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1. Introduction

The study of geometrical objects is a very ancient problem. There are many questions 
in number theory which are related to triangles, rectangles, squares, polygons, and so 
forth. For example, there is the well-known congruent number problem which asks: given 
a positive integer n, does there exist a right triangle with rational side lengths whose area 
is n? As a second example, several researchers have related various types of triangles and 
quadrilaterals to the theory of elliptic curves. Both Goins and Maddox [5] and Dujella 
and Peral [4] constructed elliptic curves over Q coming from Heron triangles. Izadi, 
Khoshnam, and Moody later generalized their notions to Heron quadrilaterals [7]. In [9]
Naskręcki constructed elliptic curves associated to Pythagorian triplets, and Izadi et al.
similarly studied curves arising from Brahmagupta quadrilaterals [8].

Another problem connecting geometrical objects with number theory is devoted to 
the construction of triangles with area, perimeter or side lengths with certain arithmetic 
properties. Bill Sands asked his colleague R.K. Guy if there were triangles with integer 
sides associated with rectangles having the same perimeter and area. In 1995, Guy [6]
showed that the answer was affirmative, but that there is no non-degenerate right triangle 
and rectangle pair with the same property. In that same paper, Guy also showed that 
there are infinitely many such isosceles triangle and rectangle pairs. Several other works in 
this direction have been solved, all involving pairs of geometric shapes having a common 
area and common perimeter: two distinct Heron triangles by A. Bremner [1], Heron 
triangle and rectangle pairs by R.K. Guy and Bremner [2], integer right triangle and 
parallelogram pairs by Y. Zhang [13], and integer right triangle and rhombus pairs by 
S. Chern [3].

In this paper we continue this line of study. The first problem we examine regards 
integer isosceles triangles and integer parallelograms which share a common area and 
common perimeter. We then consider Heron triangle and integer rhombus pairs. Using 
the theory of elliptic curves we are able to prove that there are infinitely many examples 
of each type.

2. Integral isosceles triangle and parallelogram pairs

We first address the case of integral isosceles triangles and parallelograms which have 
a common (integral) area and common perimeter. As we are requiring the area of the 
isosceles triangle to be integral, then necessarily the altitude to the non-isosceles side of 
the triangle must be rational. By the general solution to the Pythagorean equation, we 
may take the equal legs of the isosceles triangle to have length m2 + n2, with the base 
being 2(m2 − n2) and the altitude 2mn, for some rational m, n. The perimeter of the 
triangle is 4m2, with an area of 2mn(m2 − n2). See Fig. 1.

For the parallelogram, we let p, q be the consecutive side lengths, with their intersec-
tion angle θ. The perimeter of the parallelogram is 2(p + q), while the area is pq sin θ. 
In order for the two areas to be equal, then sin θ must necessarily be rational. We as-
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Fig. 1. An isosceles triangle and parallelogram.

sume a stronger condition, namely that sin θ = 2t/(1 + t2), from which it follows that 
cos θ = (1 − t2)/(1 + t2) is also rational.1 So we will actually produce isosceles triangles 
with the same area and perimeter as parallelograms whose angles have rational values 
for sine and cosine. We call a polygon θ-integral if the polygon has integer side lengths, 
integral area, and its interior angles have rational values for sine and cosine.

Theorem 2.1. Let P = (X, Y ) be a rational point on the elliptic curve

Y 2 = X3 − 16t2(1 + t2)2X + 64t4(1 + t2)2 (1)

such that

0 < |X| < 4t(1 + t2), Y < 8t2(1 + t2) (2)

for some rational 0 < t ≤ 1. Then there exist infinitely many integer isosceles triangle 
and θ-integral parallelogram pairs with a common area and a common perimeter for this 
value of t, i.e. with sin θ = 2t/(1 + t2).

Proof. Equating the perimeters and areas, we have

2mn(m2 − n2) = pq sin θ,

2m2 = p + q,
(3)

where θ is chosen such that sin θ = f(t) = 2t/(1 + t2), with t a positive rational number. 
Since f(t) = f(1/t) we may assume that 0 < t ≤ 1.

