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In this paper we use the theory of elliptic functions to provide different proofs of
some Fisenstein series identities of Ramanujan from those given in a recent paper
by B. C. Berndt, S. Bhargava, and F. G. Garvan (1995, Trans. Amer. Math. Soc.
347, 4136-4244). From one of these identities we derive the inversion formula for
the Borweins cubic theta functions via Venkatachanliengar’s method. We also
derive some striking Eisenstein series identities associated with the Borweins’ cubic
theta functions.  © 2000 Academic Press
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1. INTRODUCTION

For ¢g=¢*" Imt>0, Borwein et al. [6] introduced three functions,
namely,

a(q): Z qm2+mn+n2’
0
m—n, m?+mn+n? 7T,
blg)= ), o™ (w=e),

and

o0
o(q)= Z q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2_
m,n=

In terms of infinite products [5, 6, 9],
(4 9)3
blg)= ——3—, (L1)
(4% 4w
231
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and

s (@)

12
(¢ 9) oo (12)

c(q) =3q
where as usual
n (1—aq™)

Identities (1.1) and (1.2) were first discovered by the Borweins [5] and
elementary proofs can be found in [6].

Set
=1—
#Y
3qn
M(q)=1+240 Z
—q"
and
niqn
N(g)=1-504 Z —

In [4, Theorems 4.2-4.57, Berndt et al. proved the following identities of
Ramanuajn, namely,

M(q) =a(q)(a*(q) +8c*(q)), (L.3)
M(q’) =5 a(q)(9a°(q) —8c(q)), (L.4)
N(q) =a®(q) —20a°(q) c*(q) — 8¢*(q), (L5)
and
N(g*)=a%(q) =5 a’(q) (q) + 2 (q), (1.6)

using Ramanujan’s elliptic functions in the theory of Signature 3. Alternative
proofs of (1.3) and (1.4) can also be found in [ 7], where the classical theory
of elliptic functions and modular equations of degree 3 are employed.

Identities (1.3)—(1.6) have important applications. First, they are used to
derive the interesting formulas [ 3]

27a%(q)(a’(q) + 8c(q))
b°(q) *(q)

Jt)= (1.7)
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and

27a’(q)(9a’(q) — 8b*(q))
b*(q) *(q) ’

where j is the well-known modular j-invariant. Secondly, using (1.3), (1.4),
and the identities of Ramanujan

j30)= (1.8)

dL(q) L*(q)—Mlq)

9 T 12 (1.9)
dM(q) L(q) M(q) — N(q)
P % , (1.10)
and
qu(q):L(q)N(q)—Mz(q)’ (L11)

dq 12

Chan [7] gave Venkatachaliengar’s derivation of the Borwein inversion
formula [5, 4],

(1.12)

alq) = 2F1<1 2 ,6(61)>

33 “ad(q))

The main purpose of this paper is to provide new simple proofs of (1.3)—(1.6)
by using the residue theorem of elliptic functions (Theorem 1 below). Using
a similar method, we also derive many striking new identities associated with
the Borwein functions, which we list below:

00 n 3n 5]1 15n l

146 ¥ {lf’qsn—l_“’qlsn}=3{a<q> a(q®) +2b(q) (")}, (L13)
n=1
o na” 51’[ S5n

146 Y 12— a(g) alg®) + 2e(q) e(4?). (114)
nm1 (I=¢" 1—¢
o) nqn 3nq2n 3nq3n 4nq4n 9nq6n 6I’lq12n }

1+6 { — - + + +
ngl l_qn 1_q2n 1_q3n 1_q4n l_qﬁn 1_q12

=al(q) a(q®), (1.15)
16 i { ng" _ 4nq2: _ 9nq3;’ _ 16nq‘:”}
ZU=q" 1—=¢7 1=¢" 1—¢q
5 (¢

7°)% (4% 4) ., b*(q) b(q?)
qq)(q q°)% (g% 4% b(g*)

(1.16)
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o0 2 n 2 2n 9 3n 9 6n
1+3 Z ! nqz_ ”(13_ ”(]6
~“ ll—q" 1—¢" 1—¢" 1—¢
_ (@)% d% %) _bYe?)
(: )% (¢%q%)% b q)’
0 nqn 6nq3n 9nq9n }
1-6 { - +
ngl l_qn 1_q3n 1_q9n
(4;9)8 MU 2 3
= = — ~=b —c ,
(% q¢>)% (4% () =)
o) 3 2n 3 6n
794 Z {21’! Tn°q 81n° ¢ }
1—¢* 1—¢q
® (2ng"  Sng®™  9ng®
5412 —
{_’_ Z{l_n 1_q2n 1_q6n
(% )% (4% 47) 2 b*(q?)
(q;9) 2 (4% q%)%, b*(q)’
10n3g"  81n’¢>  625n3¢™
277+1202{ na n lf 1nq5"}

