

(here m̂ ∈ Z2 is thought of as a column vector and p ∈ Z3 as a row vector).
Returning to (4.48), we factor N4 = kÑ4, where k = gcd(N4), and furthermore

factor Ñ t
4 as Ñ t

4 = m̂′p′, where gcd(m̂′) = gcd(p′) = 1. This factorization is unique
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up to multiplication by ±1. Fixing such a factorization, the solutions to the equation
m̂p = −kÑ t

4 have the form m̂ = ±dm̂′ and p = ∓k
dp

′ for positive divisors d of k. We
now group the coefficient of the ∂4R4 interaction as the sum of two contributions

F (7)α4
(1,0) (k, Ñ4) = F (7)α4

(1,0)I(k, Ñ4) + F (7)α4
(1,0)II (k, Ñ4), (4.63)

where F (7)α4
(1,0)I(k, Ñ4) comes from applying (H.31) to the first term in (4.48), and from

the last line of (4.62); it is supported on rank one integer valued matrices Ñ4 (i.e., it
contains the 1

2 -BPS configurations). The second contribution F (7)α4
(1,0)II (k, Ñ4) comes from

the first term of (4.62) and contains the 1
4 -BPS contributions. Using (4.53) (with the

current notation where Ñ t
4 = m̂′p′) explicit formulas for these are given as

F (7)α4
(1,0)I(k, Ñ4)

= 8π2r3
σ2(|k|)
3|k|

m 1
2

‖m′e2‖2K1
(
2π|k|r3m 1

2

)
+ 32

π

σ4(|k|)
k2

(r3/�8)2(r3m 1
2
)2

‖p′(et3)−1‖4 K2
(
2π|k|r3m 1

2

) ∑
n �=0

nÑt
4=0

∥∥n(et2)−1∥∥−4
. (4.64)

The remaining contribution to (4.63) is given by the formula

F (7)α4
(1,0)II (k, Ñ4) = 64π4r6

∫
R

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)
m̂,n̂∈Z2

m̂p−n̂q=−kw2Ñ
t
4w3

(
‖ẽ−1

2 m̂‖
‖(p + qτ1)ẽ3‖

)2

× ‖ẽ−1
2 (n̂ + m̂τ1)‖

‖qẽ3‖
K2
(
2πr2∥∥(p + qτ1)ẽ3

∥∥∥∥ẽ−1
2 m̂

∥∥)
×K1

(
2πr2‖qẽ3‖

∥∥ẽ−1
2 (n̂ + m̂τ1)

∥∥) dτ1. (4.65)

We have not succeeded in simplifying the τ1 integral in this expression and therefore the
interpretation of the asymptotic behavior as r3/�8 → ∞ remains obscure.

(ii) The maximal parabolic Pα1 = GL(1) × SL(4) × Uα1 .
The instanton contributions to E(7)

(0,0) in the perturbative string limit associated with
Lα1 = GL(1) × SL(4) are given by (H.34) upon setting s = 3/2. The relation between
the GL(1) parameter and the string coupling constant in 7 dimensions is r−2 = y

1
2
7

and the relation between the 7 dimension Planck length and the string length is �7 =
�sy

1/5
7 (cf. (2.10)). In this case the unipotent radical is abelian and has the form

Uα1 =
(
I4 Q1
0 1

)
, (4.66)

where Q1 is an SL(4) spinor defined in (H.32).
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This leads to the expression for the Fourier modes

F (7)α1
(0,0) (k, Ñ1) :=

∫
[0,1]4

d4Q1 e
−2πikÑ1Q1E(7)

(0,0)

= 8π

y
7
10
7

σ2(|k|)
|k|

K1(2π|k|‖Ñ1e4‖√
y7

)

‖Ñ1e4‖
, (4.67)

where Ñ1 �= 0 is a row vector in Z4 such that gcd(Ñ1) = 1. In the limit y7 → 0 the
right-hand side of (4.67) has the exponential suppression characteristic of an instanton
contribution and contributes

�7F (7)α1
(0,0) (k, Ñ1) ∼ �s

4π
y7

σ2
(
|k|
)( √

y7

|k|‖Ñ1e4‖

) 3
2

exp
(
−2π|k| ‖Ñ1e4‖√

y7

)
(4.68)

to the effective R4 action with D = 7 in (2.5).
Terms with Ñ1 = [1 0 0 0] are D-instanton contributions. Terms with Ñ1 �= [1 0 0 0]

are 1
2 -BPS contributions due to wrapped euclidean bound states of fundamental and

D-strings. The rank 4 integer vector kÑ1 is unrestricted, other than being non-zero.
The Fourier modes of E(7)

(1,0) can be computed in terms of the individual Eisenstein
series it is expressed in (4.48). The modes of ESL(5)

β1;5/2 are given in (H.34), while the modes
of ESL(5)

β3;5/2 can be determined from those of ESL(5)
β2;5/2 in (H.111) using the contragredient

mechanism described in (4.60)–(4.61). This results in the expression

F (7)α1
(1,0) (k, Ñ1) :=

∫
[0,1]4

d4Q1 e
−2πikÑt

1·Q1E(7)
(1,0)

= 8π2

3y7

σ4(|k|)
|k|2

1
‖Ñ1e4‖2

K2

(
2π|k|‖Ñ1e4‖√

y7

)

+ 16
π
√
y7

×
∑
p>0
n �=0

pm̂=−kw4Ñ
t
1

n⊥w4Ñ
t
1

‖ẽ−1
4 m̂‖

p‖nẽ4‖4K1

(
2π|k|‖Ñ1e4‖√

y7

)
, (4.69)

where again Ñ1 ∈ Z4\{0} such that gcd(Ñ1) = 1. Since all factorizations pm̂ = −kw4Ñ
t
1

with p > 0 have the form m̂ = −k
pw4Ñ

t
1 for some divisor p of k, the second term on the

right-hand side can be rewritten as

16
π
√
y7

‖Ñ1e4‖|k|σ−2
(
|k|
)
K1

(
2π|k|‖Ñ1e4‖√

y7

) ∑
n �=0

˜ t

‖nẽ4‖−4. (4.70)
n⊥w4N1
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The two contributions to the Fourier modes have the same support (i.e., in both cases
the charges are labeled by the matrix Ñ1) because there are no 1

4 -BPS instantons in the
expansion at node α1 (see Section 3.4.1). The different BPS nature of each contribution
must be encoded in the factor multiplying the Bessel functions.

(iii) The maximal parabolic Pα2 = GL(1) × SL(4) × Uα2 .
Although we do not work out the details here, explicit expressions for F (7)α2

(0,0) and
F (7)α2

(1,0) can be calculated using the expressions for the Fourier coefficients of ESL(5)
β1;s and

E
SL(5)
β3;s given in Appendix H.2.2.

4.6. D = 6: Spin(5, 5,Z)

The coefficient functions in this case are given by combinations of Eisenstein series [24],

E(6)
(0,0) = 2ζ(3)ESpin(5,5)

α1; 32
, (4.71)

and

E(6)
(1,0) = lim

ε→0

(
ζ(5 + 2ε)ESpin(5,5)

α1; 52+ε
+ 8ζ(6 − 2ε)

45 E
Spin(5,5)
α5;3−ε

)
. (4.72)

It was shown in [24] that the pole of the individual series in the parentheses cancel in the
limit ε → 0 and the resulting expression is analytic at ε = 0. Whereas the previous cases
involved SL(n) Eisenstein series, which could be expressed as lattice sums that were easy
to manipulate, there is much less understanding of the Spin(5, 5) series in terms of such
explicit lattice sums. Various properties of ESpin(5,5)

α1;s were considered in [26] (where the
series was denoted (2ζ(2s))−1ESpin(5,5)

[10000];s ), based on the integral representation contained
in the following proposition. We give a rigorous proof of it through Proposition G.1 (from
which it immediately follows via Proposition 4.1).

Proposition 4.2. For Re s large (and consequently for all s ∈ C by meromorphic contin-
uation)

1
4ξ(2s)ξ(2s− 1)ESL(d)

β2;s (e)

=
∞∫
0

(
u−d/2ξ(d− 2)ESpin(d,d)

α1;d/2−1

(
u1/2e

u−1/2ẽ

)

+ u−1ξ(d− 2)ESL(d)
βd−1;d/2−1(e) + ξ(2)

)
u2s−1 du. (4.73)

The convergence of this integral is not a priori obvious and is explained in Appendix G
(cf. its concluding remark). Proposition 4.2 relates E

SL(d)
β2;s (e) to a Mellin transform of

E
Spin(d,d)
α1;s ; note that the last two terms in (4.73) are not present in [1,26,55]. This integral
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representation will be used in Appendix H.3 to obtain the Fourier modes of ESpin(d,d)
α1;s .

This is sufficient to discuss the Fourier modes of the coefficient E(6)
(0,0), but E(6)

(1,0) also
involves the series E

Spin(5,5)
α5;s . The evaluation of its Fourier modes appears to be much

more complicated and will not be performed in this paper. However, we will be able to
determine its orbit content as will be discussed later.

(i) The maximal parabolic Pα5 = GL(1) × SL(5) × Uα5 .
This parabolic subgroup has Levi factor Lα5 = GL(1) × SL(5) (recalling from Fig. 1

that in our conventions α5 is a spinor node of E5 = Spin(5, 5)). Here we will evaluate
the Fourier modes using methods similar to those used in computing the constant term
of the series E

Spin(d,d)
α1;s in [26, Appendix C]. The Fourier modes are defined as

FSpin(5,5)α5
α1;s (N2) :=

∫
[0,1]10

dQ2 e
−πi tr(N2Q2)ESpin(5,5)

α1;s (4.74)

where Q2 is a 5×5 antisymmetric matrix parametrizing the abelian unipotent radical Uα5 ,
and N2 is an antisymmetric 5 × 5 matrix with integer entries.

We find that the Fourier modes of the series E
Spin(5,5)
α1;s are localized on the rank 1

contributions where N2 satisfies the constraints

5∑
i,j,k,l=1

εijklm(N2)ij(N2)kl = 0, ∀1 � m � 5, (4.75)

where εijklm is the totally antisymmetric symbol with ε12345 = 1. This constraint is the
1
2 -BPS condition discussed in Appendix C.4. This condition can be solved as

N2 = ntm−mtn; m,n ∈ Z5 −
{
[0 0 0 0 0]

}
. (4.76)

In this case e−iπ tr(N2Q2) = e−2πimQ2n
t .

The Fourier modes of FSpin(5,5)α5
α1;s are computed in (H.114) using the method of orbits

for the SL(2) action on τ . That formula simplifies for the special value of s = 3/2 to

F (6)α5
(0,0) (N2) = 1

2ξ(3)

(
r4
�7

)5/2 ∑
[m′
n′
]
∈GL(2,Z)\M(2)

2,5(Z)′

N2=k((n′)tm′−(m′)tn′)

σ1(k)e
−2πkr4m 1

2

kr4m 1
2

, (4.77)

where

m2
1
2
�27 := det

([
m′

n′

]
G5

[
m′

n′

]t)
=
∥∥m′e5

∥∥2∥∥n′e5
∥∥2 −

(
m′e5 · n′e5

)2
, (4.78)

k = gcd(N2), G5 = e5e
t
5, and M(2)

2,5(Z)′ represents all possible bottom two rows of
matrices in SL(5,Z) (see (H.117)). The expression in (4.77) reproduces the asymptotic
(actually exact in this case) behavior for 1 -BPS contribution in (4.10) with D = 6.
2
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The Eisenstein series ESpin(5,5)
α1;s has a single pole at s = 5/2 with residue proportional

to the s = 3/2 series E
Spin(5,5)
α1;3/2 discussed above. The finite part of the E

Spin(5,5)
α1;s series

at s = 5/2 only receives 1
2 -BPS contributions (see the comment following (H.113)).

The complete coefficient E(6)
(1,0), defined in (4.72), also gets a 1

4 -BPS contribution from
E

Spin(5,5)
α5;s , which has a pole at s = 3 such that the resulting combination in (4.72) is

analytic as shown in [24].
(ii) The maximal parabolic Pα1 = GL(1) × Spin(4, 4) × Uα1 .
In this parabolic subgroup the Levi factor is Lα1 = GL(1)× Spin(4, 4). The elements

of the unipotent radical are parametrized by the 4 × 2 matrix

Q1 = (Q1I QI
2 ) , ∀1 � I � 4, (4.79)

where Q1 = (u1, u2, u3, u4) and Q2 = (u8, u7, u6, u5) using the variables parametrizing
the unipotent radical in (H.118) in Appendix H.3. In the type IIA string theory descrip-
tion this matrix is parametrized by the four euclidean D0-branes wrapped on 1-cycles
and four euclidean D2-branes wrapped on 3-cycles of T4.

The Fourier modes of ESpin(5,5)
α1;s are defined as

FSpin(5,5)α1
α1;s (N1) :=

∫
[0,1]8

d8Q1 e
−2iπ tr(N1Q1)ESpin(5,5)

α1;s . (4.80)

We will write the 2 × 4 matrix N1 as

N1 :=
[
M

N

]
, (4.81)

where the row vectors have components M = [m1 m2 m3 m4] and N = [n1 n2 n3 n4]. The
mI (I = 1, 2, 3, 4) integers associated with the windings of the one-dimensional euclidean
world-volume of a D0-brane on the four cycles of the 4-torus, and nI are associated with
the four distinct windings of the three-dimensional euclidean world-volume of a D2-brane
on a 4-torus.24 This means, for example, that on a square 4-torus with radii RI the
action of a euclidean D0-brane is

∑4
I=1 m

IRI/(�sgs) while the action of a D2-brane is
V4
∑4

I=1 nI�s/(RIgs), where V4 = R1R2R3R4/�
4
s. Because of space considerations we will

omit the analysis of the case when N = [0 0 0 0], and instead indicate how the calculations
can be performed in Appendix H.3. More generally, the various configurations of (D0, D2)
states can be classified by introducing the vector (pL, pR) in the even self-dual Lorentzian
lattice Γ(4,4),

√
2pL =

(
M + N(B −G4)

)(
et4
)−1

24 As in the earlier cases each integer should be interpreted as a product of a D-particle charge and its
world-volume winding number.
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√
2pR =

(
M + N(B + G4)

)(
et4
)−1

, (4.82)

where G4 = e4e
t
4 is the metric on the torus and B is an antisymmetric 4 × 4 matrix.

Introducing y6 = g2
s/V4 the GL(1) parameter is r2 = y

− 1
2

6 according to (2.9). We remark
that the lattice is even because p2

L − p2
R = 2

∑4
I=1 mIn

I ∈ 2Z. In terms of the modes
matrix N1 in (4.81) this is expressed as p2

L − p2
R = tr(N1JN

t
1) where J =

( 0 1
1 0

)
. By

triviality the SO(4, 4) vector (pL, pR) is equivalent to an SO(4, 4) chiral spinor used for
the orbit classification in Section 3.4.1.

The Fourier modes are derived in (H.130) using the θ-lift representation of the
Spin(5, 5) Eisenstein series, yielding

FSpin(5,5)α1
α1;s (N1) = 1

ξ(2s)y1/2
6

∑
p|gcd(N1)

∞∫
0

dτ2 e
−π p2

τ2y6
−π

τ2
p2 (p2

L+p2
R)

×

1
2∫

− 1
2

dτ1 E
SL(2)
s− 3

2
(τ)eiπτ1

(p2
L−p2

R)
p2 , (4.83)

where we used that gcd(N1) = gcd(m1, . . . ,m4, n1, . . . , n4). It is significant that setting
s = 3/2 and using E

SL(2)
0 (τ) = 1, the integration over τ1 projects onto the condition

p2
L − p2

R = 0 which is the pure spinor condition for SO(4, 4). Using the triviality relation
between vector and spinor representation of SO(4, 4) this condition is the 1

2 -BPS (pure
spinor) condition S · S = 0 discussed in Section 3.4.1. It is then straightforward to
compute the integrals in (4.83) to evaluate the Fourier modes of the coefficient function
E(6)
(0,0), giving

F (6)α1
(0,0) (N1) = 4

√
2πσ2(gcd(N1))

y6
√

p2
L

K1

(
2πy−1/2

6

√
2p2

L

)
δp2

L=p2
R
, (4.84)

where the Kronecker δ-function localizes the contributions to 1
2 -BPS pure spinor locus

p2
L = p2

R (specified by the condition tr(N1JN
t
1) = 0 on the mode matrix N1). As ex-

pected, the argument of the Bessel function is proportional to 1/√y6, the inverse of
the string coupling with D = 6, so its asymptotic expansion is that expected from the
contribution of 1

2 -BPS states from wrapped D-brane on the 4-torus T4. The asymptotic
form for y6 → ∞ in the weak coupling regime is given by

�26F
(6)α1
(0,0) (N1) ∼

4π�2s
y6

σ2
(
gcd(N1)

) e
−2π

√
2p2

L√
y6

(
√

2p2
Ly

− 1
2

6 ) 3
2

δp2
L=p2

R
, (4.85)

where we made use of the relation between the Planck length in six dimensions and the
string scale �6 = �sy

− 1
4

6 .
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When s �= 3/2 the τ1 integral in (4.83) does not impose the restriction p2
L − p2

R = 0
and so the solution fills a generic Spin(4, 4) orbit and is 1

4 -BPS. Although the function
E(6)
(1,0) in (4.72) is a linear combination of the vector Eisenstein series, E

Spin(5,5)
α1;5/2 , and

the spinor series, ESpin(5,5)
α5;3 , at present we know little about the explicit structure of the

latter, so we will only discuss the former here. However, in this parabolic the 1
4 -BPS

content of E(6)
(1,0) is entirely contained in E

Spin(5,5)
α1;5/2 .25

Therefore we can obtain the complete 1
4 -BPS content of (4.72) by analyzing the Fourier

modes of the Epstein series E
Spin(5,5)
α1;5/2 when pL and pR are assumed to satisfy 1

4 -BPS
condition p2

L − p2
R �= 0. We shall therefore assume that p2

L − p2
R �= 0 for the rest of this

section. Hence the 1
4 -BPS Fourier modes of the first term are obtained from the s = 5/2

limit of (4.83),

F (6)α1
(1,0) (N1) = π5/2

Γ (5
2 )y1/2

6

∑
p|gcd(N1)

∞∫
0

dτ2 e
−π p2

τ2y6
−π

τ2
p2 (p2

L+p2
R)

×

1
2∫

− 1
2

dτ1 Ê
SL(2)
1 (τ)eiπτ1

p2
L−p2

R
p2 , (4.86)

where

Ê
SL(2)
1 (τ) = τ2 −

3
π

log
(
τ2e

−ĉ
)

+
∑
n �=0

σ1(|n|)
ξ(2)|n|e

−2π|n|τ2e2πinτ1 , (4.87)

where ĉ = 0.9080589548722 . . . (see (4.16)–(4.17)). Note that since the residue of ESL(2)
s

at s = 1 is constant, the non-zero Fourier modes of ÊSL(2)
1 are indeed the limits of the

corresponding modes of ESL(2)
s as s → 1; these are the only coefficients relevant to the

τ1-integral in (4.86) because of the assumption p2
L − p2

R �= 0. Evaluation of (4.86) gives
the result

F
Spin(5,5)α1
α1; 52

(N1) = 16π
y6

∑
p|gcd(N1)

p2σ−1

(
|p2

L − p2
R|

2p2

)

× K1(2πy
− 1

2
6
√
p2
L + p2

R + |p2
L − p2

R|)√
p2
L + p2

R + |p2
L − p2

R|
, (4.88)

where the lattice momenta are such that (p2
L − p2

R)/k2 ∈ 2Z. Using SO(4, 4) triviality
this corresponds to the full spinor orbit S characterizing the 1

4 -BPS orbits as described
in Section 3.4.1. In the weak coupling regime y6 → ∞ these Fourier modes take the form

25 The fact that the spinor series E
Spin(5,5)
α5;3 contains only the 1

2 -BPS orbit follows from the theorem of
Matumoto [49] that will be used in the context of the higher rank groups in Section 6.2.
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F
Spin(5,5)α1
α1; 52

(N1) ∼
8π

y
3
4
6

∑
p|gcd(N1)

p2σ−1

(
|p2

L − p2
R|

2p2

)

× e−2πy
− 1

2
6

√
p2
L+p2

R+|p2
L−p2

R|

(p2
L + p2

R + |p2
L − p2

R|)
3
4
. (4.89)

In summary, the non-zero Fourier modes of E(6)
(0,0) have support on the 1

2 -BPS orbit
in limits (i), (ii) and (iii). One of the contributions to E(6)

(1,0) is the regularized series
E

Spin(5,5)
α1;s at s = 5/2. This has non-zero Fourier modes with support on the 1

2 -BPS orbit
in limits (i) and (iii), but on both the 1

2 -BPS and 1
4 -BPS orbits in limit (ii). Although

we have not computed the modes for the other contribution to E(6)
(1,0) – the spinor series –

we do know its orbit content by use of techniques similar to those in Section 6.2. The
result is that the non-zero Fourier modes of this series have support on the 1

2 -BPS and
1
4 -BPS orbits in limits (i) and (iii), but only on the 1

2 -BPS orbit in limit (ii). In other
words the complete coefficient E(6)

(1,0) has the expected content of both the 1
2 -BPS and

1
4 -BPS in its non-zero Fourier modes in all three limits.

5. The next-to-minimal (NTM) representation

This section contains the proof of Theorem 2.14, drawing on some results in represen-
tation theory that can be found in Appendix A by Ciubotaru and Trapa. As we remarked
just before its statement, cases (i) and (ii) are by now well known, and so we restrict our
attention to case (iii): the s = 5/2 series. To set some terminology, let G = NAK be the
Iwasawa decomposition of the split real Lie group G, B the minimal parabolic subgroup
of G containing NA, and aC = a ⊗R C be the complexification of the Lie algebra of A.
Without any loss of generality we may assume it is the complex span of the Chevalley
basis vectors Hα, where α ranges over the positive simple roots. For any λ ∈ a∗C, the dual
space of complex valued linear functionals on aC, define the vector space of functions
on G

Vλ :=
{
f :G → C

∣∣ f(nag) = e(λ+ρ)(H(a))f(g), ∀n ∈ N, a ∈ A, g ∈ G
}
. (5.1)

The transformation law and the Iwasawa decomposition show that all functions in Vλ

are determined by their restriction to K. Then G acts on Vλ by the right translation
operator (

πλ(h)f
)
(g) := f(gh), (5.2)

making (πλ, Vλ) into a representation of G commonly called a (nonunitary) principal
series representation. It is irreducible for λ in an open dense subset of a∗C, but reduces at
special points with certain integrality properties – such as the ones of interest to us. The
representation Vλ has a unique K-fixed vector up to scaling, namely any function whose
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restriction to K is constant. These are also known as the spherical vectors of the repre-
sentation, and any representation which contains them is also called “spherical”. When
Vλ is reducible, it clearly can have at most one irreducible spherical subrepresentation.

The minimal parabolic Eisenstein series is defined as

EG(λ, g) =
∑

γ∈B(Z)\G(Z)

e(λ+ρ)(H(γg)), (5.3)

initially for λ in Godement’s range {λ | 〈λ, α〉 > 1 for all α ∈ Σ}, and then by mero-
morphic continuation to a∗C. When λ has the form λ = 2sωβ − ρ, it specializes to the
maximal parabolic Eisenstein series (2.12). For generic λ in the range of convergence, the
right translates of EG(λ, g) span a subspace of functions on G(Z)\G(R) which furnish
a representation of G that is equivalent to Vλ; the group action here is also given by
the right translation operator (5.2). The spherical vectors in this representation are the
scalar multiplies of EG(λ, g), because the function H(g) – the logarithm of the Iwasawa
A-component – is necessarily right invariant under K. For general λ at which EG(λ, g)
is holomorphic, its right translates span a spherical subrepresentation of Vλ, again with
the group action given by the right translation operator (5.2).

As mentioned above, the principal series Vλ reduces for special values of λ. This
reducibility reflects special behavior of the Eisenstein series EG(λ, g). This is most ap-
parent at the point λ = −ρ, where the transformation law (5.1) indicates that the
constant functions on K extend to constants on G, and hence that the trivial represen-
tation is a subrepresentation of V−ρ. Likewise, the specialization of the minimal parabolic
Eisenstein series at λ = −ρ is the constant function identically equal to 1, a compatible
fact.

