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When an elliptic curve E ′/Q of square-free conductor N has
a rational point of odd prime order l � N , Dummigan (2005) in [Du]
explicitly constructed a rational point of order l on the optimal
curve E , isogenous over Q to E ′, under some conditions. In this
paper, we show that his construction also works unconditionally.
And applying it to Heegner points of elliptic curves, we find
a family of elliptic curves E ′/Q such that a positive proportion of
quadratic twists of E ′ has (analytic) rank 1. This family includes
the infinite family of elliptic curves of the same property in Byeon,
Jeon, and Kim (2009) [B-J-K].

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let E ′/Q be an elliptic curve of conductor N and X0(N) the modular curve of level N with Ja-
cobian J0(N). The works of Breuil, Conrad, Diamond, Taylor and Wiles [B-C-D-T,T-W,Wi] show that
there is a surjective morphism φ : X0(N) → E ′ defined over Q, which uniquely factors through a ho-
momorphism π : J0(N) → E ′ . Let π∗ : E ′ → J0(N) be the dual map of π . An elliptic curve E/Q is said
to be optimal if ker(π) is connected. We note that an elliptic curve E/Q is optimal if π∗ is injective.
There is a unique optimal elliptic curve E in any isogeny class of elliptic curves defined over Q of
conductor N .

As representatives of the cusps of X0(N), we use the rational numbers x
d where d | N , d > 0 and

(x,d) = 1 with x taken modulo (d, N/d). We say that such a cusp x
d is of level d, and it is defined

over Q(ζm), where m = (d, N/d). Let (Pd) denote the divisor on X0(N) defined as the sum of all
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the cusps of level d (each with multiplicity one). Then (Pd) is invariant under Gal(Q̄/Q) and the
Q-rational cuspidal subgroup C(N) of J0(N) is generated by divisor classes of divisors of the kind

φ((d, N/d))(P1) − (Pd),

as d runs through the positive divisors of N .
Let r = (rd), where d | N , d > 0, be a family of rational integers rd ∈ Z. Let η(z) be the Dedekind

eta-function and ηd(z) := η(dz). It is known [Li] that if D0 is a Q-rational cuspidal divisor of order l
in J0(N), then there is a Dedekind eta-product gr = ∏

d|N η
rd
d which is a modular function on X0(N)

defined over Q and satisfies div gr = lD0.
From now on, we consider the case that N is square-free. Let f be the newform associated with an

elliptic curve E ′/Q of conductor N and for each positive d | N let wd = ±1 be such that Wd f = wd f ,
where Wd is the Atkin–Lehner involution. Let G be the product of those primes such that w p = 1.
Define a divisor Q supported on the cusps of X0(N),

Q :=
∑

d|(N/G)

wd(PdG)

and the Dedekind eta-product gr ,

gr :=
(∏

g|G

∏
d|(N/G)

η
wdμ(g)g
dg

)24/h

,

where h := (r,24), r := ∏
p|G(p2 − 1)

∏
p|(N/G)(p − 1), and μ is the Möbius function.

In [Du], Dummigan obtained the following proposition.

Proposition 1.1. Let E ′/Q be an elliptic curve of square-free conductor N with a rational point of odd prime
order l � N and E be the optimal elliptic curve, isogenous over Q to E ′ . If w p = −1 for at least one prime p | N
and l | n, where n := r/h, then:

(i) Q is a Q-rational cuspidal divisor of degree 0,
(ii) g2

r ∈ Q(X0(N)) and div(g2
r ) = (−1)t w N (2n)Q , where t is the number of prime divisors of N,

(iii) the exact order of the rational point [Q ] in J0(N) is either n or 2n,
(iv) E has a Q-rational l-torsion point P such that π∗(P ) = R := 2n

l [Q ].

In this paper, we will show the following proposition.

Proposition 1.2. Let E ′/Q be an elliptic curve of square-free conductor N with a rational point of odd prime
order l � N. Then w p = −1 for at least one prime p | N, and l | n.

