
Journal of Number Theory 90, 207�238 (2001)

Selberg Zeta Functions over Function Fields

Hirofumi Nagoshi

Department of Mathematics, Keio University, Hiyoshi, Yokohama 222-8522, Japan
E-mail: nagoshi�math.keio.ac.jp

Communicated by H. Stark

Received August 19, 1999

We compute explicitly the Selberg trace formula for principal congruence sub-
groups of PGL(2, Fq [t]) which is the modular group in positive characteristic
cases. We also express the Selberg zeta function as a determinant of the Laplacian
which is composed of both discrete and continuous spectra. All factors are
calculated explicitly, and they are rational functions in q&s. � 2001 Academic Press
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1. INTRODUCTION

The aim of this paper is to give a new explicit example of the Selberg
trace formula and the Selberg zeta function. We treat principal congruence
subgroups 1 of 1 (1)=PGL(2, Fq [t]) with Fq the finite field. The group
1 (1) is naturally introduced as an analog of the standard modular group
PSL(2, Z) in view of the number theoretic analogy between algebraic
number fields and function fields over finite fields. In place of the upper half
space which the standard modular group acts on, the group 1 (1) operates
on the so-called Bruhat�Tits tree X.

As an analog of non-compact arithmetic manifold such as the modular
surface, our 1 supplies an infinite arithmetic graph which is called a
Ramanujan diagram by Morgenstern [M1] [M2].

Our results can be regarded as a generalization of those works on the
Ihara�Selberg zeta functions which treated finite graphs [VN] [ST].

We survey the theory of Bruhat�Tits tree and the harmonic analysis on
1"X in Section 2. Next Section 3 is devoted to the construction of the
Selberg trace formula and the explicit calculation of each term. The final
expression is in Theorem 3.2. The adjacency operator T1 has both discrete
and continuous spectra, and the continuous ones can be described in terms
of the suitable Eisenstein series. Finally in Section 4 we express the Selberg
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zeta function as the determinant of T1 , and obtain its rationality in q&s

(Theorem 4.1).

2. PRELIMINARIES

Let Fq be the finite field with q elements, Fq [t] the ring of polynomials
in t over Fq , and k=Fq (t) its quotient field. The valuation at 1�t on k,
which corresponds to infinity, is defined by v� ( f �g)=deg g&deg f, where
f and g are polynomials in Fq [t], and the norm is given by |a|�=
q&v� (a)(a # k). Let k� be the completion of k with respect to this norm
| } |� , and r� be the ring of local integers. Then k�=Fq ((t&1)) is the field
of Laurent series in the uniformizer t&1 over Fq , and r�=Fq [[t&1]] is the
ring of Taylor series in t&1 over Fq . If an element a in k� is written as
��

i=n ai t&i(an{0), then v� (a)=n and |a|�=q&n.
For a ring R we let PGL(2, R) be the group of 2_2 invertible matrices

over R divided by its center. Throughout this paper we put G=
PGL(2, k�) and K=PGL(2, r�). Note that K is a maximal compact sub-
group of G. We will study the homogeneous space G�K. As is described in
[Se, II.1.1], we can endow G�K with the structure of the q+1 regular tree
X. Given a graph Y, we write V(Y) or simply Y for the set of vertices of
Y and E(Y) for the set of edges of Y. Then G�K=V(X). The tree X has a
natural distance d, namely, if u and v are adjacent in X we let d(u, v)=1.
From the way of construction of the tree X, the neighbors of the vertex
gK(g # G) are the q+1 cosets gsiK(i=1, ..., q+1), where

[s1 , ..., sq+1]={\t&1

0
:
1+ } : # Fq= � \ t

0
0
1+ .

Let B be the subgroup of G of upper triangular matrices. Since G=BK, we
have

G�K&B�B & K,

so we can take the following set of matrices

{\tn

0
x
1+ } n # Z, x # k� , x mod tnr�= (1)

as a complete set of representatives of X=G�K. Hence from the viewpoint
of the analogy to the upper half plane H, it is convenient that if g # X is
equivalent to ( t n

0
x
1
) (x mod tnr�), we call x the x-coordinate of g and call
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tn or simply n the y-coordinate of g. Using elementary divisors, we also see
that every element g=( a

c
b
d) # G can be written in the form

g=k \tn

0
0
1+ k$, (2)

where k, k$ # K and n=v�(det g)&2 min[v�(x) | x=a, b, c, d].
The group G acts on the tree X as a group of automorphisms. The action

of G on X can be extended to the boundary of X, which is defined by the
set of equivalence classes of half-lines, with two half-lines being equivalent
if they differ in a finite graph. We see �X can be identified with P1(k�). The
action of G on �X=P1(k�) is the usual fractional linear transformation,
which is induced from its matrix action on X.

From the view of actions on X and �X, we classify elements in G which
act without inversions on X, as follows:

(1) identity

(2) hyperbolic: elements which have no fixed vertices on X. (Then
from Lemma 2.1 they have two fixed points on �X.)

(3) elliptic: elements which have fixed vertices on X and no fixed
points on �X.

(4) parabolic: elements which have fixed vertices on X and a fixed
point on �X.

(5) split hyperbolic: elements which have fixed vertices on X and two
fixed points on �X.

The following Lemma summarizes the properties of hyperbolic elements.

Lemma 2.1 (Tits) [Se, p. 63]. Suppose P # G is hyperbolic (i.e., has no
fixed vertex on X ). Let the degree of P be defined by deg P=
min[d(v, Pv) | v # V(X )]. We put

TP=[v # V(X ) | d(v, Pv)=deg P].

Then

(1) TP is the vertex set of an infinite path in X.

(2) P induces a shift by the distance deg P on TP .

(3) If a vertex u is of distance d from TP then d(u, Pu)=deg P+2d.

Let 1 be a discrete subgroup of G which acts without inversions on X.
Then it naturally gives rise to a quotient graph 1"X. For example we see
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the case when 1=1(1) :=PGL(2, Fq [t]), which acts without inversions.
Throughout this paper we put for n # Z

_n := \tn

0
0
1+ # V(X ), en=(_n , _n+1) # E(X ), (3)

where we let e=(v, u) mean that vertices v and u are adjacent by the
edge e. Let 10 (1)=PGL(2, Fq), B0 (1)=[( a

0
b
d) # 1 (1) | a, d # F_

q , b # Fq ],
and for every m�1, 1m (1)=[( a

0
b
d) # 1 (1) | a, d # F_

q , deg (b)�m]. Then
for the action of 1 (1) on the tree X, the following theorem is known:

Theorem 2.1 [Se, II.1.6].

(1) The infinite path (_0 , _1 , _2 , ...) is a quotient graph 1(1)"X.

(2) For every m�0, 1m (1) is the stabilizer of _m . Moreover B0 is the
stabilizer of e0 , and 1m (1) is the stabilizer of em for m�1.

If 1 is a principal congruence subgroup

1(A)=[# # PGL(2, Fq[t]) | ##I (mod A)] (A # Fq [t]),

which is normal in 1 (1), a quotient graph 1(A)"X can be found in [L1]
or in detail in [M2]. For other congruence subgroups, see also [GN]. In
general if 1 is a discrete subgroup of G of finite covolume (i.e., a lattice in
G), Lubotzky [Lu, Theorem 6.1.] shows that the quotient graph 1"X is
the union of a finite graph F0 together with finitely many infinite half lines
(which are called ends).