The proof of Theorem 2.14 rests upon special properties of the spherical constituent
(i.e., Jordan–Hölder composition factor) of Vλ at the values of λ relevant to the s = 5/2
Epstein series. We recall that for this maximal parabolic Eisenstein series, λ has the
form λ = 2sωα1 − ρ; it is characterized by having inner product 2s − 1 with α1, and
inner product −1 with each αj , j � 2. Write λdom for the dominant weight in the Weyl
orbit of λ, i.e., one whose inner product with all positive roots is nonnegative. Table 6
gives dominant weights for the groups in Theorem 2.14 as well as its three values of
s ∈ {0, 3/2, 5/2}, although of course only the last value is of immediate relevance in this
section.

The case of G = E6 is slightly easier than the others because of a low-dimensional
coincidence, which in fact is mostly independent of the actual value of s in that the same
statement holds for generic s. Namely, the representation Vλ we consider is part of a fam-
ily of degenerate principal series representations, induced from the trivial representation
on the semisimple Spin(5, 5) factor of the Levi component GL(1)×Spin(5, 5) of the max-
imal parabolic subgroup Pα1 . These representations are indexed by the one-dimensional
family λ = 2sωα1 − ρ, s ∈ C, which is related to the GL(1) factor. Though they may
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Table 6
The values of λ for the three values of s and three groups in Theorem 2.14. Weights
λ ∈ a

∗
C

are listed here in terms of their inner products with the positive simple roots
as [〈λ, α1〉, 〈λ, α2〉, . . .]. For comparison with [19,43], we have listed the parameters
sGRS (the quantity s on [19, p. 71]) and zKS (the quantify z(G) from [19, p. 86]) for
s = 3/2, as well as their corresponding generalizations for s = 5/2. These parameters
coincide for the group E8. The parameter zKS is not defined in the s = 5/2 case for
E6 because the relevant Weyl orbits do not intersect (cf. [24, Section 3.1]).

G = E6 G = E7 G = E8

s = 0
λdom [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1]
sGRS
zKS

s = 3/2
λdom [1, 1, 1, 0, 1, 1] [1, 1, 1, 0, 1, 1, 1] [1, 1, 1, 0, 1, 1, 1, 1]
sGRS 1/4 5/18 19/58
zKS 7/22 11/34 19/58

s = 5/2
λdom [0, 1, 1, 0, 1, 1] [1, 1, 1, 0, 1, 0, 1] [1, 1, 1, 0, 1, 0, 1, 1]
sGRS −1/2 1/18 11/58
zKS none 33/34 11/58

reduce at particular points, their Gelfand–Kirillov dimension26 is equal to the dimension
of the unipotent radical of that parabolic, 16; likewise, any subrepresentation of it cannot
have larger dimension. Since the dimension of the wavefront set of a representation is
twice the Gelfand–Kirillov dimension, it is bounded by 32. For E6, the orbits in Fig. 2
have dimensions 0, 22, and 32; all other orbits have larger Gelfand–Kirillov dimension.
Hence the orbit attached to the s = 5/2 Eisenstein series for E6 is either the trivial orbit,
the minimal orbit, or the next-to-minimal orbit. It cannot be the trivial orbit, because
only the trivial representation is attached to it. Likewise, Kazhdan–Savin [43] proved
a uniqueness statement for the minimal orbit, that (up to Weyl equivalence) only the
s = 3/2 series is related to the minimal representation. We thus conclude it is attached
to the next-to-minimal orbit.

To explain the s = 5/2 cases for E7 and E8 we need to rely on some recent results
from representation theory, and some notions from there concerning unipotent and spe-
cial unipotent representations (see Appendix A). A striking feature from Table 6 is that
〈λdom, αj〉 has all 1’s except for a single zero for the s = 3/2 case, and two zeroes for
the s = 5/2 case. This phenomenon, which came up here because of physical argu-
ments, also arose in work on special unipotent representations. These λdom each have
the property that there exists an element H of the Cartan subalgebra of g such that
[H,Xα] = 〈λdom, αj〉Xαj

for each positive simple root αj . Furthermore, there exists a
homomorphism from sl2 to g carrying

(
1 0
0 −1

)
to H, and

( 0 1
0 0

)
to a nilpotent element X.

Thus a “dual” coadjoint nilpotent orbit, namely the one containing X, is associated to

26 The Gelfand–Kirillov dimension is a numerical index of how “large” a representation is; it is half the
dimension of the associated coadjoint nilpotent orbit (i.e., the orbit whose closure is the wavefront set of
the representation). For example, finite dimensional representations have Gelfand–Kirillov dimension equal
to zero.



242 M.B. Green et al. / Journal of Number Theory 146 (2015) 187–309
Fig. 5. The largest and smallest orbits, with markings (also known as “weightings”) listed in terms of the
inner products 〈λdom, αj〉 described in the text.

λdom. In terms of Fig. 5, in our three examples these related dual orbits are the top
three listed, though in the reverse order. Appendix A describes a related construction
for more general types of orbits beyond the ones considered in this paper.

As part of the more general result given in Appendix A, Corollary A.6 then asserts
that the spherical constituent of each of the three principal series Vλdom has wavefront set
equal to the closure of the dually related orbit listed in Fig. 5. This proves Theorem 2.14
for E7 and E8.

6. Fourier coefficients and their vanishing

6.1. Dimensions of orbits in the character variety

In Sections 3.3–3.5 we listed a number of explicit features of the orbits of instantons
for the parabolic subgroups Pα1 , Pα2 , and Pαd+1 (in the numbering of Fig. 1). These are
the character variety orbits discussed at the beginning of Section 4.1. In this section we
give more details, in particular basepoints and dimensions for each of the finite number of
orbits under the complexification LC of the Levi factor of the parabolic. As shorthand, we
will refer to these as the “complex orbits of the Levi”. We shall also use the notation Yα

to refer to the root vector X−α, in order to keep the listing of basepoints more readable.
This information is quoted from the paper [51], which lists the corresponding infor-

mation for any maximal parabolic subgroup of any Chevalley group, whether classical or
exceptional (see [51, §5] for more examples and details of how these are computed). We
also describe the group action of the Levi in some of the cases, the rest being described
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Table 7
Dimensions of character variety orbits for the Levi component of the parabolic formed by deleting the first
node of E4 = SL(5), E5 = Spin(5, 5), E6, E7, and E8. A dash, –, signifies that there is no orbit. The
character variety orbits in this parabolic subgroup are the Spin(d, d) spinor orbits listed in Section 3.4.1.

Group Dimensions
SL(2) 0 1 – – – – – – – –
SL(3) × SL(2) 0 2 – – – – – – – –
SL(5) 0 4 – – – – – – – –
Spin(5, 5) 0 7 8 – – – – – – –
E6 0 11 16 – – – – – – –
E7 0 16 25 31 32 – – – – –
E8 0 22 35 43 44 50 54 59 63 64

Table 8
Dimensions of character variety orbits of the Levi component for the parabolic formed by deleting the
second node of E4 = SL(5), E5 = Spin(5, 5), E6, E7, and E8. A dash, –, signifies that there is no orbit.
Not all E8 orbits are listed (there are 23 in total).

Group Dimensions
SL(2) 0 – – – – – – – – –
SL(3) × SL(2) 0 1 – – – – – – – –
SL(5) 0 4 – – – – – – – –
Spin(5, 5) 0 7 10 – – – – – – –
E6 0 10 15 19 20 – – – – –
E7 0 13 20 21 25 26 28 31 34 35
E8 0 16 25 28 31 32 35 38 40 · · ·

Table 9
Dimensions of character variety orbits of the Levi component for
the parabolic formed by deleting the last node of E4 = SL(5),
E5 = Spin(5, 5), E6, E7, and E8. A dash, –, signifies that there is
no orbit. The character variety orbits in this parabolic subgroup
were also listed in Table 5 based on enumeration of instanton
orbits.

Group Dimensions
SL(2) 0 – – – –
SL(3) × SL(2) 0 1 3 – –
SL(5) 0 5 6 – –
Spin(5, 5) 0 7 10 – –
E6 0 11 16 – –
E7 0 17 26 27 –
E8 0 28 45 55 56

in [51]. Recall that the dimensions of the character varieties were given earlier in Ta-
ble 3 on page 206. In the following subsections, we expand upon this for the groups
E5 = Spin(5, 5), E6, E7, and E8. For ease of reference, Tables 7, 8, and 9 give the orbit
dimensions for the parabolic subgroups Pα1 , Pα2 , and Pαd+1 of each of these groups,
respectively.

6.1.1. Spin(5, 5)
Recall that we label our E5 = Spin(5, 5) Dynkin diagram according to the number-

ing in Fig. 1. This does not match the customary numbering of the Spin(5, 5) Dynkin
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diagram, but has the advantage of allowing for a uniform discussion of all of our cases
of interest.

Node 1 is the so-called “vector” node, because Pα1 has Levi component isomorphic
to GL(1) × Spin(4, 4), which acts on the 8-dimensional, abelian unipotent radical by
the 8-dimensional spin representation of Spin(4, 4). This action breaks into 3 complex
orbits: the trivial orbit; a 7-dimensional orbit with basepoint Yα1 ; and the open, dense
8-dimensional orbit with basepoint Y11110 + Y10111 (see Table 7).

Nodes 2 and 5 are the “spinor nodes”, and have identical orbit structure (up to
relabeling the nodes). Here the Levi component of Pα2 or Pα5 is now isomorphic to
GL(1) × SL(5), and acts on the 10-dimensional abelian unipotent radical by the second
fundamental representation, also known as the exterior square representation. In other
words, the action of the SL(5) piece is equivalent to that on antisymmetric 2-tensors
x∧ y = −y∧x, where x and y are 5-dimensional vectors. This action also has 3 complex
orbits (which can be seen as part of a general description for abelian unipotent radicals
of maximal parabolic subgroups given in [63]): the trivial orbit; a 7-dimensional orbit
with basepoint Yα2 in the case of node 2, and Yα5 in the case of node 5; and the open,
dense 10-dimensional orbit with basepoint Y01121 + Y11111 (see Table 8 or Table 9). This
last basepoint is in the open dense orbit for either Pα2 or Pα5 .

6.1.2. E6

Nodes 1 and 6 are related by an automorphism of the Dynkin diagram, and have iden-
tical orbit structure (up to relabeling the nodes). Here the Levi component is isomorphic
to GL(1) × Spin(5, 5), which acts on the 16-dimensional, abelian unipotent radical by
the spin representation of Spin(5, 5). There are three complex orbits: the trivial orbit;
an 11-dimensional orbit with basepoint Yα1 in the case of node 1, and Yα6 in the case
of node 6; and the open, dense 16-dimension orbit with basepoint Y111221 + Y112211 for
either nodes 1 or 6 (see Table 7 or Table 9).

Node 2 is the first case we encounter with a non-abelian unipotent radical. It is instead
a 21-dimensional Heisenberg group, and its character variety has 5 complex orbits (an-
other general fact for Heisenberg unipotent radicals of maximal parabolic subgroups [64]):
the trivial orbit; a 10-dimensional orbit with basepoint α2; a 15-dimensional orbit with
basepoint Y111221 + Y112211; a 19-dimensional orbit with basepoint Y011221 + Y111211 +
Y112210; and the open, dense 20-dimensional orbit with basepoint Y010111 + Y112210 (see
Table 8).

6.1.3. E7

This is the first group for which the three nodes have mathematically different struc-
tures. Node 1 has a 33-dimensional unipotent radical which is a Heisenberg group, and
Levi component isomorphic to GL(1)×Spin(6, 6). The action on the 32-dimensional char-
acter variety again has 5 complex orbits: the trivial orbit; a 16-dimensional orbit with
basepoint Yα1 ; a 25-dimensional orbit with basepoint Y1123321+Y1223221; a 31-dimensional
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orbit with basepoint Y1122221 + Y1123211 + Y1223210; and the open, dense 32-dimensional
orbit with basepoint Y1011111 + Y1223210 (see Table 7).

Node 2 has a 42-dimensional unipotent radical, and a 35-dimensional character va-
riety. The Levi component GL(1) × SL(7) acts with 10 complex orbits: the trivial
orbit; a 13-dimensional orbit with basepoint Yα2 ; a 20-dimensional orbit with basepoint
Y1122221 + Y1123211; a 21-dimensional orbit with basepoint Y0112221 + Y1112211 + Y1122111;
a 25-dimensional orbit with basepoint Y1112221 + Y1122211 + Y1123210; a 26-dimensional
orbit with basepoint Y1111111+Y1123210; a 28-dimensional orbit with basepoint Y0112221+
Y1112211 +Y1122111 +Y1123210; a 31-dimensional orbit with basepoint Y0112221 +Y1111111 +
Y1123210; a 34-dimensional orbit with basepoint Y0112211 + Y1112111 + Y1112210 + Y1122110;
and the open, dense 35-dimensional orbit with basepoint Y0112111 +Y0112210 +Y1111111 +
Y1112110 + Y1122100 (see Table 8).

Node 7 has a 27-dimensional abelian unipotent radical, and Levi component iso-
morphic to GL(1) × E6,6. The latter acts with 4 complex orbits: the trivial or-
bit, a 17-dimensional orbit with basepoint Yα7 , a 26-dimensional orbit with base-
point Y1123321 + Y1223221, and the open, dense 27-dimensional orbit with basepoint
Y0112221 + Y1112211 + Y1122111 (see Table 9).

6.1.4. E8
This is the largest of our groups, and the unipotent radicals of its maximal parabolics

are never abelian.
Node 1 has a 78-dimensional unipotent radical, and a 64-dimensional character vari-

ety. The Levi component is isomorphic to GL(1) × Spin(7, 7) and acts on the character
variety according to the spin representation of Spin(7, 7), with 10 complex orbits: the
trivial orbit; a 22-dimensional orbit with basepoint Yα1 ; a 35-dimensional orbit with base-
point Y12244321 +Y12343321; a 43-dimensional orbit with basepoint Y12233321 +Y12243221 +
Y12343211; a 44-dimensional orbit with basepoint Y11122221 + Y12343211; a 50-dimensional
orbit with basepoint Y11233321 + Y12233221 + Y12243211 + Y12343210; a 54-dimensional or-
bit with basepoint Y11222221 + Y12243211 + Y12343210; a 59-dimensional orbit with base-
point Y11122221 +Y11233211 +Y12232211 +Y12343210; a 63-dimensional orbit with basepoint
Y11222221+Y11232211+Y11233210+Y12232111+Y12232210; and the open, dense 64-dimensional
orbit with basepoint Y11122111 + Y11221111 + Y11233210 + Y12232210 (see Table 7).

Node 2 has a 92-dimensional unipotent radical, and a 56-dimensional character variety.
The Levi component is isomorphic to GL(1)×SL(8) and acts according to the third fun-
damental representation of SL(8), also known as the exterior cube representation. It acts
with 23 complex orbits, the four smallest of which are: the trivial orbit; a 16-dimensional
orbit with basepoint Yα2 ; a 25-dimensional orbit with basepoint Y11232221 + Y11233211;
and a 28-dimensional orbit with basepoint Y11122221 +Y11222211 +Y11232111 (see Table 8).

Node 8 has a 57-dimensional unipotent radical which is a Heisenberg group. The
Levi factor is isomorphic to GL(1) × E7,7 and acts with 5 complex orbits on the
56-dimensional character variety: the trivial orbit; a 28-dimensional orbit with base-
point Yα8 ; a 45-dimensional orbit with basepoint Y22454321 + Y23354321; a 55-dimensional
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orbit with basepoint Y12244321+Y12343321+Y22343221; and the open, dense 56-dimensional
orbit with basepoint Y01122221 + Y22343211 (see Table 9).

6.2. Applications of Matumoto’s theorem

In Section 2.2.2 we mentioned that representations of real groups have an invariant
attached to them, the wavefront set, that in a sense measures how big the representation
is. Theorem A.5 indeed computes this wavefront set in many cases, including ours. There
is a theorem due to Matumoto [49] that asserts, in a precise sense, that automorphic
forms in small representations cannot have large Fourier coefficients. Namely, he proves
that if an element Y ∈ u−1 associated to the character χ from (4.6) does not lie in
the wavefront set, then the Fourier coefficient φχ from (4.1) must vanish identically.
We will use real group methods here in deference to the importance of the underlying
symmetry groups Ed+1(R), but it is notable that we could obtain the same results using
p-adic methods via a vanishing result of Mœglin–Waldspurger [52]. Related information
is given at the end of Appendix A.

For example, the trivial representation has wavefront set {0}, and likewise the constant
function does not have any nontrivial Fourier coefficients. In [51] a detailed analysis is
given of the different character variety orbits for each maximal parabolic subgroup of
an exceptional group, and which coadjoint nilpotent orbits they are contained in. It
is then a simple matter to apply Matumoto’s theorem and determine a set of Fourier
coefficients which automatically vanishes because their containing coadjoint nilpotent
orbits lie outside the wavefront set. In particular, it is shown in [51] that the closure of
the minimal coadjoint nilpotent orbit contains the two smallest character variety orbits in
each of the examples of Pα1 , Pα2 , and Pαd+1 for the groups Ed+1, 5 � d � 7, but no others
(this was known to experts, at least in special cases – see for example [19]). Likewise,
it is also verified there that the closure of the next-to-minimal coadjoint nilpotent orbit
contains the three smallest character variety orbits in each of these nine configurations
of maximal parabolics and Ed+1 groups, but no others.

Combining this with the characterization in Theorem 2.14 of the wavefront sets for
the Epstein series at s = 0, 3/2, and 5/2, we get the following statement about the
vanishing of Fourier coefficients. This gives a rigorous proof of the vanishing statements
on page 191.

Theorem 6.1. Let 5 � d � 7 and G = Ed+1 as defined in Table 1 on page 189. Then:

(i) All Fourier coefficients of the s = 0 Epstein series vanish in any of the parabolics
Pα1 , Pα2 , or Pαd+1 , with the exception of the constant terms (which were calculated
in [24]).

(ii) All Fourier coefficients of the s = 3/2 Epstein series EG
α1;3/2 vanish in any of the

parabolics Pα1 , Pα2 , or Pαd+1 , with the exceptions of the constant term and the
smallest dimensional character variety orbit. This orbit has: dimension 11 for E6
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and either Pα1 or Pα6 , and dimension 10 for Pα2 ; dimensions 16, 13, and 17 for
E7 and Pα1 , Pα2 , and Pα7 , respectively; and dimensions 22, 16, and 28 for E8 and
Pα1 , Pα2 , and Pα8 , respectively.

(iii) All Fourier coefficients of the s = 5/2 Epstein series EG
α1;5/2 vanish in any of the

parabolics Pα1 , Pα2 , or Pαd+1 , with the exceptions of the constant term and the
next two smallest dimensional character variety orbits. This additional character
variety orbit is: the 16, 15, and 16-dimensional orbit for E6 and Pα1 , Pα2 , and Pα6 ,
respectively; the 25, 20, and 26-dimensional orbit for E7 and Pα1 , Pα2 , and Pα7 ,
respectively; and the 35, 25, and 45-dimensional orbit for E8 and Pα1 , Pα2 , and
Pα8 , respectively.

7. Square-integrability of special values of Eisenstein series

In this section we remark that some of the coefficient functions E(D)
(0,0) and E(D)

(1,0) from
the expansion (2.3) provide examples of square-integrable automorphic forms on higher
rank groups. In particular, we will prove this is the case for E(D)

(1,0) on E7 and E8. In
light of (1.3), this proves the associated automorphic representation is unitary, since it
can be realized in the Hilbert space L2(Ed+1(Z)\Ed+1(R)). This unitary can also be
demonstrated by purely representation theoretic methods. It is an instance of broader
conjectures of James Arthur on unitary automorphic representations, which are studied
in more detail in [50]. This fact about the residual L2 spectrum is at present more of a
curiosity as far as our investigations here are concerned, since we are not aware of any
particular importance for our applications. The analysis in the proof also determines
the exact asymptotics of these coefficients in various limits, generalizing those studied
in [24].

Theorem 7.1. Let G denote the group Ed+1 defined in Table 1 on page 189.

(i) The Epstein series EG
α1;0 is constant, and hence always square-integrable.

(ii) The Epstein series EG
α1;3/2 and hence E(10−d)

(0,0) is square-integrable if 4 � d � 7.
(iii) The Epstein series EG

α1;5/2 and hence E(10−d)
(1,0) is square-integrable if 6 � d � 7.

Case (i) is obvious since the quotient Ed+1(Z)\Ed+1(R) has finite volume, while
case (ii) was proven earlier by [19]. We have included them here in the statement for
convenience and comparison. It should be stressed, though, that EG

α1;s is certainly not
square-integrable for general s. The same method treats the lower rank groups as well,
though since the statements are not needed here we refer to papers [19] and [20] for
Spin(5, 5).

Proof of Theorem 7.1. Recall that the series EG
α1;s is a specialization of the minimal

parabolic Eisenstein series EG(λ, g) from (5.3) at λ = 2sω1 − ρ. This is explained in
our context in [24, Section 2], where Langlands’ constant term formula is also given in
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Theorem 2.18. The latter shows that the constant term of EG(λ, g) along any maximal
parabolic subgroup P is a sum of other minimal parabolic Eisenstein series on its Levi
component. By induction, this is also true if P is not maximal. In particular, since these
Eisenstein series on smaller groups are orthogonal to all cusp forms on those groups,
the constant terms are therefore orthogonal to all cusp forms on the Levi components –
a meaningful statement only, of course, when the parabolic P is not the Borel subgroup
B (so that the Levi is nontrivial). This means EG(λ, g) has “zero cuspidal component
along any such P” in the sense of [47, Section 3], or equivalently that it is “concentrated”
on the Borel subgroup B.

The constant term along B is explicitly given in terms of a sum over the Weyl group:∫
N(Z)\N(R)

EG(λ, ng) dn =
∑
w∈Ω

e(wλ+ρ)(H(g))M(w, λ), (7.2)

where M(w, λ) is given by the explicit product over roots whose sign is flipped by w,

M(w, λ) =
∏
α>0
wα<0

c
(
〈λ, α〉

)
, (7.3)

with

c(s) := ξ(s)
ξ(s + 1) and ξ(s) := π− s

2Γ

(
s

2

)
ζ(s) (7.4)

(see, for example, [24, (2.16)–(2.21)]). This formula is valid for generic λ, and develops
logarithmic terms at special points via meromorphic continuation. Moreover, certain
coefficients M(w, λ) may vanish, for example when 〈λ, α〉 = −1 and the respective factor
in (7.4) has a zero owing to the pole of ξ(s + 1) at s = −1 (unless it is canceled by a
pole from another factor). Indeed, c(s) has a simple zero at s = −1, a simple pole at
s = 1, and is holomorphic at all other integers. Because EG(λ, g) is “concentrated on B”,
Langlands’ criteria in [47, Section 5] asserts that it is square-integrable if and only if the
surviving exponents wλ have negative inner product with each fundamental weight:

〈wλ, ωα〉 < 0 for each α > 0. (7.5)

The rest of the proof involves an explicit calculation to check that for each possible
value of wλ, either the sum of e(w′λ+ρ)(H(g))M(w′, λ) over all w′ ∈ Ω with w′λ = wλ

vanishes, or instead that (7.5) holds. Actually, despite the enormous size of the Weyl
groups involved, M(w, λ) vanishes for all but very few w (because of the special nature
of λ).

Though the individual terms in (7.2) are frequently singular at the values of λ in
question, the overall sum can be calculated explicitly by taking limits. We now present
the result of this calculation. To make the condition (7.5) more transparent, we take
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g = a to be an element of the maximal torus A (as we of course may, given that H(g)
depends only on the A-component of g’s Iwasawa decomposition). We then furthermore
parametrize a by real numbers r1, r2, . . . via the condition that the simple roots on a

take the values

aα1 = er1 , aα2 = er2 , . . . . (7.6)

For example, for G = E6 the limiting value of (7.2) as λ approaches 3ω1 − ρ can be
calculated explicitly as e2r1+3r2+4r3+6r4+4r5+2r6 times

3ζ(3)(e2r1+r3 + er5+2r6) + π2(er2 + er3 + er5) + 6π(r4 + γ − log(4π))
3ζ(3) . (7.7)

The exponentials are all dominated by eρ(H(g)) = e8r1+11r2+15r3+21r4+15r5+8r6 for ri > 0,
that is, (7.5) holds and hence EG

α1;3/2 is square-integrable – verifying a fact proven in [19].
We now turn to the two new cases, those of the s = 5/2 series for E7 and E8. We recall

the computational method of [24, Section 2.4] to find the minimal parabolic constant
terms, namely to precompute the set

S := {w ∈ Ω | wαi > 0 for all i �= 1}. (7.8)

For w /∈ S, M(w, λ) will include the factor c(〈λ, αi〉) = c(〈2sω1 − ρ, αi〉) = c(−〈ρ, αi〉) =
c(−1) = 0 for some i > 1. At the same time, at least for Re s < 1

2 , all inner products
〈λ, α〉 will be negative, and hence none of the other factors in (7.3) can have a pole (after
all, c(s) is holomorphic for Re s < 0). Thus the term for w in (7.2) vanishes identically
in s by analytic continuation, and the sum in (7.2) reduces to one over w ∈ S.

