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We discuss an explicit refinement of Rubin’s integral version of
Stark’s conjecture. We prove that this refinement is a consequence
of the relevant case of the Equivariant Tamagawa Number Conjec-
ture of Burns and Flach, hence obtaining a full proof in several
important cases. We also derive several explicit consequences of
this refinement concerning the annihilation as Galois modules of
ideal class groups by explicit elements constructed from the values
of higher order derivatives of Dirichlet L-functions. We finally de-
scribe the relation between our approach and those found in recent
work of Emmons and Popescu and of Buckingham.
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1. Introduction

1.1. Stark’s conjecture and Rubin’s integral refinement

Let K/k be a finite abelian extension of global fields with Galois group G and set Ĝ := Hom(G,C×).
Let S be a finite non-empty set of places of k containing all archimedean places (if any) and all those
that ramify in the extension K/k.

We define the S-truncated C[G]-valued L-function of K/k by setting

θK/k,S(s) :=
∑
χ∈Ĝ

LK/k,S
(
s,χ−1)eχ ,

where LK/k,S(s,χ) denotes the S-truncated Dirichlet L-function at χ and eχ := (1/|G|)∑
g∈G χ(g)g−1

is the idempotent at χ . Its leading term at s = 0 is then equal to
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θ∗
K/k,S(0) :=

∑
χ∈Ĝ

L∗
K/k,S

(
0,χ−1)eχ ,

where L∗
K/k,S (0,χ) is the leading coefficient in the Taylor expansion of LK/k,S (s,χ) at 0. It is easily

shown that θ∗
K/k,S(0) belongs to R[G]× .

To remove transcendence from this element however requires an appropriate regulator. To do this
we write Y K ,S for the free abelian group on the set S(K ) of places of K which lie above those in S
and XK ,S for the kernel of the homomorphism Y K ,S → Z that sends each element of S(K ) to 1 (both
with natural actions of G). We write OK ,S for the ring of S(K )-integers in K and O×

K ,S for its group

of units. Let also R K ,S : O×
K ,S ⊗Z R → XK ,S ⊗Z R denote the Dirichlet regulator isomorphism, which

at each element u of O×
K ,S satisfies

R K ,S(u) = −
∑

w∈S(K )

log |u|w · w,

with | · |w denoting the normalised absolute value of the place w .
Then Stark’s conjecture (as reformulated by Tate in [39, Chapter 1, Conjecture 5.1]) asserts that for

each φ ∈ HomZ[G](O×
K ,S , XK ,S ) we have

θ∗
K/k,S(0) · detR[G]

(
R−1

K ,S ◦ (φ ⊗Z R)
) ∈Q[G].

In order to study integral properties of the above conjectural elements of Q[G] it is convenient to
make certain technical assumptions and modifications. Namely, we follow Rubin [35] in fixing a sec-
ond finite non-empty set T of places of k that is disjoint from S and we write O×

K ,S,T for the (finite

index) subgroup of O×
K ,S consisting of those elements that are congruent to 1 modulo all places

in T (K ). Since each place in T is then in particular both non-archimedean and unramified in K/k, we
may define an element

δT :=
∏
v∈T

(
1 − Nv · Fr−1

v

)
of Z[G] where Nv denotes the absolute norm of v and Frv denotes its Frobenius automorphism in G .
We also note that, since O×

K ,S ⊗Z R is canonically isomorphic to O×
K ,S,T ⊗Z R, we may and will by

abuse of notation consider R K ,S as a map from O×
K ,S,T ⊗ZR to XK ,S ⊗ZR. In order to simplify matters,

we elect to focus separately on the leading terms of each of the classes of Wedderburn components of
the equivariant meromorphic function θK/k,S(s) which are characterised by having the same order of
vanishing at s = 0, and for this purpose we once again follow Rubin in fixing a non-negative integer r
and then, with respect to r, making the following assumptions on the sets S and T : we assume that
S contains at least r places which split completely in K/k and has cardinality strictly greater than r,
and that O×

K ,S,T is torsion-free. We then know by [39, Chapter I, Proposition 3.4] that s−rθK/k,S(s) is
holomorphic at s = 0 and we proceed to isolate the relevant leading terms ‘of order r’ by defining an
element

θ
(r)
K/k,S(0) := 1

r!
(

d

ds

)r

θK/k,S(s)

∣∣∣∣
s=0

of C[G] and then also, in order to avoid certain technical difficulties related to the roots of unity of K ,
a ‘T -modified’ version

θ
(r)

(0) := δT · θ(r)
(0).
K/k,S,T K/k,S
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Rubin’s conjecture [35, Conjecture B’] for the set of data (K/k, S, T , r) satisfying the above hypotheses
can then be reformulated as the assertion that, for each φ ∈ HomZ[G](O×

K ,S,T , XK ,S ), one has that

θ
(r)
K/k,S,T (0) · detR[G]

(
R−1

K ,S ◦ (φ ⊗Z R)
) ∈ Z[G]. (1)

We refer the reader to Theorem 6.4 (i) and Remark 6.3 below for a proof of the fact that this
restatement is indeed equivalent to Rubin’s original formulation. We recall that Rubin shows in
[35, Proposition 2.5] that this conjecture specialises to recover the conjecture ‘over Z’ formulated
by Stark in [38] and that results of Rubin [35, Proposition 2.4] and Popescu [32, Theorem 5.5.1] also
combine to imply that Rubin’s conjecture implies the validity of the conjecture formulated by Popescu
in [32].

Our attempts in this article to construct integral annihilators of class groups from elements of
the form θ

(r)
K/k,S,T (0) will lead us to conjecture (see Theorem 2.1 below) that a statement stronger

than (1) should hold: namely, we explicitly define a natural arithmetic Z[G]-module whose Fit-
ting ideal, which is often strictly contained in Z[G], we expect to contain all elements of the form
θ

(r)
K/k,S,T (0) · detR[G](R−1

K ,S ◦ (φ ⊗Z R)), and furthermore we work with more general regulators than
those which occur in (1). We obtain a full proof of our stronger statement in several important cases
(see Corollary 2.4 below). It is also worth pointing out that, although Rubin formulates his conjecture
specifically in the number field setting, we make no distinction with the global function field setting
in which, in particular, our refinement of the natural analogue of Rubin’s conjecture given by (1) is
proved to hold unconditionally.

1.2. Stickelberger’s theorem, Brumer’s conjecture and annihilation of class groups

For a finite abelian extension K with group of roots of unity μK of a number field k and any
finite non-empty set S of places of k containing all archimedean places and all those that ramify in
the extension K/k, Brumer’s conjecture asserts that any element of AnnZ[G](μK )θK/k,S (0) belongs to
Z[G] and furthermore annihilates the ideal class group of K . We note first that the former assertion
has been known to hold for some time now by independent results of Cassou-Noguès [17] and of
Deligne and Ribet [19]. This conjecture has been studied extensively in the last decades by, amongst
others, Burns, Greither, Popescu and Wiles. There is in particular a large body of supporting evidence
(see, for example, the expository article [23]). Furthermore, Burns [10] and Nickel [31] have recently
independently formulated a non-abelian generalisation of Brumer’s conjecture. In addition, there has
been recent extensive study of a refinement of Brumer’s conjecture, the ‘Brumer–Stark conjecture’
(see the work of Popescu in [34] for a statement of this conjecture and a discussion of its connec-
tion to Brumer’s). In particular, in [25], Greither and Popescu prove the validity of a refinement of
the Brumer–Stark conjecture (away from its 2-primary part and under the assumed vanishing of the
relevant classical μ-invariants) in the number field setting while, in [24], motivated by the proof by
Deligne and Tate of a natural function field analogue of the Brumer–Stark conjecture (see [39, Chap-
ter V]), they also prove the validity of the natural function field analogue of their refined conjecture
for number fields.

We also recall that, if k = Q and S contains only the archimedean place of Q and those places
that ramify in K/Q, then Brumer’s conjecture specialises to recover the classical theorem of Stickel-
berger. However, in many situations of interest, the element θK/k,S(0) vanishes and therefore neither
Brumer’s conjecture nor Stickelberger’s theorem can provide any information whatsoever on the ob-
ject of interest, namely the class group of K . This is for instance the case whenever K is a totally real
number field (because then all archimedean places split completely in K/k).

One of the main aims of this article is to construct integral annihilators of class groups which both
apply in more general settings, namely to arbitrary finite abelian extension of global fields, and are
non-trivial much more often than those predicted by Brumer’s conjecture. The approach we follow is
to consider the values at s = 0 of higher order derivatives of L-functions, normalised by appropriate
regulators (as discussed in Section 1.1), rather than simply the values of the L-functions themselves.
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The link between elements of AnnZ[G](μK )θK/k,S(0) and those elements occurring in (1) is given
by the following facts: AnnZ[G](μK ) is generated over Z[G] by {δT : T }, where T runs over those sets
of places of k satisfying the hypotheses required in Section 1.1 (see, for instance, [33, Lemma 1.2.2]),
while one easily shows that, for any φ as above,

θ
(0)

K/k,S,T (0) · detR[G]
(

R−1
K ,S ◦ (φ ⊗Z R)

) = θ
(0)

K/k,S,T (0) = δT · θ(0)

K/k,S(0) = δT · θK/k,S(0).

Since, for r = 0, S automatically contains at least r places which split completely in K/k and has
cardinality strictly greater than r, Brumer’s conjecture is equivalent to the r = 0 case of the assertion
that for sets S and T satisfying Rubin’s hypotheses the element θ

(r)
K/k,S,T (0) · detR[G](R−1

K ,S ◦ (φ ⊗Z R))

belongs to Z[G] and annihilates the ideal class group of K for each φ ∈ HomZ[G](O×
K ,S,T , XK ,S ).

Our work will lead us to obtain strong evidence, including a full proof in several important cases,
in support of statements about the annihilation of certain modifications of the ideal class group of K ,
such as the ideal class group of OK ,S and certain natural quotients of the class group of K itself, by

elements of the form θ
(r)
K/k,S,T (0) · detR[G](R−1

K ,S ◦ (φ ⊗Z R)) (see Corollaries 2.3 and 2.4 below). It is in
particular motivated by the following question.

