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of circular units. The idea of taking roots can also be applied to Gauss sums. For certain
imaginary cyclic fields this approach leads to new annihilators of the ideal class group.

Let £ be a fixed odd prime number. Let K be a cyclic number field of /-power degree
d= (" =[K:Q]. Let p1,...,p; be the primes ramified in K/Q. Let F be an imaginary
cyclic number field whose degree r = [F': Q] is not divisible by ¢. Hence the compositum
L = FK is cyclic, too. We suppose that £ does not ramify in L/Q. Let f be the conductor
of F and m be the conductor of K, so £{ fm. We assume that f and m are relatively
prime, i.e., the product fm is the conductor of L. For every prime number ¢ and every
ideal A C Z[Gal(L/Q)] we shall denote AZ,[Gal(L/Q)] by A,.

We begin with a module generated by Gauss sums. Distribution relations satisfied by
these sums allow us to work with some Sinnott module instead. It is more convenient,
since in [3] Greither and Kucera described the image of its top generator in any linear
form. This allows us to prove that a nontrivial root of a certain modified Gauss sum be-
longs to L. Factoring this nontrivial root gives rise to an element &% of the integral group
ring Z[Gal(L/Q)]. In the same fashion we shall construct an element ¢ € Z[Gal(M/Q)]
for every imaginary subfield M C L. The ideal of Z[Gal(L/Q)] generated by the core-
strictions of all these elements will be denoted by J*. In this paper we shall prove:

Theorem 9.5. The ideal J* annihilates the ideal class group CI(L) of L.

In order to decide whether J£ contains new annihilators or not, we compare J £ o
T* which is essentially the minus part of the Stickelberger ideal of the field L. Even
though we are unable to determine the index [J*: Z%] in general, we can compute the
index [7£: T] for almost all primes ¢ (see Theorem 9.4). It can be shown that the index
[JF: ZF] is greater than 1 if and only if there exist at least two primes ramified in K/Q
which split completely in F/Q where Fp is the smallest imaginary subfield of F.

The case of F' being a quadratic imaginary field was already studied by Greither and
Kucera in [2, section 6]. Using our approach one may obtain even stronger annihilation
result in this concrete situation. A detailed comparison of these results is provided at
the end of Section 9.

1. Cyclotomic polynomials

This section is devoted to a result on polynomials with integral coefficients which we
shall need later on. Even though the following lemma is probably well-known and it
might have been already published, the author could not find any source.

Lemma 1.1. Let F,G € Z[X] be polynomials which have no common root in C and
suppose that F is monic. Then the index of the ideal (F,G) in Z[X] is equal to the
absolute value of the resultant of F and G, i.e. we have

21X)/(F.G)| = [Res(F.G)|.



P. Francirek / Journal of Number Theory 213 (2020) 187-220 189

Proof. At first, let us suppose that G is also monic, so we can write
FX)=X"4+u X" '+ +a, 1 X +a,
and
G(X)= X"+ X5 -+ b1 X + by,

where a; and b; are integers. If F' =1 or G = 1, then the lemma holds, so we can assume
that both s and n are at least 1. Third isomorphism theorem gives us the following
isomorphism of groups

ZIX]/(F,G) = Z[X]/(F-G)/(F,G)/(F.G).

Let X be the class of Z[X]/(F-G) containing X. Clearly Z[X]/(F-G) is a free Z-module
of rank n + s and the elements 1, X,..., X
no common root in C, every element of the ideal (F,G) can be uniquely expressed in

" form its Z-basis. Since F and G have

the form
uw-F+v-G+w-F- -G

with u,v,w € Z[X] satisfying degu < degG and degv < degF'. It follows that the
following s + n elements

s—1

FX),XFX),.... X" 'F(X),6¢(X),XG(X),...,. X" 'a(X)

form a Z-basis for

Therefore the index
[Z[X]/(F - G): (F,G)/(F - G)]

is finite and it is equal to the absolute value of the following determinant

1 0 0 1 0 0
a1 1 0 b1 1 0
az  ax 0 b b 0
o 1

Qp  Ap—1 " by bs_1 7

0 Qp, 0 bs
Gp—1 e bs—1

0 0 a, 0 0 bs
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which is the resultant Res(F, G). We shall suppose now that G is not monic. We take
the following polynomial

H=Xx"del . p 1 qez[X].

Clearly H is monic and we have (F,G) = (F, H). Therefore it only remains to show the
equality of resultants Res(F,G) = Res(F, H). Let a1, aa,...,a, € C be all the roots of
F. Then we have

Res(F, H) = [[ H(:) = [J (™ F(ew) + G(ew)) = [ [ Glci) = Res(F, G)

i=1 i=1 i=1

and the lemma follows. O
The sth cyclotomic polynomial will be denoted by ®,.
Proposition 1.2. Let s,n,s < n be positive integers. Then we have

p?(s) if L= p* for some prime p,

|Z[Cn]/(¢)a(gn))| = {

1 otherwise.
Proof. Tt follows immediately from [1, Theorem 4] using Lemma 1.1. O

Proposition 1.3. Let n,ry,ro, ..., 1, be positive integers such thatr; | n foralli=1,...,u
and r; {rj for all i,5, 1 % j. For everyi=1,2,...,u we define

X" -1
filX) = =1|_[<I’j(X)-
jln
JAri
For eachi=1,...,u we put

9i(X) = ged(f1(X), f2(X), ..., fi(X)).