For E7 there are only 126 elements in S out of the 2,903,040 elements of the full
Weyl group Ω. It can be calculated that all but three w of these 126 satisfy Langlands’
condition (7.5), and the three that do not have the following expressions for M(w, λ) for
s = 5/2 + ε:

Exception 1: c
(
2(ε− 5)

)
c(2ε)2c(2ε− 9)c(2ε− 8)2c(2ε− 7)2c(2ε− 6)3

× c(2ε− 5)3c(2ε− 4)3c(2ε− 3)3c(2ε− 2)3c(2ε− 1)3

× c(2ε + 1)2c(2ε + 2)c(2ε + 3)c(2ε + 4)c(4ε− 7),

Exception 2: c(2ε)2c(2ε− 9)c(2ε− 8)2c(2ε− 7)2c(2ε− 6)3c(2ε− 5)3

× c(2ε− 4)3c(2ε− 3)3c(2ε− 2)3c(2ε− 1)3c(2ε + 1)2

× c(2ε + 2)c(2ε + 3)c(2ε + 4)c(4ε− 7),

Exception 3: c
(
2(ε− 5)

)
c(2ε)2c(2ε− 11)c(2ε− 9)c(2ε− 8)2c(2ε− 7)2

× c(2ε− 6)3c(2ε− 5)3c(2ε− 4)3c(2ε− 3)3c(2ε− 2)3

× c(2ε− 1)3c(2ε + 1)2c(2ε + 2)c(2ε + 3)c(2ε + 4)c(4ε− 7). (7.9)
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Each of these terms is in fact zero by dint of the triple zero from the term c(2ε − 1)3

counterbalancing the double pole from the term c(2ε + 1)2 at ε = 0. (Incidentally, the
overall series EG

α1;5/2 was shown to be non-zero in [24] for both G = E7 and G = E8).
For E8 there are 2160 elements in S out of the 696,729,600 elements of the full Weyl

group Ω. Likewise, all but 258 of these 2160 w satisfy (7.5). Again, all 258 of these terms
vanish at s = 5/2 because their products have a triple zero (coming from three c(s)
factors evaluated at near s = −1) that counterbalance two poles (coming from two c(s)
factors evaluated near s = 1). �
8. Discussion and future problems

In this paper we have studied the Fourier modes of the Eisenstein series that define
the coefficients of the first two nontrivial interactions in the low energy expansion of the
four-graviton amplitude in maximally supersymmetric string theory compactified on Td,
and verified they have certain expected features. In particular, we have shown that
their non-zero Fourier coefficients contain the expected minimal and next-to-minimal
(1
2 -BPS and 1

4 -BPS) instanton orbits for any of the symmetry groups, Ed+1 (0 � d � 7).
This extends the analysis of these functions in [24], where the constant terms of these
functions were shown to reproduce all the expected features of string perturbation theory
and semi-classical M-theory. Furthermore, in low rank cases we were able to present the
explicit Fourier coefficients of these functions and show that they have the form expected
of BPS-instanton contributions. Indeed, the form of the 1

2 -BPS contributions match those
deduced from string theory calculations as summarized by (4.10).

For high rank cases this involved a detailed analysis of the automorphic representa-
tions connected to these coefficients. Namely, we explained that they are automorphic
realizations of the smallest two types of nontrivial representations of their ambient Lie
groups, and why this property automatically implies the vanishing of a slew of Fourier
coefficients – precisely the Fourier coefficients that the BPS condition ought to force to
vanish. We furthermore showed the most interesting cases – those of the next-to-minimal
representation for E7 and E8 – occur in L2(Ed+1(Z)\Ed+1(R)).

This raises some obviously interesting questions, both from the string theory perspec-
tive and from the mathematical perspective.

An immediately interesting mathematical direction would be the explicit computation
of the non-zero Fourier modes of E(D)

(0,0) and E(D)
(1,0) for the high rank cases with groups

E6, E7 and E8, in particular to get finer information using the work of Bhargava and
Krutelevich on the integral structure of the character variety orbits. In a different direc-
tion, as mentioned in Section 3.3.1 it would be of interest to extend the considerations
of this paper to affine E9 and behind that to hyperbolic extensions.27

27 After this paper was first posted on the arXiv the paper [17] by Fleig and Kleinschmidt appeared, which
makes important steps in this direction.
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Another question that is natural to ask in the context of string theory is to what ex-
tent does our analysis generalize to higher order interactions in the low energy expansion,
which preserve a smaller fraction of supersymmetry? Could there be a role for Eisenstein
series with other special values of the index s in the description of such terms? However,
the evidence is that such higher order terms involve automorphic functions that are not
Eisenstein series. For example, E(D)

(0,1) (the coefficient of the 1
8 -BPS ∂6R4 interaction)

is expected to satisfy a particular inhomogeneous Laplace eigenvalue equation [31]. Al-
though its constant term has, to a large extent, been analyzed for the relevant values
of D [24], it would be most interesting to analyze the non-zero Fourier modes of E(D)

(0,1),
which should describe the couplings of 1

8 -BPS instantons in the four-graviton amplitude
for low enough dimensions, D. This should reveal a rich structure. For example, the
instantons that contribute in the limit of decompactification from D to D + 1 include
the 1

8 -BPS black holes of D + 1 dimensions, which can have non-zero horizon size and
exponential degeneracy. It is not apparent at first sight whether this degeneracy should
be encoded in the solutions of the inhomogeneous equation satisfied by E(D)

(0,1). Indeed,
we have seen in the 1

4 -BPS cases that the Fourier expansion of the coefficient function
E(D)
(1,0) in the decompactification limit does not determine the Hagedorn-like degeneracy of

1
4 -BPS small black holes in D+1 dimensions. Rather, the divisor sums weight particular
combinations of charges and windings of the wrapped world-lines of such objects.

These issues involve mathematical challenges. For example, the study of inhomoge-
neous Laplace equations for the group SL(2,R) heavily relies on explicit formulas for
automorphic Green functions, which do not generalize in an obvious manner to higher
rank groups because they involve automorphic Laplace eigenfunctions which do not have
moderate growth in the cusps (at present the existence of such functions is itself an open
problem).

Another issue is to what extent this analysis can be extended to discuss the automor-
phic properties of yet higher order terms in the expansion of the four-graviton amplitude.
Further afield are issues concerning the extension of these ideas to multi-particle ampli-
tudes, to amplitudes that transform as modular forms of non-zero weight, and extensions
to processes with less supersymmetry.
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Appendix A. Special unipotent representations, by Dan Ciubotaru and Peter E. Trapa
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The representations considered in Theorem 2.14 are examples of a wider class of
representations which have attracted intense attention in the mathematical literature.
The purpose of this appendix is to recall certain results (from a purely local point of
view) which are especially relevant for the discussion of Section 5.

To begin, let G denote a real reductive group arising as the real points of a connected
complex algebraic group GC. In [Ar1] and [Ar2], Arthur set forth a conjectural descrip-
tion of irreducible (unitary) representations contributing to the automorphic spectrum
of G. In many cases, these conjectures could be reduced to a fundamental set of represen-
tations attached to (integral) “special unipotent” parameters. In the real case, Arthur’s
conjectures – and, in particular, the definition of the corresponding special unipotent
representations – are made precise and refined in the work of Barbasch–Vogan [BV1]
and, more completely, in the work of Adams–Barbasch–Vogan [ABV]. The perspective of
these references is entirely local. (Of course an extensive literature approaching Arthur’s
conjectures by global methods exists and, for classical groups, is summarized in [Ar3].)
As we now explain, the representations appearing in Theorem 2.14 are indeed special
unipotent in the sense of Adams–Barbasch–Vogan.

Write gC for the Lie algebra of GC and fix a Cartan subalgebra hC arising as the
Lie algebra of a maximal torus in GC. Write Ω for the Weyl group of hC in gC. The
classification of connected reductive algebraic groups naturally leads from GC to the
Langlands dual G∨

C, a connected reductive complex algebraic group, e.g. [Sp]. Let g∨C
denote the Lie algebra of GC. The construction of G∨

C includes the definition of a Cartan
subalgebra h∨C which canonically identifies with the linear dual of hC,

h∨C � (hC)∗. (A.1)

Let N denote the cone of nilpotent elements in gC, and likewise let N∨ denote the cone of
nilpotent elements in g∨C. Write GC\N and G∨

C\N∨ for the corresponding sets of adjoint
orbits. These sets are partially ordered by the inclusion of closures. Spaltenstein defined
an order-reversing map

d :G∨
C\N∨ → GC\N

with many remarkable properties which were refined in [BV1, Appendix]; see Theo-
rem A.4 below.

mailto:ciubo@math.utah.edu
mailto:ptrapa@math.utah.edu
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Example A.1. Suppose the Dynkin diagram corresponding to gC is simply laced (as is
the case for the groups Ed+1 from Fig. 1 and Table 1). Then gC � g∨C and G∨

C and
GC are isogenous. Thus G∨

C\N∨ can be identified with GC\N and d can be viewed
as an order-reversing map from the latter set to itself. With this in mind, consider
Fig. 5. The map d interchanges the top three orbits with the bottom three orbits (in an
order-reversing way, of course). In particular d applied to the sub-subregular orbit is the
next-to-minimal orbit. The complete calculation of d is given in [Ca].

Fix an element O∨ of G∨
C\N∨. According to the Jacobson–Morozov Theorem, there

exists a Lie algebra homomorphism

φ : sl(2,C) → g∨C

such that the image under of φ of
( 0 1

0 0

)
lies in O∨ and

φ

(
1 0
0 −1

)
∈ h∨C � h∗C, (A.2)

with the last isomorphism as in (A.1).
The element in (A.2) depends on the choice of φ. Its Weyl group orbit is well-defined

however (independent of how φ is chosen). So define

λ
(
O∨) := (1/2)φ

(
1 0
0 −1

)
∈ h∗C/Ω. (A.3)

According to the Harish-Chandra isomorphism, λ(O∨) specifies a maximal ideal Z(O∨)
in the center of the enveloping algebra U(gC). Recall that an irreducible admissible
representation of G is said to have infinitesimal character λ(O∨) if its Harish-Chandra
module is annihilated by Z(O∨).

A result of Dixmier implies that there is a unique primitive ideal I(O∨) in U(gC) which
is maximal among all primitive ideals containing Z(O∨). (A primitive ideal in U(gC) is,
by definition, a two-sided ideal which arises as the annihilator of a simple U(gC) module.)
Given any two-sided ideal I in U(gC), we can consider the associated graded ideal gr(I)
with respect to the canonical grading on U(gC). According to the Poincaré–Birkhoff–Witt
Theorem, gr(I) is an ideal in gr(U(gC)) � S(gC), the symmetric algebra of gC, and hence
cuts out a subvariety (the so-called associated variety, AV(I), of I) of g∗C.

It will be convenient to identify gC with g∗C (by means of the choice of an invari-
ant form) and view AV(I) as a subvariety of gC. (The choice of form is well-defined
up to scalar; since AV(I) is a cone, AV(I) becomes a well-defined subvariety of gC.)
A theorem of Joseph [39] and Borho–Brylinski [BoBr1] (cf. the short proof in [V2])
implies that if I is primitive, AV(I) is indeed the closure of a single nilpotent orbit
of GC.
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Theorem A.4. (See [BV1, Corollary A.3].) In the setting of the previous paragraph,

AV
(
I
(
O∨)) = d

(
O∨

)
.

Example A.2. Suppose GC is simply laced and make identifications as in Example A.1.
Suppose O∨ is respectively the regular, subregular, or sub-subregular, orbit in Fig. 5.
Then AV(I(O∨)) is the closure respectively of the zero, minimal, or next-to-minimal
orbit.

Definition A.3. (See Barbasch–Vogan [BV1].) Fix an orbit O∨ as above. Suppose further
that O∨ is even or, equivalently, that λ(O∨) is integral. An irreducible admissible repre-
sentation of G is said to be (integral) special unipotent attached to O∨ if the annihilator
of its Harish-Chandra module is I(O∨).

Note that since I(O∨) is a maximal primitive ideal, special unipotent representations
are, in a precise sense, as small as possible.

Theorem A.5. Suppose G is split and π is an irreducible spherical representation with
infinitesimal character λ(O∨) (with notation as in (A.3)). Suppose further that O∨ is
even. Then π is special unipotent in the sense of Definition A.3.

Sketch. Chapter 27 in [ABV] defines special unipotent Arthur packets. Roughly speak-
ing, such a packet is parametrized by a rational form of an orbit O∨ in G∨

C\N∨ [ABV,
Theorem 27.10]. In the case that O∨ is even, these packets are known to consist of
representations appearing in Definition A.3 [ABV, Corollary 27.13]. As a consequence
of [ABV, Definition 22.6] (see also the discussion after [ABV, Definition 1.33]), such
a packet also contains a (generally nontempered) L-packet. In the case at hand, the
special unipotent Arthur packet parametrize by O∨ contains the L-packet consisting
of the spherical representation with infinitesimal character λ(O∨). This completes the
sketch. �
Corollary A.6. The spherical constituents of the principal series representations Vλdom

from Section 5 are integral special unipotent attached to O∨ (Definition A.3) where O∨

is, respectively, the regular, subregular, and sub-subregular nilpotent orbit (all of which
are even). According to Corollary A.4 and Example A.2, the wavefront sets of these
representations are, respectively, the zero, minimal, and next-to-minimal orbits.

Finally, we remark that since the special unipotent representation of Definition A.3 are
predicted by Arthur to appear in spaces of automorphic forms, they should be unitary.

Conjecture A.7. Suppose π is integral special unipotent in the sense of Definition A.3.
Then π is unitary.
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The representations appearing in Theorem A.5 are known to be unitary if GC is
classical or of type G2. This was proved by purely local methods in [V1], [V3], and [B].
For a summary of results obtained by global methods, see [Ar3].

For completeness, we discuss the analogs of these results in the p-adic case. Let F be
a p-adic field, with ring of integers O, and finite residue field Fq. The group G is now the
F -points of a connected algebraic group GF defined over F . We assume for simplicity
that G is split and of adjoint type. Let K be the O-points of GF , a maximal compact
open subgroup of G. Let I be the inverse image in K under the natural projection
K → GF (Fq) of a Borel subgroup over Fq. The compact open subgroup I is called an
Iwahori subgroup.

The Iwahori–Hecke algebra H(G, I) is the convolution algebra (with respect to a fixed
Haar measure on G) of compactly supported, locally constant, I-biinvariant complex
functions on G. It is a Hilbert algebra, in the sense of Dixmier, with respect to the trace
function f �→ f(1), and the ∗-operation f∗(g) = f(g−1), f ∈ H(G, I). Thus, there is a
theory of unitary remodules of H(G, I) and an abstract Plancherel formula.

If (π, V ) is a complex smooth G-representation, such that V I �= 0, the algebra H(G, I)
acts on V I via

π(f)v =
∫
G

f(x)π(x)v dx, v ∈ V I , f ∈ H(G, I).

Theorem A.8. (See [Bo].) The functor V → V I is an equivalence of categories between the
category of smooth admissible G-representations and finite dimensional H(G, I)-modules.

Borel conjectured that this functor induces a bijective correspondence of unitary rep-
resentations. This conjecture was proved by Barbasch–Moy [BM1] (subject to a certain
technical assumption which was later removed).

Theorem A.9. (See [BM1].) An irreducible smooth G-representation (π, V ) is unitary if
and only if V I is a unitary H(G, I)-module.

The algebra H(G, I) contains the finite Hecke algebra H(K, I) of functions whose
support is in K. Under the functor η, K-spherical representations of G correspond to
spherical H(G, I)-modules, i.e., modules whose restriction to H(K, I) contains the trivial
representation of H(K, I).

The classification of simple H(G, I)-modules is given by Kazhdan–Lusztig [KL].

Theorem A.10. (See [KL].) The simple H(G, I)-modules are parametrized by G∨
C-conju-

gacy classes of triples (s∨, e∨, ψ∨), where:

(i) s∨ ∈ G∨
C is semisimple;

(ii) e∨ ∈ N∨ such that Ad(s)e = qe;
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(iii) ψ∨ is an irreducible representation of Springer type of the group of components of
the mutual centralizer ZG∨

C
(s∨, e∨) of s∨ and e∨ in G∨

C.

Let π(s∨, e∨, ψ∨) denote the simple H(G, I)-module parametrized by [(s∨, e∨, ψ∨)].

Example A.4. In the Kazhdan–Lusztig parametrization, the simple spherical H(G, I)-
modules correspond to the classes of triples [(s∨, 0, 1)]. Here s∨ is the Satake parameter of
the corresponding irreducible spherical G-representation. On the other hand, let O∨ be a
fixed G∨

C-orbit in N∨, and set s∨O∨ = qλ0(O∨) where λ0(O∨) is any choice of representative
of the element in (A.3). If e∨0 belongs to the unique open dense orbit of ZG∨

C
(s∨) on

g∨q = {x ∈ g∨q : Ad(s∨)x = qx} (in particular e∨0 ∈ O∨), then the simple H(G, I)-module
(and the corresponding irreducible G-representation) parametrized by [(s∨O∨ , e∨0 , ψ

∨)] is
tempered.

The Iwahori–Hecke algebra has an algebra involution τ , called the Iwahori–Matsumoto
involution, defined on the generators as in [IM]. It induces an involution on the set of
simple H(G, I)-modules, which is easily seen to map unitary modules to unitary modules.
The effect of τ on the set of Kazhdan–Lusztig parameters is given by a Fourier transform
of perverse sheaves [EM], and therefore it is hard to compute effectively in general, except
in type A [MW]. (For a general algorithm, see [L].) However, it is easy to see that if
π(s∨O∨ , 0, 1) is a simple spherical H(G, I)-module, then

τ
(
π
(
s∨O∨ , 0, 1

))
= π

(
s∨O∨ , e∨0 , 1

)
, (A.11)

where the notation is as in Example A.4. In particular, π(s∨O∨ , 0, 1) is unitary. Together
with Theorem A.9, this gives the following corollary (cf. Conjecture A.7).

Corollary A.12. If π is an irreducible spherical G-representation with Satake parameter
s∨O∨ ∈ G∨

C, then π is unitary.
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Appendix B. Supersymmetry and instantons

The constraints of maximal supersymmetry are efficiently described by starting with
the superalgebra generated by the 32-component Majorana spinor supercharge, Qα =∫
J0
α d10x, where JI

α is the supercurrent (with spinor index α, β = 1, . . . , 32 and vector
index I = 0, 1, . . . , 10). This satisfies the anti-commutation relations,

{Qα, Qβ} = PI1

(
Γ 0Γ I1

)
αβ

+ Zαβ (B.1)

where the central charge is

Zαβ = ZI1I2

(
Γ 0Γ I1I2

)
αβ

+ ZI1···I5
(
Γ 0Γ I1···I5)

αβ
, (B.2)

where Γ I
αβ are SO(1, 10) Dirac matrices28 and PI is the eleven-dimensional translation

operator.

B.1. BPS particle states

Positivity of the anti-commutator in (B.1) leads to the Bogomol’nyi bound that re-
stricts the masses of states to be larger than or equal to the central charge. States
saturating the bound are BPS states that form supermultiplets, the lengths of which de-
pend on the fraction of supersymmetry broken by their presence. The shortest multiplets
are 1

2 -BPS, with longer multiplets for smaller fractions. We refer, for instance, to [14,60,
61] for extensive discussions of the properties of supersymmetric branes in string theory.

The presence of the 2-form component of the central charge indicates that the theory
contains a membrane-like state (the M2-brane) carrying a conserved charge Q(2), while
the 5-form component indicates the presence of a 5-brane state (the M5-brane) carrying

28 Γ I1···Ir

αβ is the antisymmetrized product of r Gamma matrices normalized so that Γ 1···r = Γ 1 · · ·Γ r.
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a charge Q(5). The 2-form and 5–form in (B.1) are given by integration of the spatial
directions of the M2- and M5-branes over 2-cycles AI1I2 or 5-cycles AI1···I5 ,

ZI1I2 = Q(2)
∫

AI1I2

d2X, ZI1···I5 = Q(5)
∫

AI1···I5

d5X. (B.3)

The M2- and M5-branes are 1
2 -BPS states that preserve 16 of the 32 components of

supersymmetry. The 2-form charge couples to a 3-form potential (C(3)
I1I2I3

), with field
strength H(4) = dC(3). This is analogous to the manner in which the Maxwell 1-form
potential couples to a point-like electric charge (a 0-brane), and H(4) is the analogue
of the Maxwell field. The analogue of the dual Maxwell-field is a 7-form field-strength,
which is required by consistency with supersymmetry to take the form that H(7) =
dC(6) + C(3) ∧ dC(3), where C(6) is the 6-form potential that couples to the M5-brane.
In other words, the M5-brane couples to the magnetic charge that is dual to the electric
charge carried by the M2-brane. The BPS condition implies that the charge on the brane
is equal to its tension, T (r),

Q(r) = T (r). (B.4)

The integrals in (B.3) are well-defined when all the spatial directions of the branes
are wound around the compact cycles of the M-theory torus, T d+1, in which case the
state is point-like from the point of view of the D = 10− d non-compact dimensions (so
there are finite-mass point-like states due to wrapped M2-branes when d � 1 as well
as wrapped M5-branes when d � 4).29 Other kinds of 1

2 -BPS states also arise in the
toroidal background, such as point-like Kaluza–Klein (KK ) charges, which are modes of
the metric that contribute for any d � 0. The magnetic dual of a KK state is a KKM ,
which is described by a Taub–NUT geometry in four spatial dimensions, leaving six more
spatial dimensions that are interpreted as the directions on a six-brane. This has a finite
mass when wrapped around T 6, so it can arise when d � 5.

The complete spectrum of BPS states in an arbitrary toroidal compactification of type
IIA or IIB string theory can be deduced by considering the toroidal compactification of
the M-theory algebra (B.1) with appropriate rescalings of the moduli [70]. Combining
completely wrapped branes in various combinations leads to point-like 1

2 -, 1
4 - and 1

8 -BPS
states that are of importance in discussing the spectrum of black holes in string theory
[11,66]. This spectrum is of significance in classifying the orbits of instantons that de-
compactify to black hole states in one higher dimension associated with the parabolic
subgroup Pαd+1 . This will be sketched in the next appendix where we will make contact
with the discussion of black hole orbits in [15,16,48].

29 There is a huge literature of far more elaborate windings of such branes around supersymmetric cycles
in curved manifolds, in which case a fraction of the supersymmetry may or may not be preserved.
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Appendix C. Orbits of BPS instantons in the decompactification limit

A finite action instanton in D = 10 − d dimensions corresponds to an embedded
euclidean world-volume that can be one of three types:

(a) It has an action that does not depend on rd as rd → ∞ and so is also an instanton
of the (D + 1)-dimensional theory – this contributes only to the constant term in
this parabolic and does not appear in non-zero Fourier modes;

(b) It is a euclidean world-line of a (D + 1)-dimensional point-like BPS black hole with
mass MBH, which gives a term suppressed by a factor of e−2πrdMBH in the amplitude
in the limit rd/�D+1 → ∞;

(c) It has an action that grows faster than rd/�D+1 so it does not decompactify to give
either a particle state or an instanton in D + 1 dimensions.

Thus, the instantons of type (b) or (c) are the ones that contribute to the character
variety orbits in limit (i), which is associated with the parabolic subgroup that has Levi
factor GL(1) × Ed(R) in D = 10 − d dimensions, where the duality group is Ed+1(Z).