So Proposition 1.1 is also true without the conditions that w p = −1 for at least one prime p | N
and l | n.

Let E ′/Q : y2 = x3 + a′x + b′ be an elliptic curve over Q of conductor N and let L(s, E ′) =∑∞
n=1 a(n)n−s be its Hasse–Weil L-function defined for �(s) > 3

2 . The work of Breuil, Conrad, Dia-
mond, Taylor and Wiles [B-C-D-T,T-W,Wi] implies that L(s, E ′) has an analytic continuation to C and
satisfies a functional equation relating the values at s and 2 − s. Let ε be the sign of the functional
equation of L(s, E ′). Then we have that ε = −∏

p|N w p . Let D be the fundamental discriminant of the

quadratic field Q(
√

D ), and let χD = ( D
· ) denote the usual Kronecker character. For D coprime to the
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conductor of E ′ , the Hasse–Weil L-function of the quadratic twist E ′
D : D y2 = x3 + a′x + b′ of E ′ is the

twisted L-function L(s, E ′
D) = ∑∞

n=1 χD(n)a(n)n−s . Goldfeld [Go] conjectured that

∑
|D|<X

Ords=1 L
(
s, E ′

D

) ∼ 1

2

∑
|D|<X

1.

A weaker version of this conjecture is that for r = 0 or 1,

�
{|D| < X

∣∣ Ords=1 L
(
s, E ′

D

) = r
} 
 X,

i.e., that Ords=1 L(s, E ′
D) = r for a positive proportion of D .

In [V1], Vatsal proved that if E ′/Q is a semi-stable elliptic curve with a Q-rational point of order 3
and good reduction at 3, then for a positive proportion of D , Ords=1 L(E ′

D , s) = 0. But for the case
r = 1, less is known. Recently, we [B-J-K] proved that if E/Q is an optimal elliptic curve of square-
free conductor N satisfying the following two conditions:

(i) N = pq, where p,q are different primes such that ωp = −1, ωq = 1 and p �= 3, q ≡ −1 (mod 9),
(ii) there is an elliptic curve E ′ , isogenous over Q to E and having a Q-rational 3-torsion point,

then Ords=1 L(s, E D) = 1, for a positive proportion of fundamental discriminants D . And using a vari-
ant of the binary Goldbach problem for polynomials, we proved that there are infinitely many elliptic
curves satisfying the conditions. In this paper, using Proposition 1.2, we will prove the following the-
orem.

Theorem 1.3. Let E ′/Q be an elliptic curve of square-free conductor N with a rational point of order 3 � N. If
there is only one prime p | N such that ωp = −1, then

�
{|D| < X

∣∣ Ords=1 L
(
s, E ′

D

) = 1
} 
 X .

Examples. The elliptic curves satisfying the condition in Theorem 1.3 whose conductor is less than
100 are following: 14A1, 14A2, 14A4, 14A6, 19A1, 19A3, 26A1, 26A3, 34A1, 34A2, 35A1, 35A3, 37B1,
37B3, 38A1, 38A3, 77B1, 77B3 in Cremona’s table [Cr]. This list includes Vatsal’s example 19A1 in [V]
and Byeon’s example 37B1 in [B].

We note that the family of elliptic curves in Theorem 1.3 includes the elliptic curves satisfying
the above two conditions (i) and (ii). And we point out that though Goldfeld’s conjecture is about all
quadratic twists, we prove Theorem 1.3 using imaginary quadratic twists.

2. Proof of Proposition 1.2

Using parameterizations of the elliptic curves for given torsion structures in [Ku, Table 3], we will
show Proposition 1.2. We recall that if E ′ has split multiplication reduction at p, then w p = −1 and
if E ′ has non-split multiplication reduction at p, then w p = 1.

Proof of Proposition 1.2.

Case I. l = 3.

Case I-1. E ′
tor = Z/3Z.
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In this case as a minimal Weierstrass equation for E , we can take

E ′: y2 + a′xy + b′ y = x3, a,b′ ∈ Z, b′ > 0.