;

® ( 2ng" 9q3” 25ng
{ Z { 17 3n_17
n=1
(@ 9)2 (47 g )00232175(61)
(¢% @)% (@ a3~ blg’)

{11+4 y {3”” +16_"

3n 75nq15n 2
3n 1— ISn}}

5n 2
qs”}}

o n3qn 10]13 3n 625}’13 15n
—317+4+120
+ n§1{1_ n 1_ 1— q15n
3 5

:288(q,q1)5 (¢ 61) _2880(2),

(@ 9)e (4% 4")% c(q”)
2 16ng™  Sdng™  144ng* >
{19 6 Z{ ”qn il B~ ann}}

o 1 3
— 23324 2{3”

1_q2n_1_ 3n 1—

32n3 2n 2431’13 3n

!

2592n3¢5"

1 —

”1— 1—

q

2= 128b%(q) b%(¢?),

3n

1

—q

6n

|

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)
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o n 2n 3n 6n 2
ngq nq nq nq

9] n3qn n3q2n n3q3n 117’[3 6n
=1+24 { - - 4 } (1.23)
ngl l—¢" 1—=¢ 1—¢" 1-¢°
oo n 2n 4n 2
ng ng 2nq
1412 { o }}
{ ngl l—¢" 1—¢ 1-
oo n3qn n3q2n 107’13 q4n
=1+24 { —— 4 } (1.24)
,,; l—¢" 1-¢ 1-¢*

Remark. Shortly after the completion of this paper, Chan informed the
author that identity (1.14) had been discovered earlier by him and Liaw
(unpublished).

In Section 2, we provide some basic facts about the theta function

(z]¢q). In Section 3, we prove (1.3)—(1.6), (1.13), and (1.14); we also give
a table to indicate how (1.15)—(1.24) are derived. Section 4 is devoted to
the inversion formula for Borwein’s function. It should be emphasized that
our method can be used to derive Eisenstein series identities, rather than
just to verify previously derived identities. This method thus provides
deeper insight into the theory of Eisenstein series identities.

2. SOME BASIC FACTS ABOUT THE JACOBI THETA
FUNCTION 0,(z| q)

In this section we will discuss some basic facts about the classical 6,(z | ¢)
defined by [12, p. 463]

01(Z|q): — _iq1/8 Z (_1)n q1/2n(n+1)e(2n+1)iz
q'® Z g2+ Dsin(2n +1) z. (2.1)
The Jacobi theta function 6,(z | ¢) has the following product representation

[12, p. 469]:

2iz

0,(z1q) =2¢"%sin z(q; q) o, (q€*%; ), (ge

= —ig"® e"(q; 4) o (9€°%; @) o€ 777 ) o (2.2)
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From the above equation we readily find the special values of 0,(z | ¢q),
01(01q): =01(q)=29"(q; )3, .

(5 |a) =305 (23)

01<7?‘q>= g7 "(q": 4P

where the prime denotes a partial derivative with respect to z. In this
paper, we will often use the following important expansion formula
[12, p. 4891,

ZL(z]q)=cot z +4 Z T sin 2nz, (2.4)
H n=1 q
and the well-known fact that
1 1 1 2
cotz=———z——23— 74 ..., (2.5)

We also need the following important identity

3n+1

e (] q3n+2
=146 — 2.6
alq) + ngo{l_q3n+l 1_q3n+2}’ (2.6)

and the Borwein cubic analogue of Jacobi’s identity [4-7, 9]

a*(q) =b*(q) +*(q). (2.7)

Identity (2.6) can be found in one of Ramanujan’s letters to Hardy written
from the nursing home, Fitzroy House, and was proved by Berndt in [1].
This identity was rediscovered by the Borweins [5].