In order to illustrate this pattern the following subsections summarize the spectrum of
rd-dependent instantons (i.e., type (b) or (c)) in each dimension in the range 3 � D � 10
(i.e., 0 � d � 7). Their orbits and the conditions on the charges corresponding to
fractional BPS conditions are summarized in Table 5 on page 208. Where appropriate
we will also comment on the distinction between BPS states in dimension D + 1 and
BPS instantons in dimension D.

C.1. BPS orbits in D = 10

This degenerate case includes both 10A and 10B. Although the 10A theory does have
a decompactification limit to 11-dimensional M-theory, it has no instantons and there
is no duality symmetry group. There are 1

2 -BPS particle states in 10A consisting of
threshold bound states of D0-branes that are manifested as instantons in the D = 9
theory (as we will sketch in the next subsection). There is no decompactification limit
for the 10B theory. In this case there are no BPS particle states but there is a 1

2 -BPS
D-instanton, multiples of which only contribute to amplitudes in the string perturbation
limit. There are no 1

4 -BPS particle states in either 10A or 10B.

C.2. BPS instanton orbits in D = 9

This case may be obtained by considering M-theory on a 2-torus, T 2, where the
discrete duality group SL(2,Z) is identified with the group of large diffeomorphisms
of T 2.

There is a single type of BPS instanton that can be identified with the wrapping of the
euclidean world-line of a Kaluza–Klein state formed on one cycle around the second cycle



260 M.B. Green et al. / Journal of Number Theory 146 (2015) 187–309
of the 2-torus; in this sense we will refer in the following to a euclidean Kaluza–Klein state
wrapping a 2-cycle on T 2. Equivalently, this instanton can be described as a wrapped
euclidean world-line of a D0-brane of the 10A string theory, which is the parametrization
manifested in (4.24). In this case the unipotent radical consists of 2× 2 upper triangular
matrices with 1’s on the diagonal, and so the one-dimensional 1

2 -BPS orbit is simply

O1 = GL(1). (C.1)

C.3. BPS instanton orbits in D = 8

This case may be obtained by considering M-theory on a 3-torus, T 3, where the
discrete duality group is SL(3,Z) × SL(2,Z).

There is one type of instanton charge from wrapping the world-volume of the
M2-brane around the whole of T 3. In addition there are two types of instanton charges
from Kaluza–Klein states wrapping the 2-cycles that depend on the decompactification
radius r2 (a third Kaluza–Klein state wraps the two-cycle that does not depend on r2).
This gives a total of 3 types of BPS instanton charges of type (b), which are parametrized
in the same manner as the BPS particle states in D = 9 dimensions by a scalar v and
an SL(2) vector va. The charges of the 1

2 -BPS states are given by the condition vva = 0
and the 1

4 -BPS states by vva �= 0.
The 1

2 -BPS instantons are those for which vva = 0 [16], giving the union of the orbits

O1 = GL(1) (C.2)

for va = 0 and

O2 = SL(2)
R

(C.3)

for v = 0, arising from dense open orbits in each of the two factors of the duality group
SL(2) × SL(3). The bold face subscript, in this example and in the following, gives the
dimensions of the coset, dim(G1

G2
) = dim(G1) − dim(G2). The 1

4 -BPS instantons have
charges satisfying vva �= 0, giving the orbit

O3 = GL(1) × SL(2)
R

. (C.4)

C.4. BPS instanton orbits in D = 7

Consider M-theory on a 4-torus, T 4, with duality group SL(5,Z).
There are 4 BPS types of instanton from euclidean M2-branes wrapping 3-cycles, of

which 3 depend on the decompactification radius r3, and 6 types of instanton from the
Kaluza–Klein states wrapping 2-cycles, of which three depend on r3. This gives a total
of 10 types of BPS instanton charge, of which 6 depend on the decompactification radius
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r3 and are of type (b). These instantons carry charges associated with the corresponding
BPS states in D = 8 dimensions that may be parametrized by via transforming in the
3 × 2 of SL(3) × SL(2). The 1

2 -BPS states are given by the condition εabviavjb = 0 [16]
and the 1

4 -BPS states by εabviavjb �= 0. This determines two BPS instanton orbits given
in [48] by

1
2-BPS: O4 = SL(3,R) × SL(2,R)

GL(2,R) �R3 , (C.5)

1
4-BPS: O6 = SL(3,R) × SL(2,R)

SL(2,R) �R2 . (C.6)

C.5. BPS instanton orbits in D = 6

Consider M-theory on a 5-torus, T 5, with duality group Spin(5, 5,Z).
There are 10 ways of wrapping the M2-brane world-volume around 3-cycles, of which 6

depend on the decompactification radius r4, and 10 ways of wrapping euclidean Kaluza–
Klein states on 2-cycles, of which 4 depend on r4. This gives a total of 20 BPS instanton
types of charge, of which 10 depend on r4 (and so are of type (b)). These charges corre-
spond to the charges of BPS states in D = 8 dimensions and may be parametrized by
the rank-2 antisymmetric tensor v[ij] (i, j = 1, . . . , 5) that transforms in the 10 of SL(5).
The 1

2 -BPS states are given in [16] by the condition εijklmvijvkl = 0 and the 1
4 -BPS by

εijklmvijvkl �= 0. This determines two BPS instanton orbits given in [48] by

1
2-BPS: O7 = SL(5,R)

(SL(3,R) × SL(2,R)) �R6 , (C.7)

1
4-BPS: O10 = SL(5,R)

Spin(2, 3) �R4 . (C.8)

C.6. BPS instanton orbits in D = 5

Consider M-theory on a 6-torus, T 6, with duality group E6(Z).
There are 20 types of instanton from the M2-brane world-volume wrapping 3-cycles, of

which 10 depend on the decompactification radius, r5; 15 types from Kaluza–Klein states
wrapping 2-cycles, of which 5 depend on r5; 1 type of instanton from the world-volume
of the M5-brane world-volume wrapping the whole of T 6. This gives a total of 36 BPS
instanton charges, of which 16 depend on rb and are of type (b).

These 16 BPS charges are parametrized by a chiral spinor Sα (α = 1, . . . , 16) of
Spin(5, 5). Such a spinor satisfies the identity

∑10
m=1(SΓmS)× (SΓmS) = 0, where Γm

(m = 1, . . . , 10) are Dirac matrices with suppressed spinor indices. The configurations
are 1

2 -BPS if S satisfies the pure spinor condition, SΓmS = 0 [16]. A standard way to
analyze this condition is to decompose S into U(5) representations, 16 = 15⊕5̄−3⊕−101
(where the subscripts denote the U(1) charges), so it has components
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S =
(
s, va, v

ab
)
, a, b = 1, . . . , 5. (C.9)

The pure spinor (1
2 -BPS) condition, SΓmS = 0 is va = s−1

5! εabcdev
bcvde, which implies

that the 5 is not independent of the other U(5) representations, so the space of such
spinors has dimension 11. The 1

4 -BPS solution is the unconstrained spinor space (ex-
cluding SΓmS = 0) and has dimension 16. There are two BPS orbits given in [48] by

1
2-BPS: O11 = Spin(5, 5,R)

SL(5,R) �R10 , (C.10)

1
4-BPS: O16 = Spin(5, 5,R)

Spin(3, 4) �R8 . (C.11)

C.7. BPS instanton orbits in D = 4

Consider M-theory on a 7-torus, T 7, with duality group E7(Z).
There are 35 types of instanton charge from the M2-brane world-volume wrapping

3-cycles, of which 15 depend on the decompactification radius r6; 21 types of instanton
charge from Kaluza–Klein states wrapping 2-cycles, of which 6 depend on r6; 7 types of
instanton charge from the M5-brane world-volume wrapping 6-cycles, of which 6 depend
on r6. This gives a total of 63 types of BPS instanton charge, of which 27 depend on r6.

The distinct instanton charges are parametrized by the fundamental representation,
qi (i = 1, . . . , 27), of E6 and lead to 1

2 -, 1
4 - or 1

8 -BPS configurations depending on the
following conditions on the E6 cubic invariant I3 =

∑
1�i,j,k�27(I3)ijkqiqjqk [16]

1
2-BPS: I3 = 0, ∂I3

∂qi
= 0, ∂2I3

∂qi∂qj
�= 0, (C.12)

1
4-BPS: I3 = 0, ∂I3

∂qi
�= 0, (C.13)

1
8-BPS: I3 �= 0. (C.14)

Clearly the first of these conditions (the 1
8 -BPS condition) is of dimension 27. The other

conditions may be analyzed by decomposing the 27 of E6 into SO(5, 5)×U(1) irreducible
representations, 27 = 14 ⊕ 10−2 ⊕ 161. This means that qi decomposes as

qi =
(
s, vm, Sα

)
, (C.15)

where s is a scalar, vm is an SO(5, 5) vector of dimension 10 and Sα is a spinor of di-
mension 16 (the U(1) charges have been suppressed). The cubic invariant I3 decomposes
as I3 = 10−2 ⊗ 10−2 ⊗ 14 ⊕ 161 ⊗ 161 ⊗ 10−2 [16], which implies that

I3 = sv · v + (SΓS) · v, (C.16)
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where v · v is the SO(5, 5) (norm)2 of the vector v, and (SΓS) · v is the SO(5, 5) scalar
product between the vector SΓmS and vm.

The 1
4 -BPS solution reduces to the condition

sv · v + (SΓS) · v = 0, (C.17)

with non-vanishing derivative with respect to s, vm and Sa. Therefore the solution is
given by the 26-dimensional space

(
qi
)

1
4 -BPS =

(
−(v · v)−1(SΓS) · v, vm, Sα

)
. (C.18)

The 1
2 -BPS condition implies the following conditions

v · v = 0, (C.19)(
SΓmS

)
+ svm = 0, (C.20)(

SΓm
)
a
vm = 0, (C.21)

which are solved by vm = SΓmS (using the relation (SΓmS)(SΓmS) = 0). The 1
2 -BPS

solution is therefore given by the 17-dimensional solution

(
qi
)

1
2 -BPS =

(
s, SΓmS, Sa

)
. (C.22)

To summarize, in limit (i) the BPS instanton orbits in D = 4 are given in [48] by

1
2-BPS: O17 = E6

Spin(5, 5) �R16 , (C.23)

1
4-BPS: O26 = E6

Spin(4, 5) �R16 , and (C.24)

1
8-BPS: O27 = GL(1) × E6

F4(4)
. (C.25)

The charges in the 1
4 -BPS orbit can be generated by applying E6(Z) transformations to a

2-charge instanton corresponding to a null vector in the 27-dimensional BPS state space.
The charges in the 1

8 -BPS orbit can be generated from a 3-charge instanton corresponding
to space-like or time-like vectors with I3 �= 0 in the 27-dimensional BPS state space (note
that, unlike [15] we have included the scale factor GL(1) in the definition of the orbit,
which is of dimension 27). The last orbit of dimension 27 is the 1

8 -BPS orbit of black
hole states with I3 �= 0, and entropy proportional to

√
|I3|.
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C.8. BPS instanton orbits in D = 3

Consider M-theory on an 8-torus T 8 with duality group E8(Z).
There are 56 types of instanton charge from M2-brane world-volumes wrapping

3-cycles, of which 21 depend on the decompactification radius, r7; 28 types of instanton
charge from Kaluza–Klein states wrapping 2-cycles, of which 7 depend on r7; 28 types
of instanton charge from M5-branes wrapping 6-cycles, of which 21 depend on r7. In
addition there are 8 types of instantons that depend on r7 due to KKM world-volumes
wrapping 8-cycles, which are distinguished by labeling which cycle corresponds to x#

(the fiber coordinate in (3.1)). This gives a total of 120 types of instanton charges, of
which 57 depend on r7.

The connection with the black hole states in D = 4 dimensions is slightly subtle.
For one of the 8 KKM instantons x# is identified with the euclidean time dimension
and gives a vanishing contribution upon decompactification to D = 4 dimensions (the
large-r7 limit), as discussed following (3.2). It is therefore of type (c) and does not cor-
respond to a black hole state in D = 4 dimensions. This accounts for the non-abelian,
Heisenberg, entry in the unipotent radical for the parabolic subgroup, GL(1)×E7, of E8.
The non-zero Fourier modes in limit (i) correspond to the 56 abelian components of the
unipotent radical which match the charges of BPS states in D = 4. These are in the
fundamental representation, qi (i = 1, . . . , 56), of E7. The 1

2 -, 1
4 - and 1

8 -BPS configu-
rations are classified by the following conditions on the quartic symmetric polynomial
invariant I4 [16,40]

1
2-BPS: I4 = ∂I4

∂qi
= ∂2I4

∂qi∂qj

∣∣∣∣
AdjE7

= 0, ∂3I4
∂qi∂qj∂qk

�= 0, (C.26)

1
4-BPS: I4 = 0, ∂I4

∂qi
= 0, ∂2I4

∂qi∂qj

∣∣∣∣
AdjE7

�= 0, (C.27)

1
8-BPS: I4 = 0, ∂I4

∂qi
�= 0, (C.28)

1
8-BPS: I4 > 0. (C.29)

The following is a summary of the BPS orbits [15,16,48]

1
2-BPS: O28 = E7

E6(6) �R27 , (C.30)

1
4-BPS: O45 = E7

Spin(5, 6) � (R32 �R) , (C.31)

1
8-BPS: O55 = E7

F4(4) �R26 , (C.32)

1-BPS: O56 = R+ ×E7
. (C.33)
8 E6(2)
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The 1
2 -BPS orbit can be obtained by acting on a single charge, the 1

4 -BPS orbit can
be obtained by acting on a 2-charge system, and the first 1

8 -BPS (with dimension 55)
has zero entropy and can be obtained by acting on a 3-charge system. The last orbit of
dimension 56 is the 1

8 -BPS orbit of black hole states with I4 > 0, which have entropy
proportional to

√
I4; it can be obtained by acting on a 4-charge system in the 56 rep-

resentation of E7 as detailed in [48]. We have included the overall scale factor in the
definition of the orbit. Another orbit of dimension 56 is (R−×E7)/E6(2) that has I4 < 0
and does not correspond to a BPS solution at all [15,16]. All these charge orbits can
be understood in terms of the superpositions of branes at angles and constructed from
combinations of (D0, D2, D4, D6) [2].

Note the presence of the 33-dimensional non-abelian group in the stabilizer of O45.
It is a Heisenberg group isomorphic to the unipotent radical of the maximal parabolic
subgroup Pα1 = Lα1Uα1 of E7. This can be seen directly using the basepoint of this orbit
given in [51, §5.9.8]. Different stabilizer groups of the same dimension have appeared in
the physics literature listed.

Appendix D. Euclidean Dp-brane instantons

We here sketch the background to the analysis of the euclidean Dp-brane instan-
ton configurations that contribute in the perturbative limit of string theory discussed
in Section 3.4, based on an analysis of supersymmetry conditions on the embeddings
of world-sheets on the string theory torus Td. Contributions from wrapped NS5-brane
world-sheets also arise for d = 6, 7 and KK monopoles for d = 7.

Wrapping a euclidean Dp-brane world-volume of either ten-dimensional type II string
theory on a (p+1)-cycle leads to an instanton in the transverse R1,8−p space–time. This
1
2 -BPS condition preserves a linear combination of the supersymmetries that act on the
left-moving and right-moving modes of a closed superstring. This leads to the following
constraint on the supersymmetry parameters,

ε̃ =
p+1∏
i=1

Γ iε (D.1)

where ε and ε̃ are chiral sixteen-component SO(1, 9) spinors parametrizing the left-
and right-moving supersymmetries and Γ i are the usual SO(1, 9) Gamma matrices that
satisfy the Clifford algebra {Γ i, Γ j} = −2ηij , where η is the Minkowski metric with
signature (− + · · ·+).

When compactifying on a d-torus space–time becomes R1,9−d × Td and an SO(1, 9)
spinor decomposes into a sum of bispinors, ε = ε̂⊗ η, where ε̂ is an SO(1, 9 − d) spinor
and η is an SO(d) spinor. The condition (D.1) becomes a condition relating η and η̃.
T-duality transforms the Γ matrices in (D.1) by the action of the spin group SO(d, d),
R−1∏

i Γ
iR. This, in general, transforms a wrapped Dp-brane into a Dq-brane so that

the supersymmetry conditions
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η̃ =
q+1∏
i=1

Γ iη =
p+1∏
i=1

Γ iη, (D.2)

are satisfied. As remarked in [7], this means the two spinors
∏q+1

i=1 Γ iε and
∏p+1

i=1 Γ iε

must be in the same Spin(d, d) orbit.
A euclidean Dp-brane can be wrapped over cycles of a d-torus of dimension 0 �

p + 1 � d with p ≡ 0 (mod 2) for type IIA superstring theory and p ≡ 1 (mod 2) for
type IIB. These instanton configurations fill out a chiral spinor representation, SA, of
dimension

∑
p≡s (mod 2)

(
d

p+1
)

= 2d−1, with s = 0 or 1, of the T-duality group SO(d, d).
The BPS condition on Dp-branes wrapping a torus in (D.2) can be interpreted as a
condition on the spinor SA. The various brane configurations are then classified by orbits
of SA under the action of the double cover Spin(d, d) of the T-duality group SO(d, d).
In this manner the spinor parametrizes the commuting set of instanton charges in the
perturbative regime.

For d = 6 or d = 7 there are also contributions from NS5-branes wrapping six-cycles.
Such NS5-brane configurations give contributions to the instanton charges that do not
commute with those of the wrapped Dp-branes. In other words, the Dp-brane charges in
the spinor representation parametrize the u−1 component part of the unipotent radical U
(the abelian part) for the standard parabolic subgroup Pα1 of Ed+1 and the NS5-brane
charge are in the derived subgroup [U,U ] component part of the unipotent radical for
the standard parabolic subgroup Pα1 of Ed+1 in Table 3 on page 206. For d = 6 this
provides one extra charge configuration since there is a unique six-cycle. For d = 7
there are 7 distinct six-cycles so there are 7 NS5-brane charges. In addition there are
7 stringy KKM instantons. Recall that these arise from Kaluza–Klein monopoles in
ten-dimensional string theory in which the fiber direction x# is identified with a circle
in T7 (whereas the D6-brane is seen in M-theory as a KKM formed by identifying x#

with the M-theory circle).
Although it is very complicated to describe how all possible compactifications of eu-

clidean Dp-branes fit into different spinor orbits, the following discussion will indicate
the procedure. For this purpose it is convenient to start in ten dimensions by defining
chiral spinors of the complexified group, SO(10,C) (complexification does not affect the
BPS classification), by means of the raising and lowering operators,

bk+1 = 1
2
(
Γ 2k+1 − iΓ 2k), b†k+1 = −1

2
(
Γ 2k+1 + iΓ 2k), 0 � k � 4, (D.3)

so that bk = (b†k) and {bk, bl} = δlk, and {bk, bl} = {bk, bl} = 0. A ground state |−−−−−〉
is defined so that bk| − − − −−〉 = 0, for 1 � k � 5. Acting with b1 gives the state
b1| − −−−−〉 = | + −−−−〉, with analogous states created by any linear combination
of the br’s, giving a total of 25 states with + or − labeling each of the 5 positions.
These states are graded according to whether there an even or odd number of + signs.
There are therefore two chiral spinor representations of SO(10,C) of dimension 16. Upon
compactification on Td the spinor η in (D.2) is represented as a state of the Fock space
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built by acting with bi on the ground state |−5〉. It is convenient to introduce the notation
ei1···ir := bi1 · · · bir |−d/2〉 and e∗i1···ir := bi1 · · · bir |+d/2〉, which was used in Section 3.4.1.

Spinors that are related by a continuous Spin(d, d) transformation exp(
∑

i,j xijγ
ij)

are associated with D-brane configurations that are equivalent under T-duality. Each or-
bit listed in Section 3.4.1 is characterized by a representative S0. Therefore an SO(d, d)
pure spinor is equivalent to the ground state of the Fock space that we can denote
by 1, corresponding to a pure spinor defining a D-brane wrapping a supersymmetric
cycle. The notation ei1···ir corresponds to a D-brane configuration wrapping the direc-
tions {i1, . . . , ir} in Td and e∗i1···ir a D-brane configuration wrapping the complementary
directions to {i1, . . . , ir} in Td.

Upon compactifying on a torus of dimension d � 3, all possible brane world-volumes
are parallel, up to identification under Spin(d, d,Z), and the condition (D.1) ensures
in this case that all instanton configurations are 1

2 -BPS. These are p = 0 and p = 2
wrappings in type IIA, and p = −1 and p = 1 in type IIB.

The theory compactified on a 4-torus T4 in type IIA (for instance), includes in-
stantons due to wrapping D0-brane world-lines on any of the four 1-cycles and
D2-brane world-volumes on any of the four 3-cycles. These configurations in general
fill out an eight-dimension chiral spinor representation of SO(4, 4), SA =

∑4
i=a vab

a +∑4
a,b,c=1 vabcb

abc/3!. This parametrization makes explicit the action of SL(4) on va or
ua = εabcdvabc (or SU (4) in the complexified case).

With a single D0-brane or a single D2-brane world-volume wrapped on T4 the condi-
tion (D.1) is always satisfied, and the configuration is 1

2 -BPS. However, wrapping both a
D0-brane world-line and a D2-brane world-volume results in further breaking of super-
symmetry unless va and ua satisfy condition (D.2). It is easily seen that this condition is
satisfied for all η = | ±±〉 if v ·u = 0. But if u · v �= 0 only η = |+±〉 satisfy the solution
which is 1

4 -BPS. These two conditions are invariant under the action of the T-duality
group Spin(4, 4) acting on a spinor SA. The 1

2 -BPS condition corresponds to imposing
the pure spinor constraint S · S = 0 while the 1

4 -BPS corresponds to the complemen-
tary condition, S · S �= 0, which defines the configuration with the D0-brane world-line
orthogonal to the D2-brane world-volume.

Extensions of these arguments lead to a classification of all BPS configurations of
euclidean Dp-brane world-volumes that are completely wrapped on a torus. The orbits of
such configurations are obtained by imposing generalizations of the pure spinor constraint
on the SO(d, d) spinor that parametrizes the orbits. An orbit which preserves a smaller
fraction of supersymmetry is larger and is associated with a spinor satisfying weaker
constraints. The resulting orbits are described in Section 3.4.1.

Appendix E. Properties of lattice sums

This appendix and Appendices F and G together concern properties of lattice sums
related to the Fourier expansions of certain Eisenstein series that appear in the coefficient
functions for the cases D = 7 and D = 6 (i.e., for SL(5) and Spin(5, 5), respectively).
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Those properties will later be used in Section 4 and Appendices H.2–H.3. The main
result of the present appendix, Proposition 4.1, is an integral representation for the
SL(d) series30 E

SL(d)
β2,s

. The series ESL(d)
β2,s

will later be related to the Spin(d, d) Eisenstein
series E

Spin(d,d)
α1;s in Proposition G.1 and (G.13).

E.1. Exponential sums of lattice norms

Let g ∈ GL(d,R) and consider the set of points{
mg ∈ Rd

∣∣ m ∈ Zd
�=0
}
, (E.1)

where m is thought of as a row vector. This set of points is unchanged if g is replaced
by γg for any γ ∈ GL(d,Z), so we may assume that g lies in a fixed fundamental
domain for GL(d,Z)\GL(d,R). A standard result in reduction theory asserts that every
fundamental domain is contained in a Siegel set, so we may also assume that g = nak

where n is unit upper triangular and lies in a fixed compact set, k lies in O(d,R), and
a is a diagonal matrix with positive diagonal entries a1, a2, . . . such that each ai/ai+1

is bounded below by an absolute constant (to be explicit,
√

3
4 [45]). Therefore a−1na

and its inverse range over a fixed compact subset of N , which means that the operator
norms of both are bounded by a constant that depends only on the dimension d. As a
consequence ‖mg‖ = ‖mnak‖ = ‖mna‖ = ‖ma · a−1na‖ is bounded above and below by
multiples of ‖ma‖:

c−‖ma‖2 � ‖mg‖2 � c+‖ma‖2, (E.2)

where the constants c− and c+ depend only on d. Among other things, this implies the
norms of vectors in an arbitrary lattice are crudely similar to those of a dilation of the
Zd lattice.