The classification of conjugacy classes in 1=1(1) is known analogously
to the case of PSL(2, Z). We denote the conjugacy class of # in 1 by [#]1 .
We write D for the subset of Fq [t] consisting of monic and square-free
polynomials of even degree and M for the subset of Fq [t] consisting of
monic polynomials. The mapping d [ k(- d) establishes a one-to-one
correspondence between D and the set of real quadratic function fields. If
|=x+y - d is a quadratic irrational function, where x, y # k, | satisfies
the quadratic equation:

C|2&B|+A=0 A, B, C # Fq [t].

If we require g.c.d(A, B, C)=1 and that the coefficient of the highest power
in t of 2Cy is 1, then the polynomials A, B, C are uniquely determined,
so we write |=[A, B, C]. In this setting the discriminant of | is
defined by B2&4AC=4C2y2d. If two quadratic irrational functions
|1 , |2 are equivalent under the equivalence relation |2=

a|1+b
c|1+d with

( a
c

b
d) # PGL(2, Fq [t]), then we say they are PGL(2, Fq[t])-equivalent. If
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|1 and |2 are PGL(2, Fq [t])-equivalent, then they have the discriminant.
For d # D, l # M we put Ol - d=Fq [t]+Fq [t] l - d, which is an order in
k(- d).

Proposition 2.1 [Ak]. Let q be an odd prime power and : be a gener-
ator of F_

q . We write C_ for a complete set of representatives of equivalence
classes in F_

q &[1] defined by the relation ab=1 and C+ for a complete set
of representatives of equivalence classes in Fq defined by the relation
a+b=0. Let hl - d be the narrow class number of the order Ol - d in k(- d)
and =l - d=t0+u0l - d a fundamental unit of Ol - d . For every real quadratic
irrational function |=[A, B, C] of discriminant dl2, we put

#|=\(t0+Bu0)�2
Cu0

&Au0

(t0&Bu0)�2+ . (4)

Then a complete set of representatives of conjugacy classes of 1=
PGL(2, Fq [t]) is given by the following five types of elements: One of them
consists only of the identity element and the others are the following four
types

{\1
0

x
1+=1

(x # I ), {\1
0

0
c+=1

(c # C_), {\a�2
1

:�4
a�2+=1

(a # C+),

and [#n
|]1 (d # D, l # M, n=1, 2, ...), where | runs through a complete set

of representative of 1-equivalence classes of the real quadratic irrational
functions of discriminant dl2. The number of this complete set is hl - d .

Remark. The elements of the above four types are parabolic, split
hyperbolic, elliptic, and hyperbolic, respectively. A hyperbolic element #|

stabilizes | # �X and its conjugate |$ # �X.

Let 1 be a lattice in G. We consider C-valued functions defined on the
set of vertices V(X ). If a function f on X satisfies f (#g)=f (g) for all # # 1
and g # V(X ), f is called an automorphic function for 1. In the following
of this section we will study the harmonic analysis of automorphic func-
tions for 1, namely, just functions on the quotient graph 1"X. We denote
the stabilizer of v # V(1"X ) (resp. e # E(1"X )) in 1 by 1v (resp. 1e). The
graph 1"X can be made into a measure space by a Haar measure of G. If
we normalize it so that the volume of K is 1, it yields an atomic measure
m on 1"X that assigns to a vertex v # V(1"X ) the measure

m(v)=|1v |&1
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(see [Se, II.1.5]). For later use we put

m(e)=|1e |&1,

where e # E(1"X ). For automorphic functions f1 , f2 for 1, we define as
usual the inner product ( } , } ) 1"X , sometimes simply written as ( } , } ) ,
by

( f1 , f2) 1"X := |
1"X

f1 (g) } f� 2 (g) dg= :
v # V(1"X )

f1 (v) } f� 2 (v) m(v),

and denote the space of all square integrable functions on 1"X by
L2(1"X ). Now we define a natural operator on X, which we call the
adjacency operator or Laplacian, by

(Tf)(v) := :
(v, u) # E(X )

f (u) (f : X � C). (5)

It induces an operator on 1"X, sometimes denoted clearly by T1 , and we
see that T1 is represented as

(T1 f )(v)= :
e=(v, u) # E(1"X )

m(e)
m(v)

f (u) ( f : 1"X � C). (6)

It is known that T is a self-adjoint operator and &T&�q+1 (see e.g.
[M1]). We assume a function f* : X � C satisfies T f*=* f* and we con-
sider its alternating function f� * which is equal to f* (v) if the distance
between v and _0 is even, and is equal to &f* (v) otherwise. Then f� * satisfies
T f� *=&* f� * .

Next we define an important function �s (g) (g # G, s # C) by

�s (g) := |det(g)| s
� h((0, 1) g)&2s, (7)

where we denote h((x, y)) := sup[ |x|� , |y|�]. It can be checked that �s (g)
is K-right and N-left invariant, where N=[( 1

0
x
1) # G], and satisfies

(T�s)(g)=(qs+q1&s) �s (g). (8)

Let 1 be a non-uniform (i.e., finite co-volume but not co-compact) lattice
in G. As usual in the theory of automorphic functions, we will define cusp
forms and the Eisenstein series for each cusp.

212 HIROFUMI NAGOSHI



Let }1 , ..., }+ be a complete set of inequivalent cusps for 1. Throughout
we take a quotient graph 1"X which contains the end corresponding to
� # �X. Let 1}i

be the stabilizer in 1 of }i and take an element }~ i # G such
that }~ i�=}i . Let f be an automorphic function for 1, then f can be
expanded in the Fourier series at each cusp. Fix a cusp }i , and we say that
f # L2(1"X) is cuspidal at }i if the constant term of the Fourier expansion
at }i vanishes, i.e., for all g # G

|
(}~ i

&11}i
}~ i & N)"N

f (}~ ing) dn=0,

where the invariant measure on (}~ &1
i 1}i

}~ i & N)"N is normalized so that
the total measure of (}~ &1

i 1}i
}~ i & N)"N is equal to 1. Let us denote the end

attached to a cusp }i by (aLi
, aLi+1 , ...), where we always assume that

aLi
# F0 is the foot, i.e., aLi

has more than two neighbors in 1"X. Here L i

is defined by }~ &1
i aLi

=_Li
. To each cusp }i , we see from the way of the

action of 1}i
on X that for n�Li

f \}~ i \tn

0
x
1++=f \}~ i \tn

0
0
1++ (9)

for all x # k� . Therefore if f is cuspidal at }i , then f vanishes on the end
at } i . A function f # L2(1"X) is called a cusp form if it is an eigenfunction
of the operator T1 and it is cuspidal at all cusps. In particular, cusp forms
are supported by the finite graph F0 . Hence the number of cusp forms is
finite.

Next we review the eigen condition on an end (aL , aL+1 , ...). In detail see
[E2]. Let f # L2 (1"X) be an eigenfunction of T1 with eigenvalue *. Then
for n�L+1

* f (an)=(T1 f )(an)=q f (an&1)+f (an+1). (10)

We assume 0�*<q+1(*{2 - q) and solving this difference equation we
have that

(x&x$) f (an)=xn&L&1( f (aL+1) x&f (aL) q)

&x$n&L&1( f (aL+1) x$&f (aL) q),

where x, x$ are roots of u2&*u+q=0. If 2 - q<*<q+1 then x and
x$ are real, and we take x>x$, so x$<- q<x. Since typically m(an)=
(a constant)_q&n, f # L2(1"X) must satisfy f (an)=o (qn�2) as n � �.
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Therefore we have f (aL+1) x&f (aL) q=0, so that

(x&x$) f (an)=&x$n&L&1( f (aL+1) x$&f (aL) q).