Setting z=7/3 in (2.4) and after an elementary calculation, we find that

0/ q3n+1 q3n+2
< > f<1+6 Z < q3n+1_1_q3n+2>>
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by (2.6). Applying logarithmic differentiation to (2.2), we find that
9/ o) ne2iz 0 ne—2iz
9 ( |q _Z_ZZZ lq n212+2iz lq n, —2iz"* (29)
1

n=1 qe n=0 _qe

Replacing ¢ by ¢® in the above equation, setting z =7t in the resulting
equation, and using (2.6), we deduce that

’

, -
o (el =~ —3a(q) (2.10)

From the definition of 8,(z | ¢) we readily find the functional equations
0\(z+nm|q)=(—1)"0,(z]q),

and Oz +nnt|q)=(—1)" g " Pe = 0,(z|q), (2.11)

where 7 is any integer. Differentiating the above equations respectively with
respect to z and then setting z=0 in the resulting equations, we find that

Oi(nm|q)=(—1)"0i(¢q), and  Oi(nmt|q)=(—1)"q~""0,(q).
(2.12)

By using the product representation of #,(z|¢) and some elementary
calculations, we find that

3. 3
032147 = =L 0,110, (45 | a) 01 (-3 | a). 213

) )OO
and

(4; 9) o

——55 0121 ¢*) 0,(z+ 77| ¢?) O,(z—7z | ¢*).  (2.14)
()%

0,(z]q)=

Logarithmically differentiating the above equations respectively with
respect to z, we find that

0’( s >+0’1<2_n
0 3 0, 3

N 0,
61> 0, (3z1¢%) — F(Z|Q) (2.15)
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and

’ ’

e P4 g w2 =gl -G Gl (216)

Applying (2.4) and (2.5) to the right sides of the above equations, respec-
tively, we find that

0 q3n
q>= —cz+12 ) g sin 6nz

_sin 2nz + O(2?) (2.17)

and

0 0
Lz+nt|®)+L(z—nt|g’) =4 >
0, 0

—a Y L _sinonz+0(z%).  (218)
~ 1—¢

Differentiating the above two equations with respect to z respectively and
then setting z =0 in the resulting equations, we obtain

0,) \31%)7 73 =-L(¢)—5L 2.19
<‘91> <3 > 3 g <1_ T g 6L(Q) 3 (q°) (2.19)
and

0’1 ! 3 [ee] nqn nan > 1 s 1

0, N - =< L(g") =2 L(g). 22

<01>(m|q) 4n;1<1—61" ) e ) g L) (2:20)

3. PROOFS OF (1.4)(1.7), (1.14) AND (1.15)

Our starting point is the following fundamental theorem of elliptic func-
tions [8][p. 22, Theorem 2]:

THEOREM 1. The sum of all the residues of an elliptic function vanishes
in the period parallelogram.
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In this paper we call the above theorem the residue theorem. The residue
theorem plays a key role in our derivations of the Eisenstein series iden-
tities. The idea is to use various quotients and products associated with the
classical theta-function 6,(z|¢) to construct an elliptic function whose
poles are known and then compute the residues of the elliptic function at
these poles. We use L’Hopital’s rule to compute the residues of the elliptic
function at simple poles and the method of logarithmic derivatives to com-
pute the residues at poles of higher order. The residues at simple poles con-
sist of theta functions and the residues at poles of higher order consist of
theta functions and Lambert series. We set the sum of the residues to zero
to obtain the identity involving theta functions and Lambert series. There-
fore, in order to derive an Eisenstein series identities associated with the
Borwein functions a(q), b(¢), and ¢(g), we should construct a suitable ellip-
tic function whose residues at its poles are associated with the Borwein
functions a(q), b(q), c(q) and the Eisenstein series L(¢"), M(¢") and N(¢"),
In this paper we will use the notation Res(f; a) to denote the residue of
f(z) at o

Without loss of generality we will only discuss the case of a function with
a pole at the point 0. Let

f(z)=a;"+ +a;1+a0+alz+ EE
z z
and set
o _F'(2)
FE)i=2f0), 9=
It is well known that
Res(f;0) = ! F@®=1(0)
(n—1)! ‘

By using the method of logarithmic differentiation, we readily find that:

n="2:Res(f;0) = F(0) $(0), (3.1)
n=3:Res(f;0) =3 F(0){¢*(0) +¢'(0)}, (3.2)
n=5:Res(f3 0) =5 F(0){$*0) +642(0) ¢"(0) +4¢(0) ¢"(0)

