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1. Introduction

A partition, π = (λ1, λ2, . . . ), is a finite sequence of non-increasing positive integers. 
Let ν(π) be the number of elements of π. These elements, λi for i ∈ {1, . . . , ν(π)}, are 
called parts of the partition π. The norm of a partition π, denoted |π|, is defined as the 
sum of all its parts. We call a partition π a partition of n if |π| = n. Conventionally, we 
define the empty sequence to be the unique partition of zero. Also define νd(π) as the 
number of different parts of π. For example, π = (10, 10, 5, 5, 4, 1) is a partition of 35 
with ν(π) = 6 and νd(π) = 4.

While the study of the classical partition identities goes back to great Euler, the study 
of weighted partition identities is relatively new with many important consequences to be 
discovered. In 1997, Alladi [1] began a systematic study of weighted partition identities. 
Among many interesting results, he proved that

Theorem 1.1 (Alladi, 1997).

(a(1 − b)q; q)n
(aq; q)n

=
∑
π∈Un

aν(π)bνd(π)q|π|, (1.1)

where Un is the set of partitions with the largest part ≤ n.

In (1.1) and in the rest of the paper we use the standard q-Pochhammer symbol 
notations defined in [8,16]. Let L be a non-negative integer, then

(a; q)L :=
L−1∏
i=0

(1 − aqi) and (a; q)∞ := lim
L→∞

(a; q)L.

Theorem 1.1 provides a combinatorial interpretation for the left-hand side product of 
(1.1) as a weighted count of ordinary partitions with a restriction on the largest part. In 
[14], Corteel and Lovejoy elegantly interpreted (1.1) with a = 1 and b = 2,

(−q; q)n
(q; q)n

=
∑
π∈Un

2νd(π)q|π|, (1.2)

in terms of overpartitions.
Also in [1], Alladi discovered and proved a weighted partition identity relating un-

restricted partitions and the Rogers–Ramanujan partitions. Let U be the set of all 
partitions, and let RR be the set of partitions with difference between parts ≥ 2.

Theorem 1.2 (Alladi, 1997). ∑
ω(π)q|π| =

∑
q|π|, (1.3)
π∈RR π∈U
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where

ω(π) := λν(π) ·
ν(π)−1∏
i=1

(λi − λi+1 − 1), (1.4)

and the weight of the empty sequence is considered to be the empty product and is set 
equal to 1.

Note that it is clear that RR is a proper subset of U . Therefore, computationally, 
calculating the sum on the left is much easier than calculating the sum on the right.

In (1.3) the set RR can be replaced with the set of partitions into distinct parts, 
denoted D. ∑

π∈RR
ω(π)q|π| =

∑
π∈D

ω(π)q|π|. (1.5)

The weight ω(π) of (1.4) for a partition π becomes 0 if the gap between consecutive 
parts of π is ever 1. Alladi [5] time and time again expressed his desire of seeing a 
weighted partition identity connecting D and U with non-vanishing weights on D and 
where we count partitions from U , in the regular fashion, with weight one. In this paper, 
we discuss a couple of examples of weighted partition identities connecting D and U , thus 
taking a step towards the eventual solution to Alladi’s problem. The reader interested in 
weighted partition identities and their applications may also wish to examine [1,4,6,7,22]. 
In particular, Theorem 1.2 is extended in [22].

In this paper, we will present many new weighted partition identities: Theorem 3.6, 
Theorem 4.2, Theorem 4.4 and Theorem 5.2, some with new multiplicative weights sim-
ilar to those in Theorem 1.2, such as (3.13), (4.13), and (4.15). We have also found 
naturally occurring non-multiplicative weights such as (4.21) and (4.23). To the best of 
our knowledge, this type of weights has not been discussed anywhere in the literature. 
Some of our weights involve new partition statistics, one is defined as the number of 
different odd parts of a partition larger than or equal to a given value and another one is 
defined as the number of different even parts of the partition larger than the first integer 
that is not a part of the partition. We also discovered two important strict subsets of the 
set of partitions with distinct odd parts, which we called Prdo and Pdom. This sets are 
defined in Section 3 and Section 5, respectively.

The remainder of this paper is organized as follows: In Section 2 we will introduce 
different representations of partitions which we are going to use later. This section also 
includes the background information. Section 3 discusses weighted partition identities 
connecting Göllnitz–Gordon type partitions and partitions with distinct odd parts. Some 
combinatorial connections between D and U will be presented in Section 4. In Section 5, 
we use a known identity from Ramanujan’s lost notebook to discover and prove a new 
striking weighted partition identity, Theorem 5.2. This identity connects partitions in 
Pdom and unrestricted partitions subject to some initial conditions.



A. Berkovich, A.K. Uncu / Journal of Number Theory 176 (2017) 226–248 229
2. Useful definitions

A Ferrers diagram of a partition π = (λ1, λ2, . . . ) is a diagram of boxes which has λi

many boxes on its i-th row. Whence the number of boxes on i-th row gives the size of the 
part λi. There is a one-to-one correspondence between Ferrers diagrams and partitions. 
The words partition and Ferrers diagram can be used interchangeably. An example of a 
Ferrers diagram is given in Table 1.

We note that Ferrers diagrams represented with boxes as opposed to dots are usually 
named Young diagrams. Young diagrams are often used in a wider context than partitions 
such as skew Yound diagrams and Young tabeloux. We will be using the name Ferrers 
diagrams to avoid any type of confusion and to remind the reader that we are strictly 
focusing on partitions.

We define the 2-modular Ferrers diagram similar to the Ferrers diagrams. Let �x�
denote the smallest integer ≥ x. For a given partition π = (λ1, λ2, . . . ), we draw �λi/2�
many boxes at the i-th row. We decorate the boxes on the i-th row with 2’s with the 
option of having a 1 at the right most box of the row, such that the sum of the numbers 
in the boxes of the i-th row becomes λi. Table 1 includes an example of a 2-modular 
Ferrers diagram.

Table 1
The Ferrers Diagram and the 2-modular Ferrers Diagram of the partition π = (10, 9, 5, 5, 4, 1).