Question 1.1 (Burns). Let K/k be a finite abelian extension of global fields with Galois group G and
let S be a finite non-empty set of places of k containing all archimedean places (if any) and all
those that ramify in the extension K/k. Define r := min{ords=0 LK/k,S(s,χ): χ ∈ Ĝ}. Then, for any
φ ∈ HomZ[G](O×

K ,S , XK ,S ), does every element of

AnnZ[G](μK ) · θ(r)
K/k,S(0) · detR[G]

(
R−1

K ,S ◦ (φ ⊗Z R)
)

belong to Z[G] and annihilate the ideal class group of OK ,S ?

The reader can find more details about similar questions in [10].
In [30], the present author already refines work of Rubin and Sands in [35] and [36] respectively

to prove similar annihilation statements for the ideal class group of OK ,S for a wide range of multi-
quadratic extensions.

2. Statement of the main results

We use the following notational conventions: Given a commutative ring R , an R-module M and
a homomorphism of R-modules λ, we set ∧0

R M := R and let ∧0
Rλ denote the identity automorphism

of R .
As mentioned in the introduction, we aim to be able to use regulators which are more general

than those in terms of which Stark’s and Rubin’s conjectures can be formulated. For this purpose, and
for any finite non-empty set T of places of k that is disjoint from S , any non-negative integer t and
any Φ ∈ HomZ[G](∧t

Z[G]O
×
K ,S,T ,∧t

Z[G] XK ,S ), we set

R(Φ) := detR[G]
(∧t

R[G]R−1
K ,S ◦ (Φ ⊗Z R)

)
.

Note that our notation differs from the similar one used by Tate in [39] in that, if φ ∈ HomZ[G](O×
K ,S ,

XK ,S ) has finite kernel and cokernel, which is necessary to define Tate’s R(φ,χ) for χ ∈ Ĝ , and φ′
denotes the restriction of φ to O×

K ,S,T , then our R(φ′) (taking t = 1, obviously) is the inverse of the
element

∑
χ∈Ĝ R(φ,χ)eχ of R[G]× in Tate’s notation.

We now fix a non-negative integer r and, following Rubin [35], assume throughout that there is
a subset S1 strictly contained in S of cardinality r comprising places which split completely in K/k.
Note that in particular, by [39, Chapter I, Proposition 3.4], this assumption ensures that r is less than
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or equal to ords=0 LK/k,S(s,χ) for every character χ ∈ Ĝ . We further assume that the auxiliary set T

is chosen so that O×
K ,S,T is torsion-free, and note that in the function field case this condition is

automatically satisfied while in the number field case it is satisfied whenever, for example, not all the
places in T have the same residue characteristic.

Given a Dedekind Domain O, we write Cl(O) for its ideal class group. We also write ClT (OK ,S) for
the quotient of the group of fractional ideals of OK ,S that are coprime to all places in T (K ) by the
subgroup of principal ideals with a generator congruent to 1 modulo all places in T (K ).

Theorem 2.1. Assume that the central conjecture (Conjecture C(K/k)) of [16] is valid for K/k. Then there exists
a natural arithmetic G-module H1

W ,T (OK ,S ,Gm)′ which contains a submodule isomorphic to ClT (OK ,S) and

has the property that, for each element Φ of HomZ[G](∧r
Z[G]O

×
K ,S,T ,∧r

Z[G] XK ,S ), we have

θ
(r)
K/k,S,T (0)R(Φ) ∈ FittZ[G]

(
H1

W ,T (OK ,S ,Gm)′
)
. (2)

Remark 2.2.

(i) In the function field case [5, Remark 3] shows that Conjecture C(K/k) is equivalent to the
conjecture formulated in [5, §2.2]. In the number field case, C(K/k) is equivalent to the Equiv-
ariant Tamagawa Number Conjecture (‘ETNC’ for brevity) of [13, Conjecture 4 (iv)] for the pair
(h0(Spec(K )),Z[G]). In particular, from these equivalences and [5, Remark 2], resp. [14, §2], one
finds that in the function field, resp. number field case, C(K/k) is an equivariant version of the
relevant case of Lichtenbaum’s conjecture [29, Conjecture 8.1e)], resp. is a version without ‘sign
ambiguities’ of the form discussed in [13, Remark 9] of the relevant case of Kato’s ‘generalised
Iwasawa main conjecture’ [26, Conjecture 3.2.2]. It is known to be valid in several important
cases (see Corollary 2.4 below). For more details concerning explicit consequences of the validity
of the ETNC for various motives, see [8].

(ii) Theorem 2.1 makes it reasonable to conjecture that (2) is valid for all such Φ . Given φ ∈
HomZ[G](O×

K ,S,T , XK ,S ), we show in the proof of Corollary 4.2 below that θ
(r)
K/k,S,T (0)R(φ) =

θ
(r)
K/k,S,T (0)R(∧r

Z[G]φ). In particular, it follows that

{
θ

(r)
K/k,S,T (0)R(φ): φ ∈ HomZ[G]

(
O×

K ,S,T , XK ,S
)}

⊆ {
θ

(r)
K/k,S,T (0)R(Φ): Φ ∈ HomZ[G]

(∧r
Z[G]O

×
K ,S,T ,∧r

Z[G] XK ,S
)}

.

The reformulation of Rubin’s integral refinement of Stark’s conjecture given by Theorem 6.4 (i)
and Remark 6.3 below, and already given in (1), makes it clear that this conjecture is stronger
than Rubin’s, and hence also than the conjecture formulated by Popescu in [32].

(iii) The G-module H1
W ,T (OK ,S ,Gm)′ will be explicitly defined in Section 4. The fact that it contains

a submodule isomorphic to ClT (OK ,S) will allow us to relate (2) to the desired statements about
annihilation of class groups, as discussed in the introduction (see Corollary 2.3 below). In fact,
it has a natural interpretation in terms of the Weil-étale cohomology theory of the sheaf Gm on
Spec(OK ,S) (conjectural in the number field case to the existence of such a theory as predicted
by Lichtenbaum). We will however not use this fact in the sequel.

To describe some explicit consequences of Theorem 2.1 we define a natural quotient of the
ideal class group Cl(OK ) of K . We label, and thereby order, the elements of S1 as {vi: 1 � i � r},
and for each i between 1 and r fix a place wi of K above vi . We set S0 := S \ S1, S0, f :=
{non-archimedean places in S0} and c0 := [∏w∈S0, f (K ) w] ∈ Cl(OK ) and then define a G-module by
setting

Cl(OK )S := Cl(OK )/
(〈[

g(wi)
]
: 1 � i � r, wi non-arch., g ∈ G

〉〈c0〉
)
.
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We note in particular that if either r = 0 or all places vi with 1 � i � r are archimedean, then Cl(OK )S

is simply equal to the quotient of Cl(OK ) by the subgroup generated by the single element c0.
In the following result we let Z(p) denote the localisation of Z at p for any prime number p and,

for any Z[G]-module M , we set M(p) := M ⊗Z Z(p) .

Corollary 2.3. Assume the notation and hypotheses of Theorem 2.1 and fix Φ ∈ HomZ[G](∧r
Z[G]O

×
K ,S,T ,

∧r
Z[G] XK ,S ). Then all of the following claims are valid:

(i) The element θ
(r)
K/k,S,T (0)R(Φ) of Z[G] annihilates the module ClT (OK ,S) and therefore also the module

Cl(OK ,S).

(ii) The element |G|θ(r)
K/k,S,T (0)R(Φ) of Z[G] annihilates the module Cl(OK )S .

(iii) If p is any prime that does not divide |G|, then

θ
(r)
K/k,S,T (0)R(Φ) ∈ FittZ[G]

(
Cl(OK )S

)
(p)

.

We also record that in several important cases the results of Theorem 2.1 and Corollary 2.3 are
unconditional.

Corollary 2.4. The results of Theorem 2.1 and Corollary 2.3 are unconditional in each of the following cases:

(i) K is a global function field.
(ii) K is a finite abelian extension of Q.

Furthermore, the results of Theorem 2.1 and Corollary 2.3 become unconditional after applying the functor
− ⊗Z Z[ 1

2 , 1
3 ] to them in the following case:

(iii) There exists an imaginary quadratic field F of class number one such that F ⊆ k, K/F is finite abelian and
the degree of K/k is both odd and divisible only by primes which split in F/Q.

Proof. The key point here is that the central conjecture of [16] is known to be valid in each of the
above cases. Indeed, if K is a global function field, it is proved by Burns (see [9, Theorem 1.1]). If K
is a finite abelian extension of Q, it follows from results of Burns and Greither (see [15, Theorem 8.1,
Remark 8.1]) and Flach (see [21]). If there exists an imaginary quadratic field F of class number one
such that F ⊆ k, K/F is finite abelian and the degree of K/k is both odd and divisible only by primes
which split in F/Q, then a result of Bley (see [2, Theorem 4.2]) implies the validity of the p-primary
part of Conjecture C(K/k) for every prime p �= 2,3 (Bley works with odd primes but the prime 3 also
has to be excluded because Bley’s theorem depends on a result of Gillard in [22] on the vanishing of a
certain μ-invariant which requires p > 3). But one can run through every single one of our arguments
after applying the exact functor − ⊗Z Z[ 1

2 , 1
3 ] and they remain valid. �

Remark 2.5. The results of Theorem 2.1 and Corollary 2.3 are also unconditional if K/k is a quadratic
extension since the central conjecture of [16] is also known to be valid as a consequence of results of
Kim in [27, (2.4) Proposition (a)], Burns in [4] and Tate in [39, II §6.8] (where the validity of the Strong
Stark Conjecture for rational-valued characters is proved). For quadratic extensions, Theorem 2.1 and
Corollary 2.3 therefore refine the result [30, Theorem 1.3] obtained by the present author concerning
explicit annihilators of the ideal class group of OK ,S .

Remark 2.6. If k = Q (so in particular K is a finite abelian extension of Q and the results of Corol-
lary 2.3 are unconditional), we take r = 0, and S comprises the archimedean place of Q and all
the places which ramify in K/Q, then θ

(r)
K/k,S(0) is the classical Stickelberger element of K/Q and

{R(Φ): Φ ∈ HomZ[G](∧r
Z[G]O

×
K ,S,T ,∧r

Z[G] XK ,S)} = Z[G], whilst Cl(OK )S is just the quotient of Cl(OK )
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by the subgroup generated by the single element c0 (which is in this case the class of the product
of the primes of K that ramify in K/Q). So in this case Corollary 2.3 recovers a weak version of the
classical Stickelberger theorem.

