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Examples of non-simple abelian surfaces over the
rationals with non-square order Tate-Shafarevich group
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Unter den Linden 6, 10099 Berlin, Germany

Abstract

Let A be an abelian surface over a fixed number field. If A is principally po-
larised, then it is known that the order of the Tate-Shafarevich group of A must,
if finite, be a square or twice a square. For each k ∈ {1, 2, 3, 5, 6, 7, 10, 13} we
construct a non-simple non-principally polarised abelian surface B/Q having
Tate-Shafarevich group of order k times a square. To obtain this result, we ex-
plore the invariance under isogeny of the Birch and Swinnerton-Dyer conjecture.
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1. Introduction

Let A/K be an abelian variety over a number field K. Consider its Tate-
Shafarevich group X(A/K). If A is an elliptic curve E, then the order of
X(E/K) is a perfect square, if it is finite. But in higher dimensions, even for
principally polarised abelian varieties, this is no longer true in general. Denote
by A∨ the dual abelian variety. The Cassels-Tate pairing [1], [26]

〈·, ·〉 : X(A/K)×X(A∨/K) → Q/Z,

which is non-degenerate in case X(A/K) is finite, combined with a result of
Flach [7], gives a strong restriction on the non-square part of the order of the
Tate-Shafarevich group [23, Theorem 1.2].

Theorem 1.1 (Tate, Flach). Assume X(A/K) is finite. If an odd prime p
divides the non-square part of #X(A/K), then p divides the degree of every
polarisation of A/K.

Corollary 1.2 (Poonen, Stoll). If A/K is a principally polarised abelian vari-
ety, then

#X(A/K) = � or 2 ·�.

More precisely, assuming the finiteness of X(A/K), Poonen and Stoll [17]
associated to each principal polarisation λ of A/K a canonical element c ∈
X(A/K)[2], and showed that the order of X(A/K) is a square if and only
if 〈c, λ(c)〉 = 0. This is clearly the case if c = 0. They showed that c = 0
is equivalent to the induced pairing on X(A/K) being alternating and also
equivalent to the polarisation λ arising from a K-rational divisor. It was already
known by Tate [26] that the order of X is a square, if such a K-rational divisor
exists. In case c �= 0 the induced pairing is anti-symmetric, due to Flach [7].

In 1996, Stoll constructed the first example of an abelian variety having
#X = 2 · �; see [22] for some historical remarks. His example was the Ja-
cobian of a genus 2 curve over Q, a principally polarised abelian surface over
Q. Thereafter, for every prime p < 25000, William Stein [23] constructed an
abelian variety Ap/Q of dimension p − 1, such that #X(Ap/Q) = p · �. This
result led Stein to make the following conjecture.

Conjecture 1.3 (William Stein). As one ranges over all abelian varieties A/Q,
every square-free natural number appears as the non-square part of the order of
some X(A/Q).

The following question is then natural.

Question 1.4. What are the possible non-square parts of the orders of finite
Tate-Shafarevich groups for abelian varieties of fixed dimension over a fixed
number field? Is this a finite list?

So far, in the case of abelian surfaces B/Q, the only known square-free
positive integers k which equal the non-square part of the order of some X(B/Q)
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are 1, 2, and 3. The purpose of this paper is to extend this list by 5, 6, 7, 10,
and 13. The construction we use is an isogeny applied to a product of two
elliptic curves, and hence is different from the construction used by Poonen and
Stoll, and by Stein. To understand the image of this isogeny we will explore an
equation of Cassels and Tate, which is a consequence of the isogeny invariance
of the Birch and Swinnerton-Dyer conjecture. The non-square part of the left
hand side of this equation will be equal to the non-square part of the order of
the Tate-Shafarevich group in question. We will explain how to calculate the
right hand side and then we will give explicit examples to prove the following

Theorem 1.5. For each k ∈ {1, 2, 3, 5, 6, 7, 10, 13} there exists a non-simple
non-principally polarised abelian surface B/Q such that #X(B/Q) = k ·�.

The outline of this paper is the following. In the rest of this section we
fix notation. In Section 2 we present the aforementioned equation of Cassels
and Tate. This equation will break into two parts – a local part and a global
part. The remaining part of Section 2 is devoted to explaining the local part
and to introduce non-simple abelian surfaces. In Section 3 we will work with
elliptic curves possessing a Q-rational N -torsion point. Such curves lead to
two parameter families of abelian surfaces and we prove how to calculate the
local and global part of the Cassels-Tate equation for these families. Finally, we
present explicit calculations and give examples to prove the above theorem.

Notation 1.6. Let A/K be an abelian variety A over a field K, i.e. a proper
group scheme of positive dimension which is geometrically integral and of finite
type over Spec K. Usually, K is a number field, or a (p-adic) local field, or a
finite field. Since all fields considered are perfect we do not pay attention to
separability, and with K we denote a once and for all fixed algebraic closure of
K. For a field L containing K, the group of L-rational points is denoted by A(L),
with O ∈ A(L) being the identity element of the group law. The dual abelian
variety of A/K is denoted by A∨ := Pic0A/K and a polarisation of A/K is a
symmetric isogeny λ : A → A∨, such that over K we have λ = λL, for an ample
line bundle L on A/K. If ϕ : A → B is an isogeny between abelian varieties
over a field K, then for a field extension L/K we say that ϕ has a L-kernel, if all
points in A(K)[ϕ] are already defined over L, i.e. A(K)[ϕ] = A(L)[ϕ]. If we do
not specify the field of definition of an isogeny ϕ between two abelian varieties
which are defined over a field K, then we want ϕ to be also defined over K.

If K is a number field, then with v we denote a place of K, and with MK

the set of all places of K. We have the subset M0
K of all finite places (or primes)

of K and the subset M∞
K of all infinite places of K. With Kv we denote the

completion of K at v, and with kv its residue field, i.e. the quotient of the
valuation ring Ov by its maximal ideal mv = πvOv, for a uniformiser πv. We
normalise the absolute value | · |v on Kv so that |πv|v = (#kv)

−1. If v ∈ M0
K is a

place lying over p ∈ M0
Q, we denote this by v|p and call Kv a p-adic field. Denote

by Knr
v the maximal unramified extension of Kv. It is obtained by adjoining to

Kv all n-th roots of unity, for n coprime to the characteristic of kv.
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The absolute Galois group of a field K will be denoted by GalK . For Galois
cohomology we use the usual abbreviation Hi(K,M) := Hi(GalK ,M), for a
K-Galois module M . The Tate-Shafarevich group of A/K is defined as

X(A/K) := ker

(
H1(K,A(K)) →

∏
v∈MK

H1(Kv, A(Kv))

)
.

With � we denote a prime number and by Z/�Z we either mean a cyclic
group of order � or a Galois module of order � with trivial Galois action. By μ�

we denote the �-th roots of unity as a Galois module of order �, and we write
ξ = ξ� for a primitive �-th root of unity. The trivial group is denoted by 0. By
� ∈ {1, 4, 9, 16, . . .}, we denote a square natural number. We sometimes refer
to computations carried out with the software package Sage [25].

2. Controlling the order of Tate-Shafarevich groups modulo squares

We want to construct abelian surfaces B/Q such that the order of their Tate-
Shafarevich groups is not a square. To archieve this objective we start with an
abelian surface A/Q being the product of two elliptic curves E1 and E2 over Q.
Hence it is known that the order of the Tate-Shafarevich group X(A/Q) is a
square, provided it is finite. Then we consider cyclic isogenies ϕ : A → B and
the goal is to understand X(B/Q) in terms of X(A/Q) and ϕ. The precise
situation we consider is summarised in Setting 2.33. The isogeny ϕ naturally
induces a group homomorphism between X(A/Q) and X(B/Q) which is an
isomorphism between �-primary parts for primes � not dividing the degree of
the isogeny. In particular this means, that if X(A/K) is of square order, then
a necessary condition for a prime � to divide the non-square part of the order
of X(B/K) is that � divides the degree of ϕ.

In the next subsection we will present the Cassels-Tate equation, which ex-
presses the relative change of the orders of the Tate-Shafarevich groups of A
and B under ϕ. It consists of a local and a global part, which will be called the
local quotient and the global quotient. We will spend the following two subsec-
tions computing the local quotient, one for general abelian varieties and one for
elliptic curves. The main result is Theorem 2.28. The isogenies constructed in
Setting 2.33 are then subsumed into the so-called isogenies with diagonal kernel
in the last subsection of this chapter. We also introduce the general concept of
non-simple abelian surfaces and we present the Key Lemma 2.30 for the compu-
tation of the local quotient. In Section 3 we will use the results obtained in this
section to actually compute explicit examples of abelian surfaces B/Q having
Tate-Shafarevich group of non-square order.

2.1. An equation of Cassels and Tate
Cassels [2] (the elliptic curve case) and Tate [28] (the general case) proved

the following theorem to show the invariance of the Birch and Swinnerton-Dyer
conjecture under isogeny. Denote by RA the regulator and by PA the period
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of an abelian variety A/K over a number field K, see pages 37 and 52 in [8].
By cA,v we denote the local Tamagawa number of A at a finite place v ∈ M0

K .

Theorem 2.1. Let ϕ : A → B be an isogeny between two abelian varieties
A and B over a number field K. Assume that at least one of X(A/K) or
X(B/K) is finite. Then X(A/K) and X(B/K) are both finite, and

#X(A/K)

#X(B/K)
=

RB

RA
· #A(K) tors #A∨(K) tors
#B(K) tors #B∨(K) tors

· PB

PA
·

∏
v∈M0

K

cB,v

cA,v
.

The product over the Tamagawa numbers is actually finite, since cA,v = 1
when v is a place of good reduction of A. We define A(K) free to be the quotient
group A(K)/A(K) tors. Consider the following induced group homomorphisms.

ϕK : A(K) → B(K), ϕ∨
K : B∨(K) → A∨(K), ϕv : A(Kv) → B(Kv),

ϕK,tors : A(K) tors → B(K) tors, ϕ∨
K,tors : B

∨(K) tors → A∨(K) tors,

ϕK,free : A(K) free → B(K) free, ϕ∨
K,free : B

∨(K) free → A∨(K) free .

We may now reformulate the above quotients in terms of these induced group
homomorphisms. This reformulation, which is part of the proof of the above
theorem, turns out to be easier to handle for computational purposes, and we
are going to use the Cassels-Tate equation only in this description. There are
two trivial equalities, namely

#A(K) tors
#B(K) tors

=
#kerϕK

# cokerϕK,tors
and

#A∨(K) tors
#B∨(K) tors

=
# cokerϕ∨

K,tors

#kerϕ∨
K

,

and two more interesting ones, see the proof of Theorem I.7.3 in [16];

RB

RA
=

# cokerϕ∨
K,free

# cokerϕK,free
and

PB

PA
·

∏
v∈M0

K

cB,v

cA,v
=

∏
v∈MK

# cokerϕv

#kerϕv
.

Hence the Cassels-Tate equation becomes

#X(A/K)

#X(B/K)
=

#kerϕK

# cokerϕK

# cokerϕ∨
K

#kerϕ∨
K

∏
v∈MK

# cokerϕv

#kerϕv
. (1)

In particular we have

RB

RA
· #A(K) tors #A∨(K) tors
#B(K) tors #B∨(K) tors

=
#kerϕK

# cokerϕK

# cokerϕ∨
K

#kerϕ∨
K

,

and we call the right-hand side of this equation the global quotient. The global
quotient clearly breaks into the regulator quotient and the torsion quotient. The
product ∏

v∈MK

# cokerϕv

#kerϕv

runs over all places v of K and is called the local quotient. It is in fact a finite
product, since # cokerϕv = #kerϕv for all but finitely many places v, as will
be recalled in Corollary 2.12. In the next two subsections we will study the local
quotient # cokerϕv/#kerϕv for a finite place v ∈ M0

K .
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2.2. Isogenies between abelian varieties over local fields
In this section we will use the following notation. Let ϕ : A → B be an

isogeny between two abelian varieties A and B over a number field K, and let
v ∈ M0

K be a finite place of K lying over a fixed prime p. Consider the induced
group homomorphism on Kv-rational points

ϕv : A(Kv) → B(Kv).

Our aim is to compute the quotient # cokerϕv/#kerϕv, which mainly consists
in determining the cardinality of cokerϕv, as the size of the kernel is usually
obvious by the definition of ϕ. On a few occasions we will focus on isogenies
having a Kv-kernel, i.e. A(Kv)[ϕ] = A(Kv)[ϕ], and thus #kerϕv = degϕ and
GalKv acts trivially on A(Kv)[ϕ].

In general, the cokernel of ϕv can naturally be identified with a subgroup of
H1(Kv, A(Kv)[ϕ]), since the short exact sequence of Galois modules

0 �� A(Kv)[ϕ] �� A(Kv)
ϕ �� B(Kv) �� 0

gives the long exact Galois cohomology sequence

0 �� cokerϕv
�� H1(Kv, A(Kv)[ϕ]) �� · · ·

The next lemma determines the size of H1(Kv, A(Kv)[ϕ]) and in particular
shows that it is finite. Hence cokerϕv is also finite.

Lemma 2.2. Let Kv be a p-adic field and let M be a finite Kv-Galois module
of order #M and with dual M∨ := Hom(M,Gm(Kv)). The size of the first
cohomology group of M can be computed as follows.

#H1(Kv,M) = #H0(Kv,M) ·#H0(Kv,M
∨) · pvp(#M)·[Kv:Qp].

Proof. This follows from Theorems 2 and 5 in Chapter II.5 in [20].
Define the Euler-Poincaré characteristic by χ(Kv,M) := #H0(Kv,M) ·
#H2(Kv,M)/#H1(Kv,M). By the duality Theorem 2 from [20], we get
#H2(Kv,M) = #H0(Kv,M

∨), and by Theorem 5, we get χ(Kv,M) =
(Ov : #MOv)

−1, where Ov is the valuation ring of Kv. Hence, χ(Kv,M) =
p−vp(#M)·[Kv :Qp] and we are done. �

Corollary 2.3. Let ϕ be of prime degree �. If ϕ or ϕ∨ has a Kv-kernel, then

H1(Kv, A(Kv)[ϕ]) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Z/�Z, v � �,μ� � Kv

(Z/�Z)2, v � �,μ� ⊆ Kv

(Z/�Z)[Kv:Qp]+1, v|�,μ� � Kv

(Z/�Z)[Kv:Qp]+2, v|�,μ� ⊆ Kv,

and if neither ϕ nor ϕ∨ has a Kv-kernel, then

H1(Kv, A(Kv)[ϕ]) ∼=
{
0, v � �

(Z/�Z)[Kv:Qp], v|�.
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Proof. By definition H1(Kv, A(Kv)[ϕ]) is abelian and has exponent �. By the
previous lemma, for M := A(Kv)[ϕ], we have

#H1(Kv,M) =

{
#H0(Kv,M) ·#H0(Kv,M

∨), v � �

#H0(Kv,M) ·#H0(Kv,M
∨) · �[Kv:Qp], v | �.

If ϕ, respectively ϕ∨, has a Kv-kernel, then A(Kv)[ϕ] ∼= Z/lZ, respectively μ�,
as Galois modules. Since

H0(Kv,Z/�Z) ∼= Z/�Z, and H0(Kv,μ�)
∼=

{
0, μ� � Kv

Z/�Z, μ� ⊆ Kv,

and Z/�Z and μ� are dual to each other, we get the first statement.
If neither ϕ nor ϕ∨ has a Kv-kernel, then neither A(Kv)[ϕ] nor its dual is

isomorphic to Z/�Z. Therefore H0(Kv, A(Kv)[ϕ]) = H0(Kv, A(Kv)[ϕ]
∨) = 0,

which completes the proof. �

Corollary 2.4.