2 2 2 2 2

2222

2 2

2

2

2

2

1

1

1

1

,

It should be noted that the conjugate of a Ferrers diagram [8] (drawing the Ferrers 
diagram column-wise and then reading it row-wise) also represents a partition. The 
analogous conjugation procedure only yields admissible 2-modular Ferrers diagrams if 
the starting partition has distinct odd parts (it may still have repeating even parts). 
In the example of Table 1, the conjugate partition of π is (6, 5, 5, 5, 4, 2, 2, 2, 2, 1). The 
conjugate of the 2-modular Ferrers diagram of π is not an admissible 2-modular diagram, 
as there would be a row with two separate boxes decorated with 1’s.

Another representation of a partition π is the frequency notation π = (1f1 , 2f2 , . . . ), 
where fi(π) = fi is the number of occurrences of part i in π. In this representation 
the partition in Table 1 is (11, 20, 30, 41, 52, 60, 70, 80, 91, 101, 110, . . . ). It is customary 
to ignore zero frequencies in notation for simplicity. This way the running example can 
be written as π = (11, 41, 52, 91, 101). Occasionally zero frequencies are shown in the 
representation to stress the absence of a part.
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We define the basic q-hypergeometric series as they appear in [16]. Let r and s be 
non-negative integers and a1, a2, . . . , ar, b1, b2, . . . , bs, q, and z be variables. Then

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
)

:=
∞∑

n=0

(a1; q)n(a2; q)n . . . (ar; q)n
(q; q)n(b1; q)n . . . (bs; q)n

[
(−1)nq

(n
2
)]1−r+s

zn. (2.1)

Let a, b, c, q, and z be variables. The q-Gauss summation formula [16, II.8, p. 236]

2φ1

(
a, b

c
; q, c

ab

)
=

( c
a ; q)∞( cb ; q)∞

(c; q)∞( c
ab ; q)∞

, (2.2)

and one of the three Heine’s transformations [16, III.2, p. 241]

2φ1

(
a, b

c
; q, z

)
=

( cb ; q)∞(bz; q)∞
(c; q)∞(z; q)∞ 2φ1

(
abz
c , b

bz
; q, c

b

)
(2.3)

will be used later on.

3. Weighted partition identities involving Göllnitz–Gordon type partitions

We start by reminding the reader of the well-known Göllnitz–Gordon identities of 
1960’s.

Theorem 3.1 (Slater, 1952). For i ∈ {1, 2}

∑
n≥0

qn
2+2(i−1)n(−q; q2)n

(q2; q2)n
= 1

(q2i−1; q8)∞(q4; q8)∞(q9−2i; q8)∞
. (3.1)

These analytic identities in (3.1), though commonly referred as Göllnitz–Gordon iden-
tities, were proven a decade before Göllnitz and Gordon by Slater [20, (34) & (36), p. 155]. 
It should be noted that both cases of (3.1) were known to Ramanujan [11, (1.7.11–12), 
p. 37] before any known proof emerged.

For a lot of authors, including both Göllnitz and Gordon, the combinatorial interpre-
tations of (3.1) have been of interest. For i = 1 or 2, let GGi be the set of partitions into 
parts ≥ 2i − 1 with minimal difference between parts ≥ 2 and no consecutive even num-
bers appear as parts. Let Ci,8 be the set of partitions into parts congruent to ±(2i − 1), 
and 4 mod 8. Then Theorem 3.1 can be rewritten in its combinatorial form [17,18]:

Theorem 3.2 (Göllnitz–Gordon, 1967 & 1965). For i = 1 or 2, the number of partitions 
of n from GGi is equal to the number of partitions of n from Ci,8.∑

π∈GGi

q|π| =
∑

π∈Ci,8

q|π|. (3.2)
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We now present some analytical identities that will later be interpreted in terms of the 
Göllnitz–Gordon type partitions. This discussion will yield to the first set of weighted 
partition identities of this paper.

Theorem 3.3.

∑
n≥0

qn
2(−q; q2)n
(q2; q2)2n

= (−q; q2)∞
(q2; q2)∞

, (3.3)

∑
n≥0

qn
2+2n(−q; q2)n
(q2; q2)2n

= (−q; q2)∞
(q2; q2)∞

∑
n≥0

(−1)nqn2+n

(−q; q2)n+1

= (−q; q2)∞
(q2; q2)∞

∑
j≥0

q3j2+2j(1 − q2j+1). (3.4)

Proof. With the definition (2.1), Theorem 3.3 can be proven easily. The left-hand side 
of (3.3) and (3.4) can be rewritten as

lim
ρ→∞ 2φ1

(
−q, ρ

q2 ; q2,− q

ρ

)
and lim

ρ→∞ 2φ1

(
−q, ρq2

q2 ; q2,− q

ρ

)
, respectively.

Then it is easy to show that (3.3) is a limiting case of q-Gauss summation (2.2). An 
equivalent form of the identity (3.3) is also present in Ramanujan’s lost notebooks [11, 
4.2.6, p. 84].

The first equality of (3.4) is an application of the Heine transformation (2.3) with 
a = ρq2, and the second equality is due to Fine [15, (26.91–97), p. 62] with q �→ −q, 
and Rogers [19, (4), p. 333] with q �→ −q. Another equivalent proof and an alternative 
representation of the second equality in (3.4) is present in Ramanujan’s lost notebooks 
[10, §9.5]. �

Note that the minuscule change: qn2 �→ qn
2+2n, on the left side of (3.4) yields increase 

in complexity on the right of (3.4) which involves a false theta function.
Similar to the situation in Theorem 3.1, analytic identities (3.3) and (3.4) can be 

interpreted combinatorially. In fact, the interpretation of (3.3) was discussed in [3]. For 
the sake of completeness we will slightly paraphrase this discussion below.