Next if 0�*<2 - q, then x$=x� , |x|=- q. For f # L2(1"X), we can check
that f must vanishes on the end. From the Fourier coefficients condition
(see e.g. [L1, p. 239 (1.2)]) we see that in fact f is cuspidal at this cusp.
Finally if *=2 - q, then by solving (10) directly we see that f must vanish
on the end.

Now we define the Eisenstein series for a cusp }i by

Ei (g, s)= :
# # 1}i

"1

�s (}~ &1
i #g), (11)

where �s is as in (7) and s # C. From (8) this function satisfies

(TEi)(g, s)=(qs+q1&s) Ei (g, s) (12)

for g # X. It is obvious that Ei (g, s) is invariant under 1, so it can be
expanded as a Fourier series at each cusp }j . When 1 is a principal
congruence group 1(A), Li ([L1]) computes concretely the Fourier series
expansion of Ei (g, s) for each cusp }j , which can be expressed in terms of
the L-functions associated to the characters / on Fq [t] mod A. In par-
ticular the constant term of the Fourier series of Ei (g, s) at a cusp }j is of
the form:

$ijqns+.ij (s) qn(1&s), (13)

where $ij is Kronecker's $. We define the matrix 8(s) := (.ij (s)), which is
called the scattering matrix of 1. Its determinant .(s) := det 8(s) is called
the scattering determinant of 1. As for .ij (s) and 8 (s), we summarize the
results which will be necessary later.

Theorem 2.2 [L1, p. 241, p. 242, p. 249]. Let 1=1(A)(A # Fq[t]).
Then the function .ij (s) is a rational function in q&2s, and for fixed g # X the
function Ei (g, s) is a rational function in q&s. Moreover .ij (s) and Ei (g, s)
with g # X fixed are holomorphic on Re(s)�1�2 except for simple poles
at s=1+n?i�log q(n # Z). The matrix 8(s) is symmetric and satisfies the
functional equation

8(s) } 8(1&s)=I. (14)

Let 1=1(A). Using the function field analogue of the Ramanujan con-
jecture proved by Drinfeld ([Dr]), Morgenstern ([M2]) deduces that the
eigenvalues of T except for *=\(q+1) satisfy |*|�2 - q. Thus 1"X is a
Ramanujan diagram. For the definition of a Ramanujan diagram see
[M1].
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Let L1(G) be the space of all integrable functions on G, and C(K"G�K)
be the space of all continuous functions f on G such that f (kgk$)=f (g) for
all g # G and k, k$ # K. Observing that a function on X is a K-right invariant
function on G, we define an integral operator Lk on L2-functions on X by

(Lk f )(g)=|
X

k(g, g$) f (g$) dg$,

where the kernel function k(g, g$) is represented as k(g, g$)=F(g$&1g) for
some F # L1(G) & C(K"G�K). Note that k(g, g$) is determined by d(g, g$),
where d is the distance function on the tree X. So we write k(g, g$)=
k(d(g, g$)) as a one-variable function. If we let cg=_0 , cg$=_n (n�1) by
some element c # G, then we have k(g, g$)=k(d(g, g$))=k(n)=F(_n ).
Assume f is a function on X satisfying T f=* f, where T is the adjacency
operator (5) and * # C. Then it is seen that there exists a constant 4(*)
depending only on k and *, and not on the individual function f, such that
Lk f=4(*) f. We call the transformation k [ 4(*) the Selberg transform.
The Selberg transform and its inverse transform can be explicitly computed
as in the following proposition.

Proposition 2.2 [VN, p. 428]. If we put s= 1
2+ir, *=qs+q1&s(s, r # C)

and set 4(*)=h(r), then the Selberg transform of the kernel function k is
given by the following formulas:

4(*)=h(r)= :
�

n=&�

c(n) q inr,

c(n)=q |n|�2 \k( |n| )+ :
�

m=1

(qm&qm&1) k( |n|+2m)+ (n # Z).

Conversely, for given 4(*)=h(r) we have the inverse Selberg transform as

c(n)=
log q

2? |
?�log q

&?�log q
h(r) q&inr dr; (c(n)=c(&n)),

k( |n| )=q&|n|�2 \c( |n| )&(q&1) :
�

m=1

c( |n|+2m) q&m+
for n # Z.

Remark. Let F be a function in C(K"G�K). Note that the volume of
K_n K is equal to qn+qn&1 (n�1). This is the number of the vertices of X
which are n-distant from _0 . So we have

|
G

|F(g)| dg=|F(_0)|+
q+1

q
:

n�1

qn |F(_n)|.
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Hence F # L1(G) if and only if

:
n�1

qn |F(_n)|<�. (15)

We note that from Proposition 2.2 it follows that for a sequence
c(n) # C(n # Z) satisfying c(n)=c(&n) and

:
n�m

qn�2 |c(n)|=O(q&m), m � �, (16)

put h(r)=��
n=&� c(n) qinr then the function h(r) is the Selberg transform

of some function F # L1(G) & C(K"G�K) with

:
n�m

qn |F(_n)|=O(q&m), m � �.

3. TRACE FORMULA

Throughout this section let q be an odd prime power and 1 be a
principal congruence group 1(A)(A # Fq[t]) with deg(A)=a�1. We
consider the following integral operator Lk on L2(1"X):

(Lk f )(g) := |
X

kF (g, g$) f (g$) dg$ ( f # L2(1"X)), (17)

where F # L1(G) & C(K"G�K) and kF (g, g$) := F(g$&1g) as introduced in
Section 2. This integral operator Lk can be written as

(Lk f )(g)=|
1"X

KF (g, g$) f (g) dg, (18)

where KF (g, g$)=�# # 1 kF (g, #g$). Note that KF (g, g$) is a 1-left invariant
and K-right invariant function on G_G. Throughout we simply write
k(g, g$) (resp. K(g, g$)) for kF (g, g$) (resp. KF (g, g$)). In this section we will
compute explicitly the trace of this integral operator Lk , which we call the
Selberg trace formula for 1.

Lemma 3.1. Let F # L1(G) & C(K"G�K). Then K(g, g$) converges abso-
lutely on G_G. Moreover, K(g, g$) is bounded on C_V(1"X) and on
V(1"X)_C, where C is any finite subset of V(1"X).

Proof. Fix g, g$ # G. We have

:
# # 1

|F(g$&1#&1g)|= :
# # 1

|
g$&1#&1gK

|F(g1)| dg1= :
# # 1

|
#&1gK

|F(g$&1g1)| dg1

=|1 & gKg&1| } |
1gK

|F(g$&1g1)| dg1 ,
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which and F # L1(G) imply that K(g, g$) converges absolutely. Moreover,
let g # C, g$ # G, then since |1 & gKg&1|<� on C, we have that K(g, g$)
is bounded on C_V(1"X). Next if we apply the above argument to
F� (g) := F(g&1), we see that K(g, g$) is bounded on V(1"X)_C. K

The following lemma shows how K(g, g$) grows in the neighborhood of
cusps. These are necessary for proving Theorem 3.1.