H1(Qp,Z/�Z) ∼= H1(Qp,μ�)
∼=

⎧⎪⎨
⎪⎩
Z/�Z, p �= � �= 2, p �≡ 1 mod �

(Z/�Z)3, p = � = 2

(Z/�Z)2, otherwise.

Proof. This is immediate from Corollary 2.3 upon observing that μ2 ⊆ Qp for
all p, and μ� � Qp if and only if p �≡ 1 mod � and � �= 2. �

For a finite Kv-module M we will now introduce the unramified Galois co-
homolgy group which is an important subgroup of H1(Kv,M). Denote by
Knr

v the maximal unramified extension of Kv. We have that the inertia group
Iv := GalKnr

v
is a normal subgroup of GalKv ; thus the usual restriction homo-

morphism
Resnr : H

1(Kv,M) → H1(Knr
v ,M)

is defined and by the Inflation-Restriction sequence its kernel is isomorphic to
H1(Gal(Knr

v /Kv),M
Iv ). We denote the kernel of Resnr by H1

nr(Kv,M) and call
it the unramified subgroup of H1(Kv,M). Consider again the following Galois
cohomology sequence with respect to an isogeny ϕ : A → B.

0 �� cokerϕv
δv �� H1(Kv, A(Kv)[ϕ]) �� · · · .

We say that cokerϕv is maximal, respectively maximally unramified, respec-
tively trivial, if δv is an isomorphism, respectively if δv induces an isomorphism
between cokerϕv and the unramified subgroup H1

nr(Kv, A(Kv)[ϕ]), respectively
if cokerϕv is the trivial group.

Remark 2.5. If K = Q and (p, �) �= (2, 2), the last two corollaries show that
if the isogeny ϕ : A → B is of prime degree � and has a Qp-kernel, then
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H1(Qp, A(Qp)[ϕ]) is either isomorphic to Z/�Z or (Z/�Z)2. In the former case,
either cokerϕp is the trivial group, or is isomorphic to H1(Qp, A(Qp)[ϕ]). In
the latter case there is a third possibility, namely that cokerϕp has � elements
and thus is one of the � + 1 subgroups of H1(Qp, A(Qp)[ϕ]) of order �. By the
next lemma, the unramified subgroup is one of these �+1 subgroups of order �.

Besides merely determing the size of cokerϕv our goal is further to specify
it as a subgroup of H1(Kv, A(Kv)[ϕ]), and hence the main purpose of this
subsection is to give criteria to check whether cokerϕv is maximally unramified.

Lemma 2.6. Let Kv be a p-adic field and let M be a finite Kv-module. Then
the order of H1

nr(Kv,M) equals the order of H0(Kv,M).

Proof. Follows from Lemma 4.2 in [19]. �
We introduce some more notation. By Ã we denote the reduction of A

modulo v, i.e. the special fiber at v of the Néron model A/OK of A, and by
Ã0(kv) we denote the smooth part of the kv-rational points of the reduction at v,
i.e. the kv-rational points of the connected component of Ã intersecting the zero-
section. Denote by A0(Kv) the preimage of Ã0(kv) under the reduction-mod-v
map, and by A1(Kv) the kernel of A0(Kv) → Ã0(kv). We have the following two
commutative diagrams with exact rows and induced group homomorphisms.

0 �� A1(Kv) ��

ϕ1
v

��

A0(Kv) ��

ϕ0
v

��

Ã0(kv) ��

ϕ̃0
v

��

0

0 �� B1(Kv) �� B0(Kv) �� B̃0(kv) �� 0

(2)

0 �� A0(Kv) ��

ϕ0
v

��

A(Kv) ��

ϕv

��

A(Kv)/A0(Kv) ��

ϕv

��

0

0 �� B0(Kv) �� B(Kv) �� B(Kv)/B0(Kv) �� 0

(3)

All kernels and cokernels of the vertical maps in the above two diagrams are
finite groups. In the unramified case we get the following commutative diagram.

0 �� A1(K
nr
v ) ��

ϕ1
v,nr

��

A0(K
nr
v ) ��

ϕ0
v,nr

��

Ã0(kv) ��

ϕ̃0
kv

��

0

0 �� B1(K
nr
v ) �� B0(K

nr
v ) �� B̃0(kv) �� 0

(4)

We recall a basic fact, which follows from Lang’s Theorem [13, Theorem 1].

Lemma 2.7. The finite groups Ã0(kv) and B̃0(kv) have same cardinalities.

Proof. The proof is given on page 561 in [13]. �
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Now we apply the snake lemma on Diagrams (2) and (3) to get a basic
lemma. Recall, that the quantity cA,v is defined as the order of the quotient
group A(Kv)/A0(Kv) and is called the local Tamagawa number of A at v.

Lemma 2.8. With notation as above, we have the equality

# cokerϕv

#kerϕv
=

# cokerϕ1
v

#kerϕ1
v

· cB,v

cA,v
.

Proof. Applying the snake lemma on Diagram (2) we get

#kerϕ1
v

# cokerϕ1
v

· #ker ϕ̃0
v

# coker ϕ̃0
v

=
#kerϕ0

v

# cokerϕ0
v

.

Since #Ã0(kv) = #B̃0(kv) by Lemma 2.7, we get #ker ϕ̃0
v = # coker ϕ̃0

v. Hence
#kerϕ1

v/# cokerϕ1
v = #kerϕ0

v/# cokerϕ0
v. Diagram (3) leads to

# cokerϕv

#kerϕv
=

# cokerϕ0
v

#kerϕ0
v

· # cokerϕv

#kerϕv

.

By definition # cokerϕv/#kerϕv = cB,v/cA,v, which completes the proof. �
We continue by examining the quotient # cokerϕ1

v/#kerϕ1
v. We start by

recalling two basic lemmas, and then we deduce the well known fact that ϕ1
v is

an isomorphism for all but finitely many places v.

Lemma 2.9. The kernel of reduction A1(Kv) is a pro-p group.

Proof. The multiplication-by-� endomorphism [�] on A1(Kv) is an isomorphism,
for all primes � different to the characteristic p of the residue field kv, as A1(Kv)
is isomorphic to the group Â(mv) associated to the formal group Â of A defined
over the valuation ring Ov of Kv with maximal ideal mv. Hence for any subgroup
G of A1(Kv), [�] is a surjective endomorphism on A1(Kv)/G, for � �= p. If in
addition A1(Kv)/G is finite, then [�] is an automorphism on A1(Kv)/G, for all
� �= p, and thus A1(Kv)/G is a p-group. Hence, A1(Kv) is a pro-p group. �

Lemma 2.10. If v � degϕ, then ϕ1
v and ϕ1

v,nr are isomorphisms.

Proof. Denote the degree of ϕ by n. There exist isogenies ψ : B → A and

ψ: A → B, such that ψ ◦ ϕ : A → A and ψ◦ ψ : B → B are the multiplication-
by-n maps [n]. Hence we get the following induced group homomorphisms on
the kernels of reduction.

A1(Kv)
ϕ1

v ��

[n]1v

��
B1(Kv)

ψ1
v ��

[n]1v

��
A1(Kv)

ψ1
v �� B1(Kv)

Since v � degϕ, we have by the previous lemma that both maps [n]1v are iso-
morphisms. Hence it follows that all three homomorphisms ψ1

v ,

ψ1
v and ϕ1

v are
isomorphisms. Now for any finite unramified extension Lw/Kv, we get by the
same argument that ϕ1

w is an isomorphism, and so also is ϕ1
v,nr. �
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Corollary 2.11. If a prime � divides the cardinality of a kernel or cokernel
of one of the induced group homomorphisms ϕv, ϕ0

v, ϕ1
v, ϕv or ϕ̃0

v appearing
in Diagrams (2) and (3), or � divides the Tamagawa quotient cB,v/cA,v, then
� | degϕ. Further, if gcd(degϕ, cA,v · cB,v) = 1, then ϕv is an isomorphism.

In particular, if ϕ is of prime degree �, then the cardinalities of all kernels
and cokernels of ϕv, ϕ0

v, ϕ1
v, ϕv and ϕ̃0

v, as well as the Tamagawa quotient
cB,v/cA,v, are powers of �.

We conclude that the product over all quotients # cokerϕv/#kerϕv is ac-
tually a finite product. Denote by MK the set of places of K and let S be a
finite set of MK containing the infinite places, the places of bad reduction and
the places dividing the degree of the isogeny ϕ.

Corollary 2.12. If v � degϕ and v is a place of good reduction, then

# cokerϕv

#kerϕv
= 1, and thus

∏
v∈MK

# cokerϕv

#kerϕv
=

∏
v∈S

# cokerϕv

#kerϕv
.

Proof. Combine Lemmas 2.8 and 2.10 with the fact that the Tamagawa quotient
equals 1 in case of good reduction. �

In view of the corollary, the goal of this subsection is to provide methods to
compute the quotient # cokerϕv/#kerϕv, in case v is a place of bad reduction
or v | degϕ. If we stick to good reduction, but do not care whether v divides the
degree of ϕ, then the next lemma gives a very nice criterion to check whether
cokerϕv is maximally unramified. The notation used in part (i) of the lemma
comes from the following diagram.

0 �� A1(Kv) ��

ϕ1
Kv

��

A0(Kv) ��

ϕ0
Kv

��

Ã0(kv) ��

ϕ̃0
v

��

0

0 �� B1(Kv) �� B0(Kv) �� B̃0(kv) �� 0

Lemma 2.13 (Criterion for maximal unramifiedness of cokerϕv in case v is a
place of good reduction). Assume v is a place of good reduction.

(i) If kerϕ1
Kv

is trivial, then cokerϕv is maximally unramified.
(ii) If ϕ has a Kv-kernel and ϕ1

v is injective, then cokerϕv is maximally
unramified.

Proof. Part (ii) for Kv = Qp, � �= 2, and A and B are elliptic curves is Lemma
A.3 in the Appendix of [4] by Tom Fisher. In general, (ii) follows directly from
(i), as the assumptions imply that kerϕ1

Kv
= kerϕ1

v = 0.
For (i) note, that if [ξ] ∈ H1(Kv, A[ϕ]) is an element of cokerϕv, then [ξ]

lies in the kernel of H1(Kv, A[ϕ]) → H1(Kv, A). This means that there is a
point P ∈ A(Kv), such that ξ(σ) = Pσ − P , for all σ ∈ GalKv . As v is a
place of good reduction we get that P ∈ A0(Kv). Consider the reduction-mod-
v map A0(Kv) → Ã0(kv), which is a group homomorphism. Hence, P τ − P =

10



P
τ−P = O, for all τ ∈ Iv, as Iv acts trivially on A0(kv). Therefore for all τ ∈ Iv,

P τ − P lies in the kernel of reduction ϕ1
Kv

. As ϕ1
Kv

is assumed to be trivial
we immediately deduce that P τ − P = O, for all τ ∈ Iv, which is equivalent
to P ∈ A0(K

nr
v ). By definition, [ξ] lies in H1

nr(Kv, A[ϕ]) if it is in the kernel of
Resnr. This is clearly the case if P ∈ A(Knr

v ), because this makes the restriction
of ξ to Iv to be the zero map, and thus cokerϕv injects into H1

nr(Kv, A[ϕ]). By
Lemmas 2.6 and 2.8, cokerϕv also surjects onto H1

nr(Kv, A[ϕ]), as its order is
at least the order of H1

nr(Kv, A[ϕ]). �
We continue with presenting a reinterpretation of the quotient

# cokerϕ1
v/#kerϕ1

v given by Schaefer in [18]. Using these results it is quite
easy to compute # cokerϕ1

v/#kerϕ1
v for elliptic curves. First we need some

notation. Assume that the abelian varieties A and B are of dimension d and
let v ∈ M0

K be a finite place. We can write the isogeny ϕ : A → B as a d-tuple
of power series in d-variables in a neighbourhood of the identity element O.
Let |ϕ′(0)|v be the normalised v-adic absolute value of the determinant of the
Jacobian matrix of partial derivatives of such a power series representation of ϕ
evaluated at 0. Note that |ϕ′(0)|v is well defined.

Proposition 2.14. With notation as above,

|ϕ′(0)|−1
v =

# cokerϕ1
v

#kerϕ1
v

; and hence |ϕ′(0)|v = 1, if v � �.

Proof. Combine [18, Lemma 3.8] with Lemmas 2.8 and 2.10. �

Corollary 2.15. With notation as above,

# cokerϕv

#kerϕv
= |ϕ′(0)|−1

v · cB,v

cA,v
.

Proof. This follows from the last proposition together will Lemma 2.8. �

Remark 2.16. In the case of elliptic curves, ϕ′(0) is just the leading co-
efficent of the power series representation of ϕ. One can easily compute
this value: Use Vélu’s algorithm [29] to describe ϕ as coordinate functions
ϕ(x, y) = (x̃(x, y), ỹ(x, y)) and then write −x̃/ỹ as a power series in z := −x/y,
see [21, IV]. We will do this explicitly in Propositions 3.6 and 3.14.

Before we give our main criterion for checking that cokerϕv is maximally
unramified we give a basic lemma about |ϕ′(0)|v and the maps ϕ1

v and ϕ1
v,nr.

We will consider the ramification index ev of the place v of K. Note that if
Kv = Qp and p �= 2, then the condition ev < p− 1 is fulfilled.

Lemma 2.17. With notation as above, the following holds.
(i) If |ϕ′(0)|v = 1 and ϕ1

v,nr is injective, then ϕ1
v and ϕ1

v,nr are isomorphisms.
(ii) If the ramification index ev < p− 1, then ϕ1

v and ϕ1
v,nr are injective.

(iii) If K = Q, then ϕ1
p and ϕ1

p,nr are injective, unless p = 2 and 2 | degϕ.
(iv) If K = Q and |ϕ′(0)|v = 1, then ϕ1

v and ϕ1
v,nr are isomorphisms, unless

p = 2 and 2 | degϕ.

11



Proof. Assume |ϕ′(0)|v = 1. Then we also have that |ϕ′(0)|w = 1 for all
unramified finite field extensions Lw/Kv. Since ϕ1

v,nr is injective the maps ϕ1
w :

A1(Lw) → B1(Lw) are also injective. By Proposition 2.14, the size of the kernels
and cokernels of ϕ1

w agree and therefore they are isomorphisms. Hence ϕ1
v,nr is

an isomorphism, which proves (i).
For (ii) use the isomorphism A1(Kv) ∼= Â(mv). Then use [21, IV. Theorem

6.1] or the next lemma to conclude that ϕ1
w is injective for any finite unramified

field extension Lw/Kv. Hence ϕ1
v,nr is injective.

For (iii) apply (ii) in case p �= 2. In case 2 � degϕ this is due to Lemma 2.10.
Combing (i) and (iii) gives (iv). �

Lemma 2.18. If the ramification index ev < p − 1, then the reduction-mod-v
map A0(Kv) → Ã0(kv) has torsion-free kernel, i.e. A1(Kv) is torsion-free. In
particular, this gives an injection A(K) tors ↪→ Ã0(kv), thus if in addition v is
a place of good reduction there is an injection A(K) tors ↪→ Ã(kv).