We can easily interpret the product on the right-hand side of (3.3). The expression 
(−q; q2)∞ is the generating function for the number of partitions into distinct odd parts 
and 1/(q2; q2)∞ is the generating function for the number of partitions into even parts. 
These two generating functions’ product is the generating function for the number of 
partitions with distinct odd parts (even parts may be repeating). This is clear as the 
parity of a part in a partition completely identifies which generating function it is coming 
from.
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The generating function interpretation of the left-hand side of (3.3) needs us to identify 
weights on partitions. For a positive integer n, the reciprocal of the q-Pochhammer 
symbol

1
(q2; q2)n

(3.5)

is the generating function for the number of partitions into ≤ n even parts. The expres-
sion

qn
2(−q; q2)n
(q2; q2)n

(3.6)

can be interpreted as the generating function for the number of partitions into exactly 
n parts from GG1, [2, (8.2), p. 173]. We can represent the partitions counted by (3.6)
as 2-modular graphs. There are four possible patterns that can appear at the end of 
consecutive parts of these 2-modular Ferrers diagrams. All these possible endings of 
consecutive parts λi and λi+1, where i < ν(π) of a partition π, are demonstrated in 
Table 2.

Table 2
Ends of consecutive parts of Göllnitz–Gordon partitions.

2

2

2 2 2 1

1
. . .

. . .

λi−λi+1−2
2 ≥ 0

λi

λi+1
,

2

2

2 2 2 2

2
. . .

. . .

λi−λi+1−3
2 ≥ 0

λi

λi+1

1

,

2

2

2 2 2 2

1
. . .

. . .

λi−λi+1−3
2 ≥ 0

λi

λi+1
,

2

2

2 2 2 2

2
. . .

. . .

λi−λi+1−4
2 ≥ 0

λi

λi+1

2

.

The labeled gaps on Table 2 are the number of non-essential number of boxes between 
consecutive parts for the partition to be in GG1. These differences can be equal to zero. 
In general, the number of the non-essential boxes of the 2-modular Ferrers diagram for 
a partition in GG1 is given by the formula

λi − λi+1 − δλi,e − δλi+1,e

2 − 1, (3.7)

where

δn,e :=
{

1, if n is even,
0, otherwise.

(3.8)
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Later we will need

δn,o := 1 − δn,e. (3.9)

The product of (3.5) and (3.6) is the generating function for the number of partitions 
from GG1 into exactly n parts where the non-essential boxes in their 2-modular Ferrers 
diagram representation come in two colors. Let π′ be a partition counted by (3.5) in one 
color and let π∗ be a partition counted by (3.6) in another color. Then we insert columns 
of the 2-modular Ferrers diagram representation of π′ in the 2-modular Ferrers diagram 
representation of π∗. In doing so, we insert the different colored columns all the way 
left those columns can be inserted, without violating the definition of 2-modular Ferrers 
diagrams. One example of the insertion of this type for n = 4 is presented in Table 3.

Table 3
Insertion of the columns of π′ = (6, 4, 4, 4) in π∗ = (12, 8, 3, 1) ∈ GG1.

The inserted columns from π′ are all non-essential for the outcome partition to lie in GG1, though those 
are not the only non-essential columns.

This insertion changes the number of non-essential boxes of a partition π ∈ GG1, and 
it does not effect any essential structure of the 2-modular Ferrers diagrams. There are a 
total of

λi − λi+1 − δλi,e − δλi+1,e

2 (3.10)

many different possibilities for the coloration of the non-essential boxes that appear from 
the part λi to λi+1. Similarly, there are

λn + δλn,o

2

many coloration possibilities for a the smallest part of a partition that gets counted by 
the summand of (3.3), where δn,o is defined in (3.9).

Hence, combining all the possible number of colorations, there are

ω1(π) :=
λν(π) + δλν(π),o

2 ·
ν(π)−1∏ λi − λi+1 − δλi,e − δλi+1,e

2 (3.11)

i=1
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total number of colorations of a partition π ∈ GG1. The far right partition in Table 3
is one of the possible colorations of the partition (18, 12, 7, 5), and the total number of 
colorations via (3.11) is ω1(18, 12, 7, 5) = 3 · 2 · 2 · 1 = 12.

The above discussion yields the weighted partition identity:

Theorem 3.4 (Alladi, 2012).

∑
π∈GG1

ω1(π)q|π| =
∑

π∈Pdo

q|π|, (3.12)

where ω1 is defined as in (3.11) and Pdo is the set of partitions with distinct odd parts.

Theorem 3.4 is essentially [3, Theorem 3] with a = b = 1 with minor corrections for 
the weight associated with the smallest part of Göllnitz–Gordon partitions. The set of 
partitions Pdo, partitions with distinct odd parts, has also been studied in [4] and [12]. 
We give an example of Theorem 3.4 in Table 4.

Table 4
Example of Theorem 3.4 with |π| = 12.

π ∈ GG1 ω1 π ∈ Pdo π ∈ Pdo

(12) 6 (12) (6,4,2)
(11, 1) 5 (11, 1) (6, 3, 2, 1)
(10, 2) 3 (10, 2) (6, 2, 2, 2)
(9, 3) 6 (9, 3) (5, 4, 3)
(8, 4) 2 (9, 2, 1) (5, 4, 2, 1)
(8, 3, 1) 2 (8, 4) (5, 3, 2, 2)
(7, 5) 3 (8, 3, 1) (5, 2, 2, 2, 1)
(7, 4, 1) 1 (8, 2, 2) (4, 4, 4)

(7, 5) (4, 4, 3, 1)
(7, 4, 1) (4, 4, 2, 2)
(7, 3, 2) (4, 3, 2, 2, 1)
(7, 2, 2, 1) (4, 2, 2, 2, 2)
(6, 6) (3, 2, 2, 2, 2, 1)
(6, 5, 1) (2, 2, 2, 2, 2, 2)

The summation of all ω1(π) values for π ∈ GG1 with |π| = 12 equals 28
as the number of partitions from Pdo with the same norm.