Lemma 3.2. Let F # L1(G) & C(K"G�K) and g, g$ # V(1"X). Assume
that � j�l q j |F(_j)|=O(q&l ) as l � �. Then K(g, g$)&�# # 1}i

k(g, #g$) is
bounded when g and g$ tend to a common cusp }i , and K(g, g$) is bounded
when g and g$ tend to different cusps.

Proof. For the first assertion, we can assume that both g and g$ tend
to the cusp �. So we put g=_n , g$=_m (n, m�1). Then

:
# # 1&1�

|k(g, #g$)|= :
# # 1&1�

|k(_n , #_m )|= :
# # 1&1�

|
_m

&1#&1_nK
|F(g)| dg.

For #, #$ # 1&1� one sees that _&1
m #&1_nK=_&1

m #$&1_nK if and only
if #$&1 # #&1 } (1 & _nK_&1

n ). Here from (2) we can check that for all
# # 1(1)&B1(1) (B1(1) := B & 1(1))

_&1
m #_n # K_jK, (19)

where j�m+n. Namely if # � 1� , the larger n and m are, the longer the
distance between _n and #_m becomes. From these and Theorem 2.1 we
have

:
# # 1&1�

|
_m

&1#&1_nK
|F(g)| dg

�|1 & _nK_&1
n | |

j�m+n
� K_j K

|F(g)| dg

�|1 (1) & _nK_&1
n |

q+1
q

:
j�m+n

q j |F(_j)|

=(q2&1) qn :
j�m+n

q j |F(_j)|.

Thus we have the first assertion.
Next we may assume that g tends to � and g$ tends to another cusp

}(}{�). At present since 1=1(A)/1(1), from Theorem 2.1 we can take
an element }~ in 1(1) such that }~ �=}. We now consider the behavior of
�# # 1 k(g, #}~ g$)= �# # 1 F(g$&1}~ &1#&1g) as g, g$ tend to �. Here if we
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assume that }~ &1#&1 belongs to B1(1) , i.e., }~ &1#&1 is a stabilizer of �, then
we have #&1�=}. But this contradicts the fact � and } are not equivalent
with respect to 1. Therefore }~ &1#&1 � B1(1) . Similarly using (19), we have
that as n, m � �

:
# # 1

|F(_&1
m }~ &1#&1_n)|�|1 (A) & _n K_&1

n | |
j�m+n
� K_j K

|F(g)| dg,

so we have the second assertion. K

Lemma 3.3. Let F # L1(G) & C(K"G�K) and n, m>a. Then we have

:
x # AFq [t]

k(_n , n(x) _m)=q ((n+m)�2)+1&a c(n&m), (21)

where AFq [t]=[Af (t) | f (t) # Fq[t]] and n(x)=( 1
0

x
1).

Proof. First by using (2) we decompose the matrix _&1
m n(x) _n=

( t n&m

0
t&mx

1 ) to the form k( tN(l)

0
0
1) k$(k, k$ # K), where l=deg(x). We can

check that

N(l)={ |n&m|
2l&n&m

(l�sup[n, m])
(l>sup[n, m]).

This can be easily seen also from the geometric viewpoint. Hence by
F # C(K"G�K) and Proposition 2.2 we have that

:
x # AFq[t]

k(_n , n(x) _m)= :
x # AFq[t]

F(_&1
n n(&x) _n)

=qsup[n, m]+1&a F(_ |n&m|)

+qsup[n, m]+1&a :
�

j=1

(q j&q j&1) F(_ |n&m| +2j)

=qsup[n, m]+1&aq&(|n&m| )�2 c(n&m)

=q((n+m)�2)+1&ac(n&m). K

The following theorem is particularly important and is the first step to
the Selberg trace formula for 1.
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Theorem 3.1. Let 1=1(A)(A # Fq[t], deg(A)=a�1) and +=+1 denote
the number of inequivalent cusps for 1. Assume that a sequence c(n) # C,
n # Z satisfies c(n)=c(&n) and (16): �n�m qn�2 |c(n)|=O(q&m). We define
the kernel function H(g, g$) by

H(g, g$)= :
+

i=1

q log q
4?qa |

?�log q

&?�log q
h(r) Ei (g, s) Ei (g$, s� ) dr \s=

1
2

+ir+ .

(22)

Then K� (g, g$) :=K(g, g$)&H(g, g$) is bounded on 1"X. Let D be the set of
all discrete L2(1"X)-eigenfunctions of T1 . Then for any f # D we have

|
1"X

H(g, g$) f (g$) dg$=0. (23)

Proof. From (13) and Theorem 2.2 we have for Re(s)=1�2, Ei ( g, s)=
O(qn�2) as g tends to a cusp. Combining this, the result of L2-eigencondi-
tion on an end noted in Section 2 and Morgenstern's result in Section 2,
we see that for any f # D the inner product (Ei ( g, s), f )(Re(s)=1�2)
makes sense. Let us assume T1 f =* f. Then from (12) the equation
(qs+q1&s)(Ei ( g, s), f )=(T1Ei( g, s), f )=(Ei( g, s), T1 f )=*� (Ei ( g, s), f )
holds. But we must have (Ei ( g, s), f ) =0 since qs+q1&s is not a con-
stant. This proves (23).

Next we consider the behavior of the function H( g, g$) as g and g$ tend
to a common cusp to }i . Then since from (9) the value on an end is given
by the constant term of the Fourier series expansion, we have

:
+

l=1

El (}~ i g, s) El (}~ i g$, s� )

= :
+

l=1

($liqns+.li (s) qn(1&s))($liqms� +.li (s� ) qm(1&s� )), (24)

where we put }~ i g=_n , }~ i g$=_m (n, m>a). By (14) the scattering matrix
8(s) on Re(s)=1�2 is unitary, so the last equation (24) is equal to

qnsqms� +qn(1&s)qm(1&s� ) (25)

+.ii (s) qn(1&s)qms� +.ii (s� ) qnsqm(1&s� ) (26)

=q(n+m)�2(q(n&m) ir+q&(n&m) ir

+.ii (s) q&(n+m) ir+.ii (s� ) q(n+m) ir).
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It follows from Proposition 2.2 that

q log q
4?qa |

?�log q

&?�log q
h(r) q(n+m)�2(q(n&m) ir+q&(n&m) ir) dr

=
q log q
2?qa |

?�log q

&?�log q
h(r) q(n+m)�2 q(n&m) ir dr

=q(n+m)�2+1&ac(n&m). (27)

On the other hand, from Theorem 2.2 we see that

q log q
4?qa |

?�log q

&?�log q
h(r) q(n+m)�2(.ii (s) q&(n+m) ir+.ii (s� ) q(n+m) ir) dr (28)

=C } q(n+m)�2c(n+m), (29)

where C is a constant. Recalling the assumption, we see that for n, m>a
(29) is bounded. Besides, as g, g$ tend to a common cusp }i , we have

:
# # 1}i

k( g, #g$)= :
# # 1}i

k(}~ i_n , #}~ i _m)

= :

#$ # }~ i
&11}i

}~ i

k(_n , #$_m)= :
x # AFq [t]

k(_n , n(x) _m),

where we put g=}~ i _m , g$=}~ i_n . Therefore from Lemma 3.2, Lemma 3.3
and (27) we can conclude that

K� ( g, g$)=\ :
# # 1

k( g, #g$)& :
# # 1}i

k( g, #g$)++\ :
# # 1}i

k( g, #g$)&H( g, g$)+
is bounded as g and g$ tend to the same cusp }i .