In [20], Emmons and Popescu extend Rubin’s conjecture to situations in which, although r is
less than or equal to ords=0 LK/k,S(s,χ) for every character χ ∈ Ĝ , the set S need not contain r
places which split completely, in a way which exactly recovers Rubin’s original conjecture whenever
it does. In Section 6.1, we explore the connection between the (conjectural) containment (2) and their
conjecture under their more general hypotheses and, in the process, establish the fact that Rubin’s
conjecture can be reformulated in precisely the way claimed in Section 1.1.

In Section 6.2, we explore the connection between the set

IS,T ,r := {
θ

(r)
K/k,S,T (0)R(φ): φ ∈ HomZ[G]

(
O×

K ,S,T , XK ,S
)}

and the ‘fractional Galois ideal’ J (K/k, S, T ) defined by Buckingham in [3]. This module was defined
in a (somewhat analogous to ours) attempt to construct annihilators of class groups which are non-
trivial more often than those given by Brumer’s conjecture or Stickelberger’s theorem. In particular,
Buckingham proves that the validity of Rubin’s conjecture would imply that, after inverting the order
of G and restricting to er components, where er := ∑

χ eχ is the idempotent of Q[G] obtained by let-

ting the sum run over all elements χ of Ĝ such that dimC(eχ (C⊗Z O×
K ,S)) = r, the fractional Galois

ideal recovers the Fitting ideal of ClT (OK ,S ) (see [3, Proposition 6.1]). In Theorem 6.5 below we prove
that

IS,T ,r ⊆ erJ (K/k, S, T ). (3)

This comparative statement is interesting because, since Buckingham required inverting the order of G
in order to obtain conjectural annihilators of ClT (OK ,S), it combines with Corollary 2.3 to suggest that
one may prefer to restrict attention to those elements which actually belong to IS,T ,r . Furthermore, it
combines with Buckingham’s aforementioned [3, Proposition 6.1] to imply the following result which,
although in the spirit of Corollary 2.3 and only dealing with primes not dividing the order of G , has
the advantage of not being conditional to the validity of the whole of the central Conjecture C(K/k)

of [16] but rather to the validity of the weaker conjecture of Rubin.

Proposition 2.7. Assume that the set IS ′,T ,r is contained in Z[G] for every finite non-empty set S ′ of places of k
containing all archimedean places (if any) and all those that ramify in the extension K/k which furthermore
satisfies Rubin’s hypotheses with respect to a fixed choice of T and r. Then, for every prime p which does not
divide |G|, the set IS,T ,r is also contained in er FittZ[G](ClT (OK ,S))(p) .

Proof. The claimed result follows directly from the following three facts: the fact that Rubin’s conjec-
ture [35, Conjecture B′] for the set of data (S ′, T , r) is equivalent to the containment IS ′,T ,r ⊆ Z[G], as
proved in Theorem 6.4 (i) and Remark 6.3 below; the containment (3) proved in Theorem 6.5 below;
and Buckingham’s result [3, Proposition 6.1]. �
3. The Conjecture C(K/k)

In this section we first state explicitly the Conjecture C(K/k). We then construct an explicit rep-
resentative of a ‘sufficiently good approximation’ to a perfect complex of Z[G]-modules which occurs
in C(K/k) and reinterpret C(K/k) in terms of this approximation. We will then in the next section
combine this reinterpretation with a result of Burns in [6] to derive an explicit consequence of C(K/k)

which will be crucial in our proof of Theorem 2.1.
In the sequel, unless explicitly indicated otherwise by context, unadorned tensor products are re-

garded as taken in the category of abelian groups. Unadorned exterior powers are regarded as taken in
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the category of either Z[G]-modules, Q[G]-modules, R[G]-modules or C[G]-modules, and the partic-
ular category will always be clear from the context. Given a commutative ring R and an R-module M ,
whenever we let an expression of the form ∧i=0

i=1mi denote an element of ∧0
R M = R , we will always

take it to be the element 1 in R . For any abelian group A we write Ator for its torsion subgroup and
set Atf := A/Ator (regarded as a sublattice of the vector space Q · A spanned by A).

3.1. Preliminaries

3.1.1. Étale cohomology
We write D(Z[G]) for the derived category of complexes of G-modules. For any object C• of

D(Z[G]) with differential di in each degree i and any integer m we write C•[m] for the complex
which is equal to C i+m in each degree i and for which the differential in degree i is equal to
(−1)mdi+m . For any G-module M and integer m we write M[m] for the complex which is equal
to M in degree −m and is equal to 0 in all other degrees.

Let Σ be any finite non-empty set of places of k containing all archimedean places and all those
that ramify in the extension K/k. If K is a global function field, with associated smooth projective
curve C K , then we set

RΓc,ét
(
Spec(OK ,Σ ),Z

) := RΓét(C K , ι!Z)

where ι is the natural open immersion Spec(OK ,Σ ) → C K and Z is the constant étale sheaf on
Spec(OK ,Σ ). If K is a number field, then we follow [12, (3)] in defining the ‘cohomology with compact
support’ of the constant étale sheaf Z on Spec(OK ,Σ ) by setting

RΓc,ét
(
Spec(OK ,Σ ),Z

) := cone

(
RΓét

(
Spec(OK ,Σ ),Z

) →
⊕
w∈Σ

RΓét
(
Spec(K w), j∗w(Z)

))[−1]

where K w is the completion of K at w , jw the natural morphism Spec(K w) → Spec(OK ,Σ ) and the
mapping cone is defined using Godement resolutions.

Lemma 3.1. For any finite non-empty set Σ of places of k containing all archimedean places and all those that
ramify in the extension K/k, there exists a complex Ψ̃ •

Σ of Z[G]-modules of the form

Ψ 0
Σ

δΣ−→ Ψ 1
Σ → XK ,Σ ⊗Q

which has both of the following properties:

(i) There exists a distinguished triangle in D(Z[G]) of the form

Ψ̃ •
Σ → HomZ

(
RΓc,ét

(
Spec(OK ,Σ ),Z

)
,Q/Z[−3]) → Ô×

K ,Σ/O×
K ,Σ [0] → Ψ̃ •

Σ [1]

where Ô×
K ,Σ denotes the profinite completion of O×

K ,Σ and the second arrow is the unique morphism in
D(Z[G]) which induces upon cohomology (in degree 0) the composite of the canonical identification

H0(HomZ

(
RΓc,ét

(
Spec(OK ,Σ ),Z

)
,Q/Z[−3])) ∼= Ô×

K ,Σ

and the natural projection Ô×
K ,Σ → Ô×

K ,Σ/O×
K ,Σ .
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(ii) Ψ 0
Σ is a finitely generated cohomologically-trivial G-module, Ψ 1

Σ is a finitely generated free Z[G]-module,
and the distinguished triangle in claim (i) induces exact sequences of the form

0 → O×
K ,Σ → Ψ 0

Σ

δΣ−→ Ψ 1
Σ → cok(δΣ) → 0, (4)

0 → Cl(OK ,Σ ) → cok(δΣ) → XK ,Σ → 0. (5)

Proof. This is just Lemma 2.1 in [16]. �
Remark 3.2. If K is a global function field, then it is known that cok(δΣ) is canonically isomorphic to
the Weil-étale cohomology group H1

W (OK ,Σ ,Gm) of the sheaf Gm on Spec(OK ,Σ ). If K is a number
field, then a Weil-étale topology has been conjectured to exist by Lichtenbaum. It has been shown by
Burns (see [7, Remark 3.8]) that if such a topology exists with the expected properties, then cok(δΣ)

will be canonically isomorphic to the group H1
W (OK ,Σ ,Gm).

We fix henceforth a choice of perfect complex of Z[G]-modules Ψ •
S which, in terms of the notation

of Lemma 3.1, is equal to Ψ 0
S

δS−−→ Ψ 1
S with the first term placed in degree 0 and the cohomology

groups identified with O×
K ,S and cok(δS ) by means of (4).

Corollary 3.3. Let K/k and Σ be as above. Then for any finite set of places T of k that is disjoint from Σ there
exists a perfect complex Ψ •

Σ,T of Z[G]-modules which is defined up to canonical isomorphism in D(Z[G]),

is acyclic outside degrees 0 and 1 with canonical identifications H0(Ψ •
Σ,T ) = O×

K ,Σ,T , H1(Ψ •
Σ,T )tor =

ClT (OK ,Σ ) and H1(Ψ •
Σ,T )tf = XK ,Σ , and lies in a natural exact triangle in D(Z[G]) of the form

Ψ •
Σ,T → Ψ •

Σ → F×
T [0] → Ψ •

Σ,T [1]. (6)

In this triangle, F×
T denotes the direct sum of the multiplicative groups of the residue fields of all places in T (K ).

Proof. This is proved in claims (i) and (ii) of [11, Proposition 4.1]. Indeed, although [11, Proposi-
tion 4.1] is stated specifically in the number field case, all the relevant steps in the construction of
the complex Ψ •

Σ,T from the given complex Ψ •
Σ remain valid in the global function field case. �

We fix henceforth a choice of finite set of places T of k that is disjoint from S with the property
that O×

K ,S,T is torsion-free.

3.1.2. Determinants
For any commutative ring R we write DetR for the determinant functor of Knudsen and Mum-

ford [28], valued in the category P(R) of graded invertible R-modules, and for any object (L, r) of
P(R) we set (L, r)−1 := (HomR(L, R),−r) (which is again an object of P(R)).

We now assume to be given a perfect complex of Z[G]-modules C• that is concentrated in degrees
0 and 1 together with an isomorphism of R[G]-modules λ : R⊗ H0(C•) → R⊗ H1(C•). For any such
pair we write

ϑC•,λ : DetR[G]
(
R⊗ C•) ∼= (

R[G],0
)

for the isomorphism in P(R[G]) that is obtained by composing the isomorphism

DetR[G]
(
R⊗ C•) ∼= DetR[G]

(
R⊗ H0(C•)) ⊗P(R[G]) DetR[G]

(
R⊗ H1(C•))−1

induced by applying DetR[G] to the tautological short exact sequences
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0 →R⊗ H0(C•) →R⊗ C0 →R⊗ im(d) → 0

and

0 →R⊗ im(d) →R⊗ C1 →R⊗ H1(C•) → 0

where d is the differential of C• , together with the isomorphism

DetR[G]
(
R⊗ H0(C•)) ⊗P(R[G]) DetR[G]

(
R⊗ H1(C•))−1 ∼= (

R[G],0
)

obtained by composing DetR[G](λ) ⊗P(R[G]) id and the evaluation pairing on the space DetR[G](R ⊗
H1(C•)).