Since the conductor N of E ′ is square-free, we can assume that

(
a′,b′) = 1,

where (a′,b′) denotes the greatest common divisor of a′ and b′ .
Let 
′ = b′3(a′3 − 27b′) be the minimal discriminant of E ′ . For a prime p | 
′ (p �= 3), we have:

(1) p | b′ ⇒ w p = −1,
(2) p | a′3 − 27b′ ⇒ w p = −1 if p ≡ 1 (mod 3) and w p = 1 if p ≡ −1 (mod 3).

Thus if a′3 − 27b′ has two or more prime factors, then 9 | r, so 3 | n.
Now we consider the case that a′3 − 27b′ has only one or no prime factor. Let b′ = ts, t, s ∈ N,

where for each prime p | b′ , p | t if p ≡ 1 (mod 3) and p | s if p ≡ −1 (mod 3).

Lemma 2.1.

(i) If a′3 − 27b′ = m3 for an integer m, then there is at least one prime p | t.
(ii) If a′3 − 27b′ = ±1 and t = pk for a prime p, then p ≡ 1 (mod 9).

Proof. (i) If a′3 − 27b′ = m3, then a′ ≡ m (mod s) because for all p | s, p ≡ −1 (mod 3) and
3 � |(Z/sZ)∗|. Let a′ = αs + m, α ∈ Z. Then

a′3 = (
α3s2 + 3α2sm + 3αm2)s + m3 = (27t)s + m3.

This implies α is a multiple of 3, moreover, a multiple of 9, so a′ = 9βs + m, β ∈ Z. Thus

β
(
27β2s2 + 9βsm + m2) = t.

By completing the square in the second factor, we see that t > 1 and there is at least one
prime p | t .

(ii) Suppose that a′3 − 27b′ = ±1 and t = pk for a prime p. By the same way in (i), we have that

β
(
27β2s2 ± 9βs + 1

) = t.

Since (β, t/β) = 1 and (t/β) > 1, β = 1. Thus 27s2 ± 9s + 1 = pk . Euler’s case n = 3 of Fermat’s last
theorem and the equation (±3s)3 + (27s2 ± 9s + 1) = (±3s + 1)3 imply that 3 cannot divide k. So
p ≡ ±1 (mod 9) and by the choice of t , we have that p ≡ 1 (mod 9). �

If there are at least two primes p | t , then 9 | r, so 3 | n. Suppose that there is only one prime p | t .
If a′3 − 27b′ has a prime factor q, then q − 1 or q2 − 1 is divisible by 3 and p − 1 is divisible by 3, so
9 | r and 3 | n. If a′3 − 27b′ = ±1, then p − 1 is divisible by 9 by Lemma 2.1, so 9 | r and 3 | n. If there
is no prime p | t , then a′3 − 27b′ = qk for a prime q and 3 � k by Lemma 2.1. This implies that q = ±1
(mod 9). So 9 | r and 3 | n. This completes the proof of l | n for the case E ′

tor = Z/3Z.
On the other hand, if b′ �= 1, then there is a prime p | b′ such that ωp = −1. If b′ = 1, then


′ = a′3 − 27 = (a′ − 3)(a′2 + 3a′ + 9). We note that a′ − 3 and a′2 + 3a′ + 9 are relatively prime.
Suppose ωp = 1 for a prime p | a′3 − 27. Since p ≡ −1 (mod 3) and a′3 ≡ 27 (mod p), we have that
p | a′ − 3. Thus there should be another prime q | a′2 + 3a′ + 9 such that ωq = −1.
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Case I-2. E ′
tor = Z/6Z or Z/6Z × Z/2Z.

In this case as a Weierstrass equation for E ′ , we can take

E ′: y2 + (u − v)xy − uv(v + u)y = x3 − v(v + u)x2,

with u, v ∈ Z, u > 0, (u, v) = 1 and the minimal discriminant is


′ = v6(v + u)3u2(9v + u).