Next let us assume that g tends to a cusp }i and that g$ tends to a
different cusp }j (i{ j), and examine the behavior of

:
+

l=1

El (}~ i g, s) El (}~ j g$, s� )

= :
+

l=1

($liqns+.li (s) qn(1&s))($ ljqms� +.lj (s� ) qm(1&s� )),
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as n, m � �. In this case the fact that 8(s) on Re(s)=1�2 is unitary implies
that H( g, g$) remains no terms of the form (25), but only terms of the form
(26). Hence H( g, g$) is bounded. Therefore from Lemma 3.2 we have that
K� ( g, g$)=K( g, g$)&H( g, g$) is bounded as g and g$ tend to different
cusps.

When g tends to a cusp and g$ remains in a finite subset of V(1"X)
or when g remains in a finite subset of V(1"X) and g$ tends to a cusp,
by Lemma 3.1 and the assumption we can easily check that K� (g, g$) is
bounded. This completes the proof. K

Remark. In the case 1=1(1)=PGL(2, Fq[t]), Efrat [E2] derives
explicitly the spectral decomposition of L2(1"X). The discrete spectrum of
the adjacency operator T1 on L2(1"X) consists only of two trivial eigen-
values *=q+1, &(q+1). They correspond to the poles of the Eisenstein
series E�( g, s) at s=1, 1&?i�log q, respectively.

Next we define the integral operator L� k on L2(1"X) having the kernel
function K� ( g, g$) in Theorem 3.1, by

(L� k f )( g)=|
1"X

K� ( g, g$) f ( g$) dg$,

which is the discrete part of the operator Lk defined in (17).
Let [*1 , *2 , ..., *M] be the set of eigenvalues of T1 . Then from
Theorem 3.1 we obtain the following formula with respect to the trace
of L� k ,

Tr(L� k)=|
1"X

K� ( g, g) dg= :
M

n=1

h(rn), (30)

where h is the Selberg transform of k as in Proposition 2.2. We call this
formula (30) the Selberg trace formula for 1. As usual, the term
�1"X K� ( g, g) dg can be divided into the sum over the conjugacy classes
of 1. For # # 1 let [#]1 be the conjugacy class of # in 1 and 1(#) be the
centralizer of # in 1. The elements in 1(#) have the same fixed points
as # on X _ �X. Note from Theorem 2.1 we see that if deg(A)�1 then
1=1(A) has no elliptic elements. We rewrite the trace formula (30) as the
following: Put

C(I)=|
1(I)"X

k( g, Ig) dg,

C(H)= :
[#]1

|
1(#)"X

k( g, #g) dg,
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C(P, n)= :
[#]1

|
1(#)"}~ iYn

k( g, #g) dg,

E(n)=|
Sn

H( g, g) dg,

C(P)= lim
n � �

(C(P, n)&E(n)).

Here for C(H) the sum is taken over the conjugacy classes of hyperbolic
elements in 1, and for C(P, n) the sum is taken over the conjugacy classes
of parabolic elements in 1 and note that they are divided into the classes
corresponding to inequivalent cusps [}1 , }2 , ..., }+]. We let Yn be the
subgraph of X such that the y-coordinates of the vertices in Yn are less than
or equal to n, and

Sn=1"X & \,
+

i=1

}~ iYn+ . (31)

As we know later, C(P) has a finite evaluation, so the Selberg trace
formula (30) can be expressed as

:
M

n=1

h(rn)=C(I)+C(H)+C(P). (32)

Now we will compute the explicit expression of the integrals C(I), C(H),
C(P, n), E(n) and the final form of the Selberg trace formula.

Proposition 3.1. Let vol(1"X) be the total measure of 1"X, i.e.,
�1"X dm(v), and we denote the set of primitive hyperbolic conjugacy classes
of 1 by P1 . Then we have

C(I)=vol(1"X) k(0), (33)

C(H)= :
[P] # P1

:
�

l=1

deg P
ql deg P�2 c(l deg P), (34)

C(P, n)=+ {(n&a+1) c(0)+ :
�

m=1

c(2m)&
c(0)
q&1=+o(1) (n � �),

(35)

where deg P is as in Lemma 2.1.
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Proof. For C(I), we have

C(I)=|
1"X

k(0) dg=vol(1"X) k(0).

For C(H), we note that C(H) may be written as

C(H)= :
[P] # P1

:
�

l=1
|

1(P)"X
k( g, Plg) dg,

since for a hyperbolic element # # 1, elements in 1(#) have the same fixed
points as those of # on �X and from Proposition 2.1 1(#) is a cyclic group.
Now a combinatorial computation yields

|
1(P)"X

k( g, Plg) dg

=deg P } k(l deg P)+deg P } (q&1) :
�

m=1

qm&1k(2m+l deg P).

Using the Selberg transform, this is given by

deg P
ql deg P�2 c(l deg P),

hence we obtain (34).
Next we will compute C(P, n). Note that we can write

C(P, n)= :
+

i=1

:
I{# # 1}i

|
1}i

"}~ i Yn

k( g, #g) dg

= :
+

i=1

:
I{# # 1�

|
1�"Yn

k( g, #g) dg,

where 1�=[n(x)=( 1
0

x
1) # 1(A)]. Now we compute the following integral

:
I{# # 1�

|
1�"Yn

k( g, #g) dg= :
0{x # AFq [T]

|
1�"Yn

F( g&1n(x) g) dg. (36)

It is easily seen that the set of matrices

{g=\tm

0
x
1+ # V(X ) } m # Z, |x|�<qa=
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is a complete set of representatives of 1�"X. The number of vertices in
1�"X with y-coordinate tm is

{1
qa&1&m

(m�a)
(m<a),

and from Theorem 2.1 the number of stabilizers of the vertex ( t m

0
x
1) # 1�"X

is

{qm+1&a

1
(m�a)
(m<a),

(in detail see [M2]). Hence the total measure of all the vertices in 1�"X
with y-coordinate tm is qa&1&m. For g=( t m

0
x
1), we have g&1n(x$) g=

( 1
0

t&mx$
1 ), which is independent of x. Combining the above facts, the equa-

tion (36) is given by

:
0{x # AFq [T]

{ :
n�m

qa&1&mF \\1
0

t&mx
1 ++=

= :
n�m

qa&1&m { :
0{x # AFq [T]

F \\1
0

t&mx
1 ++= . (37)

By using (2), the integral �0{x # AFq [T] F (( 1
0

t&mx
1 )) can be computed as

if m�a

qm&a+1 {F(_0)+ :
�

j=1

(q j&q j&1) F(_2j)=&F(_0), (38)

if m<a

(q&1) F(_2(a&m))+ :
�

j=1

(q j+1&q j ) F(_2(a&m+ j))

=q {F(_2(a&m))+ :
�

q=1

(q j&q j&1) F(_2(a&m+ j))=&F(_2(a&m)). (39)

Here we separate the sum of (37) as the following form: �n�m=
�n�m�a+�a>m . Then the first sum �n�m�a is equal to

:
n�m�a {F(_0)+ :

�

j=1

(q j&q j&1) F(_2j)=&qa&1 :
n�m�a

q&mF(_0)

=(n&a+1) c(0)&
1

q&1 \1&
1

qn&a+1+ F(_0).
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The second sum �a>m is equal to

:
m<a

qa&m {F(_2(a&m))+ :
�

q=1

(q j&q j&1) F(_2(a&m)+2 j)=
& :

m<a

qa&1&mF(_2(a&m))

= :
m<a

c(2(a&m))& :
m<a

qa&1&mF(_2(a&m))

= :
m�1

c(2m)& :
m�1

qm&1F(_2m)

= :
m�1

c(2m)&
c(0)&F(_0)

q&1
.