3.2. Statement of the conjecture

We recall that the exact sequences (4) and (5) combine to identify R K ,S with an isomorphism of
the form R⊗ H0(Ψ •

S ) →R⊗ H1(Ψ •
S ).

Conjecture C(K/k) (Burns). One has an equality in P(Z[G]) of the form

(
θ∗

K/k,S(0) ·Z[G],0
) = ϑΨ •

S ,R K ,S

(
DetZ[G]

(
Ψ •

S

))
.

Remark 3.4.

(i) Under the conditions of Lemma 3.1, the complex Ψ •
S is unique to within an isomorphism in

D(Z[G]) that induces the identity map on all (non-zero) degrees of cohomology, and this can be
used to show that the (graded) lattice ϑΨ •

S ,R K ,S (DetZ[G](Ψ •
S )) depends only upon the pair (K/k, S).

(ii) The same argument as used to prove [4, Theorem 2.1.2 (i)] shows that the validity of Conjec-
ture C(K/k) is independent of the chosen set S .

3.3. An explicit reformulation of C(K/k)

From [39, Chapter I, Proposition 3.4] one knows that for each χ ∈ Ĝ the order of vanishing of
LK/k,S (s,χ) at s = 0 is equal to

dimC

(
eχ

(
C ·O×

K ,S

)) =
{ |{v ∈ S: v splits completely in K ker(χ)/k}|, if χ is non-trivial,

|S| − 1, if χ is trivial.
(7)

The equivariant function θK/k,S(s) therefore vanishes at s = 0 to order at least

r := min
{|S| − 1,

∣∣{v ∈ S: v splits completely in K/k}∣∣}.
We now set n := |S| − 1 and label, and thereby order, the elements of S as {vi: 0 � i � n}. We

always assume, as we may, that this numbering is chosen so that vi splits completely in K/k for each i
with 1 � i � r. For each index i ∈ {0, . . . ,n} we fix a place wi of K lying over vi . Set S1 := {v1, . . . , vr}.

We then define α : XK ,S → Y K ,S1 by

α
(∑

nw w
)

:=
∑

nw w

w∈S(K ) w∈S1(K )
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and, for any complex Ψ •
S,T as specified by Corollary 3.3, use the canonical identification H1(Ψ •

S,T )tf =
XK ,S to define a map α′ : H1(Ψ •

S,T ) → Y K ,S1 by the composition

H1(Ψ •
S,T

)
� XK ,S

α−→ Y K ,S1 .

To proceed, we now generalise constructions of Burns in [6, §7] to apply in our setting.

Lemma 3.5. There exists a finitely generated free G-module F of rank d with d � r, a surjective homomorphism
of G-modules π : F → H1(Ψ •

S,T ) and an ordered Z[G]-basis {bi: 1 � i � d} of F with the following property:

(
α′ ◦ π

)
(bi) =

{
wi, if 1 � i � r,

0, if r < i � d.

Proof. Fix a free G-module F1 of rank r with basis {bi: 1 � i � r}, define π ′
1 : F1 → XK ,S by

π ′
1(bi) = wi − w0 for i ∈ {1, . . . , r}

and let π1 : F1 → H1(Ψ •
S,T ) be a lift of π ′

1 through the natural projection H1(Ψ •
S,T ) � XK ,S (which

clearly exists since F1 is free).
Fix a free G-module F2 of (large enough) rank c with basis {bi: r < i � c + r} such that there exists

a surjective homomorphism π ′
2 : F2 � ker(α′) and let π2 : F2 → H1(Ψ •

S,T ) denote the composite of π ′
2

and the tautological inclusion ker(α′) ⊆ H1(Ψ •
S,T ).

Set now F := F1 ⊕ F2, π := π1 ⊕ π2 : F → H1(Ψ •
S,T ), d := r + c. We have that (α′ ◦ π1)(bi) =

α(wi − w0) = wi for 1 � i � r, so α′ ◦ π1 : F1 → Y K ,S1 is surjective (Y K ,S1 is clearly generated as a
Z[G]-module by {w1, . . . , wr}). The tautological exact sequence

0 → ker
(
α′) → H1(Ψ •

S,T

) α′−→ Y K ,S1 → 0

therefore implies that π is surjective. �
For any G-module M and homomorphism of G-modules λ, we set MR := M ⊗R and λR := λ ⊗R.

The algebra R[G] is semisimple, and so for any Z[G]-endomorphism ϕ of the finitely generated, free
Z[G]-module F , there exist R[G]-equivariant sections ι1 and ι2 to the surjections FR → im(ϕ)R and
FR → cok(ϕ)R that are induced by ϕ and by the tautological surjection respectively. This induces a
direct sum decomposition of R[G]-modules

FR = ker(ϕ)R ⊕ ι1
(
im(ϕ)R

)
and so for τ in HomR[G](ker(ϕ)R, cok(ϕ)R) there is a unique 〈τ ,ϕ, ι1, ι2〉 in HomR[G](FR, FR) that is
equal to ι2 ◦ τ on ker(ϕ)R and to ϕR on ι1(im(ϕ)R).

Proposition 3.6. Let Ψ •
S,T be a perfect complex of Z[G]-modules as specified by Corollary 3.3 with respect to

our fixed choices of S and T , and let π : F → H1(Ψ •
S,T ) be a surjective homomorphism of Z[G]-modules as

specified by Lemma 3.5. Then there exists an exact sequence of Z[G]-modules of the form

0 → O×
K ,S,T

ι−→ F
ϕ−→ F π−→ H1(Ψ •

S,T

) → 0

with the property that, for any choice of R[G]-equivariant sections ι1 and ι2 to the surjective homomor-
phisms FR → im(ϕ)R and FR → cok(ϕ)R

∼−→ H1(Ψ •
S,T )R that are induced by ϕ and π respectively, the
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R[G]-endomorphism 〈R K ,S ,ϕ, ι1, ι2〉 of FR is invertible, and one has that Conjecture C(K/k) is valid if and
only if the element

θ∗
K/k,S,T (0) · detR[G]

(〈R K ,S ,ϕ, ι1, ι2〉
)−1

belongs to Z[G]× , where we write θ∗
K/k,S,T (0) for the product δT · θ∗

K/k,S(0).

Proof. Since Ψ •
S,T is both perfect and acyclic outside degrees 0 and 1, a standard argument shows

that it is isomorphic in D(Z[G]) to a complex of the form Ψ 0
S,T

d−→ F where Ψ 0
S,T occurs in degree 0

and is a finitely generated, cohomologically-trivial Z[G]-module and furthermore with the property
that im(d) = ker(π). But both H0(Ψ •

S,T ) = O×
K ,S,T and F are torsion-free and hence so is Ψ 0

S,T , which
by [1, Theorem 8] is a projective Z[G]-module. Also, there exist isomorphisms of Q[G]-modules

O×
K ,S,T ⊗Q ∼= O×

K ,S ⊗Q ∼= XK ,S ⊗Q∼= H1(Ψ •
S,T

) ⊗Q,

where the existence of the second isomorphism is implied from the fact that O×
K ,S ⊗R and XK ,S ⊗R

are R[G]-isomorphic by the Noether–Deuring theorem (see the remark after [37, Proposition 33]).
Since Q[G] is semisimple, it is then easily seen that the Q[G]-modules Ψ 0

S,T ⊗Q and F ⊗Q are iso-
morphic. Hence Swan’s theorem [18, 32.1] implies that, for every prime number p, the Zp[G]-modules
Ψ 0

S,T ⊗Zp and F ⊗Zp are isomorphic. Roiter’s lemma [18, 31.6] finally implies that the Z[G]-modules

Ψ 0
S,T and F are isomorphic, as required to complete the proof of the first claim of the proposition.

The exact triangle of perfect complexes (6) in D(Z[G]) now implies that

DetZ[G]
(
Ψ •

S

) = DetZ[G]
(
Ψ •

S,T

) · DetZ[G]
(
F×

T [0])
= DetZ[G]

(
Ψ •

S,T

) · FittZ[G]
(
F×

T

)−1

while, since each place in T is unramified, the short exact sequence

0 →
⊕
v∈T

Z[G] (1−Nv·Fr−1
v )v−−−−−−−−→

⊕
v∈T

Z[G] → F×
T → 0

implies that FittZ[G](F×
T ) = δT ·Z[G]. It follows that Conjecture C(K/k) is valid if and only if

ϑΨ •
S,T ,R K ,S

(
DetZ[G]

(
Ψ •

S,T

)) = (
θ∗

K/k,S,T (0) ·Z[G],0
)
. (8)

The definition of 〈R K ,S ,ϕ, ι1, ι2〉 implies that both

〈R K ,S ,ϕ, ι1, ι2〉
(
ι1

(
im(ϕ)R

)) = im(ϕ)R

and

〈R K ,S ,ϕ, ι1, ι2〉
(
ker(ϕ)R

) = ι2
(

H1(Ψ •
S,T

)
R

)
.

Since FR is equal to the direct sum of im(ϕ)R and ι2(H1(Ψ •
S,T )R), one therefore has im(〈R K ,S ,ϕ,

ι1, ι2〉) = FR and so 〈R K ,S ,ϕ, ι1, ι2〉 is invertible.
Finally, by the explicit computation in [5, Lemma A1], and using (8), we have that Conjec-

ture C(K/k) is valid if and only if
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(
detR[G]

(〈R K ,S ,ϕ, ι1, ι2〉
) ·Z[G],0

) = (
θ∗

K/k,S,T (0) ·Z[G],0
)
,

as required. �
4. The proof of Theorem 2.1

We recall that, by the definition of r in Section 3.3, it is less than or equal to ords=0 LK/k,S (s,χ)

for every character χ ∈ Ĝ , and that we have defined an element of C[G] by setting

θ
(r)
K/k,S(0) := 1

r!
(

d

ds

)r

θK/k,S(s)

∣∣∣∣
s=0

.

In fact, it is easily seen that this element belongs to R[G]. Set

H1
W ,T (OK ,S ,Gm)′ := ker

(
α′).

Theorem 4.1. Assume that C(K/k) is valid. Then for any element Φ of HomZ[G](∧r
Z[G]O

×
K ,S,T ,∧r

Z[G] XK ,S)

one has that the element θ
(r)
K/k,S,T (0)R(Φ) belongs to FittZ[G](H1

W ,T (OK ,S ,Gm)′).