Formally, let λν(π)+1 := 0 for a partition π. Following the same construction 
(3.5)–(3.11) step-by-step for the GG2 type partitions, we see that the left-hand side of 
(3.4) can be interpreted as a weighted generating function for the number of partitions

∑
π∈GG2

ω2(π)q|π|,

where
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ω2(π) :=
ν(π)∏
i=1

λi − λi+1 − δλi,e − δλi+1,e

2 . (3.13)

This weight ω2, unlike ω1, is uniform on every pair of consecutive parts with our cus-
tomary definition λν(π)+1 = 0.

We rewrite the sum in the middle term of (3.4) as

(−q; q2)∞
(q2; q2)∞

∑
n≥0

(−1)nqn2+n

(−q; q2)n+1
= (−q; q2)∞

(q2; q2)∞

⎛⎝∑
j≥0

q4j2+2j(1 − q4j+2)
(−q; q2)2j+1

+
∑
j≥1

q4j2+2j−1

(−q; q2)2j

⎞⎠ .

(3.14)

Clearly (3.14) amounts to

∑
j≥0

q4j2+2j

(−q; q2)2j+1
−
∑
j≥1

q4j2−2j

(−q; q2)2j
=

∑
j≥0

q4j2+2j(1 − q4j+2)
(−q; q2)2j+1

+
∑
j≥1

q4j2+2j−1

(−q; q2)2j
, (3.15)

where we split the sum on the left of (3.14) into two sub-sums according to the parity 
of the summation variable and changing the variable name n to j. After cancellations, 
(3.15) turns into

∑
j≥1

q4j2−2j(1 + q4j−1)
(−q; q2)2j

=
∑
j≥0

q4j2+6j+2

(−q; q2)2j+1
. (3.16)

The equation (3.16) can be easily established by simplifying the fraction on the left and 
shifting the summation variable j �→ j + 1.

Let Prdo be the set of partitions with distinct odd parts with the additional restrictions 
that the smallest part is > 1, and if the smallest part of a partition π is 2, then π starts 
either as

π = (2f2 , 4f4 , 6f6 , . . . , (4j − 2)f4j−2 , (4j − 1)1, . . . ), (3.17)

where f2, f4, . . . , f4j−2 are all positive, or as

π = (2f2 , 4f4 , 6f6 , . . . , (4j)f4j , (4j + 1)0, (4j + 2)0, . . . ), (3.18)

where f2, f4, . . . , f4j are all positive, for any positive j. We now claim that the middle 
term of (3.4) is the generating function for the number the partitions from the set Prdo. 
We demonstrate this with the aid of (3.14). Using distribution on the right of (3.14), we 
get
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(−q; q2)∞
(q2; q2)∞

⎛⎝∑
j≥0

q4j2+2j(1 − q4j+2)
(−q; q2)2j+1

+
∑
j≥1

q4j2+2j−1

(−q; q2)2j

⎞⎠
=

∑
j≥0

q4j2+2j(−q4j+3; q2)∞
1 − q4j+2

(q2; q2)∞
+

∑
j≥1

q4j2+2j−1 (−q4j+1; q2)∞
(q2; q2)∞

.

Thus we have for the right-hand side of (3.14)

(−q3; q2)∞
(q4; q2)∞

+
∑
j≥1

q4j2+2j−1 (−q4j+1; q2)∞
(q2; q2)∞

+
∑
j≥1

q4j2+2j(−q4j+3; q2)∞
1 − q4j+2

(q2; q2)∞
.

(3.19)

For positive integers j, we can write

4j2 + 2j − 1 = 2 + 4 + 6 + · · · + (4j − 2) + (4j − 1),

4j2 + 2j = 2 + 4 + · · · + 4j.

The above implies the initial conditions in (3.17) and (3.18), respectively. The presence 
of the distinct odd parts and the (possibly repeated) even parts is clear from the shifted 
q-factorials. This proves,

Theorem 3.5. ∑
π∈GG2

ω2(π)q|π| =
∑

π∈Prdo

q|π|, (3.20)

where ω2 as in (3.13).

The second equality in (3.4) connects an order 3 false theta function with the com-
binatorial objects we have interpreted above (3.20). This false theta function can also 
be interpreted as a generating function for the number of partitions on a set after some 
modification. It is easy to see that

(−q; q2)∞
(q2; q2)∞

∑
j≥0

q3j2+2j(1 − q2j+1) =
∑
j≥0

q3j2+2j (−q; q2)j
(q2; q2)2j

(−q2j+3; q2)∞
(q4j+4; q2)∞

. (3.21)

Let A denote the set of partitions where for any partition

i. the first integer that is not a part is odd,
ii. the double of the first missing part is also missing,
iii. each even part less than the first missing part appears at least twice,
iv. each odd part less than the first missing part appears at most twice,
v. each odd larger than the first missing part is not repeated.
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The expression (3.21) can be interpreted — as G. E. Andrews did [9] — as the generating 
function for the number of partitions from the set A. This interpretation can be seen 
after the clarification that 3j2 + 2j = 1 + 2 + 2 + 3 + 4 + 4 + · · · + (2j − 1) + 2j + 2j.

The set used in this interpretation does not consist of distinct odd parts necessarily, 
and therefore gets out of the scope of the identity of Theorem 3.5. Nevertheless, this 
observation finalizes the discussion of the combinatorial version of (3.4):

Theorem 3.6. ∑
π∈GG2

ω2(π)q|π| =
∑

π∈Prdo

q|π| =
∑
π∈A

q|π|,

where ω2 as in (3.13).

We demonstrate Theorem 3.6 in Table 5.

Table 5
Example of Theorem 3.6 with |π| = 12.

π ∈ GG2 ω2(π) π ∈ Prdo pi ∈ A

(12) 5 (12) (12)
(9, 3) 3 (9, 3) (9, 3)
(8, 4) 1 (8, 4) (8, 4)
(7, 5) 2 (7, 5) (7, 5)

(7, 3, 2) (7, 2, 2, 1)
(6, 6) (6, 6)
(5, 4, 3) (5, 4, 3)
(5, 3, 2, 2) (5, 2, 2, 2, 1)
(4, 4, 4) (4, 4, 4)
(4, 4, 2, 2) (4, 2, 2, 2, 1, 1)
(4, 2, 2, 2, 2) (2, 2, 2, 2, 2, 1, 1)

The summation of all ω2(π) values for π ∈ GG2 with |π| = 12 equals 11
as the number of partitions from Prdo and A with the same norm.