Therefore the Eq. (37) becomes

(n&a+1) c(0)+ :
m�1

c(2m)&
c(0)
q&1

+o(1) (n � �).

Thus we have the formula (35). K

Next we will give the explicit computation of E(n). For this purpose we
use the following lemma.

Lemma 3.4. Let f, g be functions on 1"X, and n�a. Then we have the
Green's formula

|
Sn

[ f (T1 g)&(T1 f ) g] dm(v)

= :
+

i=1

[ f (}~ i_n) g(}~ i _n+1)& f (}~ i_n+1) g(}~ i_n)] m(}~ ien),

where Sn is as in (31).

Proof. For a function f on 1"X we put

f� (v) :={ f (v)
0

(v # Sn)
(v # 1"X&Sn).

Then for f� , ĝ we have

( f� , T1 ĝ) 1"X=(T1 f� , ĝ) 1"X , (40)
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since T1 is self-adjoint on 1"X. Now we have

|
Sn

[ f (T1 g)&(T1 f ) g] dm(v)

= :
v # Sn

f (v) { :

u # Sn

e=(v, u) # E(1"X)

m(e)
m(v)

g(u)+ :

u � Sn

e=(v, u) # E(1"X)

m(e)
m(v)

g(u)= m(v)

& :
v # Sn

{ :

u # Sn

e=(v, u) # E(1"X)

m(e)
m(v)

f (u)+ :

u � Sn

e=(v, u) # E(1"X)

m(e)
m(v)

f (u)= g(v) m(v)

= :
v # Sn

f (v) { :

u # Sn

e=(v, u) # E(1"X)

m(e)
m(v)

g(u)= m(v)

+ :
+

i=1

f (}~ i_n) m(}~ ien) g(}~ i _n+1)

& :
v # Sn

{ :

u # Sn

e=(v, u) # E(1"X)

m(e)
m(v)

f (u)= g(v) m(v)

& :
+

i=1

m(}~ i en) f (}~ i_n+1) g(}~ i_n)

=|
Sn

[ f� (T1 ĝ)&(T1 f� ) ĝ] dm(v)

+ :
+

i=1

f (}~ i_n) m(}~ ien) g(}~ i _n+1)& :
+

i=1

m(}~ ien) f (}~ i_n+1 ) g(}~ i_n).

Here from the definition of f� , ĝ and (40), it follows that

|
Sn

[ f� (T1 ĝ)&(T1 f� ) ĝ] dm(v)=|
1"X

[ f� (T1 ĝ)&(T1 f� ) ĝ] dm(v)=0,

so we have the assertion. K

For functions f , g on 1"X, let us define the inner product ( } , } ) Sn by

( f , g) Sn=|
Sn

f } g� dm(v),
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where Sn is as in (31). From Lemma 3.4 we will derive the inner product
formula for the Eisenstein series on Sn . Using this formula we can give the
explicit computation of

E(n)= :
+

i=1
|

Sn

q log q
4? qa \|

?�log q

&(?�log q)
h(r) Ei \g,

1
2

+ir+ Ei \g,
1
2

&ir+ dr+ dg.

(41)

Proposition 3.2. Let 8(s) be the scattering matrix for 1 and .(s) be its
determinant det 8(s). Then we have

E(n)=+ \n+
1
2+ c(0)&

1
4? |

?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr

+Tr 8 \1
2+ \

1
2

c(0)+ :
�

m=1

c(2m)++o(1) (n � �). (42)

C(P)=\+&Tr 8 \1
2++\

1
2

c(0)+ :
�

m=1

c(2m)+
+

1
4? |

?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr&+ \a+
1

q&1+ c(0). (43)

Proof. We will apply f=Ei (g, s), g=Ej (g, s$)(s, s$ # C) to Lemma 3.4.
By (9) we have Ei (}~ l _n , s)=$il qns+.il (s) qn(1&s)(n�a). From Theorem
2.1 we see that the measure m(en)(n�a) is given by q&(n&a+1)(see [M2,
p. 117 (5)]). Hence if we put s=_+ir, s$=s� =_&ir(_, r # R), we have the
following product formula

(Ei ( } , s), Ej ( } , s))Sn

=qa&1\$ij q(n+1)(2_&1)&�+
l=1 .il (s) .jl (s� ) qn(1&2_)

q2_&1&1

+
.ji (s� ) q(n+1)2ir&.ij (s) qn(&2ir)

q2ir&1 + ,

whenever (Ei ( } , s), Ej ( } , s)) Sn is well defined and s=s� {1�2. If we set the
column vector E(g, s) := t(E1 (g, s), ..., E+ (g, s)), this inner product formula
may be written in the matrix form as
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(E ( } , s), tE ( } , s)) Sn

=qa&1\q(n+1)(2_&1)&8(s) 8(s� ) qn(1&2_)

q2_&1&1
+

8(s� ) q(n+1) 2ir&8(s) qn(&2ir)

q2ir&1 + ,

=qa&1\q(n+1)(2_&1)& q(n+1)(1&2_)

q2_&1&1
+

q1&2_&8(s) 8(s� )
q2_&1&1

qn(1&2_)

+
8(s� ) q(n+1) 2ir&8(s) qn(&2ir)

q2ir&1 + . (44)

Next we must evaluate this formula on the line Re(s)=1�2. For s=_+
ir(_, r # R) we have

lim
_ � 1�2

q(n+1)(2_&1)&q(n+1)(1&2_)

q2_&1&1

= lim
_ � 1�2

2(n+1)(log q)(q(n+1)(2_&1)+q(n+1)(1&2_))
2(log q) q2_&1

=2(n+1).

On the other hand, the functional equation 8( 1
2+ir) 8( 1

2&ir)=I(r # R)
implies

8$\1
2

+ir+ } 8&1 \1
2

+ir+=8$\1
2

&ir+ } 8&1\1
2

&ir+ .

Using these equations, we obtain

lim
_ � 1�2

q1&2_&8(s) 8(s� )
q2_&1&1

qn(1&2_)

=&1&
1

log q
8$ \1

2
+ir+ 8&1\1

2
+ir+ .

Hence on Re(s)=1�2 the inner formula (44) is given by

�E \ } ,
1
2

+ir+, tE \ } ,
1
2

&ir+�
Sn

=qa&1 \2n+1&
1

log q
8$ \1

2
+ir+ 8&1 \1

2
+ir+

+
8 ( 1

2&ir) q(n+1) 2ir&8( 1
2+ir) qn(&2ir)

q2ir&1 + .
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Therefore we have

:
+

i=1
|

Sn

Ei \g,
1
2

+ir+ Ei \g,
1
2

&ir+ dr

=Tr �E \ } ,
1
2

+ir+, tE \ } ,
1
2

&ir+�
Sn

=qa&1 \(2n+1) +&
1

log q
.$
. \1

2
+ir+

+Tr
8 ( 1

2&ir) q(n+1) 2ir&8 ( 1
2+ir) qn(&2ir)

q2ir&1 + ,

by using .(s)=det 8(s) and

.$

.
(s)=Tr 8$(s) 8&1(s).