Equation (3) can be transformed into a family of elliptic curves as follows. Starting 
with

(p− q)2 = (p + q)2 − 4pq,

1 We note that if we do not require sin θ and cos θ to both be rational, it is trivial to produce a parallelo-
gram with the same perimeter and same area as any given triangle. If a given triangle has perimeter P and 
area A, we could simply set p = q = P/4. Then for the areas to be equal, we would need (P 2/16) sin θ = A, 
or in other words θ = sin−1(16A/P 2). In order for cos θ to be rational, an easy calculation shows that 
P 4 − 16A2 would need to be square, a condition which will not hold in general.
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then from equation (3), we obtain

(p− q)2 = 4m4 − 8mn(m2 − n2)(t2 + 1)/(2t),

or equivalently

((p− q)/(m2))2 = 4 − 4((n/m) − (n/m)3)((1 + t2)/t).

Setting p−q
m2 = Y

4t2(1+t2) and n
m = X

4t(1+t2) , the resulting equation becomes

Et : Y 2 = X3 − 16t2(1 + t2)2X + 64t4(1 + t2)2. (4)

The discriminant of Et is

Δ(t) = −212(1 + t2)4(4t4 − 19t2 + 4).

For rational 0 < t ≤ 1, Δ(t) �= 0, hence Et is nonsingular and defines an elliptic curve.
It is easy to check the following three rational points are on Et:

P1(t) = (0, 8t2(1 + t2)),

P2(t) = (−4t(t2 − 1), 8t2(t2 + 2t− 1)),

P3(t) = (4(t2 + 1), 8(t2 + 1)2).

In fact, we can show these three points are independent, and that the rank of Et over Q(t)
is ≥ 3 for all but finitely many values of t. We do so using the Silverman Specialization 
Theorem [11, Theorem 11.4]. If we find a value t = t0 such that P1(t0), P2(t0), and 
P3(t0) are linearly independent on Et0 , then the three points P1(t), P2(t), and P3(t)
are necessarily independent over Q(t). Setting t0 = 3, the curve E3 is then y2 = x3 −
14400x + 518400, with the three points (0, 720), (−96, 1008), (40, 80). We check they 
are independent by computing the determinant of their height pairing matrix, which is 
non-zero ≈ 0.3266, as computed by SAGE [10]. Thus the rank of Et is at least 3 (over 
Q(t)), and we have that there are infinitely many points on Et, for all but finitely many 
values of t.

Given a point (X, Y ) on the curve Et, we can reverse the correspondence to construct 
the isosceles triangle and parallelogram pairs. From the transformations used above, we 
have

n = mX

4t(t2 + 1) , p = m2(8t4 + 8t2 + Y )
8t2(t2 + 1) ,

and

q = m2(8t4 + 8t2 − Y )
2 2 .
8t (t + 1)
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The sides of the isosceles triangle then become (up to scaling),
{
X2 + 16t2(t2 + 1)2, X2 + 16t2(t2 + 1)2, 2(16t2(t2 + 1)2 −X2)

}
.

The sides {p, q} of the parallelogram are given by
{
2(t2 + 1)(8t2(t2 + 1) + Y ), 2(t2 + 1)(8t2(t2 + 1) − Y )

}
.

In order for all the side lengths to be positive rational numbers, we need the conditions

0 < |X| < 4t(t2 + 1), Y < 8t2(t2 + 1)

to be satisfied.
To show there are infinitely many rational points on Et meeting these constraints, we 

use a theorem of Poincaré and Hurwitz (see [12, p. 78]) about the density of rational 
points. Their theorem states that if an elliptic curve E(Q) has positive rank and at most 
one torsion point of order two, then the set E(Q) is dense in E(R). The same result 
holds if E has three torsion points of order two, under the assumption that we have a 
rational point of infinite order on the bounded branch of the set E(R). The curve Et

always has one real 2-torsion point. We note that if the curve Et has three real points of 
order two (for some 0 < t ≤ 1), then the point (0, 8t2(1 + t2)) is easily seen to be a point 
of infinite order on the bounded branch. Thus, if there is a rational point P satisfying 
equation (2), then Et has infinitely many rational points satisfying equation (2) by the 
density theorem. �
Corollary 2.2. For every rational number 0 < t ≤ 1, there are infinitely many pairs of 
integer isosceles triangles and θ-integral parallelograms which have a common area and 
a common perimeter, with sin θ = 2t/(1 + t2).

Proof. Given any rational 0 < t ≤ 1, note the point P (t) = (4t2, 8t3) is on the curve Et. 
Considering its x and y-coordinates, we see that X = 4t2 > 0 for all t �= 0, and also 
that |X| = 4t2 < 4t(1 + t2) which is true for all 0 < t ≤ 1. In addition, we have 
Y = 8t3 < 8t2(1 + t2) which is similarly always true for 0 < t ≤ 1.