Define the θ-function

S(g, t) :=
∑

m∈Zd
�=0

e−t‖mg‖2
. (E.3)

The first inequality in (E.2) shows this sum is absolutely convergent and bounded by∑
m�=0

e−tc−(m2
1a

2
1+···+m2

da
2
d) = θ

(
tc−a

2
1
)
· · · θ

(
tc−a

2
d

)
− 1, (E.4)

in terms of the Jacobi θ-function θ(x) =
∑

n∈Z e
−n2x. The Jacobi θ-function satisfies the

bounds θ(x) = 1 + O(e−x) for x > 1, and θ(x) = O(x−1/2) for x � 1. Therefore

30 The labeling βi of the simple roots of SL(d) here follows the conventional labeling as illustrated in Fig. 4
for the SL(5) case.
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S(g, t) = O
(
e−tc−a2

d
)
, t >

(
4
3

)d/2(
c−a

2
d

)−1 (E.5)

and

S(g, t) = O

(
t−d/2

a1 · · · ad

)
, t �

(
3
4

)d/2(
c−a

2
1
)−1

, (E.6)

with implied constants that depend only on d. If g is fixed we can use the fact that
θ′(x) < 0 to bound the t-dependence of S(g, t) by

S(g, t) �
{
e−tc−(g), t > 1,
t−d/2, t < 1,

(E.7)

where both c−(g) and the implied constant in the �-inequality depend on g.

E.2. A constrained lattice sum over pairs

Let τ = τ1 + iτ2 ∈ H and define

G(τ,X) :=
∑

[m
n

]
∈M(2)

2,d(Z)

e−πτ−1
2 (m+nτ)X(m+nτ̄)t , (E.8)

where in the usual physics notation X = G + B, with G a positive definite symmetric
d× d matrix and B an antisymmetric d× d matrix, and M(i)

2,d represents 2× d matrices
of rank i. This contribution is the rank 2 part of the lattice sum Γ(d,d) for even self-dual
Lorentzian lattices. It is necessary to use this modification of Γ(d,d) in order to resolve
some convergence issues in formal calculations involving Γ(d,d). However, the constraint
complicates applications of Poisson summation to it in the following appendices.

We next analyze the convergence of this sum and give estimates. Note that because
G = Gt and B = −Bt

(m + nτ)X(m + nτ̄)t = (m + nτ1)G(m + nτ1)t + τ2
2nGnt − 2iτ2mBnt. (E.9)

Consider the sum ∑
m∈Zd

e−πτ−1
2 (m+x)G(m+x)t , (E.10)

which is absolutely convergent and represents a continuous, periodic, and hence bounded
function of a row vector x ∈ Rd. By Poisson summation it is equal to

τ
d/2
2 (detG)−1/2

∑
e2πim̂·xe−πτ2m̂G−1m̂t

, (E.11)

m̂∈Zd
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where m̂ is thought of as a row vector. Use (E.9) to write (E.8) as

G(τ,G + B) =
∑
n �=0

e−πτ2nGnt
′∑
m

e−πτ−1
2 (m+nτ1)G(m+nτ1)te−2πimBnt

, (E.12)

where the prime indicates m is not collinear to n. The interior sum is bounded by (E.10)
with x = nτ1 and hence

G(τ,G + B) � τ
d/2
2 (detG)−1/2

∑
n �=0

e−πτ2nGnt ∑
m̂∈Zd

e−πτ2m̂G−1m̂t

. (E.13)

If we write G = eet, e ∈ GL(d,R), then

G
(
τ, eet + B

)
� τ

d/2
2 (det e)−1S(e, πτ2)

[
1 + S

((
e−1)t, πτ2)] (E.14)

in terms of (E.3).
The earlier estimates (E.5)–(E.6) give bounds on the last two factors of (E.14). This

shows that G(τ,G + B) decays rapidly as τ2 → ∞. Since replacing τ by τ + 1 or by
−1/τ in (E.8) is tantamount to changing variables (m,n) �→ (m + n, n) or (−n,m),
respectively, G(τ,G + B) is thus automorphic in τ . Consequently, the integral

I(s,G + B) :=
∫

SL(2,Z)\H

ESL(2)
s (τ)G(τ,G + B) d

2τ

τ2
2

(E.15)

is well-defined as a meromorphic function of s, with poles contained among the poles of
the Eisenstein series E

SL(2)
s (τ).

Proposition E.1. The integral I(s, uG) decays rapidly as u → ∞, and slower than some
polynomial in u > 0 as u → 0. These estimates are uniform for G fixed and Re s ranging
over a finite interval.

Proof. The Eisenstein series satisfies the bound E
SL(2)
s (τ1 + iτ2) � τz2 over the standard

fundamental domain for SL(2,Z)\H, where z = max{Re s,Re 1 − s} � 1/2 (this follows
from (4.15)–(4.17)). Since the upper bound (E.14) is independent of τ1,

I
(
s, ueet

)
� u−d/2(det e)−1

∞∫
√

3
2

τ
z+d/2−2
2 S(e, πτ2u)

[
1 + S

((
e−1)t, πτ2u−1)] dτ2. (E.16)

We now use the estimates in (E.7). As u → ∞, S(e, πτ2u) has exponential decay in τ2u,
whereas the bracketed term is O(ud/2τ

−d/2
2 ). Since the range of the τ2 integration is

bounded below, the rapid decay assertion of the proposition immediately follows.
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On the other hand, as u → 0 the bracketed term in (E.16) is bounded. After a change
of variables we are therefore left to showing that the integral

∞∫
√

3
2 πu

τ
z+d/2−2
2 S(e, τ2) dτ2 =

1∫
√

3
2 πu

τ
z+d/2−2
2 S(e, τ2) dτ2

+
∞∫
1

τ
z+d/2−2
2 S(e, τ2) dτ2 (E.17)

is bounded by a polynomial in u−1 as u → 0. Inserting the bounds from (E.7) this is

�
1∫

√
3

2 πu

τz−2
2 dτ2 +

∞∫
1

τ
z+d/2−2
2 exp

(
−c′τ2

)
dτ2 (E.18)

for some constant c′ depending on g, and clearly bounded by a polynomial in u−1. �
E.3. Unfolding the lattice sum at s = 0

The integral I(s,G + B) in (E.15) is well-defined for any value of s at which the
Eisenstein series E

SL(2)
s (τ) is holomorphic – in particular, this includes s = 0 where

E0(τ) is identically 1.

Proposition E.2.

I(0, G + B) =
∑

[m
n

]
∈SL(2,Z)\M(2)

2,d(Z)

e−2πimBnt e−2πDm,n,G

Dm,n,G
, (E.19)

where

Dm,n,G := det
([

m

n

]
G

[
m

n

]t)1/2

. (E.20)

Proof. Unfolding the lattice sum gives that

I(0, G + B) =
∫

SL(2,Z)\H

G(τ,G + B) d
2τ

τ2
2

=
∑

[m]∈SL(2,Z)\M(2) (Z)

∫
H

e−πτ−1
2 (m+nτ)(G+B)(m+nτ̄)t d

2τ

τ2
2
. (E.21)
n 2,d
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The unfolding is valid because of the absolute convergence of the series G(τ,G + B)
to a rapidly-decaying automorphic function in τ . The integral in the last line can be
computed as

∞∫
0

∫
R

e−πτ2nGnt−πτ−1
2 (mGmt+2τ1mGnt+τ2

1nGnt)e−2πimBnt

dτ1
dτ2
τ2
2

=
(
nGnt

)−1/2
∞∫
0

e−πτ2nGnt−πτ−1
2 D2

m,n,G(nGnt)−1
e−2πimBnt dτ2

τ
3/2
2

= e−2πDm,n,G

Dm,n,G
e−2πimBnt

(E.22)

using (E.9) and the formulas

∫
R

e−πτ−1
2 (a+2bτ1+cτ2

1 ) dτ1 =
√

τ2
c
e(b2−ac)π/(τ2c), c > 0, (E.23)

and

∞∫
0

e−πaτ2−πbτ−1
2

dτ2

τ
3/2
2

= b−1/2e−2π
√
ab, a, b > 0. � (E.24)

Therefore for Re s sufficiently large we can compute the following integral (which
converges by Proposition E.1) as

∞∫
0

I(0, uG)us−1 du

=
∑

[m
n

]
∈SL(2,Z)\M(2)

2,d(Z)

∞∫
0

e−2πuDm,n,G

Dm,n,G
us−2 du

= (2π)1−sΓ (s− 1)
∑

[m
n

]
∈SL(2,Z)\M(2)

2,d(Z)

det
([

m

n

]
G

[
m

n

]t)−s/2

. (E.25)

Proposition 4.1 is now equivalent to the identification of the right-hand side of (E.25)
with the multiple of the SL(d) Eisenstein series ESL(d)

β2;s (e) given by Audrey Terras in [68,
Lemma 1.1]. For completeness (and because the mechanism will be used later) we
shall briefly sketch her argument. Since every relative prime vector in Zd is the bot-
tom row of a matrix in SL(d,Z), every element

[
v1
]
∈ M(2)

2,d(Z) can be factored as
v2
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[
v1
v2

]
=
[ x a

0d−1 gcd(v2)
]
γ for some non-zero vector x ∈ Zd−1, a ∈ Z, and γ ∈ SL(d,Z),

where 0d−1 denotes the (d− 1)-dimensional zero vector. Thus[
v1

v2

]
γ−1 =

(
1 0
0 gcd v2

)(
1 a

0 1

)(
gcdx 0

0 1

)[
x/ gcd(x) 0

0d−1 1

]
. (E.26)

Since x/ gcd(x) is a relatively prime vector in Zd−1 it is the bottom row of a matrix in
SL(d−1,Z), and so

[
v1
v2

]
can be factored as the product of 2×2 upper triangular integer

matrix with positive diagonal entries, times a 2× d matrix which forms the bottom two
rows of a matrix in SL(d,Z). By adding integer multiples of the bottom row of this
matrix to the row above it, we can reduce b (mod gcd(v2)) and hence assume that this
2 × 2 matrix lies in the set S+ :=

{(
d1 b
0 d2

)
| d1, d2 �= 0, 0 � b < d2

}
.

We now claim that the coset space SL(2,Z)\M(2)
2,d(Z) in the sum (E.25) is in bijection

with products of the form γ1γ2, where γ1 ∈ S+ and γ2 are the bottom two rows of a fixed
set of coset representatives for Pβ2(Z)\SL(d,Z). Recall that the latter is the quotient by
GL(2,Z) of all possible bottom two rows of matrices in SL(d,Z). It is a standard result in
the theory of Hecke operators that every right GL(2,Z) translate of an element of S+ is
left SL(2,Z) equivalent to some element of S+ (this is because we allow for the possibility
that d1 < 0). Thus the previous paragraph shows that every coset in SL(2,Z)\M(2)

2,d(Z)
has a factorization of this asserted form, and it remains to show uniqueness. After right
multiplying by matrices in SL(d,Z) it suffices to show that if(

d1 b

0 d2

)[
w1

w2

]
=
(
p q

r s

)(
d′1 b′

0 d′2

)[
0d−2 1 0
0d−2 0 1

]
(E.27)

for some d1, d
′
1 �= 0, 0 � b < d2, 0 � b′ < d′2,

( p q
r s

)
∈ SL(2,Z), and

[
w1
w2

]
which are

the bottom two rows of one of these coset representatives for Pβ2(Z)\SL(d,Z), then(
d1 b
0 d2

)
=
(

d′
1 b′

0 d′
2

)
,
( p q
r s

)
=
( 1 0

0 1

)
, and

[
w1
w2

]
=
[0d−2 1 0
0d−2 0 1

]
. Indeed, (E.27) implies that all

but the last two entries of w1 and w2 vanish, so that
[
w1
w2

]
are the bottom two rows of a

matrix in Pβ2(Z) and hence equal to the representative
[0d−2 1 0
0d−2 0 1

]
of its equivalence class

in Pβ2\SL(d,Z). Then (E.27) reduces to the identity
(

d1 b
0 d2

)
=
( p q
r s

) ( d′
1 b′

0 d′
2

)
. Since

d2, d
′
2 > 0 and both sides have the same determinant, d1 and d′1 have the same sign.

Comparing the first columns then shows that r = 0, p = 1, and d1 = d′1. Consequently
s = 1 and d2 = d′2. Finally, since 0 � b, b′ < d2 differ by qd2 they must be equal and
q = 0. This proves the claim.

Therefore the range of summation in (E.25) can be replaced by Pβ2(Z)\SL(d,Z), at the
cost of multiplying the overall expression by

∑
d1,d2>0 d2(d1d2)−s =

∑
n>0 σ1(n)n−s =

ζ(s)ζ(s−1). This, along with definition (2.12) and standard Γ -function identities results
in the first of the two equivalent formulas in (4.57).

Since the definition (E.15) of I(0, uG) is an integral of a θ-function over the modular
fundamental domain, Proposition 4.1 indicates that the series E

SL(d)
β2;s (e) is the Mellin

transform of a θ-lift of the constant function.
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Appendix F. Identification of the Spin(d, d) Epstein series with a lattice sum

In this appendix we prove that Langlands’ definition of the maximal parabolic Eisen-
stein series ESpin(d,d)

α1;s as a sum over group cosets is equivalent to the lattice sum definition
used in [1,55]. It is easier to work directly with the group SO(d, d,R), which is quotient
of Spin(d, d,R) by an order two subgroup of its center. We explained in (2.13) that
E

Spin(d,d)
α1;s is trivial on this subgroup and hence can be computed through E

SO(d,d)
α1;s .

Let wn denote the anti-diagonal identity matrix obtained by reversing the columns of
the n× n identity matrix. Define groups

G = SO(d, d,R) =
{
g ∈ SL(2d,R)

∣∣ gw2dg
t = w2d

}
,

Γ = SO(d, d,Z) = SO(d, d,R) ∩ SL(2d,Z), (F.1)

and

P = Pα1 =

⎧⎨⎩
⎛⎝ a � �

0 B �

0 0 c

⎞⎠ ∈ G
∣∣∣ a, c ∈ R∗, B ∈ SO(d− 1, d− 1)(R)

⎫⎬⎭ . (F.2)

Proposition F.1. With the above definitions

(i) If g1, g2 ∈ G = SO(d, d,R) have the same bottom row, then there exists some p ∈ P

such that g1 = pg2.
(ii) The bottom row v of a matrix in G = SO(d, d,R) is orthogonal to its reverse w2dv.

In particular, if v = [mn] then m ⊥ wdn.
(iii) The map from a matrix to its bottom row gives a bijection from (Γ ∩ P )\Γ to

{v ∈ Z2d | gcd(v) = 1 and v ⊥ w2dv}/{±1}.

Proof. Let e1, . . . , e2d denote the standard basis vectors of R2d. In part (i), the bottom
row of the matrix g1g

−1
2 is e2dg1g

−1
2 = e2d, as can be seen by multiplying both sides

by g2. Thus g1g
−1
2 has bottom row e2d; membership of such a matrix in G forces its first

column to equal a multiple of e1, and so g1g
−1
2 lies in P . Statement (ii) is a consequence

of the defining property of G (since the bottom right entry of w2d is zero).
Because of parts (i) and (ii) and the fact that the bottom row of a matrix in Γ ∩P is

±e2d, part (iii) reduces to showing that every such vector v is the bottom row of some
matrix γ in Γ . The calculation(

g1
g2

)(
wd

wd

)(
gt1

gt2

)
=
(

g1wdg
t
2

g2wdg
t
1

)
(F.3)

shows that the matrix (
g̃

)
∈ G, with g̃ = wd

(
gt
)−1

wd, (F.4)

g
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for any g ∈ GL(d,R). Since g can be taken to be a matrix in GL(d,Z) with an arbitrary
relatively prime bottom row, the proposition reduces to the case when v has the form
v = [mn], where m,n ∈ Zd and n has the special form [0 0 · · · 0 k] (to see this, replace
v by v

(
g̃
g

)
). The orthogonality condition in part (ii) shows that we may furthermore

take m to have the form [0 a2 · · · ad] for integers a2, . . . , ad. Consider g =
(
A b

1

)
∈

GL(d,Z), so that g̃ =
(

1 �

Ã

)
. Multiplying on the right by

(
g̃
g

)
has the effect of replacing

[a2 a3 · · · ad] by [a2 a3 · · · ad]Ã. Since Ã can be an arbitrary matrix in GL(d− 1,Z), we
may arrange that [a2 a3 · · · ad]h = [0 0 · · · 0 r] for some integer r. The condition that
the bottom row be relatively prime now states that gcd(r, k) = 1. Such a matrix exists
because of the homomorphism of SL(2,R) into G which sends a matrix

(
a b
r k

)
to one

with entries a on the 1st and d-th diagonal entries, entries k on the d + 1-st and 2d-th
diagonal entries, −b in the (1, d+1) position, b in the (d, 2d) position, −c in the (d+1, 1)
position, and c in the (2d, d) position. �
Proposition F.2. Let h ∈ SO(d, d,R) and write hht =

(
H1 H2
Ht

2 H3

)
, where H1, H2, and H3

are d× d matrices. Then the maximal parabolic Eisenstein series E
SO(d,d)
α1;s (h) associated

to the first node (i.e., “vector node”) of the Dd Dynkin diagram is given by

2ζ(2s)ESO(d,d)
α1;s (h) =

∑
m,n∈Zd

m⊥wdn
(m,n) �=(0,0)

(
mH1m

t + 2mH2n
t + nH3n

t
)−s (F.5)

for Re s large (where the sum is absolutely convergent). The same formula holds for
E

Spin(d,d)
α1;s (h′), where h′ ∈ Spin(d, d,R) projects to h ∈ SO(d, d) under the covering map.

Proof. The SO(d, d) Epstein series is formed by averaging the function f(g) = e2sω1(H(g))

over g = γh, γ ∈ (Γ ∩ P )\Γ . Recall that f(pgk) = f(g) for all p ∈ P such that each
diagonal block a, B, and c in (F.2) has determinant ±1, and for all k in the maximal
compact subgroup of G. Calculation of f thus reduces via the Iwasawa decomposition
to the case when g is diagonal, in which case f(g) equals the −2s power of the bottom
right entry of g. The bottom right entry of the Iwasawa factor of g must be the norm of
g’s bottom row, because of these invariance properties. Hence f(γh) is the norm of the
bottom row of γh to the −2s power. If v = [mn] ∈ Z2d is the bottom row of γ, then the
norm is the squareroot of vhhtvt = mH1m

t + 2mH2n
t + nH3n

t. Thus E
SO(d,d)
α1;s is given

by a sum as stated, but with a gcd and modulo ±1 condition which, when removed,
results in the factor 2ζ(2s) in (F.5). �

For later reference we remark that since w2
d = 1 we can present these Dd Epstein

series as

2ζ(2s)ESO(d,d)
α ;s

(
h′) = 2ζ(2s)ESO(d,d)

α ;s (h)

1 1
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=
∑

m,n∈Zd

m⊥n
(m,n) �=(0,0)

(
mH1m

t + 2mH2wdn
t + nwdH3wdn

t
)−s (F.6)

for Re s large. Also we note that the condition for a matrix of the form
(

Id X
Id

)
to lie in

G = SO(d, d,R) is that(
Xwd wd

wd

)
=
(
Id X

Id

)(
wd

wd

)
=
(

wd

wd

)(
Id

−Xt Id

)
=
(
−wdX

t wd

wd

)
, (F.7)

i.e., that Xwd is antisymmetric.

Appendix G. A theta lift between SL(d) and Spin(d, d) Eisenstein series

In Proposition 4.1 we stated a relation between the modular integral I(s,G) and the
non-Epstein Eisenstein series E

SL(d)
β2;s . In this section we see another relation (Proposi-

tion G.1) to the Epstein Eisenstein series EDd

α1;s+d/2−1, where Dd is written as a shorthand
for statements that apply both to SO(d, d) and Spin(d, d). Thus both can be thought
of as θ-lifts from the usual non-holomorphic SL(2,Z) Eisenstein series. We shall do this
for Re s large, the range of absolute convergence of the Eisenstein series, and then mero-
morphically continue to s ∈ C.

Unfolding the Eisenstein series in (E.15) gives the formula

I(s,G + B) =
∞∫
0

1∫
0

G(τ1 + iτ2, G + B) dτ1
dτ2

τ2−s
2

. (G.1)

This integral is absolutely convergent for Re s large by (E.14) and the bounds given
in (E.7). We write G = eet and introduce the notation ‖v‖2 = vv̄t if v is a complex row
vector. Using (E.9) we write

G
(
τ1 + iτ2, ee

t + B
)

=
∑
n �=0
m∈Zd

exp
(
−πτ−1

2
∥∥(m + nτ1)e

∥∥2 − πτ2‖ne‖2 − 2πimBnt
)

−
∑
n �=0

m∈Zd∩Qn

exp
(
−πτ−1

2
∥∥(m + nτ1)e

∥∥2 − πτ2‖ne‖2), (G.2)

the second sum including all m ∈ Zd which are parallel to n (a condition which forces
mBnt = 0). Accordingly break up I(s, eet +B) as I1(s, eet +B)− I2(s, eet +B), where
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I1(s, eet+B) and I2(s, eet+B) represent the integral (G.1) with G(τ,G+B) replaced by
the sums in the first and second lines of (G.2), respectively. Both integrals are absolutely
convergent and can be interchanged with their respective summations for Re s sufficiently
large. We first compute

I2(s,G + B)

=
∑
n �=0

∞∫
0

1∫
0

∑
m∈Zd∩Qn

exp
(
−πτ−1

2
∥∥(m + nτ1)e

∥∥2 − πτ2‖ne‖2) dτ1 dτ2

τ2−s
2

. (G.3)

Since n is non-zero and m is a multiple of n, we change variables by subtracting this
multiple from τ1 to eliminate the occurrence of m in the integrand. Doing so unfolds the
τ1 integration from [0, 1] to R by gathering together all m which are Zn-translates of
each other, though we must take into account the fact that there are gcd(n) orbits of
{m ∈ Zd ∩Qn} under m �→ m + n:

I2(s,G + B) =
∑
n �=0

gcd(n)
∞∫
0

∫
R

exp
(
−π

(
τ2 + τ2

1 τ
−1
2
)
‖ne‖2) dτ1 dτ2

τ2−s
2

=
∑
n �=0

gcd(n)
∞∫
0

exp
(
−πτ2‖ne‖2) √τ2

‖ne‖
dτ2

τ2−s
2

= π
1
2−sΓ

(
s− 1

2

)∑
n �=0

gcd(n)‖ne‖−2s. (G.4)

We now evaluate this last sum, writing e = r1/2e′, where det e′ = 1, and r = (det e)2/d.
Decomposing n ∈ Zd

�=0 as n = km, with gcd(n) = k and gcd(m) = 1, it equals

r−s
∑
m∈Zd

gcd(m)=1

∞∑
k=1

k1−2s∥∥me′
∥∥−2s = 2r−sζ(2s− 1)ESL(d)

β1;s
(
e′
)
, (G.5)

so

I2
(
s, eet + B

)
= 2(det e)−2s/dξ(2s− 1)ESL(d)

β1;s (e), (G.6)

initially for Re s sufficiently large and then by meromorphic continuation to s ∈ C.
Next we compute

I1
(
s, eet + B

)
=

∞∫
0

1∫
0

∑
n �=0

d

exp
(
−πτ−1

2
∥∥(m + nτ1)e

∥∥2 − πτ2‖ne‖2 − 2πimBnt
)
dτ1

dτ2

τ2−s
2

. (G.7)
m∈Z
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Poisson summation allows us to rewrite

∑
m∈Zd

exp
(
−πτ−1

2
∥∥(m + nτ1)e

∥∥2 − 2πimBnt
)

=
∑
m̂∈Zd

exp(2πim̂ · nτ1)
∫
Rd

exp
(
−2πim̂ ·m− πτ−1

2 ‖me‖2 − 2πimBnt
)
dm

=
∑
m̂∈Zd

exp(2πim̂ · nτ1)(det e)−1τ
d/2
2 exp

(
−πτ2

∥∥(m̂− nB)
(
e−1)t∥∥2)

, (G.8)

where m̂ is thought of as a row vector. Therefore the integration over τ1 then forces
m̂ ⊥ n:

I1
(
s, eet + B

)
= (det e)−1

∞∫
0

∑
n �=0
m̂∈Zd

m̂⊥n

exp
(
−πτ2‖ne‖2 − πτ2

∥∥(m̂− nB)
(
e−1)t∥∥2) dτ2

τ
2−s− d

2
2

=
Γ (s + d

2 − 1)
(det e)πs+ d

2−1

∑
n �=0
m̂∈Zd

m̂⊥n

(
nGnt + (m̂− nB)G−1(m̂− nB)t

)1−s−d/2
. (G.9)

Again write e = r1/2e′ with det e′ = 1, and r = (det e)2/d (thus G = re′(e′)t). Recall
(F.4) and define an element h ∈ SO(d, d,R) by

h =
(
I Bwd

I

)(
r1/2e′

r−1/2ẽ′

)
,

hht =
(
G + BG−1Bt BG−1wd

wdG
−1Bt wdG

−1wd

)
. (G.10)

Then the inside sum in (G.9) is computed using (F.6) as

2ζ(2s + d− 2)EDd

α1;s+d/2−1(h) −
∑

m̂∈Zd
�=0

∥∥m̂(e−1)t∥∥2−2s−d

= 2ζ(2s + d− 2)EDd

α1;s+d/2−1(h) − (det e)
d+2s−2

d

∑
m̂∈Zd

�=0

∥∥m̂((e′)t)−1∥∥2−2s−d

= 2ζ(2s + d− 2)
(
EDd

α1;s+d/2−1(h) − (det e)
d+2s−2

d E
SL(d)
βd−1;s+d/2−1

(
e′
))
. (G.11)

Combining (G.6), (G.9), and (G.11) we conclude the following:
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Proposition G.1. With h as in (G.10)

I
(
s, eet + B

)
= 2(det e)−1ξ(2s + d− 2)EDd

α1;s+d/2−1(h)

− 2(det e)
2s−2

d ξ(2s + d− 2)ESL(d)
βd−1;s+d/2−1

(
e′
)

− 2(det e)− 2s
d ξ(2s− 1)ESL(d)

β1;s
(
e′
)
, (G.12)

initially for Re s large, and then to all s ∈ C by meromorphic continuation.