For a prime p | 
′ (p �= 3), we have:

(1) p | v(v + u) ⇒ ωp = −1,
(2) p | u ⇒ ωp = −1 if p ≡ 1 (mod 3) and ωp = 1 if p ≡ −1 (mod 3),
(3) p | 9v + u ⇒ ωp = −1 if p ≡ 1 (mod 3) and ωp = 1 if p ≡ −1 (mod 3).

Thus if u(9v + u) has two or more prime factors, then 9 | r, so 3 | n.
Now we consider the case that u = 1 and 9v + 1 has only one prime factor. Let v = ts where for

each prime p | v , p | t if p ≡ 1 (mod 3) and p | s if p ≡ −1 (mod 3) (we may assume t > 0).

Lemma 2.2. If 9v + 1 = m3 for an integer m, then there is a prime p | v, p ≡ 1 (mod 3).

Proof. If 9v + 1 = m3, then m ≡ 1 (mod s) since for all p | s, p ≡ −1 mod 3 and 3 � |(Z/sZ)∗|. Let
m = αs + 1 (we may assume that α > 0). Then

m3 = (
α3s2 + 3α2s + 3α

)
s + 1 = 9ts + 1.

This implies α is a multiple of 3, so m = 3βs + 1 (we may assume that β > 0) and

β
(
3β2s2 + 3βs + 1

) = t.

Thus t > 1 and there is a prime p | v such that p ≡ 1 (mod 3). �
If there is a prime p | v such that p ≡ 1 (mod 3), then 9 | r and 3 | n. If v = ±1, then 9v + 1 = qk

for a prime q and 3 � k by Lemma 2.2. This implies that q ≡ ±1 (mod 9). So 9 | r and 3 | n. This
completes the proof of l | n for the case E ′

tor = Z/6Z or Z/6Z × Z/2Z.
On the other hand, if a prime p | v(v + u), then w p = −1. So there is at least one prime p | N such

that w p = −1.

Case I-3. E ′
tor = Z/9Z.

In this case as a Weierstrass equation for E ′ , we can take

E ′: y2 + (
u3 − v3 + uv2)xy − u4 v2b̃ y = x3 − uv2b̃x2

with u, v ∈ Z, (u, v) = 1, b̃ = (v − u)(u2 − uv + v2). One may obtain the equation from f = v/u, [Ku,
p. 12, Table 3]. The discriminant is


′ = u9 v9(v − u)9(u2 − uv + v2)3(
u3 + 3u2 v − 6uv2 + v3),

which is minimal at any prime p dividing uv(v − u)(u2 − uv + v2) if (u, v) = 1.
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So the minimal discriminant of E ′ is divisible by uv(v − u)(u2 − uv + v2) and we easily see that
for all 9 possible cases, u ≡ 0,1,2 (mod 3) and v ≡ 0,1,2 (mod 3), 3 | uvb̃. Thus we exclude this case
by the assumption 3 � N .

Case I-4. E ′
tor = Z/12Z.

In this case as a Weierstrass equation for E ′ , we can take

E ′: y2 + (
u(u − v)3 − vc̃

)
xy − uv(u − v)5c̃d̃ y = x3 − v(u − v)2c̃d̃x2

with u, v ∈ Z, (u, v) = 1, c̃ = (2v − u)(u2 − 3uv + 3v2), d̃ = (u2 − 2uv + 2v2), with τ = v/u in [Ku,
p. 11, Table 3]. The discriminant


′ = u2 v12(u − v)12(2v − u)6(u2 − 2uv + 2v2)3(
u2 − 6uv + 6v2)(u2 − 3uv + 3v2)4

is minimal at odd prime p dividing uv(u − v)(2v − u). If u is odd, then 
′ is also minimal at 2.
So the minimal discriminant of E ′ is divisible by uv(u− v)(u−2v)/2 if u is even and uv(u− v)(u−

2v) if u is odd. And we easily see that for all 9 possible cases, u ≡ 0,1,2 (mod 3) and v ≡ 0,1,2
(mod 3), 3 | uv(u − v)(u − 2v). Thus we exclude this case by the assumption 3 � N .