Then for each v =1,...,u we have

209/ (8 )| =

Proof. We prove this by induction on 4: if i = 1 then g; = fi. Assume that i > 2 and
that the lemma has been proved for ¢ — 1. The induction hypothesis gives the following

( fl ’ fQ 7"'afz:1> :(1)7
gi—1 gi—1 gi—1

equality of ideals in Z[X]
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hence

(ﬁ é fi—l): (gi—1>
gi’gi7...7 Gi gi )

(ﬁ é fiz1 ﬁ)_(gi—l ﬁ)
gi’gz"m’ i ,gi gi ,gi '

It can be easily shown that

It follows that

gi—1(X) _ fi(X)
= ®,;(X) and = D, (X).
Ji (X) }|_7[L ’ 9:(X) j}’_j[h"i ’
AT, gtrio 1, Jae{l,..,i-1}: jlra,

Therefore we obtain using Lemma 1.1 that

78/ ()| = e (5 fﬁ)\ [IILretes

J1 J2

_HH‘Z ]1? 2)|7

Jji J2

where neither of 2 and 22 is an integer. Proposition 1.2 gives
J2 J1
|Z[X]/(®j,,®;,)| =1 for all ji, jo

Ju

and the result follows. O

Corollary 1.4. Keep the same notation as above. For every i = 1,2,...,u there exists
P, € Z[X] such that

Zpifi = Gu-
=1

Proof. Lemma 1.3 implies that

23 /(55 )| =1,

which is equivalent to
N [ Ju
<_7_7"'7_ :(1)
Gu Gu Gu

This means that for every i = 1,2, ..., u there exists P; € Z[X] such that
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u
i
;Plgu 1.

Multiplying both sides by g, proves the corollary. O
2. Distribution relations for Gauss sums

For any positive integer n let ¢, = €2™/™. Let us fix a prime number p = 1 (mod fm).
Fix a prime P of Q((fy) dividing p. Let w: F)* — ((ym) be the fm-th power residue
symbol determined by 9, i.e. for any a € Z[(f,] such that P { a we have

w(a mod P) = aP~ V™ (mod P).

Let ¢: F, — Q((p) be the usual additive character of Fp, i.e. ¥(c) = (. For any
multiplicative character x: F,* — C* we define the Gauss sum

p—1
906Y) == > x(e)v(o).
c=1
For any n | fm let x,: F)* — ((,) be the multiplicative character of F)¢ given by

_fm
Xn =W .

For any a € Z we set

z(a,n) = {1’ itnfa (1)

g(xs, )", otherwise,

where 7 is the complex conjugation. The following lemma describes basic properties
of the numbers z(a,n). For any n | fm and any integer b relatively prime to n let
opn € Gal(Q(¢y)/Q) be the automorphism determined by ¢, — (5.

Lemma 2.1. For any n | fm, any a € Z and any b € Z relatively prime to n we have

1. z(a,n) € Q(n)-
2. z(a,n)%%» = z(ab,n).
3. z(ag,n) = z(a,n/q)? for any prime q | n.

Proof. The first two properties follow from [8, Lemma 6.4] and for any prime ¢ | n we
have

2(ag,n) = g(xi% )" = g(xG ) )P0 = 2(a,n/g)?. D
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Let ¢ be a prime number. Let ¢* be the highest power of ¢ dividing fm, so we can
write fm = ¢%b with b relatively prime to ¢. By Frob(q) we shall denote the unique
element of Gal(Q((fm)/Q) satisfying

resQ(Cfm)/Q(an)Frob(q) =id and reSQ(Cfm)/Q(Cb)Frob(q) =0gb-

If there is no danger of confusion all its restrictions will be also denoted by Frob(q).
We remark that our number z(a, n) is equal to 2 (—1)P=1/2 which is defined in [2,

section 5].

Proposition 2.2. Let n | fm. Let s > 1 be a power of a prime q dividing n. Then we have

z(l,n/s)s(l_FrOb(qu) if (57n/5) =1,

N z(1,n)) =
Q(Cn)/Q(Cn/S)( ( )) {z(l,n/S)é otherwise.

Proof. It follows from [2, Corollary 5.2] and [2, Corollary 5.3] using z(a,n) = 2

(-, o

Let I = {1,...,t} be the set of indices of primes ramified in K/Q. For each i €
let K; be the unique subfield of the p;-th cyclotomic field Q((,,) whose degree is equal
to the ramification index of p; in K/Q. For every subset 7' C I let my = [[;c, ps and
Ly = FKrp, where Kp = [, K, the compositum of fields K; for i € T. Then Kj is
the genus field of K and L is a subfield of L;. Let Gr = Gal(Lt/F). Each group Gr
may be canonically identified (via restrictions) with the product of the groups G';3 with
i running over T. Finally, let J = {1,...,t+ 1} and G; = Gal(L;/Q). So Gr is also
canonically (via restriction) identified with the subgroup Gal(L;/L;_r) of G ;. For any
T C I we define

2fm

o1 = NQ(¢fmy)/Lr (2(1, frir)) ™7 . (2)
Corollary 2.3. The system of numbers xp € Ly, T C I, satisfies distribution relations,
i.e. for anyT C 1 and any i € T we have