As before, all manipulations are valid because of the absolute convergence of the sums
and integral involved and the assumption that Re s is sufficiently large. Note that only
the first line on the right-hand side depends nontrivially on B. In particular, if B = 0
and s = 0 the above equation provides an integral representation for EDd

α1;d/2−1,

2u−d/2ξ(d− 2)EDd

α1;d/2−1

(
u1/2e′

u−1/2ẽ′

)
= I

(
0, ue′

(
e′
)t)+ 2u−1ξ(d− 2)ESL(d)

βd−1;d/2−1
(
e′
)

+ 2ξ(2), (G.13)

for any e′ ∈ SL(d,R). A similar expression appeared in [1,26,55] but without that the
last two terms in the second line.

Remark. According to Proposition E.1 I(0, uG) decays rapidly to zero as u → ∞. This
is not immediately obvious from (G.13), in which both other terms involving u have
polynomial behavior in that limit while the remaining term is constant. However, the
aggregate sum indeed does decay to zero. This can be seen explicitly through an analysis
of the constant term of the EDd

α1;d/2−1 Eisenstein series in the spinor parabolic (which
determines these asymptotic behaviors).

Appendix H. Fourier modes of Eisenstein series

In this appendix we will present details of the Fourier modes of Eisenstein series that
enter in the expressions for the coefficients E(D)

(0,0) and E(D)
(1,0) when D = 8, D = 7, and

D = 6 (although the discussion of the D = 6 case with symmetry group Spin(5, 5) is
incomplete). This summarizes and extends the string theory results in [26] (see [1,5,34,
55,58] for related investigations).

H.1. The SL(3) × SL(2) case

The results of this subsection are used in Section 4.4 in the text. The coefficients are
functions of both the SL(2)/SO(2) symmetric space, which depends on U = U1 + iU2
(the complex structure of the 2-torus, T2), and the SL(3)/SO(3) space, which depends
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on 5 parameters. We will parametrize the SL(2)/SO(2) coset by (4.12) (with Ω replaced
by U) while the SL(3)/SO(3) coset will be parametrized by the string fluxes as

e3 =

⎛⎝ 1 BNS C(2) + Ω1BNS
0 1 Ω1
0 0 1

⎞⎠
⎛⎜⎝ ν

− 1
3

2 0 0
0 ν

1
6
2
√
Ω2 0

0 0 ν
1
6
2√
Ω2

⎞⎟⎠ , (H.1)

where ν
− 1

2
2 = r1r2/�

2
10 =

√
Ω2T2 is the volume of the 2-torus in 10-dimensional Planck

units and T2 = r1r2/�
2
s is the volume in string units. The five parameters of the coset are

packaged into (Ω, T,C(2)), where Ω = Ω1 + iΩ2 and T = T1 + iT2 (where T1 = BNS). We
shall also make use of the combination y−1

8 = Ω2
2T2, which is the square of the inverse

string coupling. The complex parameter T is interpreted as the Kähler structure of T2.
The coefficient functions E(8)

(0,0) and E(8)
(1,0) are solutions of (2.6) and (2.7) with D = 8

[4,26],

Δ(8)E(8)
(0,0) = 6π, (H.2)(

Δ(8) − 10
3

)
E(8)
(1,0) = 0, (H.3)

where the SL(3)×SL(2) Laplace operator is defined in terms of the parameters introduced
above by

Δ(8) := ΔSL(3) + 2ΔSL(2)
U , (H.4)

with

ΔSL(3) = ΔΩ + |∂BNS −Ω∂C(2) |2
ν2Ω2

+ 3∂ν2

(
ν2
2∂ν2

)
(H.5)

and ΔSL(2)
Z = Z2

2
(
∂2
Z1

+ ∂2
Z2

)
, (H.6)

where Z = Z1 + iZ2 and Z = Ω or U . The fact that the eigenvalue in (H.2) vanishes,
together with the presence of the 6π on the right-hand side, is related to the presence
of a 1-loop ultraviolet divergence in eight-dimensional maximally supersymmetric super-
gravity [27].

The solutions to these equations are given in terms of SL(2) and SL(3) Eisenstein
series. The SL(2) series is given by (4.13) while the SL(3) (Epstein) Eisenstein series is
given by

2ζ(2s)ESL(3)
α1;s (e3) =

∑
M3∈Z3\{0}

(
m2

SL(3)
)−s

, (H.7)

where, setting M3 = (m1 m2 m3) ∈ Z3, the mass squared is given by
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m2
SL(3) := M3G3M

t
3

= ν
1
3
2

Ω2

(
|m3 + m2Ω + Bm1|2 + (m1Ω2T2)2

)
(H.8)

with

G3 := e3e
t
3 = ν

1
3
2

(
ν−1
2 + (G2)abBaBb (G2)abBb

(G2)abBa (G2)ab

)
, (H.9)

G2 := 1
Ω2

(
|Ω|2 Ω1
Ω1 1

)
, B :=

(
BNS
C(2)

)
, and B := C(2) + ΩBNS. (H.10)

The Eisenstein series E
SL(3)
α1;s is related to E

SL(3)
α2;s by the functional relation

ξ(2s)ESL(3)
α1;s (e3) = ξ(3 − 2s)ESL(3)

α2; 32−s
(e3). (H.11)

The Fourier modes of the coefficient functions can now be considered in each of the
three parabolic subgroups of interest, after putting the SL(3,Z) part together with the
SL(2,Z) part. The unipotent radicals in these three cases are given by:

(i) The unipotent radical Uα3 of the non-maximal parabolic Pα3 = GL(1) × SL(2) ×
R+ ×Uα3 . As noted earlier, the relevant parabolic is non-maximal in order to match the
D = 9 duality group associated with the decompactification limit. The unipotent radical
is parametrized by (C(2), BNS) and takes the block diagonal form,

Uα3 =

⎛⎝
(

1 BNS C(2)

0 1 0
0 0 1

)
0

0
( 1 U1

0 1

)
⎞⎠ . (H.12)

In the maximal parabolic subgroup of SL(3) determined by BNS and C(2) the Fourier
coefficients of the SL(3) Eisenstein series in (H.7) are defined by31

F
SL(3)β2
β1;s (kp1, kp2) :=

∫
[0,1]2

dBNS dC
(2) e−2iπk(p1C

(2)+p2BNS)ESL(3)
α1;s , (H.13)

with gcd(p1, p2) = 1. Extending the constant term computation in [26, Appendix B.4],
the Fourier coefficients for k �= 0 are

F
SL(3)β2
β1;s (kp1, kp2) = 2

ξ(2s)Ω
1− 2s

3
2 T

1− s
3

2
σ2s−2(k)
|k|s−1

Ks−1(2π|k||p2 + p1Ω|T2)
|p2 + p1Ω|1−s

. (H.14)

The Fourier modes of the SL(2) series are defined as

31 The labeling of the simple roots β1 and β2 on these Fourier coefficients uses the conventional labeling
of the SL(3) Dynkin diagram according to the convention in Fig. 3.
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FSL(2)
s

(
k′
)

:=
∫

[0,1]

dU1 e
−2iπk′U1ESL(2)

s (U), (H.15)

where

FSL(2)
s

(
k′
)

= 2
√
U2

ξ(2s)
σ2s−1(|k′|)
|k′|s− 1

2
Ks− 1

2

(
2π
∣∣k′∣∣U2

)
(H.16)

for k′ �= 0 (cf. (4.17)).
Putting this together, the Fourier modes of the product of the SL(3) and the SL(2)

series are given by

F
SL(3)×SL(2)α3
α1;s,s′

(
kp1, kp2, k

′) :=
∫

[0,1]2

dBNS dC
(2) e−2iπk(p1C

(2)+p2BNS)E
SL(3)
β1;s

×
∫

[0,1]

dU1 e
−2iπk′U1E

SL(2)
s′ (U)

= FSL(3)β2
β1;s (kp1, kp2)FSL(2)α3

s′
(
k′
)
, (H.17)

with gcd(p1, p2) = 1. These results are used in (4.28) and (4.29), where we provide a
physical interpretation of the Fourier modes in the decompactification regime (limit (i)
in the notation of (2.9)).

(ii) The unipotent radical Uα1 of the maximal parabolic subgroup Pα1 = GL(1) ×
Spin(2, 2) × Uα1 associated with the string perturbation regime is parametrized by
(Ω1, C

(2)) and takes the form,

Uα1 =

⎛⎝
(

1 0 C(2)

0 1 Ω1
0 0 1

)
0

0
( 1 0

0 1

)
⎞⎠ . (H.18)

In this maximal parabolic only the SL(3) series have non-vanishing Fourier coefficients,
which are defined by

F
SL(3)β1
β1;s (kp1, kp2) :=

∫
[0,1]2

dΩ1 dC
(2) e−2iπk(p1C

(2)+p2Ω1)ESL(3)
α1;s (H.19)

with gcd(p1, p2) = 1. Extending the constant term calculation in [26, Appendix B.4]
leads to

F
SL(3)β1
β1;s (kp1, kp2) = 2

ξ(2s)T
2s
3

2 Ω
1
2+ s

3
2

σ2s−1(k)
|k|s− 1

2

Ks− 1
2
(2π|k||p1T + p2|Ω2)
|p1T + p2|s−

1
2

. (H.20)

These results are used in (4.41) and (4.43), where we provide a physical interpretation
of the Fourier modes in the perturbative regime (limit (ii) in the notation of (2.9)).
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(iii) The unipotent radical Uα2 of the maximal parabolic Pα2 = GL(1) × SL(3) × Uα2

associated with the semi-classical M-theory limit is parametrized by U1 and takes the
form

Uα2 =

⎛⎝
(

1 0 0
0 1 0
0 0 1

)
0

0
( 1 U1

0 1

)
⎞⎠ . (H.21)

In this maximal parabolic subgroup only the SL(2) series has non-vanishing Fourier
coefficients, which are given in (H.15)-(H.16). The evaluation of the non-zero Fourier
coefficients of E(8)

(0,0) and E(8)
(1,0) in each of the three limits of interest is straightforwardly

obtained by using the above expressions, and is discussed in Section 4.4.

H.2. The SL(5) case

Here we consider the Fourier modes of the Eisenstein series that enter the expressions
for the coefficients E(7)

(0,0) and E(7)
(1,0) that are used in Section 4.5 in the text.

In D = 7 dimensions the coefficient functions are automorphic under the action of the
duality group SL(5,Z) and are functions on the 14-dimensional coset space SL(5)/SO(5),
which is parametrized, using the notation that arises from string theory, by

e5 =

⎛⎜⎜⎜⎜⎜⎝
B1

NS C(2)1 + Ω1B
1
NS

u3 B2
NS C(2)2 + Ω1B

2
NS

B3
NS C(2)3 + Ω1B

3
NS

0 1 Ω1
0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

0 0
ν
−2/15
3 D3 0 0

0 0
0 0 0 ν

1
5
3
√
Ω2 0

0 0 0 0 ν
1
5
3√
Ω2

⎞⎟⎟⎟⎟⎟⎟⎠ , (H.22)

where Ω2 is the inverse string coupling constant, Ω1 is the type IIB RR pseudoscalar,
and Bi

NS and C(2)i (i = 1, . . . , 3) the NS and RR charges. The quantity u3 is a 3 × 3
unit upper triangular matrix and D3 is a 3 × 3 diagonal matrix with detD3 = 1. These
are defined so that ẽ3 = u3D3 or equivalently G̃3 = ẽ3 · ẽt3 parametrizes the coset
SL(3)/SO(3) describing the perturbative string compactified on a three-torus. We will
make use of the following combinations,

ν−1
3 =

(
r1r2r3
�310

)2

= Ω
3
2
2

(
r1r2r3
�3s

)2

, y−1
7 = Ω2

2
r1r2r3
�3s

, (H.23)

where r1, r2 and r3 are the radii of T3 and y7 is the 7-dimensional string coupling. Note
that ν3 is invariant under the action of SL(3) × SL(2).

The coset space SL(5)/SO(5) is parametrized by the metric G5 = e5e
t
5,

G5 = ν
2
5
3

(
ν
− 2

3
3 (G̃3)ij + (G2)abBa

i B
b
j (G2)abBb

j
a

)
, (H.24)
(G2)abBj (G2)ab
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where again

G2 = 1
Ω2

(
|Ω|2 Ω1
Ω1 1

)
and B =

(
B1

NS B2
NS B3

NS

C(2)1 C(2)2 C(2)3

)
. (H.25)

The SL(5) mass squared is given by the quadratic form

m2
SL(5) := M5G5M

t
5

= ν
2
5
3
|m1 + m2Ω + nt · (C(2) + ΩBNS)|2

Ω2
+ nG̃3n

t

ν
4
15
3

, (H.26)

where M5 := [n1 n2 n3 m2 m1] ∈ Z5\{0}, n := [n1 n2 n3], and BNS and C(2) are the first
and second rows of the matrix B, respectively. This expression will later be useful for
describing the SL(5) Eisenstein series.

The 1
2 -BPS and 1

4 -BPS coefficients, E(7)
(0,0) and E(7)

(1,0), that solve (2.6) and (2.7) together
with the appropriate boundary conditions are given32 in [26] by linear combinations of
the E

SL(5)
β1;s and E

SL(5)
β3;s Eisenstein series as described in (4.47)–(4.48). The definitions and

Fourier expansions of the Eisenstein series in this expression will now be reviewed.

H.2.1. Fourier modes of the series E
SL(5)
β1;s

The E
SL(5)
β1;s series may be written using (H.26) in the form

2ζ(2s)ESL(5)
β1;s =

∑
M5∈Z5\{0}

(
M5G5M

t
5
)−s

. (H.27)

The constant terms with respect to the maximal parabolic subgroups Pβ3 , Pβ1 , and Pβ4

(corresponding to limits (i), (ii), and (iii), respectively) were evaluated in [26]. Note that
in terms of our matrix identification used in (H.27), Pα1 corresponds to the subgroup of
SL(5) whose bottom row has the form (0 0 0 0 �).

(i) The parabolic Pβ3 = GL(1) × SL(2) × SL(3) × Uβ3 .
The unipotent radical for this parabolic subgroup is abelian and is given by

Uβ3 =
(
I2 Q4
0 I3

)
, with Q4 =

(
G13 B1

NS C(2)1 + Ω1B
1
NS

G23 B2
NS C(2)2 + Ω1B

2
NS

)
. (H.28)

The Fourier modes are defined by

F
SL(5)β3
β1;s (N4) :=

∫
[0,1]6

d6Q4 e
−2iπ tr(N4Q4)E

SL(5)
β1;s , (H.29)

where N4 ∈ M(3, 2;Z).

32 In [26] these series were defined as ESL(5)
[1000];s = 2ζ(2s)ESL(5)

β ;s and ESL(5)
[0010];s = 4ζ(2s)ζ(2s − 1)ESL(5)

β ;s .

1 3
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For all values of s the Fourier modes are only non-zero when N4 has rank 1. Such a
matrix can be written as N4 = kÑ4, with gcd(Ñ4) = 1 and

Ñ4 = ntm =

⎛⎝m1n1 m2n1
m1n2 m2n2
m1n3 m2n3

⎞⎠ , n = (ni) ∈ Z3, m = (ma) ∈ Z2. (H.30)

The decomposition N4 = kntm of the rank one matrix N4 is unique up to signs of the
factors. Moreover, gcd(n1, n2, n3) = gcd(m1,m2) = 1.

Poisson resummation on two integers, keeping the off-diagonal terms in the para-
metrization of [26, Section B.5.2], results in the following formula for the Fourier coeffi-
cients:

F
SL(5)β3
β1;s (k, Ñ4) = 2

ξ(2s)r
3− 2s

5
σ2s−3(|k|)
|k|s− 3

2

(
‖n(et3)−1‖
‖me2‖

)s− 3
2

×Ks− 3
2

(
2π|k|r2‖me2‖

∥∥n(et3)−1∥∥), (H.31)

where e2 and e3 are the SL(2) and SL(3) components, respectively, of the semisimple
part of the Levi component of Pβ3 , and ẽ3 refers to the contragredient defined in (F.4).
Note ‖me2‖ and ‖nẽ3‖ are independent of the choice of factorization of Ñ4 = ntm. The
matrix Ñ4 is transformed by the action of SL(3,Z) on the left and by the action of
SL(2,Z) on the right. Because Ñ4 has rank 1, it therefore satisfies the 1

2 -BPS conditions
εab(N4)ia(N4)jb = 0 of Appendix C.3. In other words, for any value of s, the Fourier
modes fill out 1

2 -BPS orbits – one for each value of k.
(ii) The parabolic Pβ1 = GL(1) × SL(4) × Uβ1 .
The unipotent radical for this parabolic is abelian and is given in our parametrization

by

Uβ1 =
(
I4 Q1
0 1

)
, with Q1 =

⎛⎜⎜⎜⎝
C(2)1 + Ω1B

1
NS

C(2)2 + Ω1B
2
NS

C(2)3 + Ω1B
3
NS

Ω1

⎞⎟⎟⎟⎠ , (H.32)

where I4 is the 4 × 4 identity matrix and Q1 is a four-dimensional vector that can also
be thought of as a spinor for Spin(3, 3).

The Fourier modes are defined by

F
SL(5)β1
β1;s (k,N1) :=

∫
[0,1]4

d4Q1 e
−2iπkN1Q1E

SL(5)
β1;s , (H.33)

where the row vector N1 ∈ Z4 is such that gcd(N1) = 1. These Fourier modes are
evaluated by a straightforward extension of the expansion given in [26, Section B.5.1],
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which computed only the constant terms (for which it is sufficient to set Q1 = 0). The
result is

F
SL(5)β1
β1;s (k,N1) = 2

ξ(2s)r
1+ 6s

5
σ2s−1(|k|)
|k|s− 1

2

Ks− 1
2
(2π|k|r2‖N1e4‖)
‖N1e4‖s−

1
2

. (H.34)

(iii) The parabolic Pβ4 = GL(1) × SL(4) × Uβ4 .
The unipotent radical is abelian and given by

Uβ4 =
(

1 Q2
0 I4

)
, Q2 = (C123 C124 C234 C134 ) , (H.35)

where Q2 is again an SL(4) (row) vector. The notation indicates that it is parametrized
by the 3-form flux of the M2-brane world-volume wrapped on the M-theory 4-torus, T 4.
This translates into the NS components of flux, BNS12, BNS23, BNS13, and the RR

D2-brane flux, C(3)
123. In type IIB language these components become the NS flux BNS12,

the RR D-string flux C
(2)
12 and the Kaluza–Klein momenta from the components of the

metric gi3 with i = 1, 2.
The Fourier coefficients in this parabolic are indexed by k ∈ Z and N4 ∈ Z4 with

gcd(N4) = 1 by the formula

F
SL(5)β4
β1;s (k,N4) :=

∫
[0,1]4

d4Q2 e
−2iπkNt

4·Q2E
SL(5)
β1;s . (H.36)

These coefficients can again be evaluated by an extension of the computation of [26,
Section B.5.1], keeping the off-diagonal terms, which gives

F
SL(5)β4
β1;s (k,N4) = 2

ξ(2s)r
4− 6s

5
σ2s−4(|k|)
|k|s−2

∥∥N4e
−1
4
∥∥s−2

Ks−2
(
2π|k|r2∥∥N4e

−1
4
∥∥), (H.37)

where r = V3/8
4 �

−3/2
11 , and again gcd(N4) = 1.

H.2.2. Fourier modes of the series E
SL(5)
β2;s

Our method of determining the Fourier modes of the non-Epstein SL(5) series ESL(5)
β3;s

is based on the integral representation described in Proposition 4.1. For computational
reasons it is easier to work with the series ESL(5)

β2;s , which is related both by the functional
equation in (4.57) and the contragredient map g �→ g̃ defined in (F.4). Here we shall
compute its non-zero Fourier modes in each of the four standard maximal parabolic
subgroups Pβ1 , Pβ2 , Pβ3 , and Pβ4 of SL(5); the relevant Fourier modes for E

SL(5)
β3;s will

be derived from this in Section 4.5.
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H.2.2.1. The parabolic Pβ1 = SL(4) × GL(1) × Uβ1

In this case e has the special form
(
I4 Q

1

) ( e4
e1

)
, where Q ∈ M4,1(R), e1 �= 0, and

e4 ∈ GL(4,R). Note that we do not assume that det e = 1, so that we can later utilize
Proposition 4.1. The sum (E.8) can be written as

G
(
τ, eet

)
:=

∑
[p m
q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

, (H.38)

where p, q ∈ Z4 and m,n ∈ Z. For emphasis we have used commas to separate the entries
of the row vectors. The exponent is

−πτ−1
2
∥∥(p + qτ)e4

∥∥2 − πτ−1
2 e2

1
∣∣(p + qτ)Q + m + nτ

∣∣2. (H.39)

This is independent of Q if both p = q = 0. Hence the non-zero Fourier coefficients of
(H.38) come from terms where

[
p
q

]
has rank 1 or 2. We thus separate these contributions

and write

G
(
τ, eet

)
= G1

(
τ, eet

)
+ G2

(
τ, eet

)
, (H.40)

where

Gi

(
τ, eet

)
:=

∑
rank

[p
q

]
=i[p m

q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ, m+nτ ]e‖2

. (H.41)

Let us first consider G2(τ, eet). Changing τ to τ + 1 is equivalent to changing (p, q,m, n)
to (p + q, q,m + n, n), while changing τ to −τ−1 is equivalent to changing (p, q,m, n)
to (−q, p,−n,m). Thus the sum is modular invariant and can be written as a sum over
SL(2,Z) cosets:

G2
(
τ, eet

)
=

∑
γ∈SL(2,Z)

G◦
2
(
γτ, eet

)
, (H.42)

where

G◦
2
(
τ, eet

)
=

∑
[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m,n∈Z

e−πτ−1
2 ‖(p+qτ)e4‖2−πτ−1

2 e21|(p+qτ)Q+m+nτ |2 (H.43)

(here we have used that rank
[
p
q

]
= 2 implies that rank

[
pm
q n

]
= 2). Applying Poisson

summation over m and n this is
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G◦
2
(
τ, eet

)
=

∑
[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m̂,n̂∈Z

e−πτ−1
2 ‖(p+qτ)e4‖2

e2πi(m̂p+n̂q)Q

×
∫
R2

e−2πi(m̂m+n̂n)e−πτ−1
2 e21|m+nτ |2 dmdn. (H.44)

Thus its Fourier coefficient for e2πiN1Q, N1 ∈ Z4, is equal to

FG◦
2 (τ, e1, e4;N1)

=
∑

[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m̂,n̂∈Z

n̂q−m̂p=N1

e−πτ−1
2 ‖(p+qτ)e4‖2

×
∫
R2

e2πim̂m−(n̂+m̂τ1)ne−πτ−1
2 e21(m

2+n2τ2
2 ) dmdn

= e−2
1

∑
[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m̂,n̂∈Z

n̂q−m̂p=N1

e−πτ−1
2 ‖(p+qτ)e4‖2

e−πτ−1
2 e−2

1 |n̂+m̂τ |2 . (H.45)

Analogously to (H.42)

G1
(
τ, eet

)
=

∑
γ∈{±Γ∞}\SL(2,Z)

G◦
1
(
γτ, eet

)
, (H.46)

where Γ∞ =
{( 1 n

0 1

)
| n ∈ Z

}
and

G◦
1
(
τ, eet

)
:=

∑
p�=0
m∈Z
n �=0

e−πτ−1
2 ‖pe4‖2−πτ−1

2 e21|pQ+m+nτ |2 (H.47)

(this parametrization is due to the fact that any SL(2,Z) orbit in M(1)
2,4(Z) has an element

with bottom row equal to zero, and that the rank 2 condition is then equivalent to the
bottom right entry, n, being non-zero). Applying Poisson summation over m gives the
formula

G◦
1
(
τ, eet

)
=

∑
p�=0
m̂∈Z
n �=0

e−πτ−1
2 ‖pe4‖2

∫
R

e−2πim̂me−πτ−1
2 e21|pQ+m+nτ |2 dm

= τ
1
2
2 e−1

1

∑
p�=0
m̂∈Z

e2πim̂(pQ+nτ1)e−πτ−1
2 ‖pe4‖2−πτ2e

−2
1 m̂2−πτ2e

2
1n

2
. (H.48)
n �=0
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Since N1 �= 0 its Fourier mode for e2πiN1Q is thus

FG◦
1 (τ, e1, e4;N1) = τ

1
2
2 e−1

1

∑
m̂p=N1
n �=0

e2πim̂nτ1e−πτ−1
2 ‖pe4‖2−πτ2e

−2
1 m̂2−πτ2e

2
1n

2
. (H.49)

It follows using Proposition 4.1 that the non-zero Fourier modes of FSL(5)β1
β2;s are given

by

1
2ξ(2s)ξ(2s− 1)F SL(5)β1

β2;s (N1)

= 2
∞∫
0

∫
H

FG◦
2
(
τ, u

1
2 e1, u

1
2 e4;N1

) d2τ

τ2
2

du

u1−2s

+
∞∫
0

∫
Γ∞\H

FG◦
1
(
τ, u

1
2 e1, u

1
2 e4;N1

) d2τ

τ2
2

du

u1−2s , (H.50)

the factor of 2 coming from unfolding pairs of elements ±γ ∈ SL(2,Z) that have identical
actions on H. By integrating the expression given in (H.49) for FG◦

1 (τ, e1, e4;N1) over
the strip Γ∞\H, the τ1-integration over [0, 1] forces m̂n to vanish. Since n �= 0 this means
N1 = 0, and hence there are no nontrivial Fourier contributions from G1.