Proof. Using the notation of Lemma 3.5, let first f = ( f1, f2) ∈ ker(π) with f1 = ∑i=r
i=1 xibi ∈ F1,

f2 ∈ F2, x1, . . . , xr ∈ Z[G]. Then 0 = (α′ ◦ π)( f ) = ∑i=r
i=1 xi wi + α′(π2( f2)) = ∑i=r

i=1 xi wi , and since
Y K ,S1 is a free Z[G]-module with basis {w1, . . . , wr}, we have that x1 = · · · = xr = 0 and so f1 = 0.
This, combined with the exactness of F

ϕ−→ F π−→ H1(Ψ •
S,T ) in Proposition 3.6, implies that im(ϕ) =

ker(π) = ker(π2) = ker(π ′
2) ⊆ F2. We hence have an exact sequence

F
ϕ−→ F2

π ′
2−→ H1

W ,T (OK ,S ,Gm)′ → 0. (9)

Let now N = (Nst) be the matrix of ϕ : F → F2 with respect to the bases {b1, . . . ,bd} and
{br+1, . . . ,bd}, i.e.,

ϕ(bs) =
t=d−r∑

t=1

Nstbt+r for 1 � s � d.

Then, since the exact sequence (9) is a free resolution of H1
W ,T (OK ,S ,Gm)′ , the definition of Fitting

ideals implies that

det
(
Nλ

) ∈ FittZ[G]
(

H1
W ,T (OK ,S ,Gm)′

)
(10)

for every λ ∈ Λr(d) where we set Λr(d) := {(λ1, . . . , λr): 1 � λ1 < · · · < λr � d} and for λ =
(λ1, . . . , λr) we let Nλ denote the (d − r) × (d − r) matrix obtained by deleting the rows of N in
positions λ1, . . . , λr .

From Proposition 3.6, we have a short exact sequence

0 → O×
K ,S,T

ι−→ F
ϕ−→ im(ϕ) → 0

and, since F is Z-free, so is im(ϕ) ⊆ F . Hence Ext1
Z(im(ϕ),Z) vanishes and it follows that the map

HomZ(ι,Z) is surjective. Now, the functors HomZ(−,Z) and HomZ[G](−,Z[G]) are naturally isomor-
phic, and hence we find that
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HomZ[G]
(
ι,Z[G]) : HomZ[G]

(
F ,Z[G]) → HomZ[G]

(
O×

K ,S,T ,Z[G])
is a surjective homomorphism of Z[G]-modules. We fix an isomorphism of Z[G]-modules f : Y K ,S1

∼=
Z[G]r , where for any Z[G]-module M , resp. homomorphism of Z[G]-modules λ, we let Mr , resp. λr ,
denote the direct sum of r copies of M , resp. λ. It is then clear that

HomZ[G]
(
O×

K ,S,T , f −1) ◦ HomZ[G]
(
ι,Z[G])r ◦ HomZ[G](F , f )

= HomZ[G](ι, Y K ,S1) : HomZ[G](F , Y K ,S1) → HomZ[G]
(
O×

K ,S,T , Y K ,S1

)
is also surjective.

We now fix Φ ∈ HomZ[G](∧rO×
K ,S,T ,∧r XK ,S ). For any finitely generated Z[G]-modules M and N ,

we have a natural isomorphism

∧r HomZ[G](M, N) ∼= HomZ[G]
(∧r M,∧r N

)
(11)

which is given by

∧i=r
i=1φi �→ [∧i=r

i=1mi �→ ∧i=r
i=1φi(mi)

]
.

Hence, if r > 0, then for some n ∈ N, we have that Φ corresponds under this isomorphism to∑ j=n
j=1(∧i=r

i=1φi, j) for some φi, j ∈ HomZ[G](O×
K ,S,T , XK ,S ). By the surjectivity of HomZ[G](ι, Y K ,S1), we

may then, for each (i, j) ∈ {1, . . . , r} × {1, . . . ,n}, choose φ′
i, j ∈ HomZ[G](F , Y K ,S1) such that

α ◦ φi, j = φ′
i, j ◦ ι. (12)

So, if r > 0, we let Φ ′ be the element of HomZ[G](∧r F ,∧r Y K ,S1 ) that corresponds to
∑ j=n

j=1(∧i=r
i=1φ

′
i, j)

under the analogous isomorphism given by (11), and note that then (12) implies by naturality of the
isomorphisms given by (11) that

∧rα ◦ Φ = Φ ′ ◦ ∧rι. (13)

Now, for arbitrary r, ∧r
R[G]R K ,S gives an isomorphism of R[G]-modules

R · ∧r
Z[G]O

×
K ,S,T

∼−→R · ∧r
Z[G] XK ,S .

Let η denote the unique element of R · ∧r
Z[G]O

×
K ,S,T which satisfies

(∧r
R[G]R K ,S

)
(η) = θ

(r)
K/k,S,T (0) · ∧i=r

i=1(wi − w0) (14)

in R · ∧r
Z[G] XK ,S . By a theorem of Burns [6, Theorem 8.1], noting that all the arguments involved

remain valid for our more general S , we deduce from Proposition 3.6 and the assumed validity of
Conjecture C(K/k) that

∧rιR(η) = xT

∑
λ∈Λr(d)

sgn(σλ)det
(
Nλ

) · ∧i=r
i=1bλi ∈ ∧rker(ϕ)R ⊆ ∧r FR (15)

with
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xT := θ∗
K/k,S,T (0) · detR[G]

(〈R K ,S ,ϕ, ι1, ι2〉
)−1 ∈ Z[G]× (16)

and where σλ is just an element of a group of permutations and so sgn(σλ) ∈ {1,−1}.
Hence, if r > 0, we have that

θ
(r)
K/k,S,T (0)R(Φ) · ∧i=r

i=1 wi = θ
(r)
K/k,S,T (0)detR[G]

(∧r R−1
K ,S ◦ ΦR

) · (∧rα
)(∧i=r

i=1(wi − w0)
)

= (∧rαR

)(
θ

(r)
K/k,S,T (0)detR[G]

(∧r R−1
K ,S ◦ ΦR

) · (∧i=r
i=1(wi − w0)

))
= (∧rαR

)(
θ

(r)
K/k,S,T (0)

(
ΦR ◦ ∧r R−1

K ,S

)(∧i=r
i=1(wi − w0)

))
= (∧rαR ◦ ΦR

)
(η)

= (
Φ ′

R ◦ ∧rιR
)
(η)

= Φ ′
R

(
xT

∑
λ∈Λr(d)

sgn(σλ)det
(
Nλ

) · ∧i=r
i=1bλi

)
= xT

∑
λ∈Λr(d)

sgn(σλ)det
(
Nλ

) · Φ ′(∧i=r
i=1bλi

)
,

where the fourth, fifth and sixth equalities are implied by (14), (13) and (15) respectively. Now (10)
combines with (16) to imply that the last displayed expression belongs to FittZ[G](H1

W ,T (OK ,S ,Gm)′) ·
∧r Y K ,S1 . Hence, since {∧i=r

i=1 wi} is a Z[G]-basis of ∧r Y K ,S1 = Z[G] · ∧i=r
i=1 wi , we finally deduce that

θ
(r)
K/k,S,T (0)R(Φ) belongs to FittZ[G](H1

W ,T (OK ,S ,Gm)′), as required.
If on the other hand r = 0, then we have that

θ
(r)
K/k,S,T (0)R(Φ) = ηR(Φ) = xT det(N)R(Φ) ∈ FittZ[G]

(
H1

W ,T (OK ,S ,Gm)′
)
,

where the first and second equalities are implied by (14) and (15) respectively and the fact that
xT det(N)R(Φ) belongs to FittZ[G](H1

W ,T (OK ,S ,Gm)′) follows from combining (10) with (16) and the
fact that R(Φ) ∈ Z[G] in this particular case. �
Corollary 4.2. If C(K/k) is valid, then for any φ ∈ HomZ[G](O×

K ,S,T , XK ,S ) one has θ
(r)
K/k,S,T (0)R(φ) ∈

FittZ[G](H1
W ,T (OK ,S ,Gm)′).

Proof. Set er := ∑
χ eχ where the sum runs over all elements χ of Ĝ such that dimC(eχ (C ⊗

O×
K ,S)) = r. Then it follows from (7) that we have θ

(r)
K/k,S,T (0) = θ∗

K/k,S,T (0)er = θ
(r)
K/k,S,T (0)er and hence

θ
(r)
K/k,S,T (0)R(φ) = θ

(r)
K/k,S,T (0)er detR[G]

(
R−1

K ,S ◦ φR

)
= θ

(r)
K/k,S,T (0)detR[G]er

(
R−1

K ,S ◦ φR

∣∣ er
(
O×

K ,S

)
R

)
= θ

(r)
K/k,S,T (0)er detR[G]

(∧r
R[G]R−1

K ,S ◦ ∧r
R[G]φR

)
= θ

(r)
K/k,S,T (0)R

(∧r
Z[G]φ

)
∈ FittZ[G]

(
H1

W ,T (OK ,S ,Gm)′
)
,

where the third equality is a consequence of the fact that er(O×
K ,S ⊗ R) is a free R[G]er -module of

rank r and the last assertion is just the statement of Theorem 4.1 for Φ = ∧r
Z[G]φ. �
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5. The proof of Corollary 2.3

Recall the definitions of S0 and S0, f from the Section 2. We now set

ClS := Cl(OK ,S), ClT
S := ClT (OK ,S),

Cl′S := Cl(OK )/
〈[

g(wi)
]
: 1 � i � r, wi non-arch., g ∈ G

〉
,

c0 :=
[ ∏

w∈S0, f (K )

w

]
∈ Cl(OK ),

Cl(OK )S := Cl(OK )/
(〈[

g(wi)
]
: 1 � i � r, wi non-arch., g ∈ G

〉〈c0〉
)
.