1—Frob(p;) "
NLT/LT—{i}(xT) = xT—{i(; v

Proof. For any 7' C I and any ¢ € T we have by Proposition 2.2

2fm

NLT/LT—{z‘} (IT) = NQ(CfmT)/LT—(i} (Z(l’ fmT)) nr

2fm
= NQ(CfmT,{i})/LTf{i} <NQ(CfmT)/Q(CfmT{i})(z(17 fmT)) " >

2fm(1—Frob(pi)71>
= NQ(CfmT_“})/LTf{i} (Z(l; fmT—{i}) mr_{i} )
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2f7n(17Fr0b(pi)_1)
= NQ ¢y )/ Lroy (2L fr—gy)) 770
_1-Frob(p))~"
=Tr iy . O

3. Sinnott module

Recall that J = {1,2,...,t+1} and G; = Gal(L;/Q). We also recall that the numbers
ar were defined by (2). Now for each T' C J we define

TT{t+1}s ift+1eT
yr = .
1, otherwise.

Let U’ be the Sinnott module defined in [3] for v = t + 1, T; = Gy for i # ¢t + 1,
Ti11 = Gal(L;/Ky), A; = Frob(p;) for ¢ # t + 1 and My = id. Since the complex
conjugation 7 lies in Gal(Ly/Kr) for each T C I we have

N, ke (Yroge+1y) = Nogygqe (2r) = 1. (3)
Let D be the Z[G ]-submodule of L} generated by yr,T C J.
Lemma 3.1. There is a surjective homomorphism of Z[G j]-modules
v:U =D
determined by v(o';_p) = yr for allT C J.

Proof. This follows from Corollary 2.3 and (3) using the presentation of U’ given by [3,
Corollary 1.6(1)]. DO

For any i € J, the kernel of the natural map
Z[Gy] = Z[G 5/ (N, Ti))

will be denoted by I;. The ideal I; is generated by A; — 1 and g — 1 for all g € T;. For
any H C Gylet s(H) =3 ,.4h¢cZ[G,].

Proposition 3.2. Let H be a subgroup of Gy and ¢ € HomZ[p]((U’)H,Z[F]) where I' =
Gy/H.

(i) There is ¢ € Homgg,|(U’, Z[G ]) such that ¢|qyu = cor o .
(ii) We have

t4+1
o(s(H)py) € res H I,

i=1
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where cor: Z[I'] — Z[G;] and res: Z|G ;] — Z[I'| means the corestriction and re-
striction maps, respectively.

Proof. Part (i) can be proved in the same way as part (i) of [3, Corollary 1.7]. It follows
immediately that

corres (o)) = s(H)w(ph) = cor (s(H)p}).

This means that rest(pfy) = @(s(H)pj;) because cor is injective. Using part (i) of [3,
Theorem 1.1] we obtain that

t+1

i=1

hence

t+1

o(s(H)py) = resv(pp) € res Hli
i=1

and the lemma is proved. O
4. Extracting roots

The aim of this section is to show that one may extract certain roots of modified
Gauss sums. Recall that » = [F': Q] and d = [K: Q]. For each ¢ € I let n; be the index
of the decomposition group of p; in Gal(K/Q). Let e; be the ramification index of p; in
K. By f; and s; we shall denote the degree of inertia of p; in K and F, respectively. The

quotient r/s; will be denoted by u;. Hence n;, u;, and n;u; equals the number of prime
ideals dividing p; in K, F', and L, respectively. We have

L
K
F
\5\ n;fie;
Q

Now we fix a generator v of Gal(L/Q). We define

Xmiti 1 fori eI,
9:(X) = ‘
X -1, fori=t+1.
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Lemma 4.1. Let H = Gal(L;/L) C G;. For each i € J we have

res [; C (gi(’Y))ZK’Y”v

where res: Z|G j] — Z[Gy/H] is the restriction.

Proof. Clearly we have resI; C (v — 1)Z[{v)] for all i € J. Now suppose i € I. Since I;
is generated by Frob(p;) — 1 and g — 1 for all g € Ty, it suffices to show that res Frob(p;)
and res g lies in (y™%i). For each g € T; we have

g =id,

therefore

Siuinifi>

resg € {7y
Since s; and e; f; are coprime, the order of res Frob(p;) € Gal(L/Q) divides s; fie;, so
res Frob(p;) € (y"").
Clearly both resFrob(p;) and all res g lie in (y™*¢) and the lemma follows. O

For each ¢ € I let M; be the decomposition field of p; in L, so M; is the maximal
subfield of L where the prime p; splits completely, and let M;, 1 = Q. Now define
h(X) € Z[X] as the least common multiple of polynomials g; for i € J. Observe that for
every 7 € N we have

;i (X) | h(X) = XTI —1|h(X). (4)
We put
J(X) = ged(g1, G2, - - - Ger1),
where
~ - er -1
Hence
FX)-h(X)=X"" -1
Let
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Lemma 4.2. The polynomials H(X) and f(X) are coprime.