+3¢'(0)* +¢"(0)}, (3.3)
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n="T:Res(f: 0) = 755 F(0){¢°(0) + 15¢%(0) ¢'(0) +20¢3(0) ¢"(0)
+15¢2(0) ¢"(0) +454%(0) ¢'(0)* + 604(0) ¢(0) 4"(0)
+64(0) $(0) +15¢4'(0)* + 15¢'(0) ¢ (0)
+10¢"(0)* +¢X(0)} . (34)

We will first indicate our method by proving the following formula of
Ramanujan [ 2, p. 460, Entry 3(i)]:

—36 . 35
S D) (35)

Proof of (3.5). The above identity involves a(g) and Eisenstein series
L(q) and L(¢?). From (2.8) we know that the value of the logarithmic
derivative of 6,(z + /3| ¢q) at z=0 is associated with a(q). From (2.19) we
know that the value of the derivative of 6,/6, (z+n/3|q) at z=0 is
associated with L(q) and L(g?). Therefore, by (3.2), our choice of the ellip-
tic function should involve theta functions 6,(z + /3| ¢), with a pole of
order 3 at z=0. After trying several functions without success we arrive at
the function

01 (z+m/3]q)

SE="51g

By using (2.11), we verify that the above function is an elliptic function
with a pole of order 3 at 0. We will use (3.2) to compute Res(f; 0). Set

F/
Fz):=2f(z),  and  §(z):i= ((ZZ))
From the definition of F(z), we find that
_ 1 _03(%/31q)
F(0) = lim 2 f(z)= AT #0. (3.6)

From (2.4), (2.5), and the definition of ¢(z) we find that

)

—z—-12 Y lq 51n2nz+3z<z+ ‘ >+O(z3). (3.6)
q" 1

3 .0, 0} T
42 =2-35 Gl +35 (247




SOME EISENSTEIN SERIES INDENTITIES 241

From the above equation and using (2.4), (2.6), and (2.19) we readily find
that

#(0 )—391<

53 q>=ﬂa(q),
, B B o0 nqn 07/1, E
p01=1-24 3 03 (G (5] 0)

0 n [e'e) 3n
= 3{1+12 y I”q 36 Y I”q 3,,}.
—q —q

n=1 n=1

Substituting these identities into (3.2), we find that

. _E [e'e} nq3n
Res(f;0)= 5 F(O ){ n=11q3n}.

n=1

The residue theorem of elliptic functions gives Res(f; 0) =0 and we com-
plete the proof of (3.5), since F(0)#0 by (3.6). Next we will prove the
following two identities:

M(q) +9M(q’) = 10a*(q), (3.7)
TM(q) —27M(q*) = 60a*(q) — 80a(q) b*(q). (38)

Proof. Identity (3.7) involves M(q) and M(q?). From (2.4) and (2.5) we
know that {(0,/0,)(z|q)— (1/z)}”’|z o 1s associated with M(q) and
{(07/0,)(32° | ¢*) — (1/32)}""| ., is associated with M(q?). Therefore, by
(3.3), our choice of the elliptic function should therefore involve the theta
functions 0,(z|¢) and 0,(3z|¢>) with a pole of order 5 at z=0. We con-
sider the elliptic function

0\(2z19) 0,(3z1¢°)
0i(z19)

fz)=

By (2.11) it is easy to check that f(z) is an elliptic function with period =
and nt and that 0 is its only pole of order 5. Set F(z):=z°f(z),
and 20¢(z) :=(F'/F)(z). From the definition of f(z) we immediately have

601(q*)

FO=59°

£0. (3.9)
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By using (2.4) and (2.5) we find that

’ ! ’

5 _0, 0, 0,
t_7-L 2212 3L (3z)4°
S 75l +25E 219 35 (21 )

¢(z)

5
——7cotz+2cot2z+3cot 3z
z

~ (2 sin 4nz — 7 sin 2nz)

+12 ) T 5, Sin 6nz

n=1

o 3n
222412 ) lq

3, Sin 6nz.

n

— (2 sin 4nz — 7 sin 2nz) + O(2°).

