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1. Introduction

An important concern in the theory of mathematical constants is to define some new 
sequences which have higher convergent speed towards some fundamental constants. 
Those constants and new sequences play an important role in many fields of mathematics 
and nature science, such as special functions, theory of probability, physics, applied 
statistics, number theory, and analysis.

It is well known that one of the most useful convergent sequences is

γn =
n∑

k=1

1
k
− lnn, (1.1)

whose limit is known as Euler’s constant, denoted by

γ = 0.577215 . . . .

So far, many researchers have devoted great efforts and achieved much in the area of 
improving the convergent rate of the sequence (γn)n≥1. Among them, there are many 
inspiring achievements. For example, in [12–14,16], the estimate

1
2n + 1 < γn − γ <

1
2n (1.2)

was established with interesting geometric interpretations. In [1,2], a faster convergent 
sequence (Dn)n≥1 to γ was introduced, which is defined as

Dn = 1 + 1
2 + 1

3 + · · · + 1
n
− ln

(
n + 1

2

)
. (1.3)

DeTemple also concluded that the speed of the new sequence to γ is the same as the 
speed of convergence n−2, since

1
24(n + 1)2 < Dn − γ <

1
24n2 . (1.4)

In [15], Vernescu presented a new modification,

Vn = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

2n − lnn, (1.5)

and the estimate was provided as

1
12(n + 1)2 < γ − Vn <

1
12n2 . (1.6)

In both (1.3) and (1.5), only slight modifications are made to Euler’s sequence (1.1), but 
the convergent rates are significantly improved from n−1 to n−2.
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Moreover, Mortici obtained some even faster convergent sequences than (1.1), (1.3)
and (1.5).

In [5], two sequences were defined as follows,

un = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

(6 − 2
√

6 )n
− ln

(
n + 1√

6

)
, (1.7)

vn = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

(6 + 2
√

6 )n
− ln

(
n− 1√

6

)
. (1.8)

Both of (1.7) and (1.8) had been proved to converge to γ as n−3.
Furthermore,

μn(a, b) =
n∑

k=1

1
k

+ ln
(
ea/(n+b) − 1

)
− ln a (1.9)

was introduced by Mortici in [7], where a, b ∈ R, a > 0. They also proved that among 
the sequences (μn(a, b))n≥1, in the case of a =

√
2/2, b = (2 +

√
2 )/4, the privileged 

sequence offers the best approximations of γ, since

lim
n→∞

n3
(
μn

(√
2

2 ,
2 +

√
2

4

)
− γ

)
=

√
2

96 . (1.10)

Recently, in [3,4], we also provided some approximations of Euler’s constant. A new 
important sequence was defined as follows,

Ln = 1 + 1
2 + 1

3 + · · · + 1
n
− lnn− a1

n + a2n
n+ a3n

n+ a4n
n+···

, (1.11)

where a1 = 1/2, a2 = 1/6, a3 = −1/6, . . . . Two special sequences were provided as

L(2)
n = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− a1

n + a2
, (1.12)

L(3)
n = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− a1

n + a2n
n+a3

. (1.13)

These two sequences converge more quickly than all other sequences mentioned above, 
since for any n ∈ N,

1
72(n + 1)3 < γ − L(2)

n <
1

72n3 and 1
120(n + 1)4 < L(3)

n − γ <
1

120(n− 1)4 .

It is these works that motivate our study. In this paper, our main goal is to modify 
the sequence based on the early works of DeTemple, Mortici and Lu, and provide new 
convergent sequence with higher speed and relatively simple form.



72 D. Lu et al. / Journal of Number Theory 147 (2015) 69–80
The rest of this paper is arranged as follows. In Section 2, we provide the main results. 
In Section 3, the proofs of the main results are given. In Section 4, we give some numerical 
computations which demonstrate the superiority of our new convergent sequence over 
DeTemple’s sequence, Vernescu’s sequence and Mortici’s sequence.

2. The main results

Theorem 2.1. For any fixed k, s ∈ N, where N is the set of positive integers, we have the 
following convergent sequence for Euler’s constant,

r
(s)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + a1

n + a2n
n+ a3n

n+ a4n

n+
. . .+as

)
, (2.1)

where

a1 = k

2 , a2 = 2 − 3k
12 , a3 = 3k2 + 4

12(3k − 2) ,

a4 = −15k4 − 30k3 + 60k2 − 104k + 96
20(3k − 2)(3k2 + 4) , . . . .