Recall that RR is the set of partitions into distinct parts with difference between 
parts ≥ 2. We also note that, similar to (1.5), the choice of the set GG2 in Theorem 3.6
can be replaced with a superset such as GG1 or RR. The weight ω2(π) would vanish for 
a partition π ∈ RR \ GG2. In particular, we have∑

π∈GG2

ω2(π)q|π| =
∑

π∈RR
ω2(π)q|π|.

4. Weighted partition identities relating partitions into distinct parts and unrestricted 
partitions

We start with two identities that will yield weighted partition identities between the 
sets D, partitions into distinct parts, and U , the set of all partitions.
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Theorem 4.1.

∑
n≥0

q(n2+n)/2(−1; q)n
(q; q)2n

= (−q; q)∞
(q; q)∞

, (4.1)

∑
n≥0

q(n2+n)/2(−q; q)n
(q; q)2n

= (−q; q)∞
(q; q)∞

⎛⎝1 +
∑
n≥1

(−1)nq2n−1

(−q; q2)n

⎞⎠ (4.2)

= (−q; q)∞
(q; q)∞

∑
j≥0

q(3j2+j)/2(1 − q2j+1). (4.3)

Proof. We note that the left-hand sides of (4.1) and (4.2) are

lim
ρ→∞ 2φ1

(
−1, ρ

q
; q,− q

ρ

)
and lim

b→−1
lim
ρ→∞ 2φ1

(
ρ, qb

qb2
; q, qb

ρ

)
, respectively.

Similar to the case of Theorem 3.3, equation (4.1) is a special case of the q-Gauss identity 
(2.2). This identity has also been previously proven in the work of Starcher [21, (3.7), p. 
805].

Identity (4.2) is more involved. To establish the equality of (4.2), we apply the Heine 
transformation (2.3) with a = ρ which yields

∑
n≥0

q(n2+n)/2(−q; q)n
(q; q)2n

= lim
b→−1

lim
ρ→∞

(b; q)∞(q2b2/ρ; q)∞
(qb2; q)∞(qb/ρ; q)∞

∑
n≥0

(qb; q)n
(q2b2/ρ; q)n

bn. (4.4)

After the limit ρ → ∞, the sum on the right of (4.4) turns into

∑
n≥0

q(n2+n)/2(−q; q)n
(q; q)2n

= lim
b→−1

(bq; q)∞
(qb2; q)∞

(1 − b)F (b, 0; b), (4.5)

where in Fine’s notation [15, (1.1)]

F (a, b; t) := 2φ1

(
q, aq

bq
; q, t

)
.

We have three explicit formulas for the expression limb→−1(1 − b)F (b, 0; b) coming from 
Fine’s work:

lim
b→−1

(1 − b)F (b, 0; b) =
∑
j≥0

q(3j2+j)/2(1 − q2j+1) (4.6)

= 1 +
∑ (−1)nq2n−1

(−q; q2)n
(4.7)
n≥1
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=
∞∑

n=0

(−1)nq(n2+n)/2

(−q; q)n
. (4.8)

These identities are [15, (7.7), p. 7], [15, (23.2), p. 45], and [15, (6.1), p. 4] with a = t →
−1, respectively. Formulas (4.6) and (4.7) in comparison with (4.5) prove both (4.3) and 
(4.2), respectively. �

Similar to the situation of Theorem 3.3, the small change on the left side of (4.2): 
(−1; q)n �→ (−q; q)n, yields increase in complexity on the right side of (4.3) which again 
involves a false theta function.

Note that the equality of the right sides of the identities (4.6)–(4.8) can be proved in 
a purely combinatorial manner with the aid of Sylvester’s bijection [13] and Franklin’s 
involution [8]. The equality of (4.6) and (4.8) will be used later in the proof of the 
Theorem 5.1.

We remark that identity (4.1) was further studied in [14]. There the identity was 
combinatorially interpreted as a relation between generalized Frobenius symbols and 
overpartitions.

Now we will move on to our discussion of combinatorial interpretations of the analytic 
identities of Theorem 4.1. We have already pointed out that the product on the right 
side (4.1) is a special case of Alladi’s (1.1) with a = 1, b = 2 and n → ∞. This can be 
interpreted as the weighted sum on the set of partitions U :

(−q; q)∞
(q; q)∞

=
∑
π∈U

2νd(π)q|π|, (1.2)

where νd(π) is the number of different parts of π.
The left-hand side of (4.1) can also be interpreted as a weighted sum. In order to 

derive the weights involved, we dissect the summand on the left. For a positive integer 
n, we have

q(n2+n)/2(−1; q)n
(q; q)2n

= q(n2+n)/2

(q; q)n
2

1 − qn
(−q; q)n−1

(q; q)n−1
. (4.9)

The first expression on the right

q(n2+n)/2

(q; q)n
(4.10)

is the generating function for the number of partitions into exactly n distinct parts [8]. 
We will think of these partitions to have the base color of white. The rational factor

2
n

= 2 + 2qn + 2q2n + 2q3n + . . . (4.11)
1 − q
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is the generating function for the number of partitions into parts each of size n each 
time counted with weight 2, regardless of occurrence. We combine Ferrers diagrams of 
partitions enumerated by (4.10) and the conjugate of partitions counted by (4.11) using 
column insertions. This yields the generating function for the number of partitions into 
exactly n distinct parts, where part λn is counted with weight 2λn.

The column insertion is similar to the case in the 2-modular Ferrers diagrams as 
we exemplified in Table 3. We embed a colored column from a conjugate of a colored 
partition counted by (4.11) all the way left inside a Ferrers diagram counted by (4.10)
without violating the definition of a partition. An example of column insertion is given 
in Table 6.

Table 6
Column insertion.