The contribution from the modes FG◦
2 is given by

2e−2
1

∞∫
0

∫
H

∑
[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m̂,n̂∈Z

n̂q−m̂p=N1

e−πτ−1
2 u‖(p+qτ)e4‖2−πτ−1

2 u−1e−2
1 |n̂+m̂τ |2 d2τ

τ2
2

du

u2−2s . (H.51)

Changing variables to x = u/τ2 and y = τ2u, so that u = √
xy, τ2 =

√
y/x, and

dτ2 du = dx dy
2x , yields

e−2
1

∞∫
0

∑
[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m̂,n̂∈Z

n̂q−m̂p=N1

∞∫
0

e−πx‖(p+qτ1)e4‖2−πx−1e−2
1 m̂2 dx

x1−s

×
∞∫
0

e−πy‖qe4‖2−πy−1e−2
1 (n̂+m̂τ1)2 dy

y2−s
dτ1

= 4e−2
1

∞∫
0

∑
[p
q

]
∈SL(2,Z)\M(2)

2,4(Z)
m̂,n̂∈Z

n̂q−m̂p=N1

(
|m̂|

‖e1(p + qτ1)e4‖

)s( |n̂ + m̂τ1|
‖e1qe4‖

)s−1

×Ks

(
2π|m̂|

∥∥e−1
1 (p + qτ1)e4

∥∥)Ks−1
(
2π|n̂ + m̂τ1|

∥∥e−1
1 qe4

∥∥) dτ1. (H.52)



290 M.B. Green et al. / Journal of Number Theory 146 (2015) 187–309
H.2.2.2. The parabolic Pβ2 = GL(1) × SL(3) × SL(2) × Uβ2

We may rewrite (E.8) in the case of d = 5 as

G
(
τ, eet

)
:=

∑
[p m
q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

, (H.53)

where p, q ∈ Z3 and m,n ∈ Z2. Let us further take e to have the special form e =(
I3 Q

I2

) ( e3
e2

)
, where Q ∈ M3,2(R), e2 ∈ GL(2,R), and e3 ∈ GL(3,R). We will be

interested in Fourier coefficients in Q for the Fourier modes Q �→ e2πi tr NQ, where
N ∈ M2,3(Z). Break up the sum as

G
(
τ, eet

)
= G0

(
τ, eet

)
+ G1

(
τ, eet

)
+ G2

(
τ, eet

)
, (H.54)

where

Gi

(
τ, eet

)
:=

∑
rank

[p
q

]
=i[p m

q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.55)

If rank
[
p
q

]
= 2, then

[
pm
q n

]
automatically has rank 2. Thus

G2
(
τ, eet

)
:=

∑
rank

[p
q

]
=2

m,n∈Z2

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.56)

Using the method of orbits we may write this as an average over SL(2,Z):

G2
(
τ, eet

)
=

∑
γ∈SL(2,Z)

G◦
2
(
γτ, eet

)
, (H.57)

where

G◦
2
(
τ, eet

)
=

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)
m,n∈Z2

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.58)

Poisson summation over the inner m,n ∈ Z2 sum gives

G◦
2
(
τ, eet

)
=

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)
m̂,n̂∈Z2

∫
R4

e−2πi(mm̂−nn̂)e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

dmdn, (H.59)

where m̂, n̂ ∈ Z2 are column vectors. With the particular form e =
(

I3 Q
I2

) ( e3
e2

)
the

exponent of the second factor is
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−πτ−1
2
[
p + qτ, (p + qτ)Q + m + nτ

]( e3e
t
3

e2e
t
2

)[
p + qτ, (p + qτ̄)Q + m + nτ̄

]t
.

(H.60)

Thus after changing variables m �→ m− pQ, n �→ n− qQ (H.59) becomes

G◦
2
(
τ, eet

)
=

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

e−πτ−1
2 ‖(p+qτ)e3‖2 ∑

m̂,n̂∈Z2

e2πi(pQm̂−qQn̂)

×
∫
R4

e−2πi(mm̂−nn̂)e−πτ−1
2 ‖(m+nτ)e2‖2

dmdn. (H.61)

To compute this integral we change variables m �→ me−1
2 , n �→ ne−1

2 , which has the
effect of dividing both dm and dn each by det e2: the integral equals (det e2)−2 times∫

R4

e−2πi(me−1
2 m̂−ne−1

2 n̂)e−πτ−1
2 ‖(m+nτ)‖2

dmdn

=
∫
R4

e−2πi(me−1
2 m̂−ne−1

2 (n̂+τ1m̂))e−πτ−1
2 ‖m‖2−πτ2‖n‖2

dmdn (H.62)

after changing variables m �→ m− nτ1 in the last step. This then factors as two Fourier
transforms of Gaussians and (H.61) is equal to

G◦
2
(
τ, eet

)
= (det e2)−2

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

e−πτ−1
2 ‖(p+qτ)e3‖2

×
∑

m̂,n̂∈Z2

e2πi(pQm̂−qQn̂)e−πτ2‖e−1
2 m̂‖2−πτ−1

2 ‖e−1
2 (n̂+m̂τ1)‖2

. (H.63)

The dependence on Q is manifest in the exponential factors in the sum, and hence taking
Fourier coefficients in Q amounts to restricting p, q, m̂, and n̂. In particular the Fourier
coefficient for N4 ∈ M2,3(Z) is equal to

FG◦
2 (τ, e2, e3;N4) = (det e2)−2

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

×
∑

m̂,n̂∈Z2

m̂p−n̂q=N4

e−πτ−1
2 ‖(p+qτ)e3‖2−πτ2‖e−1

2 m̂‖2−πτ−1
2 ‖e−1

2 (n̂+m̂τ1)‖2
.

(H.64)

Let us now consider G1(τ, eet), which has the contributions for p, q ∈ Z3 such that
rank

[
p
]

= 1:
q
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G1
(
τ, eet

)
:=

∑
rank

[p
q

]
=1[p m

q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.65)

We may write this as an average over {±Γ∞}\SL(2,Z):

G1
(
τ, eet

)
=

∑
γ∈{±Γ∞}\SL(2,Z)

G◦
1
(
γτ, eet

)
, (H.66)

where

G◦
1
(
τ, eet

)
:=

∑
p�=0[p m

0 n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p,m+nτ ]e‖2

=
∑
p�=0
n �=0
m∈Z2

e−πτ−1
2 ‖pe3‖2−πτ−1

2 ‖(pQ+m+nτ1)e2‖2−πτ2‖ne2‖2
. (H.67)

Here we used that the matrix
[
pm
0 n

]
has rank 2 if and only if n �= 0 (since p �= 0). Poisson

sum over m then gives the formula

G◦
1
(
τ, eet

)
= τ2

det e2

∑
p�=0
n �=0
m̂∈Z2

e2πi(pQ+nτ1)m̂e−πτ−1
2 ‖pe3‖2−πτ2‖ne2‖2−πτ2‖e−1

2 m̂‖2
(H.68)

for (H.67), where again m̂ ∈ Z2 is a column vector.
We conclude that the Fourier coefficient of G◦

1 (τ, eet) for N4 is equal to

FG◦
1 (τ, e2, e3;N4)

= τ2
det e2

∑
p�=0
n �=0

m̂p=N4

e2πiτ1nm̂e−πτ−1
2 ‖pe3‖2−πτ2‖ne2‖2−πτ2‖e−1

2 m̂‖2
. (H.69)

Note that FG1(τ, e2, e3;N4) ≡ 0 if rank(N4) = 2. Finally since [0 0 0 � �]
(

I3 Q
I2

)
is

independent of Q, so too is G0(τ, eet), the sum over terms with p = q = [0 0 0]. It
therefore has no nontrivial Fourier coefficients.

We now return to the identity of Proposition 4.1,

1
2ξ(2s)ξ(2s− 1)ESL(5)

β2;s (e) =
∞∫
0

∫
SL(2,Z)\H

G
(
τ, ueet

) d2τ

τ2
2

du

u1−2s , (H.70)

with the specialization that e ∈ SL(d,R) has the form e =
(

I3 Q
I2

) ( e3
e2

)
. Its Fourier

coefficient for N4 can be written as
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1
2ξ(2s)ξ(2s− 1)F SL(5)β2

β2;s (e2, e3;N4)

= 2
∞∫
0

∫
H

FG◦
2
(
τ, u

1
2 e2, u

1
2 e3;N4

) d2τ

τ2
2

du

u1−2s

+
∞∫
0

∫
Γ∞\H

FG◦
1
(
τ, u

1
2 e2, u

1
2 e3;N4

) d2τ

τ2
2

du

u1−2s . (H.71)

Let us consider the first integral,

2
∞∫
0

∫
H

(det e2)−2
∑

[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

e−πτ−1
2 u‖(p+qτ)e3‖2

×
∑

m̂,n̂∈Z2

m̂p−n̂q=N4

e−πτ2u
−1‖e−1

2 m̂‖2−πτ−1
2 u−1‖e−1

2 (n̂+m̂τ1)‖2 d2τ

τ2
2

du

u3−2s . (H.72)

Changing variables to x = u/τ2 and y = τ2u, so that u = √
xy, τ2 =

√
y/x and

dτ2 du = dx dy
2x the integral becomes

(det e2)−2
∫
R

∞∫
0

∞∫
0

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

∑
m̂,n̂∈Z2

m̂p−n̂q=N4

e−πx‖(p+qτ1)e3‖2−πx−1‖e−1
2 m̂‖2

× e−πy‖qe3‖2−πy−1‖e−1
2 (n̂+m̂τ1)‖2 dx

x3/2−s

dy

y5/2−s
dτ1. (H.73)

Integrating over x and y yields

4(det e2)−2
∫
R

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

∑
m̂,n̂∈Z2

m̂p−n̂q=N4

(
‖(p + qτ1)e3‖

‖e−1
2 m̂‖

)1/2−s

×
(

‖qe3‖
‖e−1

2 (n̂ + m̂τ1)‖

)3/2−s

Ks−1/2
(
2π
∥∥(p + qτ1)e3

∥∥∥∥e−1
2 m̂

∥∥)
×Ks−3/2

(
2π‖qe3‖

∥∥e−1
2 (n̂ + m̂τ1)

∥∥) dτ1 (H.74)

for the first line on the right-hand side of (H.71).
Next we analyze the second integral in (H.71), in which we assume N4 has rank 1

(since it vanishes if it has rank 2):
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1
det e2

∞∫
0

∫
Γ∞\H

∑
p�=0
n �=0

m̂p=N4

e2πim̂·nτ1e−πτ−1
2 u‖pe3‖2−πτ2u‖ne2‖2−πτ2u

−1‖e−1
2 m̂‖2 d2τ

τ2

du

u2−2s .

(H.75)

The τ1 integration over [0, 1] enforces the condition that n ⊥ m̂ (which implies n ⊥ N4):
(H.75) equals

1
det e2

∞∫
0

∞∫
0

∑
p�=0
n �=0
m̂⊥n

m̂p=N4

e−πτ−1
2 u‖pe3‖2−πτ2u‖ne2‖2−πτ2u

−1‖e−1
2 m̂‖2 dτ2

τ2

du

u2−2s . (H.76)

As before, change variables x = u/τ2 and y = τ2u so that (H.76) becomes

1
2(det e2)

∑
p�=0
n �=0
m̂⊥n

m̂p=N4

∞∫
0

∞∫
0

e−πx‖pe3‖2−πx−1‖e−1
2 m̂‖2

e−πy‖ne2‖2 dx

x
3
2−s

dy

y
3
2−s

=
Γ (s− 1

2 )
(det e2)

∑
p�=0
n �=0
m̂⊥n

m̂p=N4

(
‖e−1

2 m̂‖
π‖ne2‖2‖pe3‖

)s−1/2

Ks−1/2
(
2π
∥∥e−1

2 m̂
∥∥‖pe3‖

)
. (H.77)

The matrices e2 and e3 in the above argument are unconstrained except for the con-
dition that det(e2) det(e3) = 1. For our application in Section 4.5 it will be helpful to
restate these calculations using the GL(1) parameter r from (2.9). We set(

e3
e2

)
=
(
r4/5e′3

r−6/5e′2

)
, (H.78)

where e′2 ∈ SL(2,R) and e′3 ∈ SL(3,R). Then after inserting (H.74), and (H.77) we may
restate (H.71) as

F
SL(5)β2
β2;s

(
r−6/5e′2, r

4/5e′3;N4
)

= 8r4+4s/5

ξ(2s)ξ(2s− 1)

∫
R

∑
[p
q

]
∈SL(2,Z)\M(2)

2,3(Z)

∑
m̂,n̂∈Z2

m̂p−n̂q=N4

(
‖(p + qτ1)e′3‖
‖e′ −1

2 m̂‖

)1/2−s

×
(

‖qe′3‖
‖e′ −1

2 (n̂ + m̂τ1)‖

)3/2−s

Ks−1/2
(
2πr2∥∥(p + qτ1)e′3

∥∥∥∥e′ −1
2 m̂

∥∥)
×Ks−3/2

(
2πr2∥∥qe′3∥∥∥∥e′ −1

2 (n̂ + m̂τ1)
∥∥) dτ1
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+
2Γ (s− 1

2 )
ξ(2s)ξ(2s− 1)r

1+14s/5
∑
p�=0
n �=0
m̂⊥n

m̂p=N4

(
‖e′ −1

2 m̂‖
π‖ne′2‖2‖pe′3‖

)s−1/2

×Ks−1/2
(
2πr2∥∥e′ −1

2 m̂
∥∥∥∥pe′3∥∥). (H.79)

H.2.2.3. The parabolic Pβ3 = GL(1) × SL(2) × SL(3) × Uβ3

We may rewrite (E.8) in the case of d = 5 as

G
(
τ, eet

)
:=

∑
[p m
q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

, (H.80)

where p, q ∈ Z2 and m,n ∈ Z3. We take e to have the special form e =
(

I2 Q
I3

) ( e2
e3

)
,

where Q ∈ M2×3(R), e2 ∈ GL(2,R), and e3 ∈ GL(3,R). We will be interested in Fourier
coefficients in Q for the modes Q �→ e2πi tr NQ, where N ∈ M3,2(Z). Break up the sum
as

G
(
τ, eet

)
= G0

(
τ, eet

)
+ G1

(
τ, eet

)
+ G2

(
τ, eet

)
, (H.81)

where

Gi

(
τ, eet

)
:=

∑
rank

[p
q

]
=i[p m

q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.82)

If rank
[
p
q

]
= 2, then

[
pm
q n

]
automatically has rank 2. Thus

G2
(
τ, eet

)
:=

∑
rank

[p
q

]
=2

m,n∈Z3

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.83)

Again we use modular invariance to write

G2
(
τ, eet

)
=

∑
γ∈

{
±
( 1 0

0 1

)}
\SL(2,Z)

G◦
2
(
γτ, eet

)
, (H.84)

where

G◦
2
(
τ, eet

)
=

∑
p=[p1 p2]
q=[0 q2]

p1>0,0�p2<|q2|
3

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.85)
m,n∈Z
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Poisson summation over the inner m,n ∈ Z3 sum gives

G◦
2
(
τ, eet

)
=

∑
p=[p1 p2]
q=[0 q2]

p1>0,0�p2<|q2|
m̂,n̂∈Z3

∫
R6

e−2πi(mm̂−nn̂)e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

dmdn, (H.86)

where m̂, n̂ ∈ Z3 are column vectors. With the particular form e =
(

I2 Q
I3

) ( e2
e3

)
the

exponent of the second factor is

−πτ−1
2
[
p + qτ, (p + qτ)Q + m + nτ

]( e2e
t
2

e3e
t
3

)[
p + qτ, (p + qτ̄)Q + m + nτ̄

]t
.

(H.87)

Thus after changing variables m �→ m− pQ, n �→ n− qQ (H.86) becomes

G◦
2
(
τ, eet

)
=

∑
p=[p1 p2]
q=[0 q2]

p1>0,0�p2<|q2|

e−πτ−1
2 ‖(p+qτ)e2‖2 ∑

m̂,n̂∈Z3

e2πi(pQm̂−qQn̂)

×
∫
R6

e−2πi(mm̂−nn̂)e−πτ−1
2 ‖(m+nτ)e3‖2

dmdn. (H.88)

To compute this integral we change variables m �→ me−1
3 , n �→ ne−1

3 , which has the
effect of dividing both dm and dn each by det e3: the integral equals (det e3)−2 times

∫
R6

e−2πi(me−1
3 m̂−ne−1

3 n̂)e−πτ−1
2 ‖(m+nτ)‖2

dmdn

=
∫
R6

e−2πi(me−1
3 m̂−ne−1

3 (n̂+τ1m̂))e−πτ−1
2 ‖m‖2−πτ2‖n‖2

dmdn (H.89)

and (H.88) is equal to

G◦
2
(
τ, eet

)
= (det e3)−2

∑
p=[p1 p2]
q=[0 q2]

p1>0,0�p2<|q2|

e−πτ−1
2 ‖(p+qτ)e2‖2

×
∑

m̂,n̂∈Z3

e2πi(pQm̂−qQn̂)e−πτ2‖e−1
3 m̂‖2−πτ−1

2 ‖e−1
3 (n̂+m̂τ1)‖2

. (H.90)

The Fourier coefficient for N4 ∈ M3,2(Z) is equal to



M.B. Green et al. / Journal of Number Theory 146 (2015) 187–309 297
FG◦
2 (τ, e2, e3;N4)

= (det e3)−2
∑

p=[p1 p2]
q=[0 q2]

p1>0,0�p2<|q2|

×
∑

m̂,n̂∈Z3

m̂p−n̂q=N4

e−πτ−1
2 ‖(p+qτ)e2‖2−πτ2‖e−1

3 m̂‖2−πτ−1
2 ‖e−1

3 (n̂+m̂τ1)‖2
. (H.91)

Let us now consider G1(τ, eet), which has the contributions for p, q ∈ Z2 such that
rank

[
p
q

]
= 1:

G1
(
τ, eet

)
:=

∑
rank

[p
q

]
=1[p m

q n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p+qτ,m+nτ ]e‖2

. (H.92)

We may write this as an average over {±Γ∞}\SL(2,Z):

G1
(
τ, eet

)
=

∑
γ∈{±Γ∞}\SL(2,Z)

G◦
1
(
γτ, eet

)
, (H.93)

where

G◦
1
(
τ, eet

)
:=

∑
p�=0[p m

0 n

]
∈M(2)

2,5(Z)

e−πτ−1
2 ‖[p,m+nτ ]e‖2

=
∑
p�=0
n �=0
m∈Z3

e−πτ−1
2 ‖pe2‖2−πτ−1

2 ‖(pQ+m+nτ1)e3‖2−πτ2‖ne3‖2
. (H.94)

Here we used that the matrix
[
pm
0 n

]
has rank 2 if and only if n �= 0 (since p �= 0). Poisson

sum over m gives the formula

G◦
1
(
τ, eet

)
= τ

3
2
2

det e3

∑
p�=0
n �=0
m̂∈Z3

e2πi(pQ+nτ1)m̂e−πτ−1
2 ‖pe2‖2−πτ2‖ne3‖2−πτ2‖e−1

3 m̂‖2
(H.95)

for (H.94), where m̂ is a column vector.
We conclude that the Fourier coefficient of G◦

1 (τ, eet) for N4 is equal to

FG◦
1 (τ, e2, e3;N4)

τ
3
2
2

det e3

∑
p�=0
n �=0

e2πiτ1nm̂e−πτ−1
2 ‖pe2‖2−πτ2‖ne3‖2−πτ2‖e−1

3 m̂‖2
. (H.96)
m̂p=N4
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Observe that FG1(τ, e2, e3;N4) ≡ 0 if rank(N4) = 2, and again that G0(τ, eet) has no
non-zero Fourier coefficients because [0 0 � � �]

(
I2 Q

I3

)
is independent of Q.

Proposition 4.1 states that

1
2ξ(2s)ξ(2s− 1)ESL(5)

β2;s (e) =
∞∫
0

∫
SL(2,Z)\H

G
(
τ, ueet

) d2τ

τ2
2

du

u1−2s . (H.97)

Since we have specialized e ∈ SL(d,R) to have the form e =
(

I2 Q
I3

) ( e2
e3

)
the Fourier

coefficient for N4 can be written as

1
2ξ(2s)ξ(2s− 1)FSL(5)β3

β2;s (N4)

=
∞∫
0

∫
H

FG◦
2
(
τ, u

1
2 e2, u

1
2 e3;N4

) d2τ

τ2
2

du

u1−2s

+
∞∫
0

∫
Γ∞\H

FG◦
1
(
τ, u

1
2 e2, u

1
2 e3;N4

) d2τ

τ2
2

du

u1−2s . (H.98)

Let us consider the first integral,

∞∫
0

∫
H

(det e3)−2
∑

p=[p1 p2]
q=[0 q2]

p1>0,0�p2<|q2|

e−πτ−1
2 u‖(p+qτ)e2‖2

×
∑

m̂,n̂∈Z3

m̂p−n̂q=N4

e−πτ2u
−1‖e−1

3 m̂‖2−πτ−1
2 u−1‖e−1

3 (n̂+m̂τ1)‖2 d2τ

τ2
2

du

u4−2s . (H.99)

Changing variables to x = u/τ2 and y = τ2u, so that u = √
xy, τ2 =

√
y/x and

dτ2 du = dx dy
2x the integral becomes

1
2(det e3)−2

∫
R

∞∫
0

∞∫
0

∑
p=[p1,p2]
q=[0,q2]
p1>0

0�p2<|q2|

∑
m̂,n̂∈Z3

m̂p−n̂q=N4

e−πx‖(p+qτ1)e2‖2−πx−1‖e−1
3 m̂‖2

× e−πy‖qe2‖2−πy−1‖e−1
3 (n̂+m̂τ1)‖2 dx

x2−s

dy

y3−s
dτ1. (H.100)

Integrating over x and y yields
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2(det e3)−2
∫
R

∑
p=[p1,p2]
q=[0,q2]
p1>0

0�p2<|q2|

∑
m̂,n̂∈Z3

m̂p−n̂q=N4

(
‖(p + qτ1)e2‖

‖e−1
3 m̂‖

)1−s

×
(

‖qe2‖
‖e−1

3 (n̂ + m̂τ1)‖

)2−s

Ks−1
(
2π
∥∥(p + qτ1)e2

∥∥∥∥e−1
3 m̂

∥∥)
×Ks−2

(
2π‖qe2‖

∥∥e−1
3 (n̂ + m̂τ1)

∥∥) dτ1. (H.101)

Next we analyze the second integral in (H.98), in which we assume N4 has rank 1
(since it vanishes if it has rank 2):

1
det e3

∞∫
0

∫
Γ∞\H

∑
p�=0
n �=0

m̂p=N4

e2πiτ1nm̂e−πτ−1
2 u‖pe2‖2−πτ2u‖ne3‖2−πτ2u

−1‖e−1
3 m̂‖2 d2τ

τ
1
2
2

du

u
5
2−2s .