Furthermore, let

r
(1)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + a1

n

)
; (2.2)

r
(2)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + a1

n + a2

)
; (2.3)

r
(3)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + a1

n + a2n
n+a3

)
; (2.4)

r
(4)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + a1

n + a2n
n+ a3n

n+a4

)
. (2.5)

We also have

lim
n→∞

n2(r(1)
n,k − γ

)
= − 1

12 + k

8 ; (2.6)

lim
n→∞

n3(r(2)
n,k − γ

)
= −k2

96 − 1
72 ; (2.7)

lim
n→∞

n4(r(3)
n,k − γ

)
= 1

5760
15k4 − 30k3 + 60k2 − 104k + 96

2 − 3k ; (2.8)

lim
n→∞

n5(r(4)
n,k − γ

)
= 1

115 200
15k6 + 120k4 + 1520k2 + 2304

3k2 + 4 . (2.9)
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Using Theorem 2.1, we have a conclusion as follows:

Corollary 2.1. For s = 1, the fastest possible sequence (r(1)
n,k)n≥1 is obtained only for 

k = 1 and

lim
n→∞

n2(r(1)
n,1 − γ

)
= 1

24 . (2.10)

For s = 2, the fastest possible sequence (r(2)
n,k)n≥1 is obtained only for k = 1 and

lim
n→∞

n3(r(2)
n,1 − γ

)
= − 7

288 . (2.11)

For s = 3, the fastest possible sequence (r(3)
n,k)n≥1 is obtained only for k = 2 and

lim
n→∞

n4(r(3)
n,2 − γ

)
= − 1

180 . (2.12)

For s = 4, the fastest possible sequence (r(4)
n,k)n≥1 is obtained only for k = 1 and

lim
n→∞

n5(r(4)
n,1 − γ

)
= 3959

806 400 . (2.13)

It is easy to see that r(1)
n,1 = Dn and (2.2) is equivalent to (1.3). Comparing 

with DeTemple’s sequence (Dn)n≥1, Vernescu’s sequence (Vn)n≥2, Mortici’s sequences 
(un)n≥1, (vn)n≥1 and μn(

√
2

2 , 2+
√

2
4 ), r(3)

n,2 improve the rate of convergence from n−2 and 
n−3 to n−4. In fact, using Theorem 2.1, we can obtain other convergent sequences which 
are faster than r(3)

n,2.
Furthermore, for r(2)

n,1 and r(3)
n,2, similarly to (1.2), (1.4) and (1.6), we also have the 

following inequalities:

Theorem 2.2. For all natural numbers n,

7
288(n + 1)3 < γ − r

(2)
n,1 <

7
288n3 ; (2.14)

1
180(n + 1)4 < γ − r

(3)
n,2 <

1
180n4 . (2.15)

For obtaining Theorem 2.1, we need the following lemma which was used in [6–11]
and very useful for construction of convergent sequence.

Lemma 2.1. If (xn)n≥1 is convergent to zero and there exists the limit

lim ns(xn − xn+1) = l ∈ [−∞,+∞], (2.16)

n→∞
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with s > 1, then

lim
n→∞

ns−1xn = l

s− 1 . (2.17)

Lemma 2.1 was firstly proved by Mortici in [9]. From Lemma 2.1, we can see that 
the speed of convergence of the sequence (xn)n≥1 increases together with the value s
satisfying (2.16).

3. Proofs of the main results

3.1. Proof of Theorem 2.1

Based on the argument of Theorem 2.1 in [10] or Theorem 5 in [11], we need to find 
the value of a1 ∈ R which produces the most accurate approximation of the form

r
(1)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + a1

n

)
. (3.1)

To measure the accuracy of this approximation, a method is to say that an approximation 
(3.1) is better as r(1)

n,k − γ faster converges to zero. Using (3.1), we have

r
(1)
n,k − r

(1)
n+1,k = − 1

n + 1 − lnn− 1
k

ln
(

1 + a1

n

)
+ ln(n + 1) + 1

k
ln
(

1 + a1

n + 1

)
. (3.2)

Developing in power series in 1/n, we have

r
(1)
n,k − r

(1)
n+1,k = k − 2a1

2k
1
n2 + 3a1 + 3a2

1 − 2k
3k

1
n3 + O

(
1
n4

)
. (3.3)

From Lemma 2.1, we know that the speed of convergence of the sequence (r(1)
n,k)n≥1 is 

even higher as the value s satisfying (2.16). Thus, using Lemma 2.1, we have:

(i) If a1 �= k/2, then the convergent rate of sequence (r(1)
n,k − γ)n≥1 is 1/n, since

lim
n→∞

n
(
r
(1)
n,k − γ

)
= k − 2a1

2k �= 0.

(ii) If a1 = k/2, then from (3.3), we have

r
(1)
n,k − r

(1)
n+1,k =

(
−1

6 + k

4

)
1
n3 + O

(
1
n4

)
,
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and the rate of convergence of the sequence (r(1)
n,k − γ)n≥1 is n−2, since

lim
n→∞

n2(r(1)
n,k − γ

)
= − 1

12 + k

8 .