Proof. This is essentially the content of the Appendix of [9]. �
The next lemma and theorem are a slight generalisation of Lemmas 4.3 and

4.5 of [19]. Theorem 2.20 provides our main criterion to check whether cokerϕv

is maximally unramified. To state the lemma we introduce the map

δ0v : cokerϕ0
v → H1(Kv, A(Kv)[ϕ]).

It is obtained by composing the natural map cokerϕ0
v → cokerϕv from Diagram

(3) with the connecting homomorphism δv : cokerϕv → H1(Kv, A(Kv)[ϕ]).
Note that since cokerϕ0

v → cokerϕv need not be injective, δ0v may also not be
injective. Similarly one defines the map

δ0v,nr : cokerϕ0
v,nr → H1(Knr

v , A(Kv)[ϕ]).

Lemma 2.19. If ϕ1
v,nr is surjective, then the image of cokerϕ0

v under δ0v lies in
H1

nr(Kv, A(Kv)[ϕ]).

Proof. In the above Diagram (4), the first vertical map ϕ1
v,nr is surjective by

assumption. The third vertical map ϕ̃0
kv

is surjective, since kv is algebraically
closed, therefore the middle vertical map ϕ0

v,nr is also surjective, i.e. cokerϕ0
v,nr

is trivial. The following diagram commutes.

cokerϕ0
v

δ0v

��

��

H1(Kv, A(Kv)[ϕ])

Resnr

��
cokerϕ0

v,nr
δ0v,nr

�� H1(Knr
v , A(Kv)[ϕ])

As the lower left group is trivial, the image of the upper left group in the lower
right group must be trivial, i.e. the image of δ0v lies in H1

nr(Kv, A(Kv)[ϕ]). �
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Theorem 2.20 (Main criterion for maximal unramifiedness of cokerϕv). If
ϕ1
v,nr is surjective and ϕ1

v and ϕv are isomorphisms, then cokerϕv is maximally
unramified.

Proof. As ϕv is an isomorphism, cokerϕ0
v → cokerϕv is also an isomorphism,

and so by the above lemma we have that cokerϕv maps injectively onto a sub-
group of H1

nr(Kv, A(Kv)[ϕ]). But these two groups have same cardinality, since
#H1

nr(Kv, A(Kv)[ϕ]) = #kerϕv by Lemma 2.6, and #kerϕv = # cokerϕv by
Lemma 2.8, as ϕv and ϕ1

v are isomorphisms. �
Our assumptions on ϕ1

v and ϕ1
v,nr in Lemma 2.19 and Theorem 2.20 replaced

the assumption v � degϕ in Lemmas 4.3 and 4.5 of [19]. We have seen in Lemma
2.10 that v � degϕ is a stronger assumption, hence we can easily deduce the
original result of Schaefer and Stoll.

Corollary 2.21 (Criterion for maximal unramifiedness of cokerϕv in case
v � degϕ). If v � degϕ and gcd(degϕ, cA,v · cB,v) = 1 then cokerϕv is max-
imally unramified.

Proof. This is Lemma 4.5 of [19]. The corollary follows directly from Theorem
2.20 together with Lemma 2.10 and Corollary 2.11. �

We also want to apply Theorem 2.20 in case v | degϕ. As already seen in
Lemma 2.17 we can replace v � degϕ with the condition that the ramification
index ev < p− 1 and that |ϕ′(0)|v = 1.

Corollary 2.22 (Criteria for maximal unramifiedness of cokerϕv in case
v | degϕ). Assume that the ramification index ev < p− 1.

(i) If |ϕ′(0)|v = 1 and gcd(degϕ, cA,v · cB,v) = 1, then cokerϕv is maximally
unramified.

(ii) If v is a place of good reduction, then cokerϕv is maximally unramified
if and only if |ϕ′(0)|v = 1.

(iii) If v is a place of good reduction and ϕ has a Kv-kernel, then |ϕ′(0)|v = 1
and cokerϕv is maximally unramified.

Proof. For (i) combine Lemma 2.17 with Theorem 2.20 and Corollary 2.11.
For (ii) note that v being a place of good reduction implies that cA,v = cB,v =

1. If |ϕ′(0)|v = 1, then by (i) we get that cokerϕv is maximally unramified. Now
assume that cokerϕv is maximally unramified, hence its cardinality equals the
cardinality of kerϕv. By Corollary 2.15 we get that |ϕ′(0)|v = cB,v/cA,v = 1,
which completes (ii). For (iii), combine (ii) with Lemmas 2.13 and 2.17. �

Corollary 2.23 (Criteria for maximal unramifiedness of cokerϕp in case
K = Q). Let ϕ : A → B be an isogeny between two abelian varieties A and
B over Q and let p be a prime such that p �= 2 if 2 | degϕ.

(i) If |ϕ′(0)|p = 1 and gcd(degϕ, cA,p · cB,p) = 1, then cokerϕp is maximally
unramified.

(ii) If p is a place of good reduction and ϕ has a Qp-kernel, then |ϕ′(0)|p = 1
and cokerϕp is maximally unramified.

Proof. Follows directly from Lemma 2.17, Theorem 2.20, and Corollary 2.22. �
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2.3. Isogenies of prime degree between elliptic curves over local fields
Let E and E′ be elliptic curves over a p-adic field Kv and let η : E → E′

be an isogeny of prime degree �. We will use the notations from Diagrams (2),
(3), and (4) with A = E and B = E′. Assuming that η has a Kv-kernel, the
goal of this subsection is to determine under which further assumptions the
reduction type of E at v determines whether coker ηv is maximal, maximally
unramified, or trivial. In the case when Kv = Qp and � ≥ 5 we can give a
complete classification, which will be stated in the main theorem 2.28.

We start with computing the quotient cE′/cE of Tamagawa numbers with
respect to the reduction type at v. In most cases cE′/cE can easily be com-
puted with Tate’s algorithm and the theory of Tate curves. See for example the
Appendix of [4] by Tom Fisher or [3, §6 and §9] by Tim and Vladimir Dokchitser.

Lemma 2.24. Suppose that E/Kv has

1. good reduction, or
2. non-split multiplicative reduction and � �= 2, or
3. additive reduction and � ≥ 5.

Then the group homomorphism ηv is an isomorphism, and hence cE′/cE = 1.

Proof. This is standard and follows from Tate’s algorithm [27]. �

Lemma 2.25. Suppose that E/Kv has split multiplicative reduction, then

cE′

cE
=

{
1/�, ker ηv � E0(Kv)

�, ker ηv ⊆ E0(Kv).

Proof. This is Lemma A.2 of the appendix of [4] by Tom Fisher. �
Now we study the implications of ker ηv being or not being part of the con-

nected component of the identity E0(Kv). The result is essentially a corollary
of Tate’s algorithm [27] and explores the fact that η is of prime degree.

Lemma 2.26. With notation as above, we have:
(i) If ker ηv � E0(Kv), then η has a Kv-kernel, η1v is an isomorphism,

|η′(0)|v = 1, � | cE, and exactly one of the following three cases holds.

1. E has split multiplicative reduction,
2. E has non-split multiplicative reduction and � = 2,
3. E has additive reduction and either � = 2 or � = 3.

(ii) If ker ηv ⊆ E0(Kv), assume additionally that η has a Kv-kernel and that
η1v is injective. We have the following implications.

1. E has multiplicative reduction ⇒ v � � and |η′(0)|v = 1,
2. E has split multiplicative reduction ⇒ μ� ⊆ Kv,
3. E has non-split multiplicative reduction and � �= 2 ⇒ μ� � Kv,
4. E has additive reduction ⇒ v|�.
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Proof. If ker ηv is trivial, then it is contained in E0(Kv). Hence, ker ηv � E0(Kv)
implies that ker ηv is non-trivial, and therefore η has a Kv-kernel as its degree is
prime. It also implies that η0

Kv
, η0v , and thus η1v are injective. From the triviality

of η0
Kv

is follows that H1(Kv, E0(Kv)[η]) is trivial and hence coker η0v is also
trivial. Thus η0v is an isomorphism, and therefore η̃0v is surjective. By Lemma
2.7, η̃0v is an isomorphism, as its kernel and cokernel have equal cardinalities.
This implies that η1v is an isomorphism, which gives |η′(0)|v = 1 by Proposition
2.14. Again by the fact that η0v is an isomorphism, it follows that #ker ηv = �,
which gives that � | cE . In particular, the reduction type is bad. By [27], cE is
≤ 2 in the non-split multiplicative case and ≤ 4 in the additive case, giving (i).

For (ii) let P ∈ E(Kv) be a generator of ker ηv. If ker ηv ⊆ E0(Kv) and η has
a Kv-kernel, then P generates ker η0v . Since we assumed η1v to be injective, the
order of P is �. Set |kv| =: pf . The order of P divides the cardinality of Ẽ0(kv),
which is either pf − 1, pf + 1, or pf , depending on whether the reduction type
is split multiplicative, non-split multiplicative, or additive, respectively [27, §7].
Therefore we get the following implications:

1. multiplicative ⇒ pf �≡ 0 mod � ⇒ p �= � ⇒ v � �,
2. split ⇒ pf ≡ 1 mod � ⇒ μ� ⊆ kv ⇒ μ� ⊆ Kv,

3. non-split and � �= 2 ⇒ pf �≡ 0, 1 mod � ⇒ μ� � kv ⇒ μ� � Kv,

4. additive ⇒ pf ≡ 0 mod � ⇒ p = �, ⇒ v | �.
By Proposition 2.14, v � � implies |η′(0)|v = 1, which completes (ii). �

We summarise the case of multiplicative reduction and state under which
further assumptions coker ηv is trivial, maximally unramified, or maximal.

Corollary 2.27 (Criteria to classify coker ηv is case of multiplicative reduction).
Suppose the reduction type of E/Kv is split multiplicative.

(i) If ker ηv � E0(Kv), then |η′(0)|v = 1 and coker ηv is trivial.
(ii) If ker ηv ⊆ E0(Kv), η has a Kv-kernel, and η1v is injective, then v � �,

μ� ⊆ Kv, |η′(0)|v = 1, and coker ηv is maximal.
Suppose the reduction type of E/Kv is non-split multiplicative.

(iii) If � �= 2, η has a Kv-kernel, and η1v is injective, then v � �, μ� � Kv,
|η′(0)|v = 1 and coker ηv is maximally unramified.

(iv) If � = 2, v � �, and η has a Kv-kernel, then μ� ⊆ Kv and |η′(0)|v = 1.
Further coker ηv is trivial if cE′/cE = 1/2, coker ηv is maximal if cE′/cE = 2,
and coker ηv is maximally unramified if cE = cE′ = 1.

Proof. Lemma 2.26 already contains everything of (i)-(iii) but the statement
whether coker ηv is trivial, maximally unramified, or maximal. In (iv) we get
|η′(0)|v = 1 and μ� ⊆ Kv, as v � � and � = 2. It remains to classify coker ηv.

By Corollary 2.15 we obtain the equation # coker ηv = � · cE′/cE . The size
of H1(Kv, E(Kv)[η]) is given by Corollary 2.4, and cE′/cE in (i)-(iii) can be
computed with Lemmas 2.24 and 2.25. This shows triviality of coker ηv in (i)
and the first case in (iv), and maximality in all other cases but the third case of
(iv). Note that in (iii), H1(Kv, E(Kv)[η]) equals the unramified subgroup. To
get the maximal unramifiedness in the third part of (iv) use Corollary 2.21. �
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We finish with the main theorem of this subsection. Recall that we call
coker ηp maximal if it equals the full H1(Qp, E(Qp)[η]), and maximally unram-
ified if it equals the unramified subgroup H1

nr(Qp, E(Qp)[η]); see the discussion
before Remark 2.5. The definition of |η′(0)|p is given before Proposition 2.14
and having a Qp-kernel means that E(Qp)[η] = E(Qp)[η].

Theorem 2.28 (Criteria to classify coker ηp is case η has a Qp-kernel and is of
prime degree). Let E and E′ be elliptic curves over Qp and let η : E → E′ be
an isogeny of prime degree �, and assume that η has a Qp-kernel. Then the left
column of the table below implies the two columns to the right, and in all but
the last row we also get that |η′(0)|p = 1.

reduction type of E/Qp, p = or �= �, coker ηp
plus further assumptions μ� ⊆ or � Qp is

split multiplicative, ker ηp � E0(Qp) no implications trivial
split multipl., ker ηp ⊆ E0(Qp), p �= 2 or � �= 2 p �= �,μ� ⊆ Qp maximal

non-split multiplicative, � �= 2 p �= �,μ� � Qp max. unramified
non-split multiplicative, � = 2 �= p, cE′/cE = 1/2 p �= �,μ� ⊆ Qp trivial
non-split multiplicative, � = 2 �= p, cE′/cE = 2 p �= �,μ� ⊆ Qp maximal

non-split multiplicative, � = 2 �= p, cE = cE′ = 1 p �= �,μ� ⊆ Qp max. unramified
good, p �= 2 or � �= 2 no implications max. unramified

additive, � ≥ 5, |η′(0)|p = 1 p = �,μ� � Qp max. unramified
additive, � ≥ 5, |η′(0)|p �= 1 p = �,μ� � Qp maximal

Proof. For all but the first row of the table we use Lemma 2.17 to deduce that
η1p is injective. Then the six cases of multiplicative reduction are contained in
the last corollary and the case of good reduction is covered by Lemma 2.13.

In the additive case, due to � ≥ 5, we get that p = � by Lemma 2.26 and
hence μ� � Qp. This implies that #H1(Qp, E(Qp)[η]) = �2 by Corollary 2.4.
Further ηp is an isomorphism by Lemma 2.24 and thus by Corollary 2.15 we
have # coker = � · |η′(0)|−1

p . We know that |η′(0)|−1
p ≥ 1, as η1p is injective.

Hence, there are two possibilities. Firstly, # coker ηp = �, which is equivalent to
|η′(0)|p = 1, and secondly, # coker ηp = �2, which is equivalent to |η′(0)|p �= 1,
and which implies that coker ηp is maximal. It remains to show that coker ηp
is maximally unramified in case the reduction type is additive and |η′(0)|p = 1.
At this point we apply Theorem 2.20, which is possible due to Lemma 2.17. �

2.4. Non-simple abelian varieties and isogenies with diagonal kernel
In this subsection K will always denote a field of characteristic 0. An abelian

variety B/K is called non-simple if it is isogenous to a product of two abelian
varieties A1/K and A2/K, i.e. there is an isogeny ϕ : A1 ×A2 → B.

Recall, that we want all isogenies to be defined over K, too. Let A1, A2 and
B be abelian varieties over a field K and let ϕ : A1 × A2 → B be an isogeny.
We say that ϕ has diagonal kernel, or simply say that ϕ is diagonal, if there
is a finite group scheme G over K contained in both Ai, together with fixed
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embeddings ιi : G ↪→ Ai, such that the kernel of ϕ is the embedding of G into
the product A1×A2 via ι1× ι2. We denote the image of G in Ai by Gi := ιi(G).
Clearly, G, G1, and G2 are pairwise isomorphic as finite group schemes and the
K-rational points of G1 and G2 form isomorphic Galois modules; hence there is
a Galois equivariant isomorphism α : G1 → G2 such that ι2 = α ◦ ι1 and that
kerϕ equals the graph of α. Further, both Ai possess an isogeny ηi : Ai → A′

i

which is defined through its kernel by setting ker ηi := Gi and A′
i := Ai/Gi.