Proof. If ®;(X) | f(X) then ®;(X) | ;(X) for each ¢ = 1,...,t + 1. It follows that
®,;(X)1gi(X) foreachi=1,...,t+ 1. Hence ®;(X)t H(X). D

Recall that D is the Z[G,]-module generated by yr. Let R = Z[(v)]/(f(7)) =
Z[X]/(f(X)). Then

M={aeDNL;afO =1}
is an R-module.
Lemma 4.3. The Z-module D N L has no Z-torsion.

Proof. Using (2), it follows from the definition of the numbers y that any element of D
is a 2f-th power in L. Therefore any o € D N L satisfying a® = 1 for a positive integer
¢ is the 2 f-th power of a root of unity in L;. We assume (f,m) = 1, hence any root of
unity in L; is the product of a root of unity in F' and a root of unity in K, and since
K7 is real, such a root of unity belongs to F', and so its 2f-th power equals 1. Thus
a=1. 0

It is easy to see that g;(7) is the norm operator with respect to L/M; for each i € J.
Let

M; = {OZ eD ﬂL,NL/MZ(OZ) = 1}
Corollary 4.4. We have M = (2] M,.

Proof. Clearly M C ﬂf:} M. Now we shall prove the other inclusion. Let a € ﬂfii M;
be an arbitrary element. We have

adi () =1

for all « = 1,...,t + 1. Using Bézout’s identity in Q[X]| we deduce that there exist
polynomials vy, ...,v;41 € Z[X] and a positive integer n such that

01(X)g1(X) +02(X)g2(X) + - -+ + 0141 (X)Ge41 (X) = nf(X).

It follows

t+1
™) = g (MI (N ++vep 1 (VNG (v) — H(a.«ii(v))vi(v) = 1.

i=1

Since D N L has no Z-torsion by Lemma 4.3, we must have of(") = 1, hence o belongs
toM. 0O
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Lemma 4.5. Let z =Ny, /1 (ys) = Np,/p(z1). Then z € M.

Proof. By Lemma 4.4 it is enough to show that z € M, for all ¢ € J. For i =t + 1 we
have 7 € Gal(L;/Q), hence

NrjQ(z) =Ny qzr) =1.

Since Lj_y4) is the maximal subfield of Ly where p; is unramified, M; is a subfield of
L;_g; for each i € I, and we have

Np/m,(2) = Npya (er) = Np, e, (Noy sz, (20)
N1
_ Nsz{i}/Mi (xl_{i})lfFrob(pl)
by Corollary 2.3. Since Frob(p;) € Gal(L/M;), we have Nz /7, (2) = 1. O
Lemma 4.6. The Z-module (D N L)/ M has no Z-torsion.

Proof. If any a € DN L satisfies a® € M for a positive integer ¢, then /(") = (af()e =
1. By Lemma 4.3 the Z-module D N L has no Z-torsion, hence o/ =1. O

Proposition 4.7. Let § = H(y), where H(X) was defined by (5). Then there is § € M
such that z = [3°.

Proof. Since H(X) and f(X) are coprime by Lemma 4.2, it follows that [§] € R
is a nonzerodivisor. By [4, Proposition 6.2(2)] it suffices to show that for any p €
Hompg(M, R) we have p(z) € [6]R. Let \: R — h(y)Z[{7)] be the isomorphism of
Z[{~)]-modules determined by A([z]) = h(y)z, where z is a representative of a class
[z] € R. Then

Ao p € Homgj(y) (M, Z[(7)]).
Lemma 4.6 and [4, Proposition 6.2(1)] for f(X) = X" — 1 gives
Extz,y (DN L)/ M, Z[(y)]) =0,

and so there is ¢ € Homg)(D N L,Z[(y)]) such that ¢y = Ao p. Let H =
Gal(L;/L) € Gj. Then G;/H = (y), DN L = D" and the restriction of ho-
momorphism v of Lemma 3.1 gives the homomorphism v: (U)# — D¥ satisfying
D(S(H),Q(Z,) = Nz,/o(ys) = 2. Proposition 3.2 for ¢ = ¢ o U together with Lemma 4.1
implies that

t+1

Ap(2) = 06:) = (o)) €( [T ) 2100 = 105 - Z10)]
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This means p(z) € [0]R and the theorem follows. O
5. Stickelberger ideal

For any n € N and any b € Z relatively prime to n let o3, € Gal(Q((,)/Q) be the
automorphism determined by ¢, — ¢2. For any n € N and any a € Z we define

)= 3 (-2 ) o € QIGal(Q(6,)/Q))
(b1

where (z) is the fractional part of the real number z, i.e., the unique real number z’
satisfying 0 < 2’ < 1 and « — 2’ € Z. Let p denote the prime ideal of L lying under 3,
where 8 was introduced at the beginning of Section 2. The Stickelberger factorization
of the principal ideal generated by the Gauss sum (see [8, page 99]) gives

IO )™ Ogcyy = BIMOrm (D),
Recall that

N
21 = No(¢rm)/Ls (Q(Xfmw)fm(l )) :

It follows that

N, (1) Op = p®*, (6)
where
@L = Qf(l 7’7’) Z boresQ(Cfm)/Lcr,;}m (S ZK’}/>] (7)
1<b< fm
(b,fm)=1

For any n € N and any a € Z we put

0,,(a) = COTL/LAQ(¢,)TeSQ (¢, )/ LNQ () On (@) € Q[(M)]- (8)

Let S C Q[(7)] be the abelian group generated by all the elements 0/,(a) for all n > 1
and all @ € Z. In fact, S’ is a Z[(7)]-module and it follows from [6, Remark following
Lemma 15] that this module is generated by

{0,(=1);n | fm} U{5N1}, (9)

where Ny = Z:il ~*. The Sinnott’s Stickelberger ideal S of L is defined by S = S'NZ[(7)]
and this ideal annihilates CI(L), the ideal class group of L, see [7, Theorem 3.1]. The
equality S’ = S does not hold in general. Nevertheless, for each prime ¢ 1 2fm all the
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generators (9) belong to Z,[(7)], hence we have S, = S;, where S; = SZ,[(y)] and
Sy = S'Z4l()].