Case II. l = 5.

In this case, we need the following lemma, which follows from the proof of [V2, Proposition 5.3].

Lemma 2.3. Let l be an odd prime. Let E/Q be an optimal elliptic curve of the minimal discriminant 
 and of
square-free conductor N. Suppose that l � N and 
 be the lth-power of a rational number. Then there is a prime
divisor p | N such that p ≡ 1 (mod l).

Proof. For an odd prime l, if 
 is an lth power, then we know that E[l] ∼= (Z/lZ)⊕μl is a decompos-
able Gal(Q/Q)-module (see [Du, Proposition 4.2]). From [V2, Theorem 1.1], we have μl ⊂ E ⊂ J0(N)

and μl ⊂ E[l] is contained in the Shimura subgroup V of J0(N). Since the order of V divides φ(N)

by [LO, Corollary 1], there is a prime p | N , p ≡ 1 (mod l) if l2 � N . �
Case II-1. E ′

tor = Z/5Z.

In this case as a minimal Weierstrass equation for E ′ , we can take

E ′: y2 + (u − v)xy − u2 v y = x3 − uvx2,

with u, v ∈ Z, (u, v) = 1 and the minimal discriminant is


′ = u5 v5(v2 − 11uv − u2).
If |uv| > 1 and p | uv , then w p = −1. If |uv| = 1, then the elliptic curve is isomorphic to y2 + y =

x3 − x2, 
′ = −11, N = 11, and w11 = −1. So there is at least one prime p | N such that w p = −1.
Let E be the optimal elliptic curve, isogenous over Q to E ′ , of the minimal discriminant 
. We note

that E and E ′ have the same n. If 
 is not the 5th-power of a rational number, then Dummigan [Du]
proved that 5 | n. If 
 is the 5th-power of a rational number, then by Lemma 2.3, there is a prime
divisor p | N such that p ≡ 1 (mod 5). So 5 | n.
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This completes the proof of the case E ′
tor = Z/5Z.

Case II-2. E ′
tor = Z/10Z.

In this case as a Weierstrass equation for E ′ , we can take

E ′: y2 + (uS − vT )xy − u2 v3 ST y = x3 − uv3T x2,

with u, v ∈ Z, (u, v) = 1, S = −(v2 − 3uv + u2), T = (v − u)(2v − u) and the discriminant is


′ = u5 v10(u − v)10(u − 2v)5(u2 − 3uv + v2)2(
u2 + 2uv − 4v2),

which is minimal at any odd prime p dividing uv(u − v)(u − 2v). If u is odd, then 
′ is minimal at
all prime p dividing uv(u − v)(u − 2v).

If |uv(u − v)(u − 2v)| > 2, then for an odd prime factor p of uv(u − v)(u − 2v), w p = −1. Since

′ �= 0, |T | = 1 if and only if v = ±2, u = ±3, |uv(u − v)(u − 2v)| > 2. And (u, v) = 1 implies
uv(u − v)(u − 2v) has an odd prime factor. So there is at least one prime p | N such that w p = −1.

Let E be the optimal elliptic curve, isogenous over Q to E ′ , of the minimal discriminant 
. We note
that E and E ′ have the same n. If 
 is not the 5th-power of a rational number, then 5 | n. If 
 is the
5th-power of a rational number, then by Lemma 2.3, there is a prime divisor p | N such that p ≡ 1
(mod 5). So 5 | n.

This completes the proof of the case E ′
tor = Z/10Z.

Case III. l = 7.

In this case as a minimal Weierstrass equation for E ′ , we can take

E ′: y2 + (
u2 + uv − v2)xy − u3 v2(v − u)y = x3 − uv2(v − u)x3

with u, v ∈ Z, (u, v) = 1 and the minimal discriminant is


′ = v7(v − u)7u7(v3 − 8uv2 + 5u2 v + u3).
Dummigan [Du] proved that 7 | n. And if p | uv(v − u), then w p = −1, so there is at least one p such
that w p = −1. This completes the proof of the case l = 7. �
3. Proof of Theorem 1.3

A Dedekind eta-product gr = ∏
d|N η

rd
d is said to be l-power like if g̃r := ∏

d|N drd is the lth-power
of a rational number.