The expression

(−q; q)n−1

(q; q)n−1

is the generating function for the number of partitions into parts ≤ n − 1, where every 
different sized part is counted with weight 2. After conjugating these partitions and 
inserting its columns to partitions into n distinct parts, we see that there are 2(λi −
λi+1−1) +1 possible colorations between consecutive parts, where at least one secondary 
color appears for 1 ≤ i ≤ n − 1. To be more precise, there are λi − λi+1 − 1 columns 
coloring the space between λi+1 and λi − 1 and each coloring comes with weight 2. This 
way we have the weight 2(λi − λi+1 − 1) + 1 where the extra 1 comes from the option of 
not having a colored column at all. Again these column insertions are demonstrated in 
Table 6.

Hence, for a partition π = (λ1, λ2, . . . ), we have

∑
n≥0

q(n2+n)/2(−1; q)n
(q; q)2n

=
∑
π∈D

ω̃1(π)q|π|, (4.12)

where
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ω̃1(π) := 2λν(π) ·
ν(π)−1∏
i=1

(2λi − 2λi+1 − 1). (4.13)

Similar to (3.13), we can change the product of ω̃1 into a uniform product over the parts 
of a partition. With the custom choice that λν(π)+1 := −1/2, we have

ω̃1(π) =
ν(π)∏
i=1

(2λi − 2λi+1 − 1). (4.14)

Combining (4.1), (1.2), and (4.12) yields

Theorem 4.2. ∑
π∈D

ω̃1(π)q|π| =
∑
π∈U

ω′
1(π)q|π|,

where ω̃1(π) is as in (4.14) and ω′
1(π) = 2νd(π).

This is the first example of a weighted partition identity connecting D and U with 
strictly positive weights. The combinatorial interpretation of (4.2) is going to provide a 
second example of a connection between D and U making use of a new partition statistic.

The left side of (4.2) can be interpreted similar to (4.1). The weights associated with 
this case differ from the weight ω̃1 only at the last part. For a partition π = (λ1, λ2, . . . )
with the custom definition that λν(π)+1 := 0 we define the new weight uniformly as in 
(4.14),

ω̃2(π) =
ν(π)∏
i=1

(2λi − 2λi+1 − 1). (4.15)

With this definition, we have the identity similar to (4.12),

∑
n≥0

q(n2+n)/2(−q; q)n
(q; q)2n

=
∑
π∈D

ω̃2(π)q|π|. (4.16)

In order to get the weights for the right side of (4.2), we modify that expression. We 
rewrite (−q; q2)∞, the generating function for number of partitions into distinct odd 
parts, as

(−q; q2)∞ = 1 +
∑
n≥1

q2n−1(−q2n+1; q2)∞. (4.17)

Note that the summands in (4.17) are generating functions for the number of partitions 
into distinct odd parts with the smallest part being equal to 2n − 1.
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The right-hand side expression of the identity (4.2) directly yields

(−q; q)∞
(q; q)∞

⎛⎝1 +
∑
n≥1

(−1)nq2n−1

(−q; q2)n

⎞⎠
= (−q2; q2)∞

(q; q)∞

⎛⎝(−q; q2)∞ +
∑
n≥1

(−1)nq2n−1(−q2n+1; q2)∞

⎞⎠ . (4.18)

Employing (4.17), combining sums and changing the summation indices n �→ n + 1 on 
the right side of (4.18), we get

= (−q2; q2)∞
(q; q)∞

⎛⎝1 + 2
∑
n≥0

q4n+3(−q4n+5; q2)∞

⎞⎠
= (−q2; q2)∞

(q2; q2)∞

⎛⎝ 1
(q; q2)∞

+
∑
n≥0

1
(q; q2)2n+1

2q4n+3

1 − q4n+3
(−q4j+5; q2)∞
(q4j+5; q2)∞

⎞⎠ . (4.19)

We can interpret (4.19) as a combinatorial weighted identity over the set of unre-
stricted partitions, U . Let π = (λ1, λ2, . . . ) be a partition. Let νde(π) be the number of 
different even parts. Let μn,o(π) denote the new partition statistic, defined as the number 
of different odd parts (without counting repetitions) ≥ n of π, for some integer n. Let

χ(statement) =
{

1, if the statement is true,
0, otherwise,

(4.20)

be the truth function. We define

ω′
2(π) = 2νde(π)

⎛⎝1 +
∑
i≥0

χ((4i + 3) ∈ π)2μ4i+3,o(π)

⎞⎠ . (4.21)

With these definitions and keeping (4.19) in mind, we have the weighted identity

(−q; q)∞
(q; q)∞

⎛⎝1 +
∑
n≥1

(−1)nq2n−1

(−q; q2)n

⎞⎠ =
∑
π∈U

ω′
2(π)q|π|. (4.22)

The emergence of this weight can be explained in two parts. The front factor of 
(4.19) (identity (1.2) with q �→ q2) yields the weight 2νde(π). This is easy to see as in 
the combined partition all of the parts coming from (1.2) with q �→ q2 can be thought 
of as even parts. The summation part of the weight (4.21) comes from the respective 
summation in (4.19)
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1
(q; q2)∞

+
∑
n≥0

1
(q; q2)2n+1

2q4n+3

1 − q4n+3
(−q4j+5; q2)∞
(q4j+5; q2)∞

.

The first term is the generating function for the number of partitions into odd parts 
where we count every partition once. The right summation is the weighted count of 
partitions into odd parts. For a non-negative integer n the summand

1
(q; q2)2n+1

2q4n+3

1 − q4n+3
(−q4j+5; q2)∞
(q4j+5; q2)∞

is the generating function for the number of partitions, where 4n + 3 appears as a part, 
every odd part less than 4n + 3 is counted once, and every different odd part ≥ 4n + 3
is counted with the weight 2. This yields the weight 2μ4n+3,o(π) for a partition π.

Above observations (4.16) and (4.22) combined with (4.2) provide another new exam-
ple of a relation between partitions into distinct parts and partitions into unrestricted 
parts with non-vanishing weights.