Let e~ = 1(1-7) € Q[(y)]. When LNQ((,) is real, we have 0],(—1) = %Nl.
Since e~ N7 = 0, it follows that the module e~ S’ is generated by

{e70,(=1);n | fm, LN Q({,) is imaginary}.

We finish this section by determining the Z-rank of e~ S’ which we shall use later on. It
follows from [7, Theorem 2.1] and [7, Proposition 2.1] that

rankz S’ = %[L: Q] + 1.

Then [7, Lemma 2.1] implies
— Al 1
rankze” S’ = §[L: QJ.
6. Construction of a new annihilator
Recall that 9B is an unramified prime of Q((yy,) of absolute degree 1, p = PN Oy, and
p is the prime number below B. The principal ideal of Op,, generated by any element of

D is supported only on conjugates of 8 N L. Therefore for S from Proposition 4.7 there
is € € Z[()] such that

B-0p =p. (10)
Hence
z-0p =p
and the comparison with (6) gives
5 =0Oy. (11)

Since p splits completely in L/Q, this ¢ is unique and the equality 37 () = 1 implies that
f(y)-€=0.

It follows that there exists & € Z[(v)] such that
£=h(y) ¢ (12)

The polynomial H(X) defined by (5) can be written uniquely in the form
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X) =20
ilrd

for suitable nonnegative integers a;, so we have

o=l (13)
Jlrd
For each divisor j of rd let
rd/i (rd/j)=1
N; = Z v and  Aj = Z ",
i=1 i=1

0(1—=97)N;=0and (1-+7)A; = N; — =

Proposition 6.1. The equalities (11) and (12) determine & € Z[(v)] uniquely, in fact

=0 H( AH(I) ) (14)

jlrd ilg.
i#]

Proof. Equalities (11) and (13) imply

or-TI(a T @) =de- [T (& T[#:) " =

jlrd ilj Jjlrd ilj
i#]j i#j
= TI(a07 )" =& TI(5 )"
jlrd jlrd

If a; # 0 then ®;(X) | h(X). By (4) we have (X7 —1) | h(X), hence (7 — 1) | h(%). It
follows that

N;h(y) =0 (15)
whenever a; # 0, and so (12) gives

@L'H(AjH‘I’i(’Y) =¢- H(rd)

jlrd ilj Jjlrd
i#£]

and the proposition follows. O
Let M be an abelian field. By Cl(M), we shall denote the ¢-Sylow subgroup of the

ideal class group Cl(M) of M. For every odd ¢ and every Z,[Gal(M/Q)]-module A we
define A~ = 15T 4 and AT = 137 A
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Proposition 6.2. Let ¢ be an odd prime. The element & € Z[{7)] given by (14) is an
annihilator of CI(L); .

, is surjective by [2, Lemma 1.6(a)],
and so every element in CI(L), is represented by some prime p of L lying under an
unramified prime P of Q({sm) of absolute degree 1, by Cebotarev’s Density Theorem
applied to Q({ym,). Proposition 6.1 implies that ¢ does not depend on p and (10) shows

that ¢ annihilates the element of CI(L); represented by p. O

Proof. The natural map CI(Q(Cfm))q_ — CI(L);

Let £ be the lattice of all imaginary subfields of L ordered by inclusion. For every
M € L we define

sy = corpOn € Z[{)],

where ©); means Oy, of (7) for M instead of L. We also define

Em = COYL/MfM € Z[()],

where M means ¢ of Proposition 6.1 for the field M instead of L. Let Z =
{My,Ms,...,M,} C L be a lower set, i.e. a set with the property that, if M is in
Z, M' € L,and M' C M, then M’ is in Z. We define the following ideals of Z[{¥)]:

IZ:(%MN%M2,...,%M") and jZ:(fMl,sz,...,an).

Recall that for every ideal A C Z[(~y)] the ideal AZ,[(v)] is denoted by A,.

Proposition 6.3. The ideal Z* has the following properties:

1. Z% annihilates C1(L).
2. I[f =8, for every odd prime number q not dividing fm.
3. rankz 7% = 1[L: Q).

Proof. Let n | fm and suppose that LNQ(¢,) is imaginary. Using (7) and (8) we obtain

HLAQ(en) = 2fan(1 —7)0, (1), (16)

where f,, is the conductor of F'NQ((,). Suppose M € L is a field of conductor n. Then
we have

s = F(V)%0nQecn)

where

X[LOQ(CTL): Q] — 1
f(X) = e
X[M:Q] _1q

€ Z[X].
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It means that Z is generated as a Z[(y)]-module by

{7rncyin | fm, LN Q((,) is imaginary}.