Now we state a basic lemma about Galois cohomology and then we present
our Key Lemma to controll the local quotient for isogenies with diagonal kernel.

Lemma 2.29. Let K be a field and let G1 and G2 be two finite K-Galois
modules. Assume α : G1 → G2 is a Galois equivariant homomorphism. Then

α∗ : H1(K,G1) → H1(K,G2), [ξ] �→ [α ◦ ξ],
is a well-defined group homomorphism. If in addition α is an isomorphism, then
α∗ is an isomorphism, too. Further, the isomorphism α∗ respects the Inflation-
Restriction sequence, i.e. for any Galois extension L/K, α∗ induces iso-
morphisms H1(Gal(L/K), GGalL

1 ) → H1(Gal(L/K), GGalL
2 ) and H1(L,G1) →

H1(L,G2) which commute with the Inflation-Restriction sequence.
In particular, if K = Kv is a local field, for every Galois equivariant isomor-

phism α : G1 → G2, the isomorphism α∗ : H1(Kv, G1) → H1(Kv, G2) induces
an isomorphism between H1

nr(Kv, G1) and H1
nr(Kv, G2).

Proof. Follows directly from the functoriality of Galois cohomology. �

Lemma 2.30 (Key Lemma to compute the local quotient for isogenies with
diagonal kernel). Let A1 and A2 be two abelian varieties over a number field
K and let ϕ : A1 × A2 → B be an isogeny with diagonal kernel. Denote by
ηi : Ai → A′

i the isogenies for which there is a Galois equivariant isomorphism
α : ker η1 → ker η2 whose graph equals kerϕ. Let v ∈ M0

K be a finite place of K.
(i) cokerϕv is maximal if coker η1,v and coker η2,v are both maximal.
(ii) cokerϕv is trivial if either coker η1,v or coker η2,v is trivial.
(iii) cokerϕv is maximally unramified if either coker η1,v or coker η2,v is

maximally unramified and the other one is maximally unramified or maximal.

Proof. Define the two Galois equivariant isomorphisms γ1 := (id, α) : ker η1 →
kerϕ and γ2 := (α−1, id) : ker η2 → kerϕ. By the above lemma we get two
group isomorphisms γ∗

i : H1(Kv, Ai[ηi]) → H1(Kv, (A1 × A2)[ϕ]). For [ξ] ∈
H1(Kv, (A1 × A2)[ϕ]) denote by [ξ1], respectively [ξ2], the preimage under γ∗

1 ,
respectively γ∗

2 . Thus ξ(σ) = (ξ1(σ), ξ2(σ)), for all σ ∈ GalKv . It follows that

[ξ] ∈ cokerϕv ⇔ [ξ1] ∈ coker η1,v and [ξ2] ∈ coker η2,v, (5)

since both assertions are equivalent to the existence of P1 ∈ A1(Kv) and P2 ∈
A2(Kv), such that for all σ ∈ GalKv we have ξ1(σ) = Pσ

1 − P1 and ξ2(σ) =
Pσ
2 − P2. For (ii), recall that [ξ] is the trivial class if and only if [ξ1] and

[ξ2] are both the trivial class. For (iii) use the above lemma again to get that
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[ξ] ∈ H1
nr(Kv, (A1 × A2)[ϕ]) if and only if [ξ1] ∈ H1

nr(Kv, A1[η1]) and [ξ2] ∈
H1

nr(Kv, A2[η2]). Now everything follows directly from (5). �

Remark 2.31. The Key Lemma shows that if one knows whether coker η1,v
and coker η2,v are maximal, maximally unramified, or trivial, then one knows
whether cokerϕv is maximal, maximally unramified, or trivial. For all examples
of cyclic isogenies ϕ : E1/Q × E2/Q → B/Q we consider we will compute
cokerϕp by first computing coker ηi,p and then applying the Key Lemma.

For fixed abelian varieties A1/K and A2/K and fixed isomorphic finite
subgroup schemes G1/K ⊂ A1 and G2/K ⊂ A2, we can define an isogeny
ϕ : A1 × A2 → B with diagonal kernel by setting the kernel of ϕ to be equal
to the graph of α. Note that ϕ and B depend on the choice of α, which we
may denote by ϕα and Bα to emphasise it. We will now show that the order of
X(Bα/K) is independent of the choice of α if ϕ is a cyclic isogeny.

Proposition 2.32. Let A1 and A2 be two abelian varieties over a number field
K, such that there are isomorphic finite cyclic K-subgroup schemes G1 ⊆ A1

and G2 ⊆ A2. Choose a Galois equivariant isomorphism α : G1 → G2 and let
ϕα : A1 × A2 → Bα be the cyclic isogeny with diagonal kernel such that kerϕα

equals the graph of α. Then #X(Bα/K) is independent of the choice of α.

Proof. Consider the Cassels-Tate equation

#X(A1 ×A2/K)

#X(Bα/K)
=

#kerϕα,K

# cokerϕα,K

# cokerϕ∨
α,K

#kerϕ∨
α,K

∏
v∈MK

# cokerϕα,v

#kerϕα,v
.

We will show that the cardinality of all occurring kernels and cokernels on the
right hand side are independent of α. The set of K-rational points of the kernels
of the isogenies ϕα : A1 ×A2 → Bα and ϕ∨

α : B∨
α → A∨

1 ×A∨
2 depend on α. But

the isomorphism class of kerϕα and of kerϕ∨
α as a Galois module is fixed, hence

it is clear that the size of all occurring kernels in the Cassels-Tate equation are
unaffected by α. It remains to consider the cokernels.

Fix two Galois equivariant isomorphisms α, α′ : G1 → G2. Then there is a
Galois equivariant automorphism β2 of G2, such that α′ = β2 ◦ α. The Galois
equivariant automorphism γ2 := id×β2 of G1×G2 induces a Galois equivariant
isomorphism between kerϕα and kerϕα′ . As G2 is cyclic, the automorphism β2

is multiplication by some factor, hence there is an endomorphism B2 of A2 such
that the restriction of B2 to G2 equals β2. The following diagram has exact
rows and commutes, with id×B2 and [id×B2] being isogenies.

0 �� kerϕα
��

γ2

��

A1 ×A2
ϕα ��

id×B2

��

Bα
��

[id×B2]

��

0

0 �� kerϕα′ �� A1 ×A2

ϕα′ �� Bα′ �� 0

Applying Galois cohomology yields the following commutative diagram with
exact rows, where L is either the number field K or one of its completions Kv.
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0 �� cokerϕα,L
��

��

H1(L, kerϕα)
ι1α ��

γ∗
2

��

H1(L,A1 ×A2)

(id×B2)
∗

��

�� . . .

0 �� cokerϕα′,L �� H1(L, kerϕα′)
ι1
α′ �� H1(L,A1 ×A2) �� . . .

The homomorphism γ∗
2 is an isomorphism by Lemma 2.29. As the diagram

commutes we get that γ∗
2 induces an injection ker ι1α ↪→ ker ι1α′ . Switching the

roles of α and α′ gives an injection ker ι1α′ ↪→ ker ι1α. Thus cokerϕα,L and
cokerϕα′,L have same cardinality. Now consider the dual picture, where γ∨

2 is
an isomorphism making the diagram commutative.

0 �� kerϕ∨
α′ ��

γ∨
2

��

B∨
α′

ϕ∨
α′ ��

[id×B2]
∨

��

A∨
1 ×A∨

2
��

id×B∨
2

��

0

0 �� kerϕ∨
α

�� B∨
α

ϕ∨
α �� A∨

1 ×A∨
2

�� 0

With the same argument as before, one gets a bijection between cokerϕ∨
α,K

and cokerϕ∨
α′,K and thus they also have the same number of elements. �

Now we have a look at the special case of A1 and A2 being elliptic curves
E1 and E2 over Q, i.e. we focus on non-simple abelian surfaces B/Q.

Setting 2.33. Let N be a positive integer and let E1 and E2 be two elliptic
curves over Q, each having a Q-rational point Pi of exact order N . The point
Pi generates a finite subgroup scheme Gi := 〈Pi〉 in Ei. Denote by E′

i := Ei/Gi

the quotient and by ηi : Ei → E′
i the corresponding quotient isogeny. Define in

E1 × E2 the finite subgroup scheme G̃ := 〈(P1, nP2)〉, for some n ∈ (Z/NZ)∗.
Let B := (E1×E2)/G̃ be the quotient and denote the corresponding isogeny by
ϕ : E2×E2 → B. Hence, ϕ is a cyclic N -isogeny with diagonal kernel. Further,
ϕ has a Q-kernel and thus ϕp has a Qp-kernel for every place p of Q. Denote
by η1 × η2 : E1 × E2 → E′

1 × E′
2 the isogeny having as kernel G1 ×G2. We let

ψ : B → E′
1×E′

2 be the isogeny satisfying η1×η2 = ψ ◦ϕ. As elliptic curves are
principally polarised, we have E1×E2

∼= (E1×E2)
∨ and E′

1×E′
2
∼= (E′

1×E′
2)

∨.

B
ψ

����
���

���
���

A = E1 × E2

ϕ

�������������
η1×η2

��
A′ = E′

1 × E′
2

ψ∨
		���

���
���

��
η∨
1 ×η∨

2





B∨
ϕ∨

�������������

By construction ker η1 ∼= ker η2 ∼= kerϕ ∼= Z/NZ, therefore ker(η1 × η2) ∼=
Z/NZ × Z/NZ and kerψ ∼= Z/NZ. Applying Cartier duality, we get ker η∨1 ∼=
ker η∨2 ∼= kerϕ∨ ∼= kerψ∨ ∼= μN and ker(η∨1 × η∨2 ) ∼= μN × μN .
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Remark 2.34. (i) Let G be a finite group scheme being isomorphic to the
isomorphic group schemes G1 and G2, i.e. G ∼= Z/NZ. Fix a generating point
P , i.e. G = 〈P 〉. Then there are natural embeddings ιi of G into Ei with image
Gi given by ι1(P ) := P1 and ι2(P ) := nP2, such that G̃ is the embedding of
G into E1 × E2 with respect to ι1 × ι2. The Galois equivariant isomorphism
α : G1 → G2 fulfilling the condition ι2 = α ◦ ι1 is defined by P1 �→ nP2. In
other words the choice of n is equivalent to the choice of α. As we have seen in
Proposition 2.32, the order of X(B/Q) is indendent of that choice.

(ii) Due to Mazur’s classification of possible torsion points of elliptic curves
over Q, see Theorem 7.5 in [21] or [14] and [15], the only possible values for N
in Setting 2.33 are N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12.

(iii) If #X(B/Q) = k · �, with k square-free, then k has to divide N .
Thus, the only possible values for k that one can obtain with Setting 2.33 are
k = 1, 2, 3, 5, 6, 7, 10. In the next section we will see that indeed all these values
for k are possible.

The next lemma tells us that the abelian surface B/Q from Setting 2.33 has
the interesting property that every polarisation it possesses has degree divisible
by �, in case degϕ = N = � is a prime and E1 and E2 are not isogenous. The
proof we present follows a sketch of Brian Conrad.

Lemma 2.35. Let K be a field and let E1 and E2 be two non-isogenous elliptic
curves over K. Let G be a finite cyclic group scheme of prime order � over K
together with fixed embeddings ι1 : G ↪→ E1 and ι2 : G ↪→ E2. Thus the map
ι1× ι2 is a diagonal embedding of G into the product E1×E2. Denote its image
in E1 ×E2 by G̃. Then any polarisation of the quotient B := (E1 ×E2)/G̃ has
degree divisible by �.

Proof. Set A := E1 × E2 and let λ : B → B∨ be any polarisation and consider
the quotient map ϕ : A → B and its dual ϕ∨ : B∨ → A∨ = A. The composition

Ψ : A
ϕ→ B

λ→ B∨ ϕ∨
→ A

is a polarisation of A. Let emi : Ei ↪→ A be the natural embedding of Ei into
the product, and pri : A → Ei the natural projection. Define homomorphisms

Ψ1 : E1
em1→ A

Ψ→ A
pr1→ E1 and Ψ2 : E2

em2→ A
Ψ→ A

pr2→ E2.

We claim that Ψ = Ψ1×Ψ2. The claim is equivalent to pr2 ◦Ψ◦ em1 : E1 → E2

and pr1 ◦Ψ ◦ em2 : E2 → E1 being the zero map. By assumption E1 and E2 are
non-isogenous, hence the only homomorphism between them is the zero map,
which gives the claim.

Now we proceed as follows: for i = 1 and i = 2 we get that Ψi is a polarisation
of Ei having ιi(G) in its kernel. As the degree of a polarisation is always a square
and � is a prime we get that �2 divides the degree of Ψ1 and of Ψ2. Therefore,
�4 divides the degree of Ψ. We conclude that �2 divides the degree of the
polarisation λ, as degΨ = degϕ · deg λ · degϕ∨ = �2 · deg λ, which completes
the proof. �
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Now we give a remark which says that it is enough to be able to compute
the Cassels-Tate equation for isogenies of prime power degree. This enables us
to deal with Setting 2.33 for the composite cases N = 6 and N = 10.

Remark 2.36. Let A and B be abelian varieties over a field K and let ϕ : A →
B be an isogeny. Denote by

∏
i �

ei
i the prime factorisation of degϕ, with the �i

being pairwise different primes. The �i-primary part of the K-rational points of
kerϕ forms a Galois invariant subgroup. Hence for each �i, ϕ factors through
an isogeny ϕ�i : A → B�i of degree �eii by defining kerϕ�i to be the subgroup
scheme of kerϕ of order �eii . Therefore, there is an isogeny ψ�i : B�i → B
of degree coprime to �i, such that ϕ = ψ�i ◦ ϕ�i . Thus, the �i-primary parts
of X(B�i/K) and X(B/K) are isomorphic. For the dual isogeny we get an
analogous decomposition ϕ∨ = ψ∨

�i
◦ ϕ∨

�i
. Note that ϕ∨

�i
:= (ϕ∨)�i �= (ϕ�i)

∨.
Now let K be a number field. Hence, in order to compute the Cassels-Tate
equation (1) for ϕ it suffices to compute all the Cassels-Tate equations for the
ϕ�i . As the degrees of all ϕ�i are pairwise coprime we get that

#kerϕK

# cokerϕK
=

∏
i

#kerϕ�i,K

# cokerϕ�i,K
,

# cokerϕ∨
K

#kerϕ∨
K

=
∏
i

# cokerϕ∨
�i,K

#kerϕ∨
�i,K

,

# cokerϕv

#kerϕv
=

∏
i

# cokerϕ�i,v

#kerϕ�i,v
.

In case ϕ : A1×A2 → B is an isogeny with diagonal kernel then all the ϕ�i also
have diagonal kernel.