We know that the fastest possible sequence (r(1)
n,k)n≥1 is obtained only for a1 = k/2.

Next, we define the sequence (r(2)
n,k)n≥1 by the relation

r
(2)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + k/2
n + a2

)
. (3.4)

Using the similar method from (3.1)–(3.3), we have

r
(2)
n,k − r

(2)
n+1,k =

(
a2 −

1
6 + k

4

)
1
n3

+
(

1
4 − 3k

8 − 3a2k

4 − 3a2

2 − 3a2
2

2 − k2

8

)
1
n4 + O

(
1
n5

)
. (3.5)

The fastest possible sequence (r(2)
n,k)n≥1 is obtained when a2 = 1/6 − k/4, and we have

lim
n→∞

n3(r(2)
n,k − γ

)
= −k2

96 − 1
72 ,

and the rate of convergence is n−3.
Moreover, we define the third sequence with the conclusions above,

r
(3)
n,k = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− 1

k
ln
(

1 + k/2
n + n(1/6−k/4)

n+a3

)
. (3.6)

Then we can get the equation below,

r
(3)
n,k − r

(3)
n+1,k =

(
3a3k

8 − a3

4 − 1
24 − k2

32

)
1
n4

+
(
k2

12 + 11a3

18 − 11a3k

12 − a2
3k

2 + a2
3
3 + 17

135

)
1
n5 + O

(
1
n6

)
. (3.7)

Taking a3 = (3k2 + 4)/(36k − 24), we obtain the fastest sequence (r(3)
n,k)n≥1 and the 

convergent rate is n−4, since

lim
n→∞

n4(r(3)
n,k − γ

)
= 15k4 − 30k3 + 60k2 − 104k + 96

5760(2 − 3k) .

By induction, it is easy to obtain that a4 = −15k4−30k3+60k2−104k+96
20(3k−2)(3k2+4) , . . . , and other 

sequence can be obtained in the same way.
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Fig. 1. Values of f3(k) and f4(k).

3.2. Proof of Corollary 2.1

From (2.6), it is very easy to have the conclusion that when k = 1, f1(k) = | − 1/12 +
k/8| = 1/24, which is the minimum value. Then, the proof of (2.10) is completed.

From (2.7), we have

f2(k) =
∣∣∣∣− 1

96k
2 − 1

72

∣∣∣∣ = 1
96k

2 + 1
72 and f ′

2(k) = k

48 ≥ 0.

Since the value of f2(k) increases as k > 0 increasing, we get the conclusion that when 
k = 1, we have the minimum value of f2(k). Then the proof of (2.11) is finished.

From (2.8) and (a) in Fig. 1, we take the minimum value of

f3(k) =
∣∣∣∣15k4 − 30k3 + 60k2 − 104k + 96

5670(3k − 2)

∣∣∣∣
as k = 2, so that the proof of (2.12) is completed.

From (2.9), it is easy to see from (b) in Fig. 1 that we obtain the minimum value of 
f4(k) = |(15k6 + 120k4 + 1520k2 + 2304)/(115 200(3k2 + 4))| as k = 1.

3.3. Proof of Theorem 2.2

Based on the argument of Theorem in [1] or the method in [2], first, we prove (2.14). 
It is easy to have
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γ − r
(2)
n,1 =

∞∑
k=n

(
r
(2)
k+1,1 − r

(2)
k,1

)
=

∞∑
k=n

f(k), (3.8)

where

f(k) = 1
k + 1 − ln

(
1 + 1

k

)
− ln

(
1 + 1/2

k + 11/12

)
+ ln

(
1 + 1/2

k − 1/12

)
.

Next, we have

f ′(x) = − 6048x2 + 6528x + 935
x(12x + 5)(12x− 1)(12x + 17)(12x + 11)(x + 1)2 . (3.9)

For the upper bound in (2.14), for x ≥ 1, we have

−f ′(x) ≤ 7
24(x + 1

2 )5
. (3.10)

Since f(∞) = 0, we have

f(k) = −
∞∫
k

f ′(x)dx ≤ 7
24

∞∫
k

(
x + 1

2

)−5

dx

= 7
96

(
k + 1

2

)−4

≤ 7
96

k+1∫
k

x−4dx, (3.11)

where we use the following fact

k+1∫
k

x−4dx−
(
k + 1

2

)−4

= 40k4 + 80k3 + 51k2 + 11k + 1
3k3(k + 1)3(2k + 1)4 > 0

in the last inequality in (3.11). Combining (3.8) and (3.11), we have

γ − r
(2)
n,1 ≤

∞∑
k=n

7
96

k+1∫
k

x−4dx = 7
96

∞∫
n

x−4dx = 7
288n3 . (3.12)