We note first that we have a commutative diagram with exact rows

0 ClT
S H1(Ψ •

S,T )

α′

XK ,S

α

0

0 0 Y K ,S1

id
Y K ,S1 0

with the top row induced by the canonical identifications given in Corollary 3.3. Note also that, if we
regard XK ,S0 as a submodule of XK ,S in the obvious way, then it clearly coincides with ker(α). Hence
the Snake lemma induces a short exact sequence of G-modules

0 → ClT
S → H1

W ,T (OK ,S ,Gm)′ → XK ,S0 → 0. (17)

5.1. The proof of Corollary 2.3 (i)

Combining Theorem 4.1 with (17), the assumed validity of Conjecture C(K/k) implies that

θ
(r)
K/k,S,T (0)R(Φ) ∈ FittZ[G]

(
H1

W ,T (OK ,S ,Gm)′
)

⊆ AnnZ[G]
(

H1
W ,T (OK ,S ,Gm)′

)
⊆ AnnZ[G]

(
ClT

S

)
for any Φ . Furthermore, ClT

S naturally surjects onto ClS , so AnnZ[G](ClT
S ) ⊆ AnnZ[G](ClS ). This com-

pletes the proof of claim (i) in Corollary 2.3.

5.2. The proofs of Corollary 2.3 (ii) and (iii)

We have an exact sequence of G-modules

Y K ,S0 → Cl′S → ClS → 0 (18)

where the first arrow is just the map which sends any place w of S0(K ) to its class [w] in Cl(OK )

and then to its coset in the quotient Cl′S .
For any G-module M , we set M∗ := HomZ(M,Z), and for any G-module homomorphism λ, we set

λ∗ := HomZ(λ,Z).
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Lemma 5.1. There is a canonical isomorphism of Z[G]-modules

X∗
K ,S0

∼= Y K ,S0/

〈 ∑
w∈S0(K )

w

〉
.

Proof. The tautological short exact sequence

0 → XK ,S0 → Y K ,S0
ε−→ Z→ 0,

where ε sends each place of S0(K ) to 1, induces a short exact sequence

0 → Z∗ ε∗−→ Y ∗
K ,S0

→ X∗
K ,S0

→ 0.

Set J := {0, r + 1, . . . ,n}. We also have an isomorphism Z∗ ∼= Z by sending each ψ ∈ Z∗ to ψ(1) and
a composite canonical isomorphism

Y ∗
K ,S0

= HomZ(Y K ,S0 ,Z)
∼−→ HomZ

(⊕
j∈ J

Z[G/G w j ],Z
)

∼=
⊕
j∈ J

HomZ

(
Z[G/G w j ],Z

)
∼−→

⊕
j∈ J

HomZ[G/G w j ]
(
Z[G/G w j ],Z[G/G w j ]

)
∼−→

⊕
j∈ J

Z[G/G w j ]

∼−→ Y K ,S0 .

Here G w j denotes the decomposition group of w j , the first and last arrows are induced by the iso-
morphism

Y K ,S0 =
⊕
j∈ J

Z[G] · w j
∼=

⊕
j∈ J

Z[G/G w j ],

where each w j is simply mapped to the identity element of G/G w j , the second arrow is induced by
the isomorphism

HomZ(M,Z) ∼= HomZ[Γ ]
(
M,Z[Γ ])

(with Γ = G/G w j and M = Z[G/G w j ]) that is given for any finite group Γ and any Z[Γ ]-module M
by

φ �→
[

m �→
∑
γ ∈Γ

φ
(
γ −1 · m

) · γ
]
,

and the third arrow is induced by the isomorphism

HomZ[G/G w j ]
(
Z[G/G w j ],Z[G/G w j ]

) ∼= Z[G/G w j ]

given by sending each homomorphism ψ to ψ(1).
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It is now straightforward to check that the map from Z to Y K ,S0 that sends each integer m to∑
w∈S0(K ) mw makes the square

Z∗ ε∗

∼=

Y ∗
K ,S0

∼=

Z Y K ,S0

commute. Hence we in fact have a commutative diagram with exact rows

0 Z∗ ε∗

∼=

Y ∗
K ,S0

∼=

X∗
K ,S0

∼=

0

0 Z Y K ,S0 Y K ,S0/〈
∑

w∈S0(K ) w〉 0

and in particular the required canonical isomorphism. �
Now (18) induces an exact sequence

Y K ,S0/

〈 ∑
w∈S0(K )

w

〉
→ Cl(OK )S → ClS → 0

which then by Lemma 5.1 gives an exact sequence

X∗
K ,S0

ψ−→ Cl(OK )S
ϕ−→ ClS → 0. (19)

Theorem 5.2.

(i) |G| · FittZ[G](H1
W ,T (OK ,S ,Gm)′) ⊆ AnnZ[G](Cl(OK )S ).

(ii) For any prime p not dividing |G|, we have that FittZ[G](H1
W ,T (OK ,S ,Gm)′)(p) ⊆ FittZ[G](Cl(OK )S )(p) .

Proof. In order to prove claim (i), we first obtain an idempotent by setting e0 := ∑
χ∈Υ0

eχ where

Υ0 := {χ ∈ Ĝ: eχ (C⊗ XK ,S0 ) = 0}. Υ0 is closed under the natural action of AutQ(C) on Ĝ , so e0 ∈ Q[G]
and hence |G|e0 ∈ Z[G]. Since |G|e0 · XK ,S0 = 0, we have that |G|e0 ∈ AnnZ[G](X∗

K ,S0
). We also have

that

FittZ[G]
(

H1
W ,T (OK ,S ,Gm)′

) ⊆ AnnZ[G]
(

H1
W ,T (OK ,S ,Gm)′

)
⊆ AnnZ[G]

(
ClT

S

)
⊆ AnnZ[G](ClS),

where the second inclusion follows from (17) and the final inclusion follows from the fact that ClT
S

surjects onto ClS .
Note now that if eχ (C⊗ H1

W ,T (OK ,S ,Gm)′) = 0 then (17) implies that χ ∈ Υ0, and hence by exactly
the same argument as in the last paragraph of the proof of [8, Theorem 8.2.1], we deduce that we
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have e0 · FittZ[G](H1
W ,T (OK ,S ,Gm)′) = FittZ[G](H1

W ,T (OK ,S ,Gm)′). Fix x ∈ FittZ[G](H1
W ,T (OK ,S ,Gm)′).

Then x = e0 y = e2
0 y = e0(e0 y) = e0x for some y ∈ FittZ[G](H1

W ,T (OK ,S ,Gm)′).
Fix c ∈ Cl(OK )S . Then ϕ(xc) = xϕ(c) = 0 so xc ∈ ker(ϕ) = im(ψ) by (19), and hence xc = ψ(z) for

some z ∈ X∗
K ,S0

. But then (|G|x)c = (|G|e0x)c = (|G|e0)(xc) = (|G|e0)ψ(z) = ψ(|G|e0z) = ψ(0) = 0, and
this shows that

|G| · FittZ[G]
(

H1
W ,T (OK ,S ′

0
,Gm)′

) ⊆ AnnZ[G]
(
Cl(OK )S

)
.

In order to prove claim (ii), we note first that if p � |G|, then for any short exact sequence 0 →
M1 → M2 → M3 → 0 of Z(p)[G]-modules, we have

FittZ(p)[G](M2) = FittZ(p)[G](M1) FittZ(p)[G](M3).

Using the exact sequences (17) and (19), the fact that ClT
S surjects onto ClS and the fact that

FittZ(p)[G]((XK ,S0 )(p)) = FittZ(p)[G]((X∗
K ,S0

)(p)) (this follows from the proof of Lemma 5.1, in particu-
lar from the first two displayed short exact sequences and the fact that Y K ,S0 is self-dual), we finally
get that

FittZ[G]
(

H1
W ,T (OK ,S ,Gm)′

)
(p)

= FittZ[G]
(
ClT

S

)
(p)

FittZ[G](XK ,S0)(p)

⊆ FittZ[G](ClS)(p) FittZ[G]
(

X∗
K ,S0

)
(p)

⊆ FittZ[G](ClS)(p) FittZ[G]
(
ker(ϕ)

)
(p)

= FittZ[G]
(
Cl(OK )S

)
(p)

,

where the last equality is implied by the tautological short exact sequence

0 → ker(ϕ) → Cl(OK )S
ϕ−→ ClS → 0. �

Claims (ii) and (iii) of Corollary 2.3 are now immediate consequences of Theorem 4.1 and Theo-
rem 5.2.

6. Connections to recent work

6.1. The conjecture of Emmons and Popescu

In [20], Emmons and Popescu formulate a refinement of Stark’s conjecture for finite abelian exten-
sions of global fields K/k with Galois group G in terms of the value at 0 of the r-th derivative of a
truncated C[G]-valued L-function of K/k for which they replace the standard hypothesis on r, namely
that r places of the set of places of k that plays the role of our S should split completely in the ex-
tension, by a weaker one. In this subsection, we explore the connection between this refinement and
ours under this weaker hypothesis.

In order to state this conjecture, we say that a pair (Σ, T ) is appropriate for K/k if Σ and T are
finite, non-empty, disjoint sets of places of k such that Σ contains all the archimedean and all the
K/k-ramified places of k and O×

K ,Σ,T has no Z-torsion. Fix such a pair. As in [20, Definition 2.1], if Σ ′

is a subset of Σ , Π is a subset of Ĝ and r is a non-negative integer, we say Σ ′ is an r-cover for Π if
the following two conditions are satisfied:

1. For all χ ∈ Π , there exist (at least) r distinct places v ∈ Σ ′ such that χ(G v ) = {1} (where G v

denotes the decomposition group in K/k of any place of K above v).
2. If the trivial character 1G belongs to Π , then |Σ ′| � r + 1.
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We now fix a non-negative integer r such that Σ is an r-cover for Ĝ and note that, by (7), r is
less than or equal to rΣ(χ) := ords=0 LK/k,Σ (s,χ) for every character χ ∈ Ĝ . Let Ĝr,Σ := {χ ∈ Ĝ:
rΣ(χ) = r}. For any Z[G]-module M with no Z-torsion, let Mr,Σ := {m ∈ M: eχm = 0 in CM for

all χ ∈ Ĝ \ Ĝr,Σ }. Note that in particular C[G]r,Σ = θ
(r)
K/k,Σ,T (0) · C[G]. As in [20, Definition 2.4], we

define Σmin as the intersection of all the subsets of Σ which are r-covers for Ĝr,Σ \ {1G } (by [20,
Lemma 2.3], Σmin happens to be the unique minimal r-cover for Ĝr,Σ \ {1G }). For any place v in Σ ,
we fix a place w(v) of K above v . We introduce and fix an order on Σ , which in particular induces
an order on each of its subsets. If Ĝr,Σ = {1G} (as explained in [20, Example 1], this happens if and
only if Σ consists precisely of r +1 completely split places), we let I(Σ) := {v1, . . . , vr}, assuming that
v1 < · · · < vr < vr+1 are the elements of Σ . For any I ⊆ Σ of cardinality r, we define a C[G]-linear
regulator map R I :C∧r

Z[G] O
×
K ,Σ,T →C[G] by setting

R I(u1 ∧ · · · ∧ ur) := det

(
1

|G v |
∑
σ∈G

log
∣∣uσ−1

j

∣∣
w(v)

· σ
)

v∈I, 1� j�r

for all u1, . . . , ur ∈O×
K ,Σ,T and then extending by C-linearity. Finally, we define the regulator map

R = Rr,Σ :=
{∑

I∈℘r(Σmin) R I , if Ĝr,Σ �= {1G},
R I(Σ), if Ĝr,Σ = {1G}

where the summation over all the subsets of cardinality r of Σmin is by definition equal to 0 if
Σmin = ∅. By [20, Proposition 3.2], R restricts to give a C[G]-isomorphism (C ∧r

Z[G] O
×
K ,Σ,T )r,Σ

∼=−→
(C[G])r,Σ .