3. Constructing non-simple abelian surfaces over Q with non-square
order Tate-Shafarevich groups using elliptic curves with a rational
N -torsion point

In this section we will construct non-simple non-principally polarised abelian
surfaces B/Q, such that #X(B/Q) = k ·�, for k = 1, 2, 3, 5, 6, 7, 10. All these
examples are obtained via an isogeny ϕ : E1 × E2 → B as constructed in
Setting 2.33 with respect to degϕ = N = 5, 6, 7, 10. The elliptic curves E1/Q
and E2/Q have a Q-rational N -torsion point, thus they correspond to points
on the modular curve X1(N). The genus of X1(N) equals 0 if and only if
N = 1, . . . , 10, 12. In this case the set of Q-rational points of X1(N) is non-
empty, hence there are infinitely many elliptic curves over Q possessing a Q-
rational point of order N and these curves can be parametrised by a rational
number d ∈ Q. The parametisations we use can be found in Proposition 1.1.2
of [11] and Section 6 of [12]. The goal is to express the local and the global
quotient of the Cassels-Tate equation (1) with respect to such a parametrisation,
i.e. with respect to two rational numbers d1 and d2, which represent the two
elliptic curves E1 and E2. Therefore, for fixed N we will look at a two parameter
family of abelian surfaces B/Q.

In the first two subsections we will compute the local and the global quotient
of the Cassels-Tate equation (1) with respect to Setting 2.33 with a focus on

21



N being a prime number �. We provide a formula which computes the local
quotient with respect to the reduction type of E1 and E2 at the primes p.
Further, we explain how to obtain two functions with which one can compute
the global quotient as long as Mordell-Weil bases for E1 and E2 are known.

In the two prime cases N = 5 and N = 7, then the results of Chapter 2
enable us to give a formula computing the local and the torsion quotient for
any given pair of rational numbers (d1, d2) that correspond to the two elliptic
curves via the chosen parametrisation. Further we compute the two functions
to determine the global quotient once a Mordell-Weil basis of E1 and E2 is
known. This will be discussed in the third subsection and provides examples of
non-simple abelian surfaces B over Q, such that #X(B/Q) = k ·�, for k = 5, 7.
Since for any given pair (d1, d2) we can compute whether #X(B/Q) is five or
seven times a square provided we have the corresponing Mordell-Weil bases, we
are able to obtain comprehensive numerical results about the occurrence of non-
square order Tate-Shafarevich groups in these two families of abelian surfaces.
We did so for N = 5 and the results are presented in [10].

The fourth subsection treats with the composite cases N = 6 and N = 10
and we will give examples of non-simple abelian surfaces B over Q, such that
#X(B/Q) = k · �, for k = 1, 2, 3, 6, 10. In an appendix we will have a brief
look at cyclic isogenies ϕ : E1 × E2 → B with diagonal kernel of degree 13 to
show that the case #X(B/Q) = 13 ·� is also possible.

3.1. The local quotient
We want to compute the quotients # cokerϕp/#kerϕp with respect to Set-

ting 2.33. If p = ∞ is the place at infinity this is often very easy.

Lemma 3.1. Let E1 and E2 be elliptic curves over R and ϕ : E1 × E2 → B a
diagonal cyclic isogeny of degree N having a R-kernel, i.e. #kerϕ∞ = N .

(i) If 2 � N , then cokerϕ∞ is trivial, and thus # cokerϕp/#kerϕp = 1/N .
(ii) If 2 | N assume further that both elliptic curves have negative discrimi-

nant. Then # cokerϕ∞ = 2, and thus # cokerϕp/#kerϕp = 2/N .

Proof. As cokerϕ∞ embeds into H1(R, (E1 × E2)[ϕ]), which is trivial if the
order of GalR is coprime to (E1 × E2)[ϕ], we get (i).

For (ii) note that by assumption the Galois action on kerϕ is trivial, hence
H1(R, (E1 ×E2)[ϕ]) is just the group of homomorphisms from Z/2Z to Z/NZ,
which has 2 elements if 2 | N . In case both discrimanants of the two elliptic
curves are negative, we have that H1(R, (E1 × E2)(C)) is trivial, by Theorem
V.2.4 in [21], which implies that cokerϕ∞ surjects onto H1(R, (E1×E2)[ϕ]). �

Now we state the main theorem about the local quotient with respect to
Setting 2.33 for degϕ = N = � being prime. It expresses # cokerϕp/#kerϕp in
terms of the type of reduction of both Ei at p. In case the reduction type is split
multiplicative we additionally have to consider whether ker ηi,p ⊆ (Ei)0(Qp),
and in case the reduction type is non-split multiplicative we also have to consider
the value of the Tamagawa quotient c(E′

i)p/c(Ei)p. In case the reduction type
is additive, the local quotient also depends on the values of |η′i(0)|p. If � ≥ 5,
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then the theorem determines the size of # cokerϕp/#kerϕp for any p and any
combination of reduction types of the two elliptic curves.

Theorem 3.2. Assume Setting 2.33 for degϕ = N = � being prime and let
p ∈ M0

Q be a finite place. Then the local quotient at p can be computed as
follows in case � ≥ 5.

# cokerϕp

#kerϕp
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/�, at least one elliptic curve Ei has split multiplicative
reduction at p with ker ηi,p � (Ei)0(Qp)

�, both elliptic curves have split multiplicative reduction at p
and both ker ηi,p ⊆ (Ei)0(Qp)

�, both elliptic curves have additive reduction at p
and both satisfy |η′i(0)|p �= 1

1, otherwise.

In case � = 3 we get the following equality.

# cokerϕp

#kerϕp
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3, at least one elliptic curve Ei has split multiplicative
reduction at p with ker ηi,p � (Ei)0(Qp)

3, both elliptic curves have split multiplicative reduction at p
and both ker ηi,p ⊆ (Ei)0(Qp)

1, all other cases, such that neither elliptic curve
has additive reduction at p.

And in case � = 2 �= p the situation is the following.

# cokerϕp

#kerϕp
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2, at least one elliptic curve Ei has split multiplicative
reduction at p with ker ηi,p � (Ei)0(Qp)

1/2, at least one elliptic curve Ei has non-split multiplicative
reduction at p with c(E′

i)p/c(Ei)p = 1/2,

2, both elliptic curves have either split multiplicative reduction
at p with ker ηi,p ⊆ (Ei)0(Qp) or non-split multiplicative
reduction at p with c(E′

i)p/c(Ei)p = 2,

1, all other cases, such that both elliptic curves do not
have additive reduction at p, and (c(E′

i)p, c(Ei)p) �= (2, 2)

in case Ei has non-split multiplicative reduction.

In case � = 2 = p we get that # cokerϕp/#kerϕp = 1/2, if at least one elliptic
curve Ei has split multiplicative reduction at p with ker ηi,p � (Ei)0(Qp).

Proof. Use Theorem 2.28 and the Key Lemma 2.30 to deduce from the reduction
type of both Ei at p plus the stated further conditions whether cokerϕp is
maximal, maximally unramified or trivial, i.e. by Corollary 2.4 has order �2, �,
or 1 respectively. As #kerϕp = � we are done. �
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It is not possible that one of the elliptic curves has split multiplicative re-
duction with ker ηi,p ⊆ (Ei)0(Qp) and the other curve has additive reduction
with |η′i(0)|p �= 1, as the former case implies p �= � and the latter implies p = �.

3.2. The global quotient

Now we investigate the global quotient #kerϕQ

# cokerϕQ

# cokerϕ∨
Q

#kerϕ∨
Q

with respect to
Setting 2.33 for degϕ = N = � being prime. As ϕ has a Q-kernel, we only need
a strategy to compute the size of the cokernels. We will not come up with a
formula, but we will describe a method for computing the global quotient in
case one knows generators of the cokernels of ηi,Q and η∨i,Q. Clearly, one knows
such generators in case one has a Mordell-Weil basis for Ei(Q) and E′

i(Q). The
maps ker η∨1,Q×ker η∨2,Q → kerϕ∨

Q and ker η1,Q×ker η2,Q → kerψQ are surjective,
therefore we have two short exact sequences of the cokernels.

0 → cokerψ∨
Q → coker η∨1,Q × coker η∨2,Q → cokerϕ∨

Q → 0

0 → cokerϕQ → coker η1,Q × coker η2,Q → cokerψQ → 0

We first compute cokerϕ∨
Q, which is simpler than the computation of cokerϕQ.

We have the following long exact sequences of Galois cohomology.

0 → coker η∨1,Q × coker η∨2,Q → H1(Q, (E′
1 × E′

2)(Q)[η∨1 × η∨2 ]) → . . .

0 → cokerϕ∨
Q → H1(Q, B∨(Q)[ϕ∨]) → . . .

The Kummer sequence for a number field K and Hilbert’s Theorem 90 yield

δK : H1(K,μ�)
∼= K∗/K∗�.

Since E′
i(Q)[η∨i ] and B∨(Q)[ϕ∨] are isomorphic to μ� as Galois modules for

GalQ, we obtain isomorphisms from H1(Q, E′
i(Q)[η∨i ]) and H1(Q, B∨(Q)[ϕ∨]) to

H1(Q,μ�). Composing with δQ we get natural injective group homomorphisms

coker η∨i,Q ↪→ Q∗/Q∗�, cokerϕ∨
Q ↪→ Q∗/Q∗�.

Note that the images of these embeddings are independent of all choices made.
We get the following commutative diagram.

coker η∨1,Q × coker η∨2,Q
� � �

����

Q∗/Q∗� ×Q∗/Q∗�

��
cokerϕ∨

Q

� � � Q∗/Q∗�

(6)

In this diagram the natural surjection coker η∨1,Q × coker η∨2,Q � cokerϕ∨
Q

becomes (x, y) �→ xm/y as a map from Q∗/Q∗� × Q∗/Q∗� to Q∗/Q∗�, for a
suitable m ∈ {1, . . . , �− 1}. Note that m depends on n, but it is clear that the

24



image of coker η∨1,Q × coker η∨2,Q in the lower right group Q∗/Q∗� is independent
of m and n, and for determining the image we can simply set m = 1. The
next proposition explains how to calculate the images of coker η∨i,Q in Q∗/Q∗�,
i.e. how to calculate the upper horizontal map. Combining afterwards with
(x, y) �→ x/y gives cokerϕ∨

Q as a subset of Q∗/Q∗�.

Proposition 3.3. Let E and E′ be elliptic curves over a number field K and
η : E → E′ an isogeny of prime degree �. Assume that η has a K-kernel,
i.e. E(K)[η] = E(K)[η], and let P ∈ E(K) be a generator of the kernel. Let
fP ∈ K(E) be a K-rational function on E such that div(fP ) = �(P )− �(O).

(i) There exists a unique constant c = c(fP ) ∈ K∗/K∗� such that

coker η∨K → K∗/K∗�

[Q] �→ c · fP (Q) mod K∗�, for Q ∈ E(K) with Q �= O, P,

is a well-defined and injective group homomorphism.
(ii) The image of the map c · fP is independent of the choice of the point P

and function fP and agrees with the image of the natural injection coker η∨K ↪→
K∗/K∗� described above.

(iii) The image of the map c · fP lies in the finite set

K(S, �) := {x ∈ K∗/K∗� | vp(x) ≡ 0 mod �, ∀p /∈ S},

where S is the set of all primes p ⊂ OK , such that p divides the degree of η or
p is a prime of bad reduction of E.

Proof. This is Exercise 10.1 in [21]. �

Remark 3.4. By the Riemann-Roch Theorem, the vector space of functions
fP ∈ K(E) with div(fP ) = �(P ) − �(O) is 1-dimensional, hence such a func-
tion always exists. Given such a fP it is easy to determine c ∈ K∗/K∗� and
to find the value for the image of P in K∗/K∗�, by using the fact that the
map c · fP mod K∗� is a group homomorphism. We will do this explicitly in
Propositions 3.8 and 3.16 and Lemmas 3.20 and 3.25.

Now we consider the remaining case, i.e. determining cokerϕQ. There is
no natural injection of coker ηi,Q into Q∗/Q∗� as before, since Ei(Q)[ηi] is not
isomorphic to μ� as a Galois module for GalQ. But Ei(Q)[ηi] is isomorphic to
μ� as a Galois module for GalL, for L := Q(μ�). Note that the restriction map

H1(Q, Ei(Q)[ηi]) → H1(L,Ei(Q)[ηi])

is injective, as the kernel, which equals H1(Gal(L/Q), Ei(Q)[ηi]), is trivial, since
[L : Q] = �− 1 is coprime to #Ei(Q)[ηi] = �. Using the isomorphism δL we get
natural injections coker ηi,Q ↪→ H1(Q, Ei(Q)[ηi]) ↪→ H1(L,Ei(Q)[ηi]) ∼= L∗/L∗�

and hence we obtain the commutative diagram below. In this diagram the
natural surjection coker η1,Q × coker η2,Q � cokerψQ is (x, y) �→ xm/y as a map
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from L∗/L∗� × L∗/L∗� to L∗/L∗�, for a suitable m ∈ {1, . . . , �− 1}. As before,
all images are independent of m and n, and so we can simply set m = 1 in
our computations. Hence cokerϕQ is easy to determine provided we know the
images of coker ηi,Q in L∗/L∗�.

cokerϕQ
� � �

� �

�

L∗/L∗�

��
coker η1,Q × coker η2,Q

� � �

����

L∗/L∗� × L∗/L∗�

��
cokerψQ

� � � L∗/L∗�

(7)

To obtain functions computing the images of coker ηi,Q in L∗/L∗�, note that
the dual isogenies η∨i : E′

i → Ei have L-kernels. Hence by Proposition 3.3 we
need generators P̌i ∈ E′

i(L) of E′
i[η

∨
i ] and L-rational functions fP̌i

∈ L(E′
i), such

that div(fP̌i
) = �(P̌i)− �(O). Again, if S denotes the set of all primes p ⊂ OL,

such that p divides the degree of η or p is a prime of bad reduction of Ei/L,
then the image of coker ηi,Q in L∗/L∗� lies in the finite set

L(S, �) := {x ∈ L∗/L∗� | vp(x) ≡ 0 mod �, ∀p /∈ S}.

3.3. N = 5 and N = 7 (k = 5, 7)
It is a well-known fact that all elliptic curves E over a number field K with

a K-rational 5-torsion point P are parametrised by the Weierstraß equation

E : Y 2 + (d+ 1)XY + dY = X3 + dX2, P = (0, 0), (8)

for d ∈ K. Clearly the discriminant Δ = −d5(d2 + 11d− 1) has to be different
from zero. For K = Q this is exactly the case when d �= 0 holds. Using Vélu’s
algorithm [29] one can show that the curve E is isogenous to the elliptic curve

E′ : Y 2+(d+1)XY+dY = X3+dX2+(5d3−10d2−5d)X+(d5−10d4−5d3−15d2−d)

via the isogeny η : E → E′ whose kernel is generated by P . Note that

〈P 〉 = {O, P = (0, 0), 2P = (−d, d2), 3P = (−d, 0), 4P = (0,−d)}.
If we write d = u/v, with u, v ∈ Z coprime, then E is isomorphic to

Eu,v : Y 2 + (u+ v)XY + uv2Y = X3 + uvX2, P = (0, 0),

with discriminant Δu,v = −(uv)5(u2 + 11uv − v2), and E′ is isomorphic to

E′
u,v : Y 2 + (u+ v)XY + uv2Y =

X3+uvX2+(5u3v−10u2v2−5uv3)X+(u5v−10u4v2−5u3v3−15u2v4−uv5).

We want to use Theorem 3.2 to determine the local quotient, thus for each
prime p we have to know the reduction type of E at p and the value |η′(0)|p.
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Lemma 3.5. Let E be an elliptic curve as above parametrised by d = u/v ∈
Q \ {0}, with u, v ∈ Z coprime, and let p be a prime number.