For the lower bound, by (3.9), for x ≥ 0, we have

−f ′(x) ≥ 7
5 . (3.13)
24(x + 1)
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By (3.13), we have

f(k) = −
∞∫
k

f ′(x)dx ≥ 7
24

∞∫
k

(x + 1)−5dx

= 7
96(k + 1)−4 ≥ 7

96

k+2∫
k+1

x−4dx. (3.14)

Combining (3.8) and (3.14), we have

γ − r(2)
n ≥

∞∑
k=n

7
96

k+2∫
k+1

x−4dx = 7
96

∞∫
n+1

x−4dx = 7
288(n + 1)3 . (3.15)

Combining (3.12) and (3.15), we complete the proof of (2.14).
Next, we prove (2.15). It is easy to have

γ − r
(3)
n,2 =

∞∑
k=n

(
r
(3)
k+1,2 − r

(3)
k,2

)
=

∞∑
k=n

g(k), (3.16)

where

g′(x) = − 1
(x + 1)2(3x2 + 9x + 7)(3x2 + 3x + 1) . (3.17)

For the upper bound in (2.15), for x ≥ 0, we have

−g′(x) ≤ 1
9(x + 1/2)6 . (3.18)

Since g(∞) = 0, by (3.18), we have

g(k) = −
∞∫
k

g′(x)dx ≤ 1
9

∞∫
k

(
x + 1

2

)−6

dx

= 1
45

(
k + 1

2

)−5

≤ 1
45

k+1∫
k

x−5dx. (3.19)

Combining (3.16) and (3.19), we have

γ − r
(3)
n,2 ≤

∞∑
k=n

1
45

k+1∫
x−5dx = 1

45

∞∫
x−5dx = 1

180n4 . (3.20)

k n
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For the lower bound, for x ≥ 0, we have

−g′(x) ≥ 1
9(x + 1)6 . (3.21)

By (3.21), we have

g(k) = −
∞∫
k

g′(x)dx ≥ 1
9

∞∫
k

(x + 1)−6dx = 1
45(k + 1)−5 ≥ 1

45

k+2∫
k+1

x−5dx. (3.22)

Combining (3.16) and (3.22), we have

γ − r
(3)
n,2 ≥

∞∑
k=n

1
45

k+2∫
k+1

x−5dx = 1
45

∞∫
n+1

x−5dx = 1
180(n + 1)4 . (3.23)

Combining (3.20) and (3.23), we complete the proof of (2.15).

4. Numerical computation

In this section, we give Tables 1 and 2 to demonstrate the superiority of our 
new convergent sequence (r(2)

n,1)n≥1, (r(3)
n,2)n≥1 and (r(4)

n,1)n≥1 over DeTemple’s sequence 

(Dn)n≥1, Vernescu’s (Vn)n≥1, Mortici’s sequences (μn(
√

2
2 , 2+

√
2

4 ))n≥1, and Lu’s se-
quences (L(2)

n )n≥1 and (L(3)
n )n≥1.

Table 1
Simulations for Dn, Vn, μn(

√
2

2 , 2+
√

2
4 ), L(2)

n and L(3)
n .

n Dn − γ Vn − γ μn(
√

2
2 , 2+

√
2

4 ) − γ L(2)
n − γ L(3)

n − γ

10 3.7733 × 10−4 −8.3250 × 10−4 1.1807 × 10−5 −1.2832 × 10−5 8.2941 × 10−7

25 6.4061 × 10−5 −1.3331 × 10−4 8.6183 × 10−7 −8.6169 × 10−7 2.1317 × 10−8

50 1.6337 × 10−5 −3.3332 × 10−5 1.1265 × 10−7 −1.0941 × 10−7 1.3331 × 10−9

100 4.1252 × 10−6 −8.3333 × 10−6 1.4402 × 10−8 −1.3782 × 10−8 8.3329 × 10−11

250 6.6401 × 10−7 −1.3333 × 10−6 9.3431 × 10−10 −8.8616 × 10−10 2.1333 × 10−12

1000 4.1625 × 10−8 −8.3333 × 10−8 1.4698 × 10−11 −1.3878 × 10−11 8.3333 × 10−15

Table 2
Simulations for r(2)

n,1, r(3)
n,2, and r(4)

n,1.

n r
(2)
n,1 − γ r

(3)
n,2 − γ r

(4)
n,1 − γ

10 −2.2748 × 10−5 −4.5329 × 10−7 4.3237 × 10−8

25 −1.5152 × 10−6 −1.3126 × 10−8 4.7845 × 10−10

50 −1.9192 × 10−7 −8.5398 × 10−10 1.5330 × 10−11

100 −2.4147 × 10−8 −5.4455 × 10−11 4.8499 × 10−13

250 −1.5515 × 10−9 −1.4109 × 10−12 5.0029 × 10−15

1000 −2.4290 × 10−11 −5.5444 × 10−15 4.9035 × 10−18
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