Hence we have

0 n 3n
nq nq
(0 =—2{1+12 ~—36 n}
?O) Ell—q 1-¢°

= —24%(g),
3 n

3 .3n
¢'"(0)_—12{1+24 Y5 | +2161’”’3n}
- —q

Therefore, using (3.3), we find that

Res(f30)= 0){3¢'(0)>+¢"(0)}
L) [, 1 9
=3 H,M)s{a (q)*EM(q) 10 — M(q 3)}. (3.10)

Since Res(f;0) =0, we obtain (3.7).
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To prove (3.8), we choose the elliptic function

01(2z1q)
01 (z1q) 03 (3z1¢%)

fz)=

which is an elliptic function with periods z and nt. The poles of f(z) are
7z/3 and 27/3, which are of order 2 and 0, which is of order 5. Let
) :=2f(z) and ¢(z) = (F'/F)(z)
We find that

8
B LT
2= 265 Gla)+ 65 (2 )~ 6 5 (2 P)
- —4z+§(z3)+0(25)—24 i:zo 1 fn _(sin 2nz — sin 4nz)
o) 3n "
4y 13 — sin 61z,
Therefore,

¢'(0)=4a*(q),  ¢(0)=¢"(0)=0,
and
¢"(0)= —F M(q)+ ' M(q*).

Hence, by (3.3), we obtain

1
Res(f: 0) = —5, F(0){3¢'(0)* +¢"(0)}
1 o 28 108
= S S M Mg B

For computing Res( f; (#/3)) we use a change of variables. By replacing z
with z+ (n/3), f(z) becomes

01 (2z—m/3]q)
0 (z+m/3]q) 03321 ¢°)

fi(z) = —
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Set Fy(z) :=z%/(z) and ¢,(z) := (F}/F,)(z). Then

2 0 3 9’1< n > 9'1< T
=——0— —_— 2—7 —0— —
b2 =265 (21q) 46 (225 g ) —6 5t (245

)

! T 0/, T
=6-1(2z—Z|q)—62(z+=
01<Z 3 "> 0, <”3 q)
'} 3n
+z-24 )

= sin 6z + O(z%).
n=1 1 _q

1
904(q%)? 03 (n/31q)
and

Substituting these identities into (3.1), we have

n 4. /3 alq)
R ;= =R ;0)= — . 3.12
oo (1) =Resti0r= g il B2
Similarly, we find that

Res <f; 23”> _ Res<f; ”> _ 4./3alq)

— . 3.13
3)” sl ogr O
Substituting (3.11), (3.12), and (3.13) into the identity

Res(f;0)+ Res (f; Z) +Res<f; 23n> =0,

and using the fact 0,(n/3 | q)=ﬂq1/8(q3; q%).,, we obtain (3.8). Solving
simultaneously equations (3.7) and (3.8) and using (2.7), we obtain (1.3)
and (1.4).

Next, we prove the following identities

N(q) +27N(q%) = 28a%(q) — 56a°(q) ¢*(q),

(3.14)
243N(g*) — 61N(q) = 182a5(q) + 896a*(q) c*(q) + 560c%(q).  (3.15)
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Proof. ldentity (3.14) involves N(g) and N(g*). From (2.4) and (2.5)
we know that {(0}/0, (z|q)—(1/2)}®|._, is associated with N(g) and
{(01/0,)(2?1¢%)—(1/2)}®|,_, is associated with N(g*). Therefore, by
(3.4), our choice of the elliptic function should involve theta functions
0,(z|q) and 0,(z|q®), with a pole of order 7 at z=0. We consider the
following elliptic function

0,(2z1q%) 03(z] q)

f(Z): 010(2|613)

By using the second equation of (2.11) we know that f(z) is an elliptic
function with periods z and 37z, with pole 0 of order 7. Set F(z):=z"f(z)
and ¢(z) = : (F'/F)(z)

We have
20'(q)?
F(0)= 0.(q )9¢0
and
7 0, L0 0,
#(z)= *+20*1(Z| q)+ 9*(22|f1)+100 (zlg®)
_4 8 5 16 7
377257 1350 TOE)
I's) 3n
Z (sin 4 nz — 5 sin 2nz)
8 ) sin 2nz
n=1 1
Hence
#(0)=0, ¢"(0)=¢(0) =
¢'(0)=3%a(q),
9"(0) = —{5s M(q) — 2 M(q>),
and

$(0) = —Z {N(q) +27N(q)}.