Proposition 3.1. Let E ′/Q be an elliptic curve of square-free conductor N with a rational point of odd prime
order l � N and E be the optimal elliptic curve, isogenous over Q to E ′ . Let P be the rational point of order l
in Proposition 1.1 (the existence of such P is confirmed by Proposition 1.2). Then the Dedekind eta-product gr
corresponding to π∗(P ) is not l-power like if and only if there is only one prime p such that w p = −1.

Proof. Let N = p1 · · · psq1 · · ·qt for primes pi,q j (i = 1, . . . , s, j = 1, . . . , t) with Atkin–Lehner in-
volution sign w pi = −1, wq j = 1. Let G = q1 · · ·qt . We have proven s � 1 in Section 2. The gr
corresponding to π∗(P ) is given by [Du]
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gr :=
(∏

g|G

∏
d|(N/G)

η
wdμ(g)g
dg

)24/h

,

where h := (r,24), r := ∏
q j

(q2
j − 1)

∏
pi

(pi − 1), and μ is the Möbius function.
If s � 2, then

∏
d|p1···ps

dg wdμ(g)g =
∏

d|p3···ps

(
dp2 g

dp1 p2 g

)−wdμ(g)g( dg

dp1 g

)wdμ(g)g

= 1,

so g̃r = (
∏

g|q1···qt

∏
d|p1···ps

(dg)wdμ(g)g)
24
h = 1 and gr is l-power like.

If s = 1, then we have

g̃r =
( ∏

g| N
p1

(
g

p1 g

)μ(g)g) 24
h =

( ∏
g| N

p1

(
1

p1

)μ(g)g) 24
h = (

p−(1−q1)···(1−qs)
) 24

h .

If l = 3, then we know that r is always divisible by 9, in particular, by 3, so l � 24
h and if l = 5,7, then

l � 24
h . Since l | (q j + 1), g̃r is not the lth-power of a rational number and gr is not l-power like. �
In [B-J-K], we proved that if an elliptic curve E ′/Q of conductor N satisfies the following condi-

tions:

(i) the sign ε of the functional equation of L(s, E) is equal to +1,
(ii) E has a Q-rational 3-torsion point P ,

(iii) π∗(P ) is a Q-rational cuspidal divisor of order 3 in J0(N),
(iv) the Dedekind eta-product gr such that div gr = 3π∗(P ) is not 3-power like,

then Ords=1 L(s, E ′
D) = 1, for a positive proportion of fundamental discriminants D . So from Proposi-

tions 1.1, 1.2 and 3.1, we can have the following proposition.

Proposition 3.2. Let E ′/Q be an elliptic curve of square-free conductor N with a rational point of order 3 � N
and E be the optimal elliptic curve, isogenous over Q to E ′ . If there is only one prime p | N such that ωp = −1,
then

�
{|D| < X

∣∣ Ords=1 L(s, E D ) = 1
} 
 X .

Proof of Theorem 1.3. Let E ′/Q be an elliptic curve of square-free conductor N with a rational point
of order 3 � N . Suppose that there is only one prime p | N such that ωp = −1. Let E be the optimal
elliptic curve which is isogenous over Q to E ′ . Then by Proposition 3.2, we have that

�
{|D| < X

∣∣ Ords=1 L(s, E D ) = 1
} 
 X .

Since the two elliptic curves E ′ and E are in the same isogeny class,

L
(

E ′, s
) = L(E, s) =

∞∑
n=1

a(n)n−s.
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So if D F is coprime to the conductor of E ′ , then

L
(

E ′
D F

, s
) = L(E D F , s) =

∞∑
n=1

χD(n)a(n)n−s.

Thus we also have that

�
{|D| < X

∣∣ Ords=1 L
(
s, E ′

D

) = 1
} 
 X,

and this completes the proof. �
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