Recall that e~ S’ is generated as a Z[(y)]-module by

{(1(1 =)0, (—1)in | fm, LN Q(Cy) is imaginary}.

It follows Z¢ C e~ S’ N Z[(y)] € S using [7, Lemma 2.1], hence Z* annihilates CI(L)
using [7, Theorem 3.1]. The quotient group e~S’/Z* is clearly finitely generated and
by (16) torsion, hence it is finite. Therefore rankzZ* = rankze~ S’ = 3[L: Q]. Since
Sq = S, and |e”S'/I*| is a unit in Z, for every prime number ¢ { 2fm, we obtain
IF=(eS8)y=(S)"=5,. O

7. Relations among generators

In this section we derive relations that are satisfied by the numbers s, and &,;. These
relations will be needed for calculating the index [7%: Z%]. Let M € L be an imaginary
subfield of L of degree s = [M: Q]. The conductor of M is fymy,,, where fas is the
conductor of F N M and Ip; C I is defined by

Iy = {i € I;p; is ramified in M N K},

because my,, is the conductor of K N M and M is equal to the compositum of F' N M
and K N M. Let

))2f1\4

7

AM = N@(CmeIM )/ Em (Z(L fumiy,

where Ey = (M N F)Ky,, and z(1, faymy,,) is defined by (1). Note that Iy, = I and
x; = z1,. We define 0™ € Z[Gal(E)/Q)] by

eM

zm - Opy = (BN En) (17)

We have
On = resEM/MGM.
Recall that
»n = corr O and &nr = corp €M,

where §M means £ of Proposition 6.1 for the field M instead of L. For each i € I, let
gM be the polynomial g; for M instead of L, so we have
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g (X) = X

where s = [M: Q]. Note that ged(u,,s) is the number of prime ideals dividing p; in
M N F. Let hy be the least common multiple of polynomials X — 1 and g for i € Iy;.
We set

(X—=1)- HiGIM gzM(X)
har(X)

Hy(X) =
The equality (12) applied for M gives us « € Z[Gal(M/Q)] such that

M =hy (vesp/ar(7)) e = a-resp ar (har(7))-

It follows that
Ear = corpp (§M) = cory (Oé ' reSL/M(hM('V))> = ha(y)eorp /n (@), (18)

hence hps(v) | €ar in Z[{7)]. Let 6™ be § of Proposition 4.7 for the field M instead of L.
We define

(51\/[ = HM(’}/)

It follows that

M = Hy (resp/ar (7)) = resp nidn,

so by (11) we have

sn = corpOn = corL/M(5M -§M) = corL/M(resL/M(éM) ~§M) =opménm.  (19)

Let M, M’ € L be two imaginary fields and denote their absolute degrees by s and s’,
respectively. Suppose that M’ C M. We set

NM/M’(X) — M = 72_: stl S Z[XL

Hj\s’ (I)J(X) =0

o) resL/MNM/M/('y) = J\/’M/Ml(resL/My) is the norm operator from M to M’. The
following proposition describes a relation between scj; and scp;/. The set of all primes
that are ramified in M is denoted by Sjyy.

Proposition 7.1. Let M, M’ € L and suppose M’ C M. Then we have

NN () 300y = M( I a- Ffob@_l))w'

=1
m
Farmiyy, qQESM Sy
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Proof. Tt follows from (17) that
T M
NEM/EM/(ZM)'OEM/ = (mﬂEM,) eSEM/EM/G ) (20)

However, the number Ng,, /g, ,(21) can also be computed using the distribution rela-
tions for Gauss sums from Proposition 2.2

2,
Iy 1

fe . ,myr
M ’
Ney/gy (2m) =z M

a€ESpL NSy (1—Frob(q)~1)

Hence we have

2
oM’ MM (1—Frob(q)~ ")

72 . Haesyas,,
NEM/EM/(ZM) . OEM’ — (m a) EM’) e ™Iy a€Sp Sy
and the comparison with (20) gives
M M’ f]%4m1M -1
resp, /g, 0" = 0M - M0 TT (11— Frob(g)™").

2
m
fM/ IM/ qGSM\SM/

Applying resg, , /v to both sides gives

M _ Jimiy -1
reSEM/M/Q = -5 @]\/[/ . H (]_ — FI'Ob(q) )

2
m
fM/ Tngr qESM\S]W/

Now we apply cory,/y and we obtain
M f 1%4me 1
COI'L/M/TGSEM/M/Q = fQT H (1 - FI'Ob(q) ) XN
M IA{/ qES M \SJVI/
The left-hand side can be further simplified

corL/M/resEM/M/QM = corL/McorM/M,resM/M,resEM/M9M

= COT, /71 COT pp/nprT€Spr/ar O
= corp/nr (Onr - vesp N MM (7)) = MMM () 505

and the result follows. O

The polynomial Hp;(X) can be uniquely written in the form

Hyr(X) = [] 2500,
ils
where a7 ; are nonnegative integers depending only on M and j. The following lemma
shows how to compute the numbers ay,;.
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Lemma 7.2. For every M € L and j € N we have

0, for j1[M: Q]
anrj = 3 [Iml, forj=1
max{0, [{i € Inr; j | nju;}| — 1}, otherwise.