Thus the conditions of Theorem 2.1 are satisfied by the point P for this value of t, 
and the conclusion immediately follows. �

As a special case of the corollary, we have a new proof of the following result, first 
established by Guy [6].

Corollary 2.3. There are infinitely many integer isosceles triangles and integer rectangles 
which have a common (integral) area and common perimeter.

Proof. By setting t = 1, then θ = π/2, and the parallelogram is a rectangle. The result 
is immediate from Corollary 2.2. �



JID:YJNTH AID:5758 /FLA [m1L; v1.218; Prn:8/06/2017; 14:14] P.6 (1-11)
6 P. Das et al. / Journal of Number Theory ••• (••••) •••–•••
Fig. 2. An example of an integral isosceles triangle and parallelogram, both of which have a perimeter of 100 
and an area of 420.

We can use the proof of Corollary 2.2 to produce explicit examples of the desired 
isosceles triangles and parallelograms. Using X = 4t2 and Y = 8t3, we find that (after 
re-scaling) the sides of the isosceles triangle may be taken to be

{
1 + 3t2 + t4, 1 + 3t2 + t4, 2(1 + t2 + t4)

}
,

and the corresponding sides of the parallelogram are

{
(1 + t + t2)(1 + t2), (1 − t + t2)(1 + t2)

}
.

The perimeter of each is 4(1 + t2)2, while the area is 2t(1 + t2)(1 − t + t2)(1 + t + t2).
As a concrete example, take t = 1/2, or equivalently t = 2. The resulting integer 

isosceles triangle has sides {29, 29, 42} and the θ-integral parallelogram has sides {15, 35}
with angle θ = sin−1(4/5). The triangle and parallelogram each have a perimeter of 100, 
and an area of 420 (Fig. 2).

We similarly can set t = 1 to obtain an isosceles triangle and rectangle pair. In this 
case, the triangle has side lengths {5, 5, 6} with a perimeter of 16 and an area of 12. The 
rectangle with the same perimeter and area has sides of length 2 and 6.

3. Integral Heron triangle and rhombus pairs

In this section, we prove the result that there are infinitely many Heron triangles and 
θ-integral rhombus pairs which have both a common area and common perimeter. Recall 
that a Heron triangle is a triangle whose side lengths and area are all integers. Every 
Heron triangle, as proved by Brahmagupta, has the sides of the form

{
(v + w)(u2 − vw), v(u2 + w2), w(u2 + v2)

}
,

where u, v, w ∈ Z.
Let p be the length of the side of the rhombus, and θ its smallest interior angle. As 

before, we require the rhombus to be θ-integral, or in other words, that both sin θ and 
cos θ are rational. Hence, we may write sin θ = 2t/(t2 + 1), for some 0 < t ≤ 1.
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Theorem 3.1. Let Q = (X, Y ) be a rational point on the elliptic curve

E′
t : Y 2 + 4(1 + t2)XY + 16t2(1 + t2)Y = X3 (5)

such that

4(1 + t2)Y > X2, (6)

for some rational 0 < t ≤ 1. If the point Q is not of finite order, then there exist infinitely 
many Heron triangle and θ-integral rhombus pairs with a common area and a common 
perimeter for this value of t, i.e. with sin θ = 2t/(1 + t2).

Proof. If we equate the perimeters and areas of the Heron triangle and θ-integral rhom-
bus, then

uvw(v+w)(u2 − vw) = p2 sin θ,

u2(v + w) = 2p.

Combining these equations, and writing sin θ = 2t/(1 + t2), we get

uvw(v + w)(u2 − vw) = 2tu4(v + w)2

4(1 + t2) .

Setting X1 = w
u , Y1 = 2tw

v , and noting that 2tX1
Y1

= v
u , the above equation transforms 

into

Y 2
1 − 4(1 + t2)X1Y1 + 2tY1 = −8t(1 + t2)X3

1 . (7)

Multiplying by (8t(1 + t2))2, and substituting X2 = −8t(1 + t2)X1 and Y2 = 8t(1 + t2)Y1, 
we end up with

E′
t : Y 2

2 + 4(1 + t2)X2Y2 + 16t2(1 + t2)Y2 = X3
2 . (8)

The discriminant of E′
t is

Δ(t) = 216t6(1 + t2)4(4t4 − 19t2 + 4).