(i) If p|uv then E has split multiplicative reduction at p with ker ηp � E0(Qp).
(ii) If p|u2 + 11uv − v2 then ker ηp ⊆ E0(Qp). Further, E has split multi-

plicative reduction at p if and only if p ≡ 1 mod 5, additive reduction if and only
if p = 5, and otherwise non-split multiplicative reduction with p ≡ −1 mod 5.

(iii) a) v5(u
2 + 11uv − v2) ∈ {0, 2, 3},

b) v5(u
2 + 11uv − v2) = 0 ⇔ u �≡ 2v mod 5,

c) v5(u
2 + 11uv − v2) = 3 ⇔ u ≡ 7v mod 25,

d) u ≡ 2v mod 5 ⇒ 54 | c′4,u,v, where c′4,u,v is the usual coefficients of a
short Weierstraß equation of E′

u,v as given for example in [21, III.1].

Proof. Most of part (i) and (ii) follow from Lemma 1.4 and the comment there-
after of [6]. The rest is an easy exercise. �

Proposition 3.6. Let η : E → E′ be the isogeny described above, for the
parameter d = u/v ∈ Q \ {0}, with u, v ∈ Z coprime. Then

|η′(0)|p =

{
1/5, p = 5 and u ≡ 7v mod 25

1, otherwise.

Proof. By Theorem 2.28 we have that |η′(0)|p equals 1 if p �= 5 or if p is a place of
good or multiplicative reduction. If p = 5 is additive, combining Lemma 3.5 with
[21, Exercise 7.1] gives that the Weierstraß equation for Eu,v is minimal, and the
one for E′

u,v is not minimal if and only if u ≡ 7v mod 25. In this case v5(Δ′
u,v) =

15 and c′4,u,v is divisible at least by 54, so E′
u,v will become minimal under the

following change of variables: X �→ X/52 and Y �→ Y/53. Assume that E′
u,v is

minimal. We will now compute the p-adic valuation of the leading coefficent of
the power series representation of η. We claim that η(Z) = Z + ... as a power
series in Z in a neighbourhood of O. Set η(X,Y ) =: (X̃(X,Y ), Ỹ (X,Y )). Then
by [29], we have −X̃(X,Y )/Ỹ (X,Y ) = p(X)/q(X,Y ), for

p(X) := X(d+X)[d4 + (3d3 + d4)X + (3d2 + 3d3)X2

+(d+ 3d2 − d3)X3 + 2dX4 +X5],

q(X,Y ) := d6 + (5d5 + 2d6)X + (10d4 + 8d5 + d6)X2

+(10d3 + 13d4 + 4d5)X3 + (5d2 + 10d3 + 4d4)X4 + (d+ 3d2 + d3 − d4)X5

+Y [2d5 + (7d4 + d5)X + (9d3 + 3d4)X2 + (5d2 + 3d3 + d4)X3

+(d− d2 − d3)X4 − 3dX5 −X6].

For Z := −X/Y , we have X(Z) = Z−2+ . . . and Y (Z) = −Z−3+ . . . as Laurent
series for X and Y , see [21, IV.1], thus η(Z) = Z−14+...

Z−15+... = Z+ . . . as power series
in Z. Hence η′(0) = 1, and therefore |η′(0)|p = 1.

In case the equation for E′
u,v was not minimal, we have to replace Z by 5Z,

which gives η(Z) = 5Z + . . ., and therefore η′(0) = 5. Hence |η′(0)|5 = 1/5. �
Combining both the above lemma and proposition with Lemma 3.1 and

Theorem 3.2 gives complete control of the local quotient.
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Theorem 3.7. Assume Setting 2.33 with N = 5. Let Ei be given by di = ui/vi,
for di ∈ Q \ {0}, with ui, vi ∈ Z coprime. If p ∈ MQ is a place, then

# cokerϕp

#kerϕp
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/5, p = ∞
1/5, p | u1v1u2v2

5, p | gcd(u2
1 + 11u1v1 − v21 , u

2
2 + 11u2v2 − v22), p ≡ 1(5)

5, u1 ≡ 7v1 mod 25, u2 ≡ 7v2 mod 25, p = 5

1, otherwise.

Next comes the global quotient. We will use Proposition 3.3 to calculate
coker η∨i,Q in Q∗/Q∗5. Note that coker η∨i,Q,tors is generated by the point Pi.

Proposition 3.8. For P = (0, 0) set

fP := −X2 +XY + Y ∈ K(E).

The image of the natural embedding coker η∨Q ↪→ Q∗/Q∗5 equals the image of

fP (X,Y ) mod Q∗5, for Q = (X,Y ) �= O, P.

By linearity fP (P ) = d4, and fP (coker η∨Q,tors) = 〈d〉 in Q∗/Q∗5.

Proof. For X,Y,X + Y + d ∈ K(E), we have div(X) = (P ) + (4P ) − 2(O),
div(Y ) = 2(P ) + (3P )− 3(O), and div(X + Y + d) = 2(3P ) + (4P )− 3(O). As
(XY 2)/(X+Y +d) ·(−Y −dX)/(−Y −dX) equals −X2+XY +Y in K(E), we
get div(fP ) = 5(P )− 5(O). Apply Proposition 3.3. Since (fP (2P ))2 = fP (4P ),
we get c = 1. As fP (P ) ≡ fP (2P )3 ≡ d4 mod Q∗5, we are done. �

Corollary 3.9. With notation as above, E′(Q)[5] ∼= Z/5Z ⇔ d ∈ Q∗5.

Proof. We have that E′(Q)[5] is non-trivial if and only if coker η∨Q is trivial on
the torsion part. The cokernel of η∨Q,tors is generated by d in Q∗/Q∗5. Hence
E′(Q)[5] is non-trivial if and only if d is trivial in Q∗/Q∗5. �

Now we calculate coker ηQ in L∗/L∗5, for L := Q(ξ), with ξ ∈ μ5 a primitive
fifth root of unity. Fix a generator P̌ of E′(Q)[η∨]. Since P̌ ∈ E′(L), we
have that (E′, P̌ ) is isomorphic over L to a pair (Ed̃, (0, 0)), where Ed̃ is the
elliptic curve over L for the parameter d̃ ∈ L given by equation (8). Such a
L-isomorphism ε : (E′, P̌ )→̃(Ed̃, (0, 0)) is given by r, s, t ∈ L and w ∈ L∗ and
has the form X = w2X ′+r and Y = w3Y ′+w2sX ′+ t; see [21, III.1]. Knowing
ε and the formula of fP from Proposition 3.8, we can determine fP̌ , since

fP̌ (X,Y ) ≡ ε∗fP (X ′, Y ′) mod L∗5.

To obtain ε we use [21, III Table 1.2]. As a6 of the Weierstraß equation of
Ed̃ vanishes, we get (r, t) = P̌ . The kernel polynomial of the dual isogeny
η∨ : E′ → E is X2 + (d2 + d + 1)X + 1

5 (d
4 − 3d3 − 26d2 + 8d + 1); thus, for

ϑ := ξ + ξ−1 = (
√
5− 1)/2, we may choose

r =
1

5
[(−ϑ− 3)d2 + (−11ϑ− 8)d+ (ϑ− 2)] ∈ Q(ϑ) = Q(

√
5),
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t =
1

5
[(ξ2 + 2ξ + 2)d3 + (ξ3 + 10ξ2 + 23ξ + 11)d2

+(11ξ3 − 12ξ2 + 9ξ + 2)d+ (−ξ3 + ξ2 − ξ + 1)] ∈ L.

Since a4 of Ed̃ also vanishes and a3 = a2 we deduce

s =
1

5
[(−4ξ3 − 3ξ2 − 7ξ − 6)d+ (3ξ3 − 4ξ2 − ξ − 3)],

w =
1

5
[(−ξ3 − 7ξ2 − 8ξ − 4)d+ (7ξ3 − ξ2 + 6ξ + 3)].

We also deduce d̃ = ((5ϑ− 3)d+ 1)/(d− (5ϑ− 3)) and we obtain

fP̌ (X,Y ) ≡ 1

25
[(3 + 6ξ − ξ2 + 7ξ3) + (80 + 235ξ − 60ξ2 + 245ξ3)d

+(220 + 465ξ + 185ξ2 + 205ξ3)d2 + (15 + 55ξ − 55ξ2 + 160ξ3)d3

+(140 + 280ξ + 245ξ2 + 35ξ3)d4 + (−4− 8ξ − 7ξ2 − ξ3)d5]

+[(−1 + ξ − ξ2) + (3 + 9ξ + 2ξ2 + 2ξ3)d+ (2 + 6ξ + 8ξ2 − 3ξ3)d2

+(−1− ξ + ξ3)d3]X + [(−ξ + ξ2 − 2ξ3) + (2 + 3ξ + 2ξ2 + ξ3)d]X2

+[(−3− 2ξ2 − 2ξ3) + (−1− 3ξ2 − 3ξ3)d+ (−1+ 2ξ2 +2ξ3)d2]Y +XY ∈ L(E′).

Now we can state the torsion quotient in terms of the pair (d1, d2).

Proposition 3.10. Assume Setting 2.33 with N = 5. Let Ei be given by
di ∈ Q \ {0}. Then the following holds.

#A(Q) tors #A∨(Q) tors
#B(Q) tors #B∨(Q) tors

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 or 5, d1, d2 ∈ Q∗5

52, di ∈ Q∗5, dj /∈ Q∗5, i �= j

52, 〈1〉 �= 〈d1〉 = 〈d2〉 �= 〈1〉 in Q∗/Q∗5

53, 〈1〉 �= 〈d1〉 �= 〈d2〉 �= 〈1〉 in Q∗/Q∗5.

In case both di ∈ Q∗5, then the torsion quotient equals 1 if and only if〈
4∏

j=1

(δ1 + ζj)
j(δ1 − 1/ζj)

j

〉
=

〈
4∏

j=1

(δ2 + ζj)
j(δ2 − 1/ζj)

j

〉
in L∗/L∗5,

with di =: δ5i , for δi ∈ Q∗, and ζ1 := −ξ4(ξ+1), ζ2 := −ξ(ξ+1), ζ3 := −ξ3(ξ+1)
and ζ4 := −(ξ + 1), where ξ ∈ μ5 is a primitive fifth root of unity.

Proof. Recall Diagrams (6) and (7) and that the torsion quotient equals 5 ·
# cokerϕ∨

Q,tors/# cokerϕQ,tors. We have seen above that E′(Q)[5] ∼= Z/5Z if
and only if d ∈ Q∗5, hence coker ηi,Q,tors is trivial in case di /∈ Q∗5, otherwise it
is 1-dimensional. Looking at the kernel of (x, y) �→ x/y gives that cokerϕQ,tors
might have five elements in case d1, d2 ∈ Q∗5, and is trivial otherwise. Since
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coker η∨i,Q,tors is generated by di mod Q∗5 and the map onto cokerϕ∨
Q,tors is given

by (x, y) �→ x/y, we get

# cokerϕ∨
Q,tors =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, d1, d2 ∈ Q∗5

5, di ∈ Q∗5, dj /∈ Q∗5, i �= j

5, 〈1〉 �= 〈d1〉 = 〈d2〉 �= 〈1〉 in Q∗/Q∗5

52, 〈1〉 �= 〈d1〉 �= 〈d2〉 �= 〈1〉 in Q∗/Q∗5,

which finishes the first part. For the second part, note that if di = δ5i , then
E′(Q)[5] is generated by the point P ′

i = (xi, yi), where

xi = δi + 2δ2i + 3δ2i + 5δ4i + 2δ5i + 2δ6i − δ7i + δ8i ,

yi = δ2i + 3δ3i + 5δ4i + 11δ5i + 13δ6i + 10δ7i + δ8i − δ10i + δ11i + δ12i .

The image of 〈P ′
i 〉 under fŤ in L∗/L∗5, i.e. the image of coker ηi,Q,tors, is〈∏4

j=1(δi + ζj)
j(δi − 1/ζj)

j
〉
, which completes the second part. �

Finally, we give two unconditional examples of an abelian surface B/Q of
rank 0, respectively of rank 1, such that #X(B/Q) = 5.

Example 3.11. If d1 = u1/v1 = 1/11, d2 = u2/v2 = 2/9, then #X(B/Q) = 5.

Proof. There are three different primes dividing u1v1u2v2 = 2 · 32 · 11. We also
have the contribution of the prime at infinity, and no contribution from any
other prime, as ui �≡ 7 · vi mod 25 for both i, and gcd(u2

1 + 11u1v1 − v21 , u
2
2 +

11u2v2 − v22) = 1. Hence the local quotient equals 1/54. Both elliptic curves Ei

have analytic rank equal to 0, hence we know that X(A/Q) and X(B/Q) are
finite and that the global quotient equals the torsion quotient. Thus the global
quotient equals 53. We conclude that #X(B/Q) = 5 ·#X(A/Q).

It remains to show that both X(Ei/Q) are trivial. The predicted size by
the Birch and Swinnerton-Dyer formula is 1. Both Ei are non-CM curves of
conductor ≤ 1000, hence we can apply [24, Theorem 3.31 and Theorem 4.4].
This gives us that #X(Ei/Q)[p∞] = 1, for all primes p �= 5. (The primes
occurring as the degrees of cyclic isogenies or dividing any Tamagawa number are
only 2 and 5.) Now use [6, Theorem 1 or Table 3 in the Appendix] to calculate
Selηi(Ei/Q) = 0 and Selη

∨
i (E′

i/Q) ∼= Z/5Z, for both i. As coker ηi,Q = 0
and coker η∨i,Q ∼= Z/5Z we have X(Ei/Q)[ηi] = X(E′

i/Q)[η∨i ] = 0 and thus
X(Ei/Q)[5] = 0. Hence X(Ei/Q) is trivial. �

Example 3.12. If d1 = u1/v1 = 1/10, d2 = u2/v2 = 3/1, then #X(B/Q) = 5.

Proof. We have u1v1u2v2 = 2 · 3 · 5, ui �≡ 7 · vi mod 25, for both i, and gcd(u2
1 +

11u1v1 − v21 , u
2
2 + 11u2v2 − v22) = 1. Hence the local quotient equals 1/54. The

elliptic curve E1 is of analytic rank 0 and E2 of analytic rank 1. A generator of
the free part of E2(Q) is the point (−6, 12). We will now determine coker η∨i,Q
as a subset of Q∗/Q∗5. For the first curve this equals just the torsion part of
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the cokernel, hence coker η∨1,Q is generated by {2 · 5}. The second cokernel is
generated by the image of the torsion point, which is 3, and by the image of
(−6, 12) under f = −X2 +XY + Y , which is −3 · 25 ≡ 3 mod Q∗5. Therefore
coker η∨2,Q is generated only by {3} and hence cokerϕ∨

Q has dimension equal to
2. Since neither di are fifth powers, we get that the dimension of coker η1,Q
equals 0 and the dimension of coker η2,Q equals 0 or 1, thus the dimension of
cokerϕQ equals 0. We conclude that the global quotient equals 53, which gives
#X(B/Q) = 5 · #X(A/Q). Now one can use a similar strategy as in the
previous example to show that X(A/Q) is trivial. �

The situation for N = 7 is similar to the case N = 5. The elliptic curves E
with a rational 7-torsion point P are parametrised by the Weierstraß equation

E : Y 2 + (1 + d− d2)XY + (d2 − d3)Y = X3 + (d2 − d3)X2, P = (0, 0),

with discriminant Δ = −d7(1−d)7(d3− 8d2+5d+1). Thus for K = Q we have
d �= 0, 1. The isogenous curve is

E′ : Y 2 + (1 + d− d2)XY + (d2 − d3)Y =

X3 + (d2 − d3)X2 + (5d− 35d2 + 70d3 − 70d4 + 35d5 − 5d7)X

+(d−19d2+94d3−258d4+393d5−343d6+202d7−107d8+46d9−8d10−d11),

and the points in the kernel of η : E → E′ are

〈P 〉 = {O, P = (0, 0), 2P = (d3−d2, d5−2d4+d3), 3P = (d2−d, d3−2d2+d),

4P = (d2 − d, d4 − 2d3 + d2), 5P = (d3 − d2, 0), 6P = (0, d3 − d2)}.
If we write d = u/v, with u, v ∈ Z coprime, we get

Eu,v : Y 2+((v−u)(v+u)+uv)XY+(v−u)u2v3Y = X3+(v−u)u2vX2, P = (0, 0),

with discriminant Δu,v = −(uv)7(v − u)7(u3 − 8u2v + 5uv2 + v3).