Proof. It follows from the definition of aps;. O

Proposition 7.3. Let M, M’ € L and suppose M' C M with [M: M'] = £ for some
n € N. Then we have

NMIM (Nerr € EanZ[(7)].

Proof. Let us denote the degrees [M: Q] and [M’: Q] by s and s, respectively. We shall

2
fM*jM € N by b. By Proposition 7.1 we have
M/

further denote 7
M/

NM/M/('y)%M :b( H (1—Fr0b(q)‘1)>%M/,
qESM NSyt
which together with the equality (19) gives
NM/M/(’Y)(sMgM :b( H (].—FI'Ob(q)_l))dM/gM/.
qESM NSy

By assumption, the degree [M: M’] is a power of £. It follows that

Sy NSy ={piyi € Ing ~ I}

Hence

H (1 —Frob(g)™") = H (1 — Frob(p;)™").

qESM NSyt SISYRN SV
It also follows that ged(u;, s) = ged(u;, ) for every i € I, so

gzM = glM' for every i € Ipp.

Since Frob(p;) lies in (y™%) and gM = X7 ged(iss) 1 divides X™% —1 for each i € Iy,
there exists w € Z[({7)] such that

b 1 (1—Fr0b(pi)‘1)=< 11 giM(v)>W~

iEIA[\IM/ iEI[w\IM/
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The equality (18) applied for M and M’ gives us a € Z[Gal(M/Q)] and o €
Z[Gal(M’/Q)] such that

& = har(y)corp (@) and & = hap (y)corp e (o). (21)
Therefore we have
A )saghag(eorsan(e) = ( TT ") wbashar (oorear (@)
iGIM \IM/

Recall that 0y = Hpy (), where

’

(X =D ILes,, 9" (X)
b (X) .

H M’ (X ) =
It follows that

Onrhan (9) = Ha (Dhar (1) = (v=1) [ oM (0 =0-1 [] oM.

1€y i€l

Putting all this together we obtain

NMIM ()6 p g (y)corr ya (@) = Sarhar(v)weory, jap (). (22)

Now we use the same trick as in Proposition 6.1. For every j | s let

s/i (/-1
NJM = Z’y” and A;w = Z Y.
i=1 i=1

We define Ay € Z[{~)] by

My =TJ(AM [T @)™ ezl
Jjls i|j
i#£j

Recall that dpr = Har(y) = [[ ®;(y)*™. Since

ils

s/i-1 s/
(v -nAa) = <f. - 1) Y=Y (- (-1 = ?75 =Y 4= ?75 - N,

i=1 i=1

it follows that
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The equation (15) applied for M instead of L gives us that

resg,/n (N has (7)) = 0,

so we have
resL (AMéMhM (v)) = respr (mm) H(j)‘”“) .
ils
Therefore
N )by )eons el@)Aas = AP ) )eors ) T (3)
Jls
and also
Sarhar(Y)weory yar (o) Anr = whas (y)eorp (o) [ | G) "

Jjls

Multiplying both sides of the equation (22) by Ajs we thus obtain

MM (e H (f) "= har(y)weory ar (e) H (§> "

) N
ils jls
The number H(?)aM’j € N is a nonzerodivisor in Z[{7)] and hp(X) is divisible by

ils
har(X), so there exists an element ¢ € Z[{7)] such that

NMI (y)enr = har(y)weory ap (o) = phar (Y)weory, ja (o) = owénr
and the proposition is proved. O
Proposition 7.4. Let M, M’ € L and suppose M’ C M with ¢4 [M: M']. Then we have
NMM ()éns € EnnrZq[()]
for every prime number q 1 [M: M.

Proof. We derive, as in the proof of Proposition 7.3, that there exist a € Z[Gal(M/Q)],
o/ € Z[|Gal(M'/Q)] such that (21) and that

NMIM () §prhar (y)corar (@) = BOarharr (Y)corp e (a), (23)

for suitable 8 € Z[(y)]. By assumption, the degree [M: M’] is not divisible by ¢, hence
MNK =M nNK.It follows that In; = Insnx = Inn = Iy, so we can write
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Har(X)has (X) g (X)

o i ()~ L gy € 2D

i€l
Now recall that
NMM(x) =T 2;),

ils
s’

where s = [M: Q] and s’ = [M’: Q]. Since 5% NM/M' for every i € Iy, we conclude

that there exists v € Z[X] such that

(WM XV g (X )b (X) = 0(X) Hag (X)har(X).
Therefore we have

(NM/IV[’(,Y» \IMl(;M,hM, (v) = v(¥)onrrhas (7).

Multiplying both sides of the equality (23) by (NM/M(y)) 1l e obtain

(AWML () LS g () eor s pa (@) = Bu(1)nha ()cors ar (@),

By the same reasoning as we used at the end of the proof of Proposition 7.3, we have
/ In|+1
(NM/M (’Y))‘ M| Ear = B%M’

for suitable 8’ € Z[(7)]. Since resy, (NM/M,(*y)) is the norm operator from M to M’,
it follows that

resy ((NM/M/(,,}/))‘INIH’I) _ (i/)llm —_— (NM/M/(’Y)) )

S

Consequently,

S

(NM/M/(/_}/))‘IMH’lé,M _ (_)lI]WlNM/M/ (1)Enr.