Theorem 4.3. ∑
π∈D

ω̃2(π)q|π| =
∑
π∈U

ω′
2(π)q|π|,

where ω̃2(π) is as in (4.15) and ω′
2(π) as in (4.21).

We would like to exemplify Theorem 4.3 in Table 7.

Table 7
Example of Theorem 4.3 with |π| = 10.

π ∈ U ω′
2 π ∈ U ω′

2 π ∈ U ω′
2 π ∈ D ω̃2

(10) 2 (5, 3, 2) 10 (3, 3, 3, 1) 3 (10) 19
(9, 1) 1 (5, 3, 1, 1) 5 (3, 3, 2, 2) 6 (9, 1) 15
(8, 2) 4 (5, 2, 2, 1) 2 (3, 3, 2, 1, 1) 6 (8, 2) 33
(8, 1, 1) 2 (5, 2, 1, 1, 1) 2 (3, 3, 1, 1, 1, 1) 3 (7, 3) 35
(7, 3) 7 (5, 1, 1, 1, 1, 1) 1 (3, 2, 2, 2, 1) 6 (6, 4) 21
(7, 2, 1) 6 (4, 4, 2) 4 (3, 2, 2, 1, 1, 1) 6 (6, 3, 1) 15
(7, 1, 1, 1) 3 (4, 4, 1, 1) 2 (3, 2, 1, 1, 1, 1, 1) 6 (5, 4, 1) 5
(6, 4) 4 (4, 3, 3) 6 (3, 1, 1, 1, 1, 1, 1, 1) 3 (5, 3, 2) 9
(6, 3, 1) 6 (4, 3, 2, 1) 12 (2, 2, 2, 2, 2) 2 (4, 3, 2, 1) 1
(6, 2, 2) 4 (4, 3, 1, 1, 1) 6 (2, 2, 2, 2, 1, 1) 2
(6, 2, 1, 1) 4 (4, 2, 2, 2) 4 (2, 2, 2, 1, 1, 1, 1) 2
(6, 1, 1, 1, 1) 2 (4, 2, 2, 1, 1) 4 (2, 2, 1, 1, 1, 1, 1, 1) 2
(5, 5) 1 (4, 2, 1, 1, 1, 1) 4 (2, 1, 1, 1, 1, 1, 1, 1, 1) 2
(5, 4, 1) 2 (4, 1, 1, 1, 1, 1, 1) 2 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 1

The summation of all ω′
2(π), or all ω̃2(π) for |π| = 10 are the same and the sum equals 162.

In literature, there are many examples of partition identities with multiplicative 
weights. This is no different from the previous parts of this paper, such as Theorem 1.2, 
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3.2, 3.4, 3.6 and 4.2. Theorem 4.3 is interesting not only because it gives a weighted 
connection between the sets D and U , but also because of the appearance of the unusual 
additive weights.

The expression (4.3), which involves an order 3/2 false theta function, can be inter-
preted as a generating function for a weighted count of the ordinary partitions. The 
interpretation of the similar expression (3.4), which has an order 3 false theta function, 
required us to depart from the set of partitions with distinct odd parts Pdo to an un-
expected set A (with partitions not necessarily having distinct odd parts) with trivial 
weight 1 for each partition. Now we have a different situation. We stay with the set of 
all partitions U , but the weights become non-trivial and, occasionally, zero.

Recall that in frequency notation, a partition π = (1f1 , 2f2 , . . . ), where fi(π) = fi is 
the number of occurrences of i in π. Let

ω∗
2(π) = (1 − χ(f1(π) ≥ 2))

∏
n≥2

2χ(fn(π)≥1) + (4.23)

∑
j≥1

⎛⎜⎜⎝χ(f2j+1(π) ≤ 1)χ(fj(π) ≥ 2)2χ(fj(π)≥3)
j−1∏
i=1

χ(fi(π) ≥ 3)2χ(fi(π)≥4) ∏
n>j,

n�=2j+1

2χ(fn(π)≥1)

⎞⎟⎟⎠ ,

where χ is defined in (4.20). We remark that the sum in ω∗
2(π) is finite as partitions are 

finite, and so χ(fi(π) ≥ 3) vanishes for any value of i greater than the largest part of π. 
Then we have

(−q; q)∞
(q; q)∞

∑
j≥0

q(3j2+j)/2(1 − q2j+1) =
∑
π∈U

ω∗
2(π)q|π|. (4.24)

This can be proven by doing cancellations with the front factor of the false theta 
function (4.25):

(−q; q)∞
(q; q)∞

∑
j≥0

q(3j2+j)/2(1 − q2j+1) = (−q; q)∞
∑
j≥0

q(3j2+j)/2

(q; q)2j(q2j+2; q)∞
. (4.25)

The expression (4.25) is the generating function of partitions with weights ω∗
2. The front 

factor (−q; q)∞ is the generating function for the number of partitions into distinct parts. 
Therefore, for our interpretation, every part can appear at least once. For a non-negative 
integer j the summand is the generating function for the number of partitions, where 
2j +1 does not appear as a part, every number up to j− 1 appears at least 3 times, and 
j appears at least 2 times, as (3j2 + j)/2 = 1 +1 +1 +2 +2 +2 + · · ·+(j−1) +(j−1) +
(j − 1) + j + j.

This weight is also non-trivial and a sum of multiplicative terms. This is exemplified 
in Table 8.
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Table 8
Example of Theorem 4.3 with |π| = 10.