For any Z[G]-module M , we define a C[G]-linear pairing

C∧r
Z[G] HomZ[G]

(
M,Z[G]) ×C∧r

Z[G] M →C[G]
by setting (φ1 ∧· · ·∧φr)(u1 ∧· · ·∧ur) = det1�i, j�r(φi(u j))1�i, j�r for all φ1, . . . , φr ∈ HomZ[G](M,Z[G])
and all u1, . . . , ur ∈ M and then extending by C-linearity.

In the rest of this section we abbreviate θ
(r)
K/k,Σ,T (0) by denoting it θ

(r)
T (0).

Definition 6.1. We define the following two subsets of R[G]:

I := {
θ

(r)
T (0)R(φ): φ ∈ HomZ[G]

(
O×

K ,Σ,T , XK ,Σ

)}
,

J := {(∧i=r
i=1ϕi

)(
R−1(θ(r)

T (0)
))

: ϕ1, . . . ,ϕr ∈ HomZ[G]
(
O×

K ,Σ,T ,Z[G])}.
Then [20, Conjecture 3.8] can be restated as follows.

Conjecture 6.2 (Emmons–Popescu). If (Σ, T ) is appropriate for K/k and Σ is an r-cover for Ĝ, then
J ⊆ Z[G].

Remark 6.3. As already noted in [20, Remark 3.9], it is a straightforward consequence of the above
construction that, if (at least) r places of Σ split completely in the extension K/k, then Conjec-
ture 6.2 is equivalent to Rubin’s Conjecture B′ (and therefore also to Rubin’s Conjecture B) for the
set of data (K/k,Σ, T , r) in [35]. Theorem 6.4 (i) below therefore justifies our assertion that the pre-
dicted containment (2) is stronger than Rubin’s conjecture. Theorem 6.4 (ii) below then combines
with Corollary 4.2 to suggest that, under the more general hypotheses of Emmons and Popescu, and
modulo certain possible denominators bounded by |G|r , it would be reasonable to expect the set J
to be contained not only in Z[G] but also in the Fitting ideal of the G-module H1

W ,T (OK ,S ,Gm)′ .
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For any element x and subset A of C[G], xA simply denotes the subset {xa: a ∈ A} of C[G].

Theorem 6.4.

(i) If Σ contains (at least) r places which split completely in K/k (and in particular whenever |Σ | = r + 1,
by [20, Lemma 2.2]), we have that I =J .

(ii) For every χ ∈ Ĝ , we have that eχI ⊆ 1
|ker(χ)|r eχJ and that eχJ ⊆ 1

|ker(χ)|r eχI .

Proof. The case r = 0 is clear because, with e0 = er defined as in the proof of Corollary 4.2, one finds
that (7) implies that θ

(0)
T (0)R(φ) = θ

(0)
T (0)e0 R(φ) = θ

(0)
T (0) for any φ. We assume henceforth that

r > 0. In order to prove claim (i), let v1, . . . , vr ∈ Σ split completely in K/k. Put I = {v1, . . . , vr}, let
v0 ∈ Σ \ I and write wi = w(vi) for all i. Then by [20, Remark 3.1], R coincides with the regulator
map Rη defined by Rubin in [35, §2.1] for η = w∗

1 ∧ · · · ∧ w∗
r where the w∗

i are the elements of
HomZ[G](Y K ,Σ ,Z[G]) given by w∗

i (w) = ∑
g wi=w g for each w ∈ Σ(K ). Hence

θ
(r)
T (0) ∧r R−1

K ,Σ

(∧i=r
i=1(wi − w0)

) = R−1(θ(r)
T (0)R

(∧r R−1
K ,Σ

(∧i=r
i=1(wi − w0)

)))
= R−1(θ(r)

T (0)
(

w∗
1 ∧ · · · ∧ w∗

r

)(∧i=r
i=1(wi − w0)

))
= R−1(θ(r)

T (0)
)
, (20)

where the second equality follows from the definition of Rη and the third equality holds because
(w∗

1 ∧ · · · ∧ w∗
r )(∧i=r

i=1(wi − w0)) is just the determinant of the identity r × r matrix with entries
in Z[G].

In order to prove inclusion one way, let first φ ∈ HomZ[G](O×
K ,Σ,T , XK ,Σ ). For 1 � i � r, let

f i ∈ HomZ[G](XK ,Σ ,Z[G]) be defined by letting the direct sum of the f i be the composite homo-
morphism

XK ,Σ
α−→ Y K ,I

∼=−→ Z[G]r

where the second map sends each wi to the element of Z[G]r with 1 in the i-th component
and zeros in the other components (and Z[G]r denotes the direct sum of r copies of Z[G]). Then
clearly f i(w j − w0) = δi j (the Kronecker Delta). For 1 � i � r, let ϕi := f i ◦ φ. Then (20) implies
that

θ
(r)
T (0)R(φ) = θ

(r)
T (0)R(φ)det

(
f i(w j − w0)

)
1�i, j�r

= θ
(r)
T (0)detR[G]

(∧rφR ◦ ∧r R−1
K ,Σ

)(∧i=r
i=1 f i

)(∧i=r
i=1(wi − w0)

)
= θ

(r)
T (0)

(∧i=r
i=1 f i

)((∧rφR ◦ ∧r R−1
K ,Σ

)(∧i=r
i=1(wi − w0)

))
= θ

(r)
T (0)

(∧i=r
i=1( f i ◦ φ)

)(∧r R−1
K ,Σ

(∧i=r
i=1(wi − w0)

))
= (∧i=r

i=1ϕi
)(
R−1(θ(r)

T (0)
)) ∈ J ,

and we have proved inclusion one way.
In order to prove the second required inclusion, we now let ϕ1, . . . , ϕr ∈ HomZ[G](O×

K ,Σ,T ,Z[G]).
Let F be the composite homomorphism

Z[G]r ∼=−→ Y K ,I
β−→ XK ,Σ
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where the first map is the inverse of the one described above and α ◦ β is the identity on Y K ,I (such
a β exists because Y K ,I is a free Z[G]-module and α is surjective). Define φ ∈ HomZ[G](O×

K ,Σ,T , XK ,Σ )

by φ := F ◦ ⊕
1�i�r ϕi . Then clearly we have ϕi = f i ◦ φ for each i. But then, by the same argument

as above, we get that

(∧i=r
i=1ϕi

)(
R−1(θ(r)

T (0)
)) = (∧i=r

i=1( f i ◦ φ)
)(
R−1(θ(r)

T (0)
))

= θ
(r)
T (0)R(φ) ∈ I,

and we have proved inclusion the other way.
In order to prove claim (ii), we note first that if |Σ | = r + 1, then by [20, Lemma 2.2] Σ contains

(at least) r places which split completely in K/k and the result follows from claim (i), so we may
and will assume henceforth that |Σ | > r + 1. If rΣ(χ) > r, then eχI = 0 = eχJ by (7), so the result
is trivially true for each such χ . We henceforth fix χ ∈ Ĝr,Σ . By (7), we know that χ cannot be the
trivial character and furthermore that (exactly) r places v1,χ , . . . , vr,χ of Σ split completely in the
fixed field of ker(χ), which we will denote by Kχ . Put Iχ := {v1,χ , . . . , vr,χ }, let v0,χ ∈ Σ \ Iχ and
write wi,χ = w(vi,χ ) for all i. We also write Nχ for Nker(χ) , the algebraic norm attached to ker(χ),
set Γχ := Gal(Kχ/k) ∼= G/ker(χ), and let αχ : XKχ ,Σ → Y Kχ ,Iχ be the map α defined in Section 3.3
corresponding to the triple (Kχ/k,Σ, Iχ ).

For any z ∈ (C ∧r
Z[G] O

×
K ,Σ,T )r,Σ , we have by [20, Lemma 3.10(2)] that eχR(z) = eχ R Iχ (z), and

by [35, Lemma 2.2] that R Iχ (z) = ∏i=r
i=1

1
|G vi,χ | Rη(z) for η = w∗

1,χ ∧ · · · ∧ w∗
r,χ , where again Rη is the

regulator map defined by Rubin in [35, §2.1] and G vi,χ denotes the decomposition group in G of any
place of K above vi,χ . Hence

eχ θ
(r)
T (0) ∧r R−1

K ,Σ

(∧i=r
i=1(wi,χ − w0,χ )

)
= R−1(θ(r)

T (0)eχR
(∧r R−1

K ,Σ

(∧i=r
i=1(wi,χ − w0,χ )

)))
= R−1

(
θ

(r)
T (0)eχ

(
i=r∏
i=1

1

|G vi,χ |

)(
w∗

1,χ ∧ · · · ∧ w∗
r,χ

)(∧i=r
i=1(wi,χ − w0,χ )

))

= eχ

(
i=r∏
i=1

NG vi,χ

|G vi,χ |

)
R−1(θ(r)

T (0)
)

= eχR−1(θ(r)
T (0)

)
, (21)

where the second equality follows from the definition of Rη , the third equality holds because (w∗
1,χ ∧

· · · ∧ w∗
r,χ )(∧i=r

i=1(wi,χ − w0,χ )) is just the determinant of the r × r diagonal matrix with NG vi,χ
in

the (i, i) entry for each i and zeros elsewhere and the last equality holds because heχ = eχ for any
h ∈ ker(χ) and G vi,χ ⊆ ker(χ) for 1 � i � r.