For rational 0 < t ≤ 1, Δ(t) �= 0, hence E′
t is non-singular and defines an elliptic 

curve. We note that the curve E′
t has no obvious rational points. In comparison to Et of 

Theorem 2.1, the curve E′
t frequently has rank 0, meaning there are not infinitely many 

rational points.
Working the correspondence backwards, we find that after scaling we may take 

(u, v, w) = (Y1, 2tX1, X1Y1). Re-scaling again, some straightforward calculation leads 
to the sides of the Heron triangle being
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{
(Y1 + 2t)(Y1 − 2tX2

1 ), 2tY1(1 + X2
1 ), Y 2

1 + 4t2X2
1
}
,

and the side of the rhombus as Y1(Y1 + 2t)/2.
In order for the rhombus to have positive side length, we need Y1 > 0 or Y1 < −2t. 

If we require Y1 < −2t, then the Heron triangle side length 2tY1(1 + X2
1 ) is always 

negative. If instead we take Y1 > 0, then two of the three triangle sides are necessarily 
positive, with the third side being (Y1 + 2t)(Y1 − 2tX2

1 ). We thus take as our condition 
the inequality Y1 > 2tX2

1 . In terms of X2, Y2, this is

4(1 + t2)Y2 > X2
2 .

By the same density argument as used in Theorem 2.1, we can conclude that if we 
have a point (X2, Y2) of infinite order on E′

t satisfying the inequality, then we will have 
infinitely many pairs of integer Heron triangles and θ-integral rhombuses which have a 
common area and common perimeter. �

In contrast to Corollary 2.2, we are not able to show that for every value of t, 0 < t < 1, 
we can produce infinitely many pairs of integer Heron triangles and rhombuses with our 
desired properties. The difficulty comes when the rank of E′

t is 0. However, we can show 
there are infinitely many values of t for which the hypotheses of the previous theorem 
are satisfied.

Corollary 3.2. For infinitely many values of t, with 0 < t < 0.4292535, there exist in-
finitely many integer Heron triangle and θ-integral rhombus pairs with a common area 
and a common perimeter.

Proof. We begin by showing that E′
t has positive rank for infinitely many rational values 

of t. Suppose we require X ′ = −16t2(t2 + 1) to be the x-coordinate of a rational point 
on E′

t. This constraint is equivalent to requiring −(48t4 + 40t2 − 9) to be square. The 
equation z2 = −48t4 − 40t2 + 9 is birationally equivalent to the elliptic curve

E′ : y2 = x3 − x2 + 5x− 14,

via the maps

x = −4t2 + 3z − 9
8t2 , y = 3(20t2 + 3z − 9)

16t3 ,

and

t = 3y
2(x2 + x + 7) , z = 3(x2 − 4x− 9)

x2 + x + 7 . (9)

The curve E′ has rank 1, with generator (6, 14) and therefore has an infinite number of 
rational points (x, y). From which, we obtain an infinite number of values of t for which 



JID:YJNTH AID:5758 /FLA [m1L; v1.218; Prn:8/06/2017; 14:14] P.9 (1-11)
P. Das et al. / Journal of Number Theory ••• (••••) •••–••• 9
X ′ will be a valid x-coordinate of a rational point on E′
t. It is easy to check this point 

(X ′, Y ′) has infinite order, showing an infinite number of values of t for which E′
t has 

positive rank.
The upper bound we use for t comes from solving −48t4 − 40t2 + 9 = z2 > 0, 

which results in |t| <
√
−15 + 6

√
13/6 ≈ 0.4292535. In order for 0 < t < 0.4292535

as desired, we simply note that (t, z) and (−t, z) are additive inverses on the curve 
z2 = −48t4 − 40t2 + 9, as seen by the birational maps (9). Thus (t, z) is of infinite order 
if and only if (−t, z) has infinite order. We thus obtain infinitely many values for t, with 
0 < t < 0.4292535, such that E′

t has positive rank.
The point with x-coordinate X ′ = −16t2(1 + t2) corresponds to X1 = 2t on the 

curve defined by (7). We claim that the resulting point (X1, Y1) will always satisfy the 
inequality Y1 > 2tX2

1 , which (as we saw in the proof of the Theorem 3.1) is equivalent 
to (6).