Substituting the above equations into (3.4) and using the fact that
Res(f;0)=0, we find that

2N(q) +54N(q*) = 140a°(q) — 21a*(q){ M(q) +3M(q*)}.
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246
Substituting (1.3) and (1.4) into the above equation and then using (2.7)

in the resulting equation, we obtain (3.14)
To prove (3.15), we consider the elliptic function

0zl
SO =g 00210

with periods 7 and zz. This function has simple poles at 7/3 and 27/3 and
a pole of order 7 at 0. By using L’Hopital’s rule, (2.3), and (2.12), we

readily find that
—9/8
T . T q
Res( f:= )= 1 _r -9
. <f ’3> s <Z 3> TE= g
—9/8

2m\ AV
Res(115 ) =Res (£5) = 15t
In order to compute Res(f;0) we set F(z)=z"f(z), ¢(z) = (F'/F)(z). We

find that
—9/8
q
F(0)=
48(q; 9) 2 (4% 4°)3,
7 0, 0, N/
$2 =465 (2219 =95 (219 =35 (321 4)
14 . 52
=2 3,75
TR
+12 Y —L— (2 sin 4nz — 3 sin 2nz)
n=1 -
e} an
—12 ) e sin 6nz + O(z").
Hence

$(0)=¢"(0) = ¢*(0) =

—3{13M(q) —27M(q%)},
—2L{61N(q) — 243N(%)}.
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Substituting the above equations into (3.4), we find that

—9/8

q
()2 (% @),

x {640a°(q) — 64a*(q)(13M(q) —27TM(q?))
+7(243N(¢*) — 61N(q))}. (3.17)

Res(f;0)=

Substituting (3.16) and (3.17) into the identity

Res (f; Z> + Res <f; 2;) + Res(f;0)=0,

we deduce that
4(243N(g%) — 61N(q)) = 22400%(gq) — 630a%(q)
+63a%(q)(13M(q) — 27M(q?)).

Using (1.3), (1.4), and (2.7) in the above equation, we obtain (3.15). By
solving Egs. (3.14) and (3.15) we obtain (1.4) and (1.5).
To prove (1.13), we consider the elliptic function

_0i:19) 0,021 %)
&) ==

which is an elliptic function with periods 7 and 5zz. 0 is its simple pole and
n/3, 2w/3 are its poles of order 3. It is easy to show that

203(q) 01(q°)

RSO0 g5y

(3.18)
To compute Res(f;(7/3)) we use a change of variables. Replacing z by
z+(m/3), f(z) becomes

0,(z+7/3|q)0,(2z—7/3|q°)
03(3z1¢") ’

Set F(z)=z%f,(z), and ¢(z) = (F'/F)(z). We have

0(x/319) 0, (731 ¢°)
270,(g%)7

filz) =

F(0)=

i 01 s
¢(z)=<z+’3“ q>+201(22—n/3|q )

9] 15n
+92-36 Y 1ziqmsin 6nz + O(2%).

n=1
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Using (2.19) we find that

#(0) = /lg(aw)—za(qﬂ), (3.19)

7 0 n 0 nq_’an

¢ g g n§1 1 _q3n
—16 § oy l’ffils (3.20)

= e

Therefore by (3.5) we have
) 4 s 1 3n
07 = ~Salg) ale®)+3 | PR

48 Z ”qs — 144 f ng” } (321)

Using (3.2) we find that

1
Res 5 ) = Res (:0) =3 FO)#(0) + 470}

s0 (45 07)os
36(¢"% q")5,

=<} 3n =<} 15
ng ng 1 s
1+6 —30 —= .
X{ + ngl 1 _q3n g 1 _qlsn Cl(q) a(q )}

=—q

It is easy to show that

2
Res <f; 73T>=Res <f; ;) (3.23)
Combining (3.18), (3.22), (3.23) and the identity
T 2n i
Res <f; 3> + Res <f; 3> + Res(f;0)=
we obtain (1.13).
To prove (1.14), we consider

e=%20,(5z — 5nt| ¢'%)

SO = ) =z 1)
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f(z) is an elliptic function with periods 7z and 3zz. n7 is its simple pole and
0 is its pole of order 3. We have

(4" 42)%,
R =g\ 3.24
eslfs )= (@) (45 9)% (3.24)

s (%54
9 (a”:4°)% (¢ 9)2

)
el nqn ) q
x 4146 __30 Y
{ ngll_q n:l1

Substituting (3.24) and (3.25) into the identity

10
ReS(f;0)=*&q

5n

a(q) a(qS)}. (3.25)

Res(f; nt) + Res(f; 0) =0,
we obtain (1.14).