π ∈ U ω∗
2 π ∈ U ω∗

2 π ∈ U ω∗
2

(10) 2 (5, 3, 2) 8 (3, 3, 3, 1) 2
(9, 1) 2 (5, 3, 1, 1) 2 (3, 3, 2, 2) 4
(8, 2) 4 (5, 2, 2, 1) 4 (3, 3, 2, 1, 1) 0
(8, 1, 1) 2 (5, 2, 1, 1, 1) 8 (3, 3, 1, 1, 1, 1) 0
(7, 3) 4 (5, 1, 1, 1, 1, 1) 4 (3, 2, 2, 2, 1) 4
(7, 2, 1) 4 (4, 4, 2) 4 (3, 2, 2, 1, 1, 1) 6
(7, 1, 1, 1) 4 (4, 4, 1, 1) 2 (3, 2, 1, 1, 1, 1, 1) 4
(6, 4) 4 (4, 3, 3) 4 (3, 1, 1, 1, 1, 1, 1, 1) 2
(6, 3, 1) 4 (4, 3, 2, 1) 8 (2, 2, 2, 2, 2) 2
(6, 2, 2) 4 (4, 3, 1, 1, 1) 4 (2, 2, 2, 2, 1, 1) 2
(6, 2, 1, 1) 4 (4, 2, 2, 2) 4 (2, 2, 2, 1, 1, 1, 1) 8
(6, 1, 1, 1, 1) 4 (4, 2, 2, 1, 1) 4 (2, 2, 1, 1, 1, 1, 1, 1) 6
(5, 5) 2 (4, 2, 1, 1, 1, 1) 8 (2, 1, 1, 1, 1, 1, 1, 1, 1) 4
(5, 4, 1) 4 (4, 1, 1, 1, 1, 1, 1) 4 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 2

The summation of all ω∗
2 (π) values for |π| = 10 equals 162, as in the values of Table 7.

Hence, we get the similar result to Theorem 3.6:

Theorem 4.4. ∑
π∈D

ω̃2(π)q|π| =
∑
π∈U

ω′
2(π)q|π| =

∑
π∈U

ω∗
2(π)q|π|,

where weights ω̃2(π), ω′
2(π), and ω∗

2 are as in (4.15), (4.21) and (4.23), respectively.

5. A weighted partition identity related to 1
(q;q)∞

∑∞
j=0 q

(3j2+j)/2(1 − q2j+1)

In Section 3, we have proven Theorems 3.4 and 3.5 involving partitions with distinct 
odd parts counted with trivial weights. In this section we will derive another partition 
identity involving partitions with distinct odd parts, this time with non-trivial weights. 
To this end we prove the following theorem.

Theorem 5.1.

1
(q2; q2)∞

∞∑
n=0

q(2n+1)n(−q2n+2; q)∞ = 1
(q; q)∞

∞∑
j=0

q(3j2+j)/2(1 − q2j+1). (5.1)

Proof. This theorem amounts to manipulating the equality of (4.6) and (4.8). We point 
out that doing the even–odd index split of the summand of (4.8) and using

q(2n+1)n
− q(2n+1)n+(2n+1)

= q(2n+1)n
(−q; q)2n (−q; q)2n+1 (−q; q)2n+1
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yields

∞∑
n=0

q(2n+1)n

(−q; q)2n+1
=

∞∑
j=0

q(3j2+j)/2(1 − q2j+1). (5.2)

The identity (5.2) appears in the Ramanujan’s lost notebooks [10, (9.4.4), p. 233]. Mul-
tiplying both sides of (5.2) with

(−q; q)∞
(q2; q2)∞

= 1
(q; q)∞

,

and doing the necessary simplifications on the left, we arrive at (5.1). �
Next we define two sets of partitions. Let Pdom be the set of partitions with distinct 

odd parts, where the smallest positive integer that is not a part is odd, and let Uic be 
the set of ordinary partitions subject to the initial condition that if 2j+1 is the smallest 
positive odd number that is not a part of the partition, then every even natural number 
≤ j appears as a part, and all the odd natural numbers ≤ j appear at least twice in this 
partition. We rewrite (5.1) suggestively as

∞∑
n=0

q(2n+1)n

(q2; q2)n
(−q2n+2; q2)∞
(q2n+2; q2)∞

(−q2n+3; q2)∞ =
∞∑
j=0

q(3j2+j)/2

(q; q)2j(q2j+2; q)∞
(5.3)

to show that the left and the right sides of (5.1) are related with counts for the partitions 
from the sets Pdom and Uic, respectively. Observe that

(2n + 1)n = 1 + 2 + · · · + 2n

and

q(2n+1)n

(q2; q2)n

is the generating function for the number of partitions with distinct odd parts where 
every part is ≤ 2n and every integer ≤ 2n appears at least once. The factor

(−q2n+2; q2)∞
(q2n+2; q2)∞

is the generating function for the number of partitions into even parts ≥ 2n + 2 where 
each different even part is counted with weight 2. Putting the factors in the left-hand 
summand of (5.3) together, we see that the left side sum is a weighted count of partitions 
from Pdom. Also note that

(3j2 + j)/2 = (1 + 2 + 3 + · · · + j) + (1 + 3 + 5 + · · · + (2j − 1)),
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which is enough to see that the right side of (5.3) is the generating function for the 
number of partitions from Uic. These observations prove the following

Theorem 5.2.

∑
π∈Pdom

2τ(π)q|π| =
∑

π∈Uic

q|π|,

where, for a partition π, τ(π) is the number of different even parts of π larger than the 
smallest positive odd integer that is not a part of π.

We conclude with an example of this result in Table 9.

Table 9
Example of Theorem 5.2 with |π| = 8.

π ∈ Pdom 2τ(π) π ∈ Uic

(8) 2 (8)
(6, 2) 4 (6, 2)
(5, 3) 1 (6, 1, 1)
(5, 2, 1) 1 (5, 3)
(4, 4) 2 (5, 1, 1, 1)
(4, 2, 2) 4 (4, 4)
(2, 2, 2, 2) 2 (4, 2, 2)

(4, 2, 1, 1)
(4, 1, 1, 1, 1)
(3, 3, 2)
(3, 2, 1, 1, 1)
(2, 2, 2, 2)
(2, 2, 2, 1, 1)
(2, 2, 1, 1, 1, 1)
(2, 1, 1, 1, 1, 1, 1)
(1, 1, 1, 1, 1, 1, 1, 1)

The sum of the weights 2 +4 +1 +1 +2 +4 +2 = 16 is the 
same as the number of partitions from Uic with |π| = 8.
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