The point on E′
t with x-coordinate X ′ = −16t2(t2 + 1) is (X ′, Y ′), with Y ′ =

8t2(t2 + 1)(3 + 4t2 ± z). The inequality we need to check is X ′ 2 < 4(1 + t2)Y ′, or 
equivalently

256t4(t2 + 1)2 − 32t2(t2 + 1)2(3 + 4t2 ± z) < 0,

which simplifies to just 4t2 − 3 < ±z. We note that

0 < z2 = −48t4 − 40t2 + 9

= −3(4t2 − 3)2 − 28(4t2 − 3) − 48,

and so necessarily 4t2−3 < 0. Thus, for any point (t, z) satisfying z2 = −48t4−40t2−9, 
the pullback to E′

t (8) of either (t, z) or (t, −z) will satisfy X ′ 2 < 4(1 + t2)Y ′.
Recall the inequality (6) was to ensure the sides of the triangle and rhombus had 

positive length. We see the resulting Heron triangle corresponding to (X ′, Y ′) has side 
lengths

{
(3 − 4t2 + z)(5 + 4t2 + z), 2(1 + 4t2)(3 + 4t2 + z), 2(3 + 4t2)(3 − 4t2 + z)

}
,

while the rhombus has side length 4(t2 + 1)(3 − 4t2 + z). The common perimeter is 
16(t2 + 1)(−4t2 + 3 + z), and the common area is 32t(t2 + 1)(−4t2 + 3 + z)2.

We have shown that we have infinitely many values of t, with 0 < t < .4292535 such 
that the curve E′

t has positive rank. For each of these values of t, (6) will be satisfied 
by (X ′, Y ′). We observe that (X ′, Y ′) does not have finite order by specialization. For 
t = 3/7, then we can take z = 9/49 and so (X ′, Y ′) = (−8352/2401, 801792/117649). 
The point (X ′, Y ′) is easily checked to have infinite order on E′

3/7. The conclusion then 
immediately follows from Theorem 3.1. �

We remark that the choice of X ′ = −16t2(t2 + 1) was not the only possible choice for 
a point on E′

t. Other choices of X ′ which lead to a positive rank curve E′ would similarly 
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Fig. 3. An example of an integral Heron triangle and Rhombus, both of which have a perimeter of 464 and 
an area of 9744.

work as well. We chose X ′ so that X1 = X ′/(−8t(1 +t2)) would have a simple expression. 
With another choice, it could be possible to extend the results of the corollary slightly 
past 0.4292535. However, for any t in the interval (3

√
3−

√
11)/4 ≈ 0.46988 < t ≤ 1, the 

discriminant of E′
t satisfies Δ(t) < 0 and the curve only has one connected component. 

A careful analysis shows the infinite (and only) component of (7) lies beneath y = 2tx2. 
We therefore cannot find any rational points which will satisfy (6) for any t in this 
interval.

We now give a concrete example of a Heron triangle and an integer rhombus.

Example 3.3. Corresponding to the generator (6, 14), we get t = 3/7, and thus (X1, Y1) =
(6/7, 576/343). This leads to a Heron triangle with sides (a, b, c) = (145, 136, 183) and 
the rhombus with side p = 116, and θ = sin−1 = 21/29. Both shapes have perimeter 464 
and area 9744 (Fig. 3).

Corollary 3.4. There is no pair of integer Heron triangle and integer square with the 
same area and same perimeter.

Proof. We utilize the proof of Theorem 3.1. As a square has right angles, then sin θ = 1, 
and thus t = 1. We therefore put t = 1, in (8), and we have

E′
1 : y2 + 8xy + 32y = x3. (10)

As computed by SAGE [10], the rank of E′
1 is zero and its torsion subgroup is isomor-

phic to Z3, with points of order three (0, 0) and (0, −32). If we map back these points 
via the transformations (7) and (8), we are led to X1 = 0 and so w = 0, which is a 
degenerate case. Thus there is no solution. �
4. Conclusion

We have proved that there are infinitely many isosceles triangle and θ-integral paral-
lelogram pairs with common area and common perimeter. We have also shown that there 
are infinitely many Heron triangle and θ-integral rhombus pairs with the same property, 
while there does not exist any such Heron triangle and square pair.
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In this direction, a more general question remains to be answered which asks whether 
there exist pairs of Heron triangles and (non-rhombus) parallelograms with a common 
area and common perimeter. This is also discussed in [13] and a partial solution in the 
affirmative is also given there.

We conclude by noting that while proving Theorem 2.1, we showed that the rank of 
Et is greater than or equal to 3 for infinitely many values of t. Therefore, it might be 
interesting to find whether there exist curves in this family with high rank. We performed 
some experiments, and the curves with the highest rank we found had rank 5.
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