Similarly, by applying the residue theorem, Theorem 1, to the elliptic
functions

0,(2z—mn/31q*) 0,(z+7/31q) 03(z+7/3 | ¢%)
0\(z+7/314%) 03(3z | ¢") ’
0,(2z | q) 0,(4z | ¢*)
03(z19) 0,(2z1¢%) 0,(3z 1 ¢*)
0,(2z1 9% 03(z | q)
03(z14°%) 03(z1 ¢*)°
0,(3z1¢%) 072z | ¢*)
0,(z1¢°) 033z ¢°) 03(z | q)°
0,(2z14%) 01z q)
03(3z14°) 03(z 1 ¢*)°
0,(2z1q) 0,(5z]¢°)
0%(z1q) 0,(3z1¢%)°
0,(2z1¢%) 0,(5z | ¢")
0,(z]q) 05(z1q°) ~
0,(2z | q) 03(6z | ¢°)
03(z1q) 03221 ¢4%) 03(3z | ¢*)’
0,(z] CI) 0,(2z] 96)
0,(z1¢*) 0\(z14%) 03(z1¢°)
0.(z|q) 0,2z | q4)
0\(z]4°) 05(z | ¢*)

Niz)=

Saz) =

Sf3(z)=

Jaz) =

Sfs(z)=

Se(z)=

Sa(z)=

Js(z) =

Sfolz) =

Sio(z) =
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respectively, we obtain identities (1.15)—(1.16). Finally, we list the periods
and poles of f;(z), 1 <k <10, where («), means that « is a pole of order 7,
in the following table.

Elliptic
Functions Periods Poles Identities

f1(2) 7, 4nt (0)5 (1.15)
S2(2) T, Tt (0)3, (5)1, (5 (1.16)
S3(2) 7, 2nt (0)3, (51, (3 (1.17)
Ja(2) m, 3nt (0)3, ($)1 (31, (7)1, (277), (1.18)
Ss(2) m, 2nt (0)s, ()1, (3 (1.19)
Je(2) m, nT (0)s, (5)1, (5 (1.20)
Sa(2) m, 3nt (0)s, (7)), (277), (1.21)
Js(2) T, nT (0)s, ()1, (3 (1.22)
fo(2) 7, 67T (0)s (1.23)
f10(2) 7, 4nt (0)s (1.24)

4. THE INVERSION FORMULA FOR THE BORWEIN
CUBIC THETA FUNCTIONS

In this section we will use (1.3), (1.9), and the Eisenstein identity for
a*(q) (Eq. (3.5)) to derive the inversion formula, (1.12), for the Borwein
functions via Venkatachanliengar’s method.

Proof. Define z :=a(q) and x :=(c*(¢q)/a*(g)). From (3.7) we know that

()
x =1+ (q)°

Differentiating the above equation with respect to ¢ and using (1.1), (1.2),
and (3.5), we have

dx_ ,b(9) < 1 db(q) 1 de(q)
dx_ R
Tdg="" (q)\blg) dg c(q) dg
b3(q)< o] nqn nq?:n >
=x2 1+12 —36
“(q) Lig S L
:xz(l_x)zz
X
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It is easy to show that

q(q: % =7 x(1—x)* 22,

Thus by using the method of logarithmic derivatives and the above equa-
tion we have

nq" d
L(g)=1-24 Z 1 =qd*10g(q(q; 9%
n=1 q
_d 1 3 1z> dx
dxlog <27x(1 x)’z qdq

—12x(1—x)zd— +(1—4z) 22 (4.2)
dx

From the above equation we immediately have

dL(q) dz d’z
. =2(7 16x)zdx+12x(l X)z =

+12x(1 —x) <Zf€> —422 (43)

Thus we have

dL(g) _dL(q) dx

dg — dx qdq

dz d?*z
— 2(7—16x) 3 d—+12x(1—x)2 2
2 2 o242 2 4
#1261 —x)? 22 () —42x(1 =), (4.4)

From (4.2) we also have

2
L%(q) = 144x%(1 — x)? 22 <Z’>Zc> +24x(1 —x)(1 —4x) 23 % + (1 —4x)% 2%

Equation (1.3) can be written as

M(q) =z*1 + 8x). (4.6)
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Substituting (4.4), (4.5), and (4.6) into (1.3), and performing a little reduc-
tion, we obtain

d*z dz 2
x(l—x)@+(1—2x)&—§z=0. (4.7)

From the above differential equation we can easily obtain the following
important result (see [ 7] for details)

ZZZFI(%a%;l;x)~ (4.8)

This completes the proof.
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