Now we consider the matrix form integral

I(n) :=
log q

4? |
?�log q

&(?�log q)
h(r)

8 ( 1
2&ir) q(n+1) 2ir&8 ( 1

2+ir) qn(&2ir)

q2ir&1
dr.

We put

I1 (n) :=
log q

4? |
?�log q

&(?�log q)
h(r)

8 ( 1
2&ir) q (n+1) 2ir&8 ( 1

2)
q2ir&1

dr,

I2 (n) :=
log q

4? |
?�log q

&(?�log q)
h(r)

8 ( 1
2)&8 ( 1

2+ir) qn(&2ir)

q2ir&1
dr,

then I(n)=I1 (n)+I2 (n). Recalling Theorem 2.2 and noting that h(r) is
analytic on |Im(r)|<1�2 by (16), we move the contour in the integration
I1 (n) to Im(r)=b, where b is positive and sufficiently small. Put

C1={r # C }& ?
log q

�Re(r)�
?

log q
, Im(r)=b= ,
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then I1 (n) is equal to

I1(n)=
log q

4? |
C1

h(r)
&8 ( 1

2)
q2ir&1

dr+O(q&2(n+1) b)

=
log q

4?
8 \1

2+ |
C1

h(r) \ :
m�0

q2imr+ dr+O(q&2(n+1) b)

=
1
2

8 \1
2+ \c(0)+ :

m�1

c(2m)++o(1) (n � �),

since |q2ir|<1 on C1 . Similarly we move the contour in the integration
I2 (n) to Im(r)=&b, where b is as above. Put

C2={r # C }& ?
log q

�Re(r)�
?

log q
, Im(r)=&b= ,

we have

I2(n)=
log q

4? |
C2

h(r)
8 ( 1

2)
q2ir&1

dr+O(q&2nb)

=
log q

4?
8 \1

2+ |
C2

h(r) \ :
m�1

q2imr+ dr+O(q&2nb)

=
1
2

8 \1
2+ :

m�1

c(2m)+o(1) (n � �)

since |q2ir|>1 on C2 and h(r)=h(&r)(r # C). Therefore we have

I(n)=8 \1
2+ \

1
2

c(0)+ :
m�1

c(2m)++o(1).

Combining the above results, the expression E(n) is computed as

E(n)=
log q

4? |
?�log q

&(?�log q)
h(r) \(2n+1) +&

1
log q

.$

. \1
2

+ir++ dr

+Tr 8 \1
2+ \

1
2

c(0)+ :
m�1

c(2m)++o(1)

=+(2n+1)
1
2

c(0)&
1

4? |
?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr

+Tr 8 \1
2+ \

1
2

c(0)+ :
m�1

c(2m)++o(1).

Hence we finally obtain (42). From (35) and (42), we also obtain (43). K
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From (32), Proposition 3.1 and Proposition 3.2, we finally obtain
explicitly the Selberg trace formula for 1 (A).

Theorem 3.2. Let q be an odd prime power and 1=1 (A)(A # Fq [t],
deg(A)=a�1). Assume that a sequence c(n) # C (n # Z) satisfies c(n)=
c(&n) and �n�m qn�2 |c(n)|=O(q&m). Then we have the following formula:

:
M

n=1

h(rn)=C(I)+C(H)+C(P1)+C(P2)+C(P3), (45)

where

C(I)=vol(1"X) k(0),

C(H)= :
[P]1 # P1

:
�

l=1

deg P
ql deg P�2 c(l deg P),

C(P1)=\+&Tr 8 \1
2++\

1
2

c(0)+ :
�

m=1

c(2m)+ ,

C(P2)=
1

4? |
?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr,

C(P3)=&+ \a+
1

q&1+ c(0).

Furthermore we will investigate the following integral, which is the
contribution of the continuous spectra in the trace formula:

1
4? |

?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr.

Since from Theorem 2.2 .(s) is a rational function in q2s, we now put

.(s)=c
(q2s&qa1)(q2s&qa2) } } } (q2s&qam)
(q2s&qb1)(q2s&qb2) } } } (q2s&qbm)

, (51)

where c is a constant and assume the right hand side is written to be
irreducible. Then we have

Lemma 3.5. The moduli of ai , bj (i=1, ..., m; j=1, ..., n) are not equal to 1.

Proof. Recall that .(s) is holomorphic on the line Re(s)= 1
2 . The func-

tional equation 8( 1
2+ir) 8( 1

2&ir)=I(r # R) implies that .(s) is non-zero
on Re(s)=1�2. Hence we have the assertion. K
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Lemma 3.6. Let .(s) be written as (51). Then we have

1
4? |

?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr

=\ :
|ai|<1

:
�

l=0

c(2l) a l
i& :

|ai|>1

:
�

l=1

c(2l)
a l

i +
&\ :

|bj| <1

:
�

l=0

c(2l) b l
j& :

|bj|>1

:
�

l=1

c(2l)
b l

j + ,

where ai , bj are as in (51).

Proof. The equation (51) implies

.$

.
(s)= :

m

i=1

2(log q) q2s

q2s&qa i
& :

n

j=1

2(log q) q2s

q2s&qb j
,

so it suffices to consider the integral

log q
2? |

?�log q

&(?�log q)
h(r)

q2s

q2s&qa
dr \s=

1
2

+ir+, (52)

where a # C satisfies |a|{1. Change the variable r here to z=qir, then the
above integral (52) is given by

1
2?i |S1

h(z)
z

z2&a
dz,

where h(r)=��
n=&� c(n) zn and S1=[z # C | |z|=1]. By simple calcula-

tion it is computed as

{
:
�

l=0

c(2l) al ( |a|<1)

& :
�

l=1

c(2l)
al ( |a|>1).

Therefore we have the assertion. K

By using the functional equation 8(s) 8(1&s)=I, we see easily the
following lemma:

Lemma 3.7. Assume that .(s) is written as (51). Then [q2s&qai | ai{0,
i=1, 2, ..., m] and [q2s&qbj | bj{0, j=1, 2, ..., n] are one-to-one cor-
respondent in such a way that the term q2s&qa(a{0) in the numerator
corresponds to the term q2s&qb(b=1�a) in the denominator.
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4. SELBERG ZETA FUNCTION

As before let 1 be a principal congruence subgroup 1(A)(A # Fq [t],
deg(A)�1). In this section we define the Selberg zeta function attached to
1 and obtain its determinant expression in terms of T1 . As before denote
the set of primitive hyperbolic conjugacy classes of 1 by P1 . For
[P]1 # P1 , let us put N(P)=sup[ |*i|

2
� | * i is an eigenvalue of the matrix

P]. In the present case since 1/PGL(2, Fq [t]), we see that N(P)=qdeg P,
where deg P is as in Lemma 2.1. Then the Selberg zeta function
Z1 (s)(s # C) attached to 1 is defined by

Z1 (s) := `
[P]1 # P1

(1&N(P)&s)&1. (53)

We will apply the trace formula in Theorem 3.2 for the study of Z1 (s).
We take the following function c(n, s)(n # Z, s # C) as the test function c(n)
in Theorem 3.2:

c(n, s)={&(log q) q&|n| (s&1�2)

0
(n{0)
(n=0),

where s is fixed with Re(s)�2. Then for Re(s)�2 the function c(n, s)
satisfies the required conditions of Theorem 3.2. By direct computation its
Fourier transform h(z, s) is given by

h(z, s) := :
�

n=&�

c(n, s) zn=
d
ds

log
1

1&- q (z+z&1) q&s+q&2s+1
.