In order to prove inclusion one way, let first φ ∈ HomZ[G](O×
K ,Σ,T , XK ,Σ ). For 1 � i � r, let f i ∈

HomZ[G](XK ,Σ ,Z[G]) be defined by letting the direct sum of the f i be the composite homomorphism

XK ,Σ → Nχ XK ,Σ
∼=−→ XKχ ,Σ

αχ−−→ Y Kχ ,Iχ
∼=−→ Z[Γχ ]r → Z[G]r

where the first map is given by the action of Nχ on XK ,Σ , the second map is the one defined in
[39, §I.6.5], the fourth map sends, for each i, the place of Kχ below wi to the element of Z[Γχ ]r

with 1 in the i-th component and zeros in the other components, and the fifth map sends the coset
of any g ∈ G in G/ker(χ) to Nχ g (after identifying Γχ with G/ker(χ)). It is then straightforward to
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check that f i(w j,χ − w0,χ ) = δi j Nχ . For 1 � i � r, let ϕi := f i ◦ φ. Then, using the fact that Nχ eχ =
|ker(χ)|eχ , the equality (21) implies that

eχθ
(r)
T (0)R(φ) =

(
Nχ

|ker(χ)|
)r

eχθ
(r)
T (0)R(φ)

= 1

|ker(χ)|r eχθ
(r)
T (0)R(φ)det

(
f i(w j,χ − w0,χ )

)
1�i, j�r

= 1

|ker(χ)|r eχθ
(r)
T (0)detR[G]

(∧rφR ◦ ∧r R−1
K ,Σ

)(∧i=r
i=1 f i

)(∧i=r
i=1(wi,χ − w0,χ )

)
= 1

|ker(χ)|r eχθ
(r)
T (0)

(∧i=r
i=1 f i

)((∧rφR ◦ ∧r R−1
K ,Σ

)(∧i=r
i=1(wi,χ − w0,χ )

))
= 1

|ker(χ)|r eχθ
(r)
T (0)

(∧i=r
i=1( f i ◦ φ)

)(∧r R−1
K ,Σ

(∧i=r
i=1(wi,χ − w0,χ )

))
= 1

|ker(χ)|r eχ

(∧i=r
i=1ϕi

)(
R−1(θ(r)

T (0)
)) ∈ 1

|ker(χ)|r eχJ ,

and we have proved the first inclusion.
In order to prove the second required inclusion, we now let ϕ1, . . . , ϕr ∈ HomZ[G](O×

K ,Σ,T ,Z[G]).
Let F be the composite homomorphism

Z[G]r → Z[Γχ ]r ∼=−→ Y Kχ ,Iχ
βχ−→ XKχ ,Σ

∼=−→ Nχ XK ,Σ → XK ,Σ

where the second and fourth maps are the inverses of the respective maps described above, the first
map is induced by the natural surjection from G to Γχ , the fifth map is the obvious inclusion and
αχ ◦ βχ is the identity on Y Kχ ,Iχ (such a βχ exists because Y Kχ ,Iχ is a free Z[Γχ ]-module and αχ

is surjective). Define φ ∈ HomZ[G](O×
K ,Σ,T , XK ,Σ ) by φ := F ◦ ⊕

1�i�r ϕi . It is then straightforward to

check that for any u ∈O×
K ,Σ,T , we have ( f i ◦φ)(u) = |ker(χ)|Nχϕi(u). But then, by the same argument

as above, and again using that Nχ eχ = |ker(χ)|eχ , we get that

eχ

(∧i=r
i=1ϕi

)(
R−1(θ(r)

T (0)
)) = eχ

( |ker(χ)|Nχ

|ker(χ)|2
)r(∧i=r

i=1ϕi
)(
R−1(θ(r)

T (0)
))

= eχ
1

|ker(χ)|2r

(∧i=r
i=1( f i ◦ φ)

)(
R−1(θ(r)

T (0)
))

= 1

|ker(χ)|r eχθ
(r)
T (0)R(φ) ∈ 1

|ker(χ)|r eχI,

and we have proved the second inclusion. �
6.2. The fractional Galois ideal of Buckingham

In this section we prove the validity of the containment (3) relating elements of the form
θ

(r)
K/k,S,T (0)R(φ) to Buckingham’s fractional Galois ideal J (K/k, S, T ). As explained in Section 2, this

comparison is interesting of its own accord and furthermore is required in order to establish the
validity of Proposition 2.7.

We recall that er is the idempotent defined in the proof of Corollary 4.2 and, for the reader’s
convenience, recall the definition of the Z[G]-submodule of R[G] J (K/k, S, T ) from [3]. In order to
do so, we once again fix a finite set T of places of k disjoint from S such that O×

K ,S,T has no Z-torsion.
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We are still assuming that r places of S split completely in K/k. Let rS (χ) (for every χ ∈ Ĝ) and the
C[G]-linear pairing C ∧t HomZ[G](O×

K ,S,T ,Z[G]) × C ∧t O×
K ,S,T → C[G] be defined as in Section 6.1.

For any t � 0, set

ΩS,T ,t := {
u ∈ ∧tO×

K ,S,T ⊗Q: (φ1 ∧ · · · ∧ φt)(u) ∈ Z[G] for any φi ∈ HomZ[G]
(
O×

K ,S,T ,Z[G]),
eχ u = 0 for all χ ∈ Ĝ with rS(χ) �= t

}
.

ΩS,T ,t is clearly a Z[G]-submodule of et ∧t O×
K ,S ⊗Q, where et := ∑

rS (χ)=t eχ . We define finally

J (K/k, S, T ) := θ∗
K/k,S,T (0)

{
detR[G]

(
(β ⊗Q R) ◦

∞⊕
t=0

et ∧t R−1
K ,S

)
:

β ∈ HomQ[G]

( ∞⊕
t=0

et ∧t O×
K ,S,T ⊗Q,

∞⊕
t=0

et ∧t XK ,S ⊗Q

)
,

β(ΩS,T ,t) ⊆ et ∧t
Z[G],tf XK ,S for all t � 0

}

where ∧t
Z[G],tf XK ,S denotes the image of ∧t

Z[G] XK ,S in (∧t
Z[G] XK ,S ) ⊗Q.

Theorem 6.5. For any φ ∈ HomZ[G](O×
K ,S,T , XK ,S ), we have

θ
(r)
K/k,S,T (0)R(φ) ∈ erJ (K/k, S, T ).

Proof. Fix φ ∈ HomZ[G](O×
K ,S,T , XK ,S), and let ˜er ∧r φQ denote the element of HomQ[G](

⊕∞
t=0 et ∧t

O×
K ,S,T ⊗ Q,

⊕∞
t=0 et ∧t XK ,S ⊗ Q) given by er ∧r (φ ⊗ Q) on er ∧r O×

K ,S,T ⊗ Q and by 0 on et ∧t

O×
K ,S,T ⊗Q for any t �= r. Then, using the proof of Corollary 4.2, we get that

θ
(r)
K/k,S,T (0)R(φ) = θ∗

K/k,S,T (0)er detR[G]
(∧rφR ◦ ∧r R−1

K ,S

)
= θ∗

K/k,S,T (0)er detR[G]
(
er ∧r φR ◦ er ∧r R−1

K ,S

)
= θ∗

K/k,S,T (0)er detR[G]

((
˜er ∧r φQ ⊗Q R

) ◦
∞⊕

t=0

et ∧t R−1
K ,S

∣∣∣ er ∧r XK ,S ⊗Q

)

= θ∗
K/k,S,T (0)er detR[G]

((
˜er ∧r φQ ⊗Q R

) ◦
∞⊕

t=0

et ∧t R−1
K ,S

)
,

where the fourth equality follows from the general fact that for any finitely generated R[G]-module M ,
any idempotent e ∈R[G] and any R[G]-endomorphism α of M , one has e detR[G](α) = e detR[G](α|eM).

Hence we only need to show that er ∧r (φ ⊗ Q)(ΩS,T ,r) ⊆ er ∧r
Z[G],tf XK ,S in order to com-

plete the proof of the theorem. If r = 0, this statement is trivial, so we assume henceforth that
r > 0. For i ∈ {1, . . . , r}, define φi ∈ HomZ[G](O×

K ,S,T ,Z[G]) by φi(u) := xi if φ(u) = ∑i=r
i=1 xi(wi −

w0) + ∑
w∈S0(K ) yw w with all the xi and yw in Z[G]. Fix u = (u1 ∧ · · · ∧ ur) ⊗ q ∈ ΩS,T ,r with

u1, . . . , ur ∈ O×
K ,S,T , q ∈ Q (note that every element of er ∧r O×

K ,S,T ⊗ Q can be written as eru for
a u of this form). Then we have that
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∧r(φ ⊗Q)(u1 ∧ · · · ∧ ur) = ∧ j=r
j=1

(
i=r∑
i=1

φi(u j)(wi − w0) +
∑

w∈S0(K )

y j
w w

)

=
( ∑

τ∈Sr

sgn(τ )

k=r∏
k=1

φτ(k)(uk)

)
∧i=r

i=1 (wi − w0) +
∑
ω

zωω

= det
(
φi(u j)

)
1�i, j�r ∧i=r

i=1 (wi − w0) +
∑
ω

zωω

= (
(φ1 ∧ · · · ∧ φr)(u1 ∧ · · · ∧ ur)

) ∧i=r
i=1 (wi − w0) +

∑
ω

zωω

where ω runs over monomials w ′
1 ∧ · · · ∧ w ′

r where at least one of the w ′
i belongs to S0(K ), all the

y j
w and zω belong to Z[G] and Sr denotes the group of permutations of {1, . . . , r}. Now, by the proof

of [35, Lemma 2.6], we deduce that

er

((
(φ1 ∧ · · · ∧ φr)(u1 ∧ · · · ∧ ur)

) ∧i=r
i=1 (wi − w0) +

∑
ω

zωω

)
= er

(
(φ1 ∧ · · · ∧ φr)(u1 ∧ · · · ∧ ur)

) ∧i=r
i=1 (wi − w0),

and hence, by the integrality condition imposed by definition on elements of ΩS,T ,r , we finally have
that

er ∧r (φ ⊗Q)(u) = er
(
(φ1 ∧ · · · ∧ φr)(u1 ∧ · · · ∧ ur)

) ∧i=r
i=1 (wi − w0) ⊗ q

= er
(
(φ1 ∧ · · · ∧ φr)(u)

) ∧i=r
i=1 (wi − w0)

∈ er ∧r
Z[G],tf XK ,S ,

as required. �
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