(H.102)

The τ1 integration over [0, 1] enforces the condition that n ⊥ m̂ (which implies n ⊥ N4):

1
det e3

∞∫
0

∞∫
0

∑
p�=0
n �=0
m̂⊥n

m̂p=N4

e−πτ−1
2 u‖pe2‖2−πτ2u‖ne3‖2−πτ2u

−1‖e−1
3 m̂‖2 dτ2

τ
1
2
2

du

u
5
2−2s . (H.103)

As before, change variables x = u/τ2 and y = τ2u so that (H.103) becomes

1
2(det e3)

∑
p�=0
n �=0
m̂⊥n

m̂p=N4

∞∫
0

∞∫
0

e−πx‖pe2‖2−πx−1‖e−1
3 m̂‖2

e−πy‖ne3‖2 dx

x2−s

dy

y
3
2−s

=
Γ (s− 1

2 )
(det e3)

∑
p�=0
n �=0
m̂⊥n

m̂p=N4

(
π‖ne3‖2) 1

2−s
(
‖e−1

3 m̂‖
‖pe2‖

)s−1

Ks−1
(
2π
∥∥e−1

3 m̂
∥∥‖pe2‖

)
. (H.104)

H.2.2.4. The parabolic Pβ4 = GL(1) × SL(4) × Uβ4

In this case e ∈ GL(5,R) has the special form
(

I1 Q
I4

) ( e1
e4

)
, where Q is a

4-dimensional row vector, e1 is a non-zero real number, and e4 ∈ GL(4,R). We work
with a sum of the form (H.80) but now instead p, q ∈ Z and m,n ∈ Z4. Then the
exponent (H.87) becomes

−πτ−1
2 e2

1|p + qτ |2 − πτ−1
2
∥∥((p + qτ)Q + m + nτ

)
e4
∥∥2

. (H.105)
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If p = q = 0 then the exponent and hence G(τ, eet) is independent of Q. To get nontrivial
Fourier modes in Q, we must thus assume to the contrary that rank

[
p
q

]
= 1. We write

the contributions of these rank one terms as

G1
(
τ, eet

)
=

∑
γ∈Γ∞\Γ

G◦
1
(
γτ, eet

)
, (H.106)

where

G◦
1
(
τ, eet

)
:=

∑
p>0

m,n∈Z4

n �=0

e−πτ−1
2 e21p

2−πτ−1
2 ‖(pQ+m+nτ)e4‖2

(H.107)

(this uses the fact that the SL(2,Z) orbits of rank one integer matrices
[
p
q

]
each have

representatives with p > 0 and q = 0, and that the rank 2 condition for
[
pm
0 n

]
is that

n �= 0). Applying Poisson summation over m ∈ Z4 results in the expression

G◦
1
(
τ, eet

)
=

∑
p>0

m̂,n∈Z4

n �=0

e−πτ−1
2 e21p

2−πτ2‖ne4‖2
e2πi(pQm̂+τ1nm̂)

×
∫
R4

e−2πimm̂e−πτ−1
2 ‖me4‖2

dm. (H.108)

Here we think of m̂ as a column vector. Thus the Fourier coefficient for e2πiQN4 , when
the column vector N4 ∈ Z4 is not zero, is equal to

FG◦
1
(
τ, eet

)
= τ2

2 (det e4)−1
∑
p>0
n �=0

pm̂=N4

e2πiτ1nm̂e−πτ−1
2 e21p

2−πτ2‖ne4‖2−πτ2‖e−1
4 m̂‖2

. (H.109)

Using Proposition 4.1 the N4-th Fourier coefficient of 1
2ξ(2s)ξ(2s− 1)ESL(5)

β2;s (e) is

1
det e4

∞∫
0

∞∫
0

1∫
0

e2πiτ1nm̂
∑
p>0
n �=0

pm̂=N4

e−πτ−1
2 ue21p

2−πτ2u‖ne4‖2−πτ2u
−1‖e−1

4 m̂‖2
dτ1 dτ2

du

u3−2s

= 1
det e4

∞∫
0

∞∫
0

∑
p>0
n �=0

pm̂=N4
n⊥N4

e−πτ−1
2 ue21p

2−πτ2u‖ne4‖2
e−πτ2u

−1‖e−1
4 m̂‖2

dτ2
du

u3−2s . (H.110)

Changing variables to x = u/τ2 and y = τ2u, so that u = √
xy, τ2 =

√
y/x and

dτ2 du = dx dy (H.110) equals
2x
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1
2 det e4

∑
p>0
n �=0

pm̂=N4
n⊥N4

∞∫
0

∞∫
0

e−πxe21p
2−πx−1‖e−1

4 m̂‖2−πy‖ne4‖2 dx

x
5
2−s

dy

y
3
2−s

=
Γ (s− 1

2 )
πs− 1

2 (det e4)

∑
p>0
n �=0

pm̂=N4
n⊥N4

(
‖e−1

4 m̂‖
p|e1|

)s− 3
2

‖ne4‖1−2sKs− 3
2

(
2πe1p

∥∥e−1
4 m̂

∥∥).
(H.111)

H.3. The Spin(5, 5) case

Here we analyze the Fourier modes of the series E
Spin(5,5)
α1;s , which is one of the

two Eisenstein series appropriate to the D = 6 case. The results are summarized in
Section 4.6. Here we shall use the expressions (E.15) and (G.12), which for d = 5 im-
ply

E
SO(5,5)
α1;s+3/2

((
I Bw5

I

)(
v1/2e

v−1/2ẽ

))
= v5/2

2ξ(2s + 3)

∫
SL(2,Z)\H

ESL(2)
s (τ)G

(
τ, veet + B

) d2τ

τ2
2

+ vs+3/2E
SL(5)
β4;s+3/2(e) + v5/2−s ξ(2s− 1)

ξ(2s + 3)E
SL(5)
β1;s (e), (H.112)

where v > 0 and e ∈ SL(5,R). Formula (2.13) shows that the same formula is
valid for E

Spin(d,d)
α1;s+3/2(h′), where h′ ∈ Spin(d, d,R) is any element which projects onto(

I Bw5
I

) (
v1/2e

v−1/2ẽ

)
via the covering map Spin(d, d,R) → SO(d, d,R).

(i) The parabolic Pα5 = GL(1) × SL(5) × Uα5 .
The analysis in this section also covers limit (iii), since both parabolics come from

spinor nodes. Formula (H.112) shows that the nontrivial spinor parabolic Fourier coeffi-
cients (in B) all come from the integral on the right-hand side. In limit (i) the parameter
v plays the role of the parameter r2 from (2.9), and so we set v = r2. Substituting the
formula (E.12) for G(τ, r2eet + B) we see that the contribution to the non-zero Fourier
modes of (H.112) is given by

r5

2ξ(2s + 3)

∫
SL(2,Z)\H

ESL(2)
s (τ)

∑
[m
n

]
∈M(2)

2,5(Z)

e−πτ−1
2 r2‖(m+nτ)e‖2

e−2πimBnt d2τ

τ2
2
. (H.113)

Note that all non-zero Fourier modes have the form B �→ e2πimBnt , which is precisely
the 1 -BPS condition from (4.76).
2
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We conclude that for N2 ∈ M5,5(Z) the Fourier coefficient of
E

SO(5,5)
α1;s

((
I Bwd

I

) ( re
r−1ẽ

))
for the character B �→ eiπ(tr N2B) is equal to

r5

2ξ(2s + 3)

∫
H

ESL(2)
s (τ)

∑
[m
n

]
∈SL(2,Z)\M(2)

2,5(Z)
N2=ntm−mtn

e−πτ−1
2 r2‖(m+nτ)e‖2 d2τ

τ2
2

(H.114)

with r2 = r4/�7 according to the identification of the parameters in [24] recalled in (2.9).
In the case of interest in Section 4.6 the parameter s is equal to zero, and the integral

was computed in (E.22) as

r3

2ξ(3)
∑

[m
n

]
∈SL(2,Z)\M(2)

2,5(Z)
N2=ntm−mtn

e−2πr2 det(
[m
n

]
eet

[m
n

]t)1/2

det(
[
m
n

]
eet
[
m
n

]t)1/2 . (H.115)

In the claim following (E.25) we saw that the
[
m
n

]
in this sum can be parametrized as[

m
n

]
=
(

d1 b
0 d2

) [
m′

n′

]
, where d1 �= 0, 0 � b < d2, and

[
m′

n′

]
ranges over left GL(2,Z)-cosets

of M(2)
2,5(Z)′ := {all possible bottom two rows of matrices in SL(5,Z)}. (This coset space

is in bijective correspondence with Pβ2(Z)\SL(5,Z).) The constraint N2 = ntm −mtn

then reads N2 = d1d2((n′)tm′ − (m′)tn′). As a consequence we can rewrite (H.115)
as

r3

2ξ(3)
∑

[m′
n′
]
∈GL(2,Z)\M(2)

2,5(Z)′

N2=d1d2((n′)tm′−(m′)tn′)

d2

d1d2

e
−2πr2 d1 d2 det

([m′
n′
]
eet

[m′
n′
]t)1/2

det
([

m′

n′

]
eet
[
m′

n′

]t)1/2 . (H.116)

The product d1d2 obviously divides each entry of N2, but the entries of N2 = ntm−mtn

can have a nontrivial common factor even if gcd(m) = gcd(n) = 1. On the other hand,
the

(5
2
)

= 10 minors of the two bottom rows
[
m′

n′

]
must be relatively prime, since the

determinant of the SL(5,Z) matrix (i.e., 1) is an integral linear combination of them.
These minors are the entries of N2, up to sign. We conclude that d1d2 = gcd(N2) and
that (H.115) is equal to

r3

2ξ(3)
∑

[m′
n′
]
∈GL(2,Z)\M(2)

2,5(Z)′

N2=gcd(N2)((n′)tm′−(m′)tn′)

σ1(gcd(N2))
gcd(N2)

e
−2πr2 gcd(N2) det

([m′
n′
]
eet

[m′
n′
]t)1/2

det
([

m′

n′

]
eet
[
m′

n′

]t)1/2 .

(H.117)

Again, (2.13) shows that this formula is also valid for F
Spin(d,d)
α1;s (h′) and any h′ ∈

Spin(d, d,R) which projects onto
(
I BWd

I

) ( re
r−1ẽ

)
via the covering map Spin(d, d,R) →

SO(d, d,R).
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(ii) The parabolic Pα1 = GL(1) × Spin(4, 4) × Uα1 .
We shall use (H.112) to compute the non-zero Fourier modes of ESO(5,5)

α1;s and hence
E

Spin(5,5)
α1;s . Before beginning the calculation, it is helpful to explicitly write out the groups

and characters involved. The unipotent radical U = Uα1 of Pα1 is an abelian group
isomorphic to R8 under the map

u1, u2, . . . , u8 �→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 u1 u2 u3 u4 u5 u6 u7 u8 −u1u8 − u2u7 − u3u6 − u4u5
0 1 0 0 0 0 0 0 0 −u8
0 0 1 0 0 0 0 0 0 −u7
0 0 0 1 0 0 0 0 0 −u6
0 0 0 0 1 0 0 0 0 −u5
0 0 0 0 0 1 0 0 0 −u4
0 0 0 0 0 0 1 0 0 −u3
0 0 0 0 0 0 0 1 0 −u2
0 0 0 0 0 0 0 0 1 −u1
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(H.118)

and Γ ∩ U is isomorphic to Z8 under this identification. The general Fourier mode is
indexed N1 =

[
M
N

]
= [ m

1

n1

m2

n2

m3

n3

m4

n4
] ∈ M2,4(Z) from (4.81), and is given by the character

χN1(u) := e2πi(m1u1+m2u2+m3u3+m4u4+n1u8+n2u7+n3u6+n4u5). (H.119)

The Fourier coefficient (4.80) is given by

FSO(5,5)α1
α1;s (N1) =

∫
U(Z)\U(R)

ESO(5,5)
α1;s (uh)χN1(u)−1 du. (H.120)

The general element h of the Levi component has the form

h = h(a, h4) =

⎛⎝ a 0 0
0 h4 0
0 0 1/a

⎞⎠ , (H.121)

where a �= 0 and h4 ∈ SO(4, 4)(R).
Given the structure of the last two terms in (H.112) (which are insensitive to

u5, u6, u7, u8) it makes sense to treat the cases N �= [0 0 0 0] and N = [0 0 0 0] sepa-
rately. Since E

SO(5,5)
α1;s is invariant under the Weyl group element h(1, w8) (w8 denoting

the reversed-8 × 8 identity matrix) and conjugating the matrix (H.118) by h(1, w8) re-
verses the order of the ui, the Fourier coefficient F

SO(5,5)α1
α1;s (

[
M
N

]
) evaluated at h(a, h4)

equals FSO(5,5)α1
α1;s (

[
N
M

]
) evaluated at h(a,w8h4). Since we are studying nontrivial Fourier

coefficients at least one entry of the matrix N1 is non-zero. Thus the determination of
these coefficients for N1 of the form

[
M
]

reduces to those of the form
[ 0 ]. Therefore
0 N
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in performing these computations we can assume that N �= [0 0 0 0], and then convert
afterwards to N = [0 0 0 0] using this w8-mechanism. For reasons of space we will not
carry out this conversion here, and instead limit our discussion in Section 4.6 to the case
when N �= [0 0 0 0]. Thus for the remainder of the paper we assume N �= [0 0 0 0].

Suppose e ∈ SL(5,R) has the form e =
(

1 Q
I4

)(
v−1/2r2

e4

)
=
(

v−1/2r2 Qe4
e4

)
, with

Q = [q1 q2 q3 q4] and e4 ∈ GL(4,R) a matrix with determinant v1/2r−2. The reason for
writing e this way is ensure that r plays the same role it does in (2.9). Furthermore
suppose

Bw5 =

⎛⎜⎜⎜⎜⎝
b1 b2 b3 b4 0
b5 b6 b7 0 −b4
b8 b9 0 −b7 −b3
b10 0 −b9 −b6 −b2
0 −b10 −b8 −b5 −b1

⎞⎟⎟⎟⎟⎠ . (H.122)

Then the argument
(
I Bw5

I

) (
v1/2e

v−1/2ẽ

)
of the first line of (H.112) lies in Pα1 (recall

that the parameter v determines the determinant, v5/2, of the upper left 5 × 5 block of
this matrix). This product also has the factorization uh, where u is the matrix (H.118)
with (u1, u2, u3, u4, u5, u6, u7, u8) = (q1, q2, q3, q4, b1 − b5q1 − b8q2 − b10q3, b2 − b6q1 −
b9q2 + b10q4, b3 − b7q1 + b9q3 + b8q4, b4 + b7q2 + b6q3 + b5q4) and h = h(r2, h4), where
h4 =

(
I4 B′w4

I4

)(
v1/2e4

v−1/2ẽ4

)
. Thus the character χN1(u) = exp(2πi(m1 − n4b5 −

n3b6 − n2b7)q1 + (m2 − n4b8 − n3b9 + n1b7)q2 + (m3 − n4b10 + n2b9 + n1b6)q3 + (m4 +
n3b10 + n2b8 + n1b5)q4 + n4b1 + n3b2 + n2b3 + n1b4).

Recall (E.12), which states

G
(
τ, veet + B

)
=

∑
[p m1
q m2

]
∈M(2)

2,5(Z)

e−πτ2v‖[q m2]e‖2−πτ−1
2 v‖[p+qτ1 m1+m2τ1]e‖2

e−2πi[pm1]B[q m2]t (H.123)

after the elements of Z5 are grouped together as an integer p or q and a vector m1 =
[m12 m13 m14 m15] or m2 = [m22 m23 m24 m25] ∈ Z4. At this point identify the variables
b1 = u5, b2 = u6, b3 = u7, and b4 = u8. Then −[pm1]B[q m2]t = −p(u8m22 + u7m23 +
u6m24 +u5m25)+q(u8m12 +u7m13 +u6m14 +u5m15)−m1B

′mt
2. Hence the

[
pm1
q m2

]
which

contribute to the Fourier mode (u5, u6, u7, u8) �→ e2πi(n4u5+n3u6+n2u7+n1u8) are those
having pm22−qm12 = −n1, pm23−qm13 = −n2, pm24−qm14 = −n3, and pm25−qm15 =
−n4. This condition on the minors of the 2× 5 matrix

[
pm1
q m2

]
is SL(2,Z)-invariant. Each

SL(2,Z) orbit has an element with q = 0 and p > 0, at which the conditions simplify to

pm2 = p[m22 m23 m24 m25] = −[n1 n2 n3 n4] = −N, (H.124)

which cannot be zero because
[
pm1

]
has rank 2.
q m2
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For the rest of the paper we shall assume that N �= 0. Under this assumption all
contributions to the Fourier coefficient come from the second line of (H.112). Thus the
terms in (H.123) which contribute to the Fourier coefficient can be written as

∑
γ∈Γ∞\Γ

G0
a

(
γτ, veet + B

)
, (H.125)

where

G0
a

(
τ, veet + B

)
:=

∑
pm2=−N
m1∈Z4

e−πτ2v‖[0 m2]e‖2−πτ−1
2 v‖[p m1+m2τ1]e‖2

e−2πi[pm1]B[0 m2]t .

(H.126)

Using the facts that e−2πi[pm1]B[0 m2]t = e2πi(n4u5+n3u6+n2u7+n1u8)e−2πim1B
′mt

2 and
[0m2]e = m2e4 we now execute Poisson summation over m1 ∈ Z4 in (H.126):

e−2πi(n4u5+n3u6+n2u7+n1u8)G0
a

(
τ, veet + B

)
=

∑
pm2=−N
m̂1∈Z4

e−πτ2v‖m2e4‖2
∫
R4

e2πi(m2B
′−m̂1)·m1e−πτ−1

2 v‖[p m1+m2τ1]e‖2
dm1

=
∑

pm2=−N
m̂1∈Z4

e2πi(m̂1−m2B
′)·m2τ1e−πτ2v‖m2e4‖2

×
∫
R4

e2πi(m2B
′−m̂1)·m1e−πτ−1

2 v‖[pm1]e‖2
dm1. (H.127)

Again using the special form e =
(

1 Q
I4

)(
v−1/2r2

e4

)
=
(

v−1/2r2 Qe4
e4

)
(so that [pm1]e =

[v−1/2r2p (pQ + m1)e4]), this equals

=
∑

pm2=−N
m̂1∈Z4

e2πi(m̂1−m2B
′)·m2τ1e−πτ2v‖m2e4‖2

×
∫
R4

e2πi(m2B
′−m̂1)·m1e−πτ−1

2 p2r4−πτ−1
2 v‖(pQ+m1)e4‖2

dm1

=
∑

pm2=−N
m̂1∈Z4

e2πi(m̂1−m2B
′)·(m2τ1+pQ)e−πτ2v‖m2e4‖2−πτ−1

2 p2r4

×
∫

e2πi(m2B
′−m̂1)·m1e−πτ−1

2 v‖m1e4‖2
dm1
R4
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= τ2
2 r

2

v5/2

∑
pm2=−N
m̂1∈Z4

e2πi(m̂1−m2B
′)·(m2τ1+pQ)

× e−πτ2v‖m2e4‖2−πτ−1
2 p2r4−πτ2v

−1‖(m2B
′−m̂1)(et4)

−1‖2
, (H.128)

where we have used that det e4 = v1/2r−2.
We now use (H.128) to determine the remaining Fourier dependence on (u1, u2, u3, u4).

The dependence on Q = [q1 q2 q3 q4] here is from e2πi(m̂1p−m2B
′p)Qt = e2πi(pm̂1+NB′)Qt .

Writing m̂1 = [m̂12 m̂13 m̂14 m̂15] the argument here is (pm̂12 − n2b7 − n3b6 − n4b5)q1 +
(pm̂13 +n1b7 −n3b9 −n4b8)q2 +(pm̂14 +n1b6 +n2b9 −n4b10)q3 +(pm̂15 +n1b5 +n2b8 +
n3b10)q4. The character describing the Fourier mode above was χN1(u) = exp(2πi(m1 −
n4b5 − n3b6 − n2b7)q1 + (m2 − n4b8 − n3b9 + n1b7)q2 + (m3 − n4b10 + n2b9 + n1b6)q3 +
(m4 + n3b10 + n2b8 + n1b5)q4 + n4b1 + n3b2 + n2b3 + n1b4). The condition that these
match is thus that pm̂1 = p[m̂12 m̂13 m̂14 m̂15] = [m1 m2 m3 m4] = M . Then the relevant
Fourier coefficient FG0

a(τ, veet + B;
[
M
N

]
) of G0

a(τ, veet + B) is

= τ2
2 r

2

v5/2

∑
pm̂1=M
pm2=−N

e2πim̂1·m2τ1e−πτ2v‖m2e4‖2

× e−πτ−1
2 p2r4−πτ2v

−1‖(m2B
′−m̂1)(et4)

−1‖2

= τ2
2 r

2

v5/2

∑
p|gcd(m1,...,n4)

e−πτ−1
2 p2r4

e−2πip−2τ1M ·N

× e−πp−2τ2v‖Ne4‖2−πp−2τ2v
−1‖(NB′+M)(et4)

−1‖2
, (H.129)

the sum being over the positive common divisors p of m1, . . . , n4.
Finally, we insert (H.129) into the second line of (H.112), and unfold to the strip. In

terms of (H.120), this gives the Fourier coefficient F
SO(5,5)α1
α1;s+3/2 at h = h(r2, h4), where

h4 =
(

I4 B′w4
I4

)(
v1/2e4

v−1/2ẽ4

)
:

F
SO(5,5)α1
α1;s+3/2

(
h
(
r2, h4

)
;
[
M

N

])
= r2

ξ(2s + 3)

∫
Γ∞\H

ESL(2)
s (τ) d2τ

∑
p|gcd(m1,...,n4)

e
−2πiτ1 M·N

p2

× e−πτ−1
2 p2r4−πp−2τ2v‖Ne4‖2−πp−2τ2v

−1‖(NB′+M)(et4)
−1‖2

. (H.130)

The matrix e4 here is normalized differently than in (4.82), where it corresponds to the
SO(4, 4) semisimple part of the Levi component. In our setting that is instead v1/2e4,
so that G4 = ve4e

t
4. Here B′ plays the role of the antisymmetric matrix B and so (4.82)

reads
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√
2pL = v−1/2(M + NB′)(et4)−1 − v1/2Ne4,

√
2pR = v−1/2(M + NB′)(et4)−1 + v1/2Ne4. (H.131)

It follows that

p2
L + p2

R = v−1∥∥(M + NB′)(et4)−1∥∥2 + v‖Ne4‖2 (H.132)

while

p2
L − p2

R = −2
(
M + NB′)(et4)−1(Ne4)t = −2M ·N. (H.133)

With these substitutions and replacing s by s− 3/2, (2.13) and (H.130) lead to (4.83).

Appendix I. Supplementary material

The online version of this article contains a supplementary video abstract.
Please visit http://dx.doi.org/10.1016/j.jnt.2013.05.018.
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