In the trace formula (45), C(I) is computed as

vol(1"X) k(0)=vol(1"X)
q&1

2
d
ds

log(1&q&2s).

The contribution of the hyperbolic classes C(H) is precisely equal to the
logarithmic derivative of the Selberg zeta function Z1 (s):

&log q :
[P]1 # P1

deg P :
�

l=1

q&sl deg P=
d
ds

log Z1 (s).

The expression C(P1) becomes

\+&Tr 8 \1
2++ :

�

m=1

c(2m, s)=&
+&Tr 8 ( 1

2)
2

d
ds

log(1&q&2s+1).
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As for C(P2), we have from Lemma 3.6 and Lemma 3.7 that

1
4? |

?�log q

&(?�log q)
h(r)

.$

. \1
2

+ir+ dr

=&2 :
|bj|<1

:
�

l=1

c(2l, s) b l
j+2 :

|bj|>1

:
�

l=1

c(2l, s)
b l

j

= :
|bj|<1

d
ds

log(1&q&2s+1bj)& :
|bj|>1

d
ds

log(1&q&2s+1b&1
j ),

where .(s) is as in (51). Combining the above results, the Selberg trace
formula under the function c(n, s) defined by (54) yields the following:

:
M

n=1

d
ds

log(1&*n q&s+q1&2s)&1

=vol(1"X)
q&1

2
d
ds

log(1&q&2s)

+
d
ds

log Z1 (s)

&
+&Tr 8 ( 1

2)
2

d
ds

log(1&q&2s+1)

+ :
|bj | <1

d
ds

log(1&q&2s+1bj)& :
|bj |>1

d
ds

log(1&q&2s+1b&1
j ).

Since Z1 (s) � 1 as Re(s) � �, this equation implies

`
M

n=1

(1&*n q&s+q1&2s)&1

=(1&q&2s)vol (1 "X)(q&1)�2

_Z1 (s)

_(1&q&2s+1)&((+&Tr 8 (1�2))�2)

_ `
|bj|<1

(1&q&2s+1bj) `
|bj|>1

(1&q&2s+1b&1
j )&1.
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Now we define the determinant function for T1 by

det(T1 , s) := detD (T1 , s) } detC (T1 , s), (55)

where

detD (T1 , s) := detD (1&T1 q&s+q1&2s)= `
M

n=1

(1&*nq&s+q1&2s),

detC (T1 , s) := `
|bj| <1

(1&q&2s+1b j) `
|bj|>1

(1&q&2s+1b&1
j )&1,

and bj is as in (51). We finally obtain the following:

Theorem 4.1. Let q be an odd prime power and 1=1(A) with deg(A)�1.
Then the Selberg zeta function Z1 (s) attached to 1 has the following deter-
minant expression;

Z1 (s)&1=(1&q&2s)/ (1&q&2s+1)&\ det(T1 , s), (56)

where / := vol(1"X) q&1
2 , \ := 1

2 Tr(I+&8 ( 1
2)) and I+ is the +_+-identity

matrix.

Remark. If .(s) is written as (51), the factor q2s&qb i with |bi|>1
(resp. |bi|<1) corresponds to the pole of .(s) on Re(s)>1�2 (resp.
Re(s)<1�2). Hence the definition of detC (T1 , s) denotes the product over
the poles of .(s) (or the zeros of .(s) if we use Lemma 3.7). See also the
determinant of the Laplacian with respect to a Riemann surface of finite
volume in [E1].

In the present case 1=1(A), we see ([Na]) that .(s) has no exceptional
poles, i.e., .(s) is holomorphic on Re(s)>1�2 except for simple poles at
s=1+n?i�log q (n # Z). Namely .(s) has a factor q2s&q2 with multiplicity
one. Moreover by using the results in [L1] [M2], Z1 (s) is computed as
follows:

Corollary 4.1. Let q be an odd prime power and 1=1(A)(A # Fq [t])
with deg(A)=a�1. We let A=Ae1

1 Ae2
2 } } } Ael

2 be the decomposition of A
into distinct irreducible polynomials, where deg(Ai)=ai , � l

i=1 ei ai=deg(A).
Moreover let det (1)

D (T1 , s)=>*n (1&*n q&s+q1&2s), where the product is
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taken over discrete spectra of T1 except for two trivial eigenvalues \(q+1).
Then we have

Z1 (s)&s=(1&q&2s)/ (1&q&2s+1)&\

_(1&q2&2s) det (1)
D (T1 , s) `

|bj|<1

(1&q&2s+1bj ),

where bj is as in (51) and

/=
q3a

(q+1)(q&1)
`

l

i=1

(1&q&2ai),

\=
1
2 \

q2a

q&1
`

l

i=1

(1&q&2ai)+qa `
l

i=1

(1+q&ai)+ .

In particular, Z1 (s) is a rational function in q&s.

Proof. By the results in [M2, p. 117], the number of cusps +=+(1)
and the total volume of 1"X are computed as follows:

+=
q2a

q&1
`

l

i=1

(1&q&2ai),

vol(1"X)=
2q3a

(q+1)(q&1)2 `
l

i=1

(1&q&2ai).

The function .ij (s) in Fourier series expansion of Ei (g, s) at a cusp }j is
computed in [L1, p. 240 (2.8)]. Here 1 (A) is a normal subgroup of 1 (1),
so we see that Tr 8(1�2) is equal to + } .11 (1�2). Since

.11 (s)=q1&a (q&1) qa(1&2s) 1&q&2s

1&q2&2s `
l

i=1

(1&q&2ai s)&1,

we have

Tr 8 \1
2+=&qa `

l

i=1

(1+q&ai).

The two trivial discrete spectra \(q+1) correspond to the pole of .(s)
coming from the factor q2s&q2. Combining the above, we have this
corollary, since we can check that / and \ are integers. K

For example we will compute the Selberg zeta function for 1 (t). Since
the quotient graph 1 (t)"X can be taken as the union of the vertex
_0 together with q+1 ends, we see that there are no eigenvalues of
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T1 except for \(q+1) (see also [L1, p. 256]). By using [L1, p. 240 (2.8)],
it is computed that the scattering matrix 81 (t) (s) is (q+1)_(q+1)-
matrix which entries are .11 (s)=

q(q&1)

q2s&q2
in the diagonal part and .11 (s)+1

in the other part. So the scattering determinant .1 (t) (s) := det 81(t) (s)
becomes

.1 (t) (s)=&((q+1) .11 (s)+q)=&
q(q2s&1)
q2s&q2 .

In Corollary 4.1 we have /=q and \=q+1 for 1 (t). Hence we obtain

Z1 (t) (s)&1=
(1&q&2s)q (1&q2&2s)

(1&q1&2s)q+1 .
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