Lemma 3.13. Let E be an elliptic curve as above parametrised by d = u/v ∈
Q \ {0, 1}, with u, v ∈ Z coprime, and let p be a prime number.

(i) If p|uv(v−u) then E has split multiplicative reduction at p with ker ηp �
E0(Qp).

(ii) If p|u3 − 8u2v + 5uv2 + v3 then ker ηp ⊆ E0(Qp). Further, E has split
multiplicative reduction at p if and only if p ≡ 1 mod 7, additive reduction if
and only if p = 7, and otherwise non-split multiplicative reduction with p ≡
−1 mod 7.

(iii) a) v7(u
3 − 8u2v + 5uv2 + v3) ∈ {0, 2},

b) v7(u
3 − 8u2v + 5uv2 + v3) = 2 ⇔ u ≡ 5v mod 7,

c) u ≡ 5v mod 7 ⇒ 76 | c′4,u,v.
Proposition 3.14. Let η : E → E′ be the isogeny described above, for the
parameter d = u/v ∈ Q \ {0, 1}, with u, v ∈ Z coprime. Then

|η′(0)|p =

{
1/7, p = 7 and u ≡ 5v mod 7

1, otherwise.
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Hence, for the local quotient we have the following

Theorem 3.15. Assume Setting 2.33 with N = 7. Let Ei be given by di =
ui/vi, for di ∈ Q \ {0, 1}, with ui, vi ∈ Z coprime. If p ∈ MQ is a place, then

# cokerϕp

#kerϕp
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/7, p = ∞
1/7, p | u1v1u2v2(v1 − u1)(v2 − u2)

7, p | gcd(u3
1 − 8u2

1v1 + 5u1v
2
1 + v31 , u

3
2 − 8u2

2v2 + 5u2v
2
2 + v32), p ≡ 1(7)

7, u1 ≡ 5v1 mod 7, u2 ≡ 5v2 mod 7, p = 7

1, otherwise.

Next comes the global quotient.

Proposition 3.16. For P = (0, 0) set

fP := d2X2 +X3 + dX3 − d2Y −XY − 2dXY −X2Y ∈ K(E).

The image of the natural embedding coker η∨Q ↪→ Q∗/Q∗7 equals the image of

fP (X,Y ) mod Q∗7, for Q = (X,Y ) �= O, P.

By linearity fP (P ) = d3(d−1)6, and fP (coker η∨Q,tors) = 〈d(d−1)2〉 in Q∗/Q∗7.

Proof. We have that div(X) = (P )+(6P )−2(O), div(Y ) = 2(P )+(5P )−3(O),
div(Xd−1)−Y ) = (P )+2(3P )−3(O), and div(X+Y −d3+d2) = (3P )+(5P )+
(6P )−3(O), hence div(Y 2X2(X(d−1)−Y )/(X+Y −d3+d2)2) = 7(P )−7(O).
Multiplying with (−Y −(1+d−d2)X−(d2−d3))/(−Y −(1+d−d2)X−(d2−d3))
gives d2X2 +X3 + dX3 − d2Y −XY − 2dXY −X2Y . �

Corollary 3.17. With notation as above, E′(Q)[7] = 0.

Proof. As in Corollary 3.9, E′(Q)[7] is non-trivial if and only if d(d − 1)2 is
trivial in Q∗/Q∗7, which is equivalent to d and d− 1 being a seventh power, for
d ∈ Q \ {0, 1}. But Fermat’s Last Theorem for exponent 7 says that this can
never happen. �

Set L := Q(ξ), for ξ ∈ μ7 a primitive seventh root of unity. As in case N = 5,
we want to compute a function fP̌ , which calculates the image of coker ηQ in
L∗/L∗7, and which depends on a point P̌ = (r, t) ∈ E′(Q)[η∨]. The coefficients
r, t, s, w for the L-isomorphism ε : (E′, P̌ )→̃(Ed̃, (0, 0)) can be computed in the
same manner as before. The kernel polynomial of η∨ : E′ → E is

1

7
(d12 + 3d11 − 51d10 + 185d9 − 767d8 + 2097d7 − 2835d6

+1738d5 − 295d4 − 116d3 + 55d2 − 15d+ 1)

+(d8 − d7 − 14d6 + 32d5 − 29d4 + 7d3 + 11d2 − 7d+ 1)X

+(2d4 − 5d3 + 6d2 − 3d+ 2)X2 +X3.
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Using the conditions on the ai and setting ϑ := ξ + ξ−1 gives

r =
1

7
[(3ϑ2 + 2ϑ− 9)d4 + (−25ϑ2 − 19ϑ+ 47)d3

+(23ϑ2 + 34ϑ− 41)d2 + (−2ϑ2 − 13ϑ+ 6)d+ (−ϑ2 − 3ϑ− 4)] ∈ Q(ϑ),

t =
1

7
[(−3ξ5−6ξ4− ξ3− ξ2−5ξ−5)d6+(28ξ5+59ξ4+7ξ3+10ξ2+45ξ+33)d5

+(−52ξ5−119ξ4+6ξ3−16ξ2−62ξ−51)d4+(56ξ5+54ξ4−35ξ3−37ξ2−9ξ+13)d3

+(−13ξ5+30ξ4+54ξ3+75ξ2+60ξ+32)d2+(−10ξ5−16ξ4−22ξ3−25ξ2−22ξ−17)d

+(−ξ5 − 3ξ4 − 5ξ3 − 6ξ2 − 5ξ − 1)] ∈ L,

s =
1

7
[(3ξ5 +6ξ4 − 5ξ3 − 2ξ2 + ξ+4)d2 + (−16ξ5 − 11ξ4 − 6ξ3 − ξ2 − 17ξ− 12)d

+(5ξ5 + 3ξ4 + 8ξ3 + 6ξ2 + 11ξ + 2)],

w =
1

7
[(−3ξ5−6ξ4−ξ3−ξ2−5ξ−5)d6+(28ξ5+59ξ4+7ξ3+10ξ2+45ξ+33)d5

+(−52ξ5−119ξ4+6ξ3−16ξ2−62ξ−51)d4+(56ξ5+54ξ4−35ξ3−37ξ2−9ξ+13)d3

+(−13ξ5+30ξ4+54ξ3+75ξ2+60ξ+32)d2+(−10ξ5−16ξ4−22ξ3−25ξ2−22ξ−17)d

+(−ξ5 − 3ξ4 − 5ξ3 − 6ξ2 − 5ξ − 1)],

d̃ =
(ϑ2 + 3ϑ+ 2)d− (ϑ2 + 3ϑ+ 1)

d− (ϑ2 + 3ϑ+ 2)
.

Now putting everything together yields

fP̌ ≡ w7 · fP ((X − r)/w2, (Y − t− s(X − r))/w3)

= w3d̃2(X−r)2+w(X−r)3+wd̃(X−r)3−w4d̃2(Y−t−s(X−r))−w2(X−r)(Y−t−s(X−r)).

The torsion quotient can be computed as follows.

Proposition 3.18. Assume Setting 2.33 with N = 7. Let Ei be given by
di ∈ Q \ {0, 1}. Then

#A(Q) tors #A∨(Q) tors
#B(Q) tors #B∨(Q) tors

=

{
72, 〈d1(d1 − 1)2〉 = 〈d2(d2 − 1)2〉 in Q∗/Q∗7

73, otherwise.

Proof. Since A(Q)[7∞] ∼= (Z/7Z)2 and A′(Q)[7∞] = 0 we have B(Q)[7∞] ∼=
Z/7Z, and hence # cokerϕQ,tors = 1. We know that coker η∨i,Q,tors is generated by
di(di−1)2 in Q∗/Q∗7 and as the product of these two cokernels maps surjectively
onto cokerϕ∨

Q,tors via the map (x, y) �→ x/y, we conclude that

# cokerϕ∨
Q,tors =

{
7, 〈d1(d1 − 1)2〉 = 〈d2(d2 − 1)2〉 in Q∗/Q∗7

72, otherwise,

which completes the proof. �
We finish by giving an unconditional example of an abelian surface B/Q of

rank equal to 0, such that #X(B/Q) = 7.
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Example 3.19. If d1 = u1/v1 = 1/3, d2 = u2/v2 = 1/4, then #X(B/Q) = 7.

Proof. The local quotient equals 1/73, as u1v1u2v2(v1 − u1)(v2 − u2) = 23 · 32,
u1 ≡ 5·v1 mod 7, u2 �≡ 5·v2 mod 7, and gcd(u3

1−8u2
1v1+5u1v

2
1+v31 , u

3
2−8u2

2v2+
5u2v

2
2+v32) = 1. Both elliptic curves have analytic rank equal to 0, thus X(A/Q)

and X(B/Q) are finite and the global quotient equals the torsion quotient. For
a = 4 we have that da1(d1− 1)2a ≡ 2 · 32 ≡ d2(d2− 1)2 mod Q∗7, thus the global
quotient equals 72. We conclude that 7 · #X(A/Q) = #X(B/Q). As in the
examples of N = 5, one can use [24] and [6] to show that X(A/Q) is trivial. �

3.4. N = 6 and N = 10 (k = 1, 2, 3, 6, 10)
The elliptic curves E over a number field K having a rational 6-torsion point

P are parametrised by the Weierstraß equation

E : Y 2 + (d+ 1)XY − d(d− 1)Y = X3 − d(d− 1)X2, P = (0, 0),

with discriminant Δ = d6(9d − 1)(d − 1)3, for d ∈ K \ {0, 1, 1/9}. Denote by
η : E → E′ the cyclic isogeny of degree 6, whose kernel is 〈P 〉. Then

2P = (d(d−1),−d2(d−1)), 3P = (−d, d2), 4P = (d(d−1), 0), 5P = (0, d(d−1)),

E′ : Y 2 + (d+ 1)XY − d(d− 1)Y = X3 − d(d− 1)X2

−5(3d3 − 4d2 + d+ 1)dX − (19d5 − 33d4 + 18d3 − 22d2 + 14d+ 1)d.

Let P̌ denote a generator of the kernel of the dual isogeny η∨ : E′ → E. Then

±P̌ =

(
−2d2 + 4d− 1, d3 − 1

2
d2 − 2d+

1

2
± 1

2
(d− 1)(9d− 1)

√−3

)
,

±2P̌ =

(
−2d2 − 2d− 1

3
, d3 +

5

2
d2 +

2

3
d+

1

6
± 1

18
(9d− 1)2

√−3

)
,

3P̌ =

(
19

4
d2 − 14

4
d− 1

4
, −19

8
d3 − 1

8
d2 +

11

8
d+

1

8

)
.

In the following four examples we will give two parameters d1, d2 ∈ Q \
{0, 1, 1/9} that correspond to two elliptic curves E1 and E2 over Q having a
rational 6-torsion point. Hence, E1 and E2 fulfill Setting 2.33 with N = 6
and we can define ϕ : E1 × E2 → B with respect to some n ∈ (Z/6Z)∗. By
Proposition 2.32 the order of X(B/Q) is independent of the choice of n, thus
we simply set n = 1. Further we get the corresponding isogenies ϕ�=2 and ϕ�=3,
which are introduced in Remark 2.36. In all four examples the analytic rank
of both elliptic curves E1 and E2 is 0 and the discriminant of both curves is
negative. Hence, all Tate-Shafarevich groups are finite, the regulator quotient is
1, and the local quotient at infinity for ϕ�=2 is 1 and for ϕ�=3 is 1/3, by Lemma
3.1. Also, for both elliptic curves the reduction types at all primes p are ’nice’, in
the sense that we can apply Theorem 3.2. Finally, the rational torsion of E1 and
E2 is isomorphic to Z/6Z and the rational torsion of E′

1 and E′
2 is isomorphic
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to Z/2Z. By construction #kerϕQ/#kerϕ∨
Q = 3, hence we can apply the next

lemma to compute the torsion quotient. Note that Q(μ3) = Q(
√−3) has degree

2 and class number 1 and that the only prime which ramifies is 3.

Lemma 3.20. Let E/Q be an elliptic curves with a rational 6-torsion point
P = (0, 0) corresponding to the parameter d ∈ Q \ {0, 1, 1/9} as given above.
Assume that E(Q) tors = 〈P 〉 ∼= Z/6Z and E′(Q) tors = 〈3P̌ 〉 ∼= Z/2Z. Then

(i) coker η∨Q,tors can be identified with 〈d〉× 〈d2(d− 1)〉 in Q∗/Q∗2×Q∗/Q∗3,
(ii) coker ηQ,tors can be identified with 〈(9d− 1)(d− 1)〉 in Q(μ3)

∗/Q(μ3)
∗2.

Proof. Let f2 := X + d and f3 := Y + 2dX − d2(d − 1) be two functions
in the function field of E/Q. Then div(f2) = 2(3P ) − 2(O) and div(f3) =
3(2P )−3(O). As f2(P ) ≡ d mod Q∗2, f3(P ) ≡ d2(d−1) mod Q∗3, 3P generates
coker η∨�=2,Q,tors, and 2P generates coker η∨�=3,Q,tors, we get (i) by Proposition 3.3.

For (ii) note that by assumption on the torsion groups of E and E′, we get
that coker η�=3,Q,tors is trivial. The map f∨

2 := X−19/4d2+14/4d+1/4, fulfills
div(f∨

2 ) = 2(3P̌ ) − 2(O). From f∨
2 (P̌ ) = −3/4(d − 1)(9d − 1) it follows that

f∨
2 (3P̌ ) ≡ (d− 1)(9d− 1) mod Q(μ3)

∗2. �

Example 3.21. (k = 6) If d1 = 2/7 and d2 = 4/17, then #X(B/Q) = 6�.
Proof. The Cremona label of E1 is 770g1 and of E2 is 8398i1 and the conductor
of E1 is 2 · 5 · 7 · 11 and of E2 is 2 · 13 · 17 · 19. By Lemma 3.20, we get

coker η∨1,Q,tors = 〈2 · 7〉 × 〈22 · 5〉, coker η∨2,Q,tors = 〈17〉 × 〈2 · 13〉,
coker η1,Q,tors = 〈−5 · 11〉, coker η2,Q,tors = 〈−13 · 19〉.

From Diagrams (6) and (7) we conclude that

# cokerϕ∨
Q,tors = 22 · 32 and # cokerϕQ,tors = 1.

Thus, the torsion quotient equals 22 · 33. The first two rows of the next table
provide the following data: If the reduction type at p is split multiplicative, then
we indicate whether ker ηi,�=2,p and ker ηi,�=3,p are contained in (Ei)0(Qp). If
the reduction type at p is non-split multiplicative then we give the Tamagawa
quotient at p for ηi,�=2. The third and fourth row follow by Theorem 3.2.

p = 2 5 7 11 13 17 19 ∞
red. type of E1 �, � ⊆, � �, ⊆ c′

c = 2 good good good
red. type of E2 �, � good good good ⊆, � c′

c = 1/2 ⊆, ⊆
# cokerϕ�=2,p

#kerϕ�=2,p
= 1/2 1 1/2 1 1 1/2 1 1

# cokerϕ�=3,p

#kerϕ�=3,p
= 1/3 1/3 1 1 1/3 1 1 1/3

Thus the local quotient equals 2−3 · 3−4, since by Remark 2.36 we get that
# cokerϕp/#kerϕp = # cokerϕ�=2,p/#kerϕ�=2,p ·# cokerϕ�=3,p/#kerϕ�=3,p.

In total we have #X(B/Q) = 6 ·#X(E1 × E2/Q) = 6�.
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Example 3.22. (k = 3) If d1 = 2/7 and d2 = 2/13, then #X(B/Q) = 3�.
Proof. The Cremona label of E1 is 770g1 and of E2 is 1430g1 and the conductor
of E1 is 2 · 5 · 7 · 11 and of E2 is 2 · 5 · 11 · 13. By Lemma 3.20, we get

coker η∨1,Q,tors = 〈2 · 7〉 × 〈22 · 5〉, coker η∨2,Q,tors = 〈2 · 13〉 × 〈22 · 11〉,
coker η1,Q,tors = 〈−5 · 11〉, coker η2,Q,tors = 〈−5 · 11〉,
# cokerϕ∨

Q,tors = 22 · 32 and # cokerϕQ,tors = 2.

Hence, the torsion quotient equals 2 · 33. The next table implies that the local
quotient equals 2 · 3−4.

p = 2 5 7 11 13 ∞
red. type of E1 �, � ⊆, � �, ⊆ c′

c = 2 good
red. type of E2 �, � c′

c = 2 good ⊆, � �, ⊆
# cokerϕ�=2,p

#kerϕ�=2,p
= 1/2 2 1/2 2 1/2 1

# cokerϕ�=3,p

#kerϕ�=3,p
= 1/3 1/3 1 1/3 1 1/3

In total we have #X(B/Q) = 3 ·#X(E1 × E2/Q) = 3�.

Example 3.23. (k = 2) If d1 = 2/7 and d2 = 6/7, then #X(B/Q) = 2�.
Proof. The Cremona label of E1 is 770g1 and of E2 is 1974l1 and the conductor
of E1 is 2 · 5 · 7 · 11 and of E2 is 2 · 3 · 7 · 47. By Lemma 3.20, we get

coker η∨1,Q,tors = 〈2 · 7〉 × 〈22 · 5〉, coker η∨2,Q,tors = 〈2 · 3 · 7〉 × 〈2 · 3〉,
coker η1,Q,tors = 〈−5 · 11〉, coker η2,Q,tors = 〈−47〉,
# cokerϕ∨

Q,tors = 22 · 32 and # cokerϕQ,tors = 1.

Hence, the torsion quotient equals 22 · 33. The next table implies that the local
quotient equals 2−3 · 3−3.

p = 2 3 5 7 11 47 ∞
red. type of E1 �, � good ⊆, � �, ⊆ c′

c = 2 good
red. type of E2 �, � �, � good �, ⊆ good c′

c = 2
# cokerϕ�=2,p

#kerϕ�=2,p
= 1/2 1/2 1 1/2 1 1 1

# cokerϕ�=3,p

#kerϕ�=3,p
= 1/3 1/3 1/3 3 1 1 1/3

In total we have #X(B/Q) = 2 ·#X(E1 × E2/Q) = 2�.

Example 3.24. (k = 1) If d1 = 2/7 and d2 = 8/13, then #X(B/Q) = �.
Proof. The Cremona label of E1 is 770g1 and of E2 is 7670i1 and the conductor
of E1 is 2 · 5 · 7 · 11 and of E2 is 2 · 5 · 13 · 59. By Lemma 3.20, we get

coker η∨1,Q,tors = 〈2 · 7〉 × 〈22 · 5〉, coker η∨2,Q,tors = 〈2 · 13〉 × 〈5〉,
coker η1,Q,tors = 〈−5 · 11〉, coker η2,Q,tors = 〈−5 · 59〉.
# cokerϕ∨

Q,tors = 22 · 32 and # cokerϕQ,tors = 1.

Hence, the torsion quotient equals 22 · 33. The next table implies that the local
quotient equals 2−2 · 3−3.
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p = 2 5 7 11 13 59 ∞
red. type of E1 �, � ⊆, � �, ⊆ c′

c = 2 good good
red. type of E2 �, � ⊆, � good good �, ⊆ c′

c = 2
# cokerϕ�=2,p

#kerϕ�=2,p
= 1/2 2 1/2 1 1/2 1 1

# cokerϕ�=3,p

#kerϕ�=3,p
= 1/3 1/3 1 1 1 1 1/3

In total we have #X(B/Q) = #X(E1 × E2/Q) = �.

Now we have a look at N = 10. The elliptic curves over a number field K
with a rational 10-torsion point P are given by the Weierstraß equation

E : Y 2+(−d3+d2+d+1)XY −d2(d−1)(d+1)2Y = X3−d2(d−1)(d+1)X2,

P = (d3 − d, (d3 − d)2), 2P = (0, 0), 5P = (−d2, d4),

Δ = d10(d− 1)5(d+ 1)5(d2 − 4d− 1)(d2 + d− 1)2.

Thus if K = Q, then d ∈ Q \ {−1, 0, 1}. As usual we denote the isogeny having
〈P 〉 as kernel by η : E → E′. The coefficients a′1, a

′
2, a

′
3 for the dual curve E′

are the same as for E. The other two coefficients are

a′4 = −5d11−30d10−15d9+40d8+65d7−25d6−65d5+40d4+15d3−30d2+5d,

a′6 = −d17 − 18d16 − 56d15 − 40d14 + 180d13 + 151d12 − 207d11 − 79d10 + 65d9

−144d8 + 127d7 + 221d6 − 170d5 − 70d4 + 61d3 − 18d2 + d.

Let P̌ be a generator of the kernel of the dual isogeny η∨ : E′ → E. Thus

5P̌ = (−1/4 · (d6 + 14d5 − 5d4 − d2 − 14d+ 1),

−1/8 · (d9 + 13d8 − 20d7 − 10d6 − 14d5 − 12d4 + 20d3 + 18d2 + 13d− 1)).

We will give an unconditional example of a non-simple abelian surface B
over Q, such that #X(B/Q) = 10�. As in all the examples for N = 6, both
elliptic curves involved have analytic rank equal to 0, hence we can avoid com-
puting the regulator quotient and get the finiteness of the Tate-Shafarevich
groups. Further, E1 and E2 have negative discriminant, thus the local quo-
tient at infinity equals 1 for ϕ�=2 and 1/5 for ϕ�=5, by Lemma 3.1. Finally,
E′

1(Q) tors ∼= E′
2(Q) tors ∼= Z/2Z, hence we can use the next lemma to compute

the torsion quotient. Note that the Galois extension Q(μ5) has degree 4 and
class number 1 and that the only prime that ramifies is 5.

Lemma 3.25. Let E/Q be an elliptic curves with a rational 10-torsion point
P = (d3 − d, (d3 − d)2) corresponding to the parameter d ∈ Q \ {−1, 0, 1} as
above. Assume that E′(Q) tors ∼= Z/2Z. Then

(i) coker η∨Q,tors can be identified with 〈d(d2 + d− 1)〉× 〈d4(d− 1)(d+1)3〉 in
Q∗/Q∗2 ×Q∗/Q∗5, and

(ii) coker ηQ,tors can be identified with 〈(d − 1)(d + 1)(d2 − 4d − 1)〉 in
Q(μ5)

∗/Q(μ5)
∗2.
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Proof. We proceed as in Lemma 3.20. Let f2 := X + d2 and f5 := XY 2/(Y +
(d+1)X− (d5+d4−d3−d2)) be two functions in the function field of E. Then
div(f2) = 2(5P ) − 2(O) and div(f5) = 5(2P ) − 5(O). As f2(P ) ≡ d(d2 + d −
1) mod Q∗2 and f5(P ) ≡ d4(d− 1)(d+ 1)3 mod Q∗5 we get (i).

For (ii) note that coker η�=5,Q,tors is trivial. The map f∨
2 := X + 1/4 · (d6 +

14d5 − 5d4 − d2 − 14d + 1) fulfills div(f∨
2 ) = 2(5P̌ ) − 2(O). Two of the four

points of order 10 in ker η∨ have X-coordinate equal to (ξ3+ξ2−1)d6+(−3ξ3−
3ξ2)d5 + (−7ξ3 − 7ξ2 − 1)d4 + (6ξ3 + 6ξ2 + 3)d3 + (7ξ3 + 7ξ2 + 5)d2 + (−3ξ3 −
3ξ2 − 3)d + (−ξ3 − ξ2 − 2), where ξ ∈ μ5 is a primitive fifth root of unity. It
follows that f∨

2 (5P̌ ) ≡ (d− 1)(d+ 1)(d2 − 4d− 1) mod Q(μ5)
∗2. �

Example 3.26. (k = 10) If d1 = 5/2 and d2 = 8/5, then #X(B/Q) = 10�.
Proof. The Cremona label of E1 is 123690by1, where 123690 = 2 · 3 · 5 · 7 · 19 · 31
and the conductor of E2 is 338910 = 2 · 3 · 5 · 11 · 13 · 79. By Lemma 3.25, we get

coker η∨1,Q,tors = 〈2 · 5 · 31〉 × 〈22 · 3 · 54 · 73〉,

coker η∨2,Q,tors = 〈2 · 5 · 79〉 × 〈22 · 3 · 52 · 132〉,
coker η1,Q,tors = 〈−3 · 7 · 19〉, coker η2,Q,tors = 〈−3 · 13〉,

It follows that # cokerϕ∨
Q,tors = 22 · 52 and # cokerϕQ,tors = 1, and hence the

torsion quotient equals 22 · 53. The next table implies that the local quotient
equals 2−3 · 5−6.

p = 2 3 5 7 11 13 19 31 79 ∞
red. type of E1 �, � ⊆, � �, � ⊆, � good good c′

c = 2 �, ⊆ good
red. type of E2 �, � ⊆, � �, � good ⊆, ⊆ ⊆, � good good c′

c = 1/2
# cokerϕ�=2,p

#kerϕ�=2,p
= 1/2 2 1/2 1 1 1 1 1/2 1/2 1

# cokerϕ�=3,p

#kerϕ�=3,p
= 1/5 1/5 1/5 1/5 1 1/5 1 1 1 1/5

In total we have #X(B/Q) = 2 · 53 ·#X(E1 × E2/Q) = 10�.

3.5. Appendix. Cyclic isogenies with diagonal kernel, (k = 13)
We will loosen an assumption in the construction undertaken in Setting 2.33.

Instead of requiring that all points of the cyclic subgroup Gi ⊆ Ei are Q-rational,
we will merely demand that the Gi are Galois invariant. The next example
completes the proof of Theorem 1.5, as it shows the construction of a non-simple
non-principally polarised abelian surface B/Q, such that #X(B/Q) = 13 ·�.

Example 3.27. (k = 13) Consider the following two elliptic curves over Q

E1 : Y 2 = X3 −X2 − 1829X − 32115,

E2 : Y 2 = X3 −X2 − 1117108895940162813412069X

−454455515899292368353596150814715571.
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The first curve has Cremona Label 2352j1, where 2352 = 24 · 3 · 72. The second
curve is of conductor 135694178256 = 24 · 3 · 72 · 13 · 251 · 17681. The two elliptic
curves have cyclic 13-isogenies ηi : Ei → E′

i with isomorphic kernels, which is
due to Noam D. Elkies [5], as E1 and E2 are the quadratic twists with respect
to D = 7 of Elkies’ example.

Denote by ϕ : E1 × E2 → B the diagonal isogeny with respect to a Galois
equivariant isomorphism α : ker η1 → ker η2. Recall, that #X(B/Q) is indepen-
dent of the choice of α by Proposition 2.32. We claim that #X(B/Q) = 13 ·�.
Proof. The Mordell-Weil groups of all four elliptic curves E1, E2, E′

1, and E′
2

are trivial and the analytic ranks are all equal to 0. It is easy to see that this
implies that the global quotient equals 1 and we know that X(B/Q) is finite.
We claim that the local quotient at infinity equals 1. As 2 � degϕ = 13, we get
that cokerϕ∞ is trivial. To prove the claim it is sufficient to show that ker η1,∞
is trivial, too. The kernel polynomial of η1 is

(X3 −X2 − 1829X + 6301)(X3 + 195X2 + 7187X + 71569).

Denote by g1(X) the first factor and by g2(X) the second factor of this kernel
polynomial and by f(X) := X3 −X2 − 1829X − 32115 the defining polynomial
of E1. All six roots of g1 and g2 are real numbers and both factors g1 and g2
generate the same totally real Galois field of degree 3. Let x0 be a zero of g1(X).
As y20 = f(x0) = g1(x0)− 38416 = 0− 24 · 74, we get that y0 = ±22 · 72 · √−1 ∈
C \ R, which shows that ker η1,∞ is trivial.

Among the four elliptic curves Ei and E′
i, there are exactely two Tamagawa

numbers which are divisible by 13. These are c(E2)13 = 13 and c(E′
2)17681 = 13.

Note that c(E′
2)13 = 1 and c(E2)17681 = 1. One easily verifies that |η′i(0)|p = 1,

for all primes p and both i, hence by Corollary 2.23 we conclude that coker η1,p
is maximally unramified for all primes p and that coker η2,p is maximally un-
ramified for all p �= 13, 17681.

Using Hensel’s Lemma one easily checks that g1(X) and g2(X) both factor
into linear factors in Q13[X] and Q17681[X]. Since

√−1 also lies in Q13 and in
Q17681 it follows that ker ηi,13 and ker ηi,17681 both have 13 elements for both
i, hence H1(Q13, Ei[ηi]) ∼= H1(Q17681, Ei[ηi]) ∼= (Z/13Z)2 by Corollary 2.4.
As # coker ηi,p/#ker ηi,p = c(E′

i)p/c(Ei)p by Corollary 2.15, we immediately
deduce that coker η2,13 is trivial and that coker η2,17681 is maximal.

Applying the Key Lemma 2.30 we deduce that the local quotient equals 1,
for all p �= 13, 17681, as in this case cokerϕp is maximally unramified. Further
the Key Lemma implies that cokerϕ13 is trivial and hence the local quotient
for p = 13 equals 1/13, and that cokerϕ17681 is maximally unramified and thus
the local quotient for p = 17681 equals 1.

Putting everything together gives #X(B/Q) = 13·#X(E1×E2/Q) = 13·�.

Remark 3.28. We claim that Theorem 1.5 covers all cyclic cases, i.e. if E1

and E2 are elliptic curves over Q with finite Tate-Shafarevich groups and ϕ :
E1 ×E2 → B is a cyclic isogeny, then the non-square part of #X(B/Q) equals
one of the eight values {1, 2, 3, 5, 6, 7, 10, 13}. This is ongoing work in progress.
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