8/

5

The number % is not divisible by . Therefore the number ( is a unit in Zg4, so

we have
M /M’ s' ol
N e = (2) 7 e,

where (s'/s)m13" € Z,[(7)]. O
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In what follows, we shall suppose that ¢ = 2 or ¢ is an odd prime not dividing

r=[F: Q]
Corollary 7.5. Let M, M’ € L and suppose M’ C M. Then we have
NMIM (err € Eap Lyl ()]

Proof. Let T denote the compositum of M’ and M N K. This is the unique subfield of
M containing M’ such that [M: T is not divisible by ¢ and [T': M'] is a power of /.
Clearly we have

NMAT(X) = NMIT(X) - NTIM(X)
and the result follows from Proposition 7.3 and Proposition 7.4. O

Lemma 7.6. Let M € L be an arbitrary field of degree s = [M : Q]. Then we have

s

(V3 +1) s = (72 + 1) - € = 0.
Proof. Tt follows from Proposition 6.1 that there exists a € Q[Gal(M/Q)] such that
Em = corp (O - ).
Hence we have
(’7% +1)-&y = (’y% +1) - corp/m(On - @)

= corL/M(resL/M('y% +1) -0y - a)

= COI‘L/M (I'GSEM/M((l + T) . QM) . Oé) =0
and the result follows. O

Let M € L be a field of degree s = [M: Q]. The set of all subfields of M that lie in £,
will be denoted by Z(M). We define Fps € Z[X] to be the greatest common divisor of
X2 41 and NM/M for all M’ € Z(M) ~ {M}. Since M/Q is cyclic, it follows that for
every j | s, j 13,7 # s there exists M" € Z(M )~ {M} such that ®; f NM/M' Therefore

we have
Fu(X) = &5(X). (24)

Lemma 7.7. For every M € L we have

1
Z deg Fr = §[M: QJ.
TeZ(M)
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Proof. Since M is imaginary, the degree [M: Q] is even. Write [M : Q] = 2% with a > 0
and b odd. Then

S desFr =3 ls) = 3 0(2)els) = 92 = 2 b= ([M: Q),
TeZ(M) 52|3‘”b s|b

as desired. O

Proposition 7.8. Let Z = {My, Ms,...,M,} C L be a non-empty lower set and let My
be a mazimal element of Z. Suppose that ¢ = 2 or q is an odd prime not dividing r. If
n > 2, then we have

Futan €750 and Fa (e, € 570,

If n =1 then we have

Fu, (V)20 = Fary (7)€, = 0.

Proof. Let us denote the degree [M;: Q] by s;. If n = 1, then Fp,(X) = X2 +1

and the result follows from Lemma 7.6. Suppose that n > 2 and that My, M3, ..., M,,

u < n, are all the maximal elements of Z(M;) ~\ {M;}. Clearly Fy, (X) is the greatest

common divisor of X2 + 1 and NM1/Mi for all i = 2,...u. Applying Corollary 1.4 for
s1

n=s1,r = % and r; = s; for each i = 2,...,u we obtain that there exist polynomials

Py, Ps,...,P, € Z]X] such that
u
PX) (X7 +1)+ > P(X)ONM/AM(X) = Foy, (X).
i=2
Proposition 7.1 and Lemma 7.6 imply
Fa(W)an, = P (77 + Dsear, + Y BN MM () 30y, € 700D
=2
and Corollary 7.5 together with Lemma 7.6 gives
Far, (éar, = PO E + Déar, + ) PN ()eny, € 710
i=2

and the proposition is proved. O
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8. Index of some finitely generated R[X]-modules

Let R be either Z or Z,, where ¢ is a prime number. The algebraic closure of the
field of fractions of R will be denoted by €). Let £ be a finite partially ordered set which
form a lattice. The least element of £ will be denoted by 0. Recall that a lower set of a
partially ordered set is a subset Z with the property that, if xisin Z, y € £, and y < x,
then y is in Z. For each ¢ € £ let Z(i) be the lower set generated by i, i.e.

Z(i) ={j € L;j <i}.

Suppose that M is a finitely generated R[X]-module whose generators will be denoted
by &;,1 € L. For each i € L let s; be an element of M given by

w =H; - §

for some H; € R[X]. By N we shall denote the submodule of M generated by all the
elements ;. For each lower set Z C L we define the following submodules:

Let Mz be the submodule of M generated by &; for all i € Z. Let Nz be the submodule
of N generated by »; for all i € Z. For Z = () we thus have My = Ny = {0}. We further
assume that the elements &; and »; satisfy the following relations:

For each i € £ there is a polynomial F; € R[X] such that

F;- € Nz(z)\{l} and F;-& € Mz(l)\{l}
We shall prove the following proposition:

Proposition 8.1. Suppose that all the polynomials F; are monic. We shall further assume
that for every lower set ) # Z C L and every maximal element m of Z we have

rankp Mz = rankg Mz ) + deg Fip,
rankr Nz = rankr Nz () + deg Fip,.

It follows that rankgr M = rankg N and

(M N] = TTIRIX)/ (F, ).
ieL

Moreover, the polynomials F; and H; have no common root in §2 for each i € L.
Proof. Using induction with respect to the size of Z we shall prove that
rankr M7z = rankr Nz

and that
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[Mz: Ng] = [[|RIX]/(F:. Hi)|.
i€Z

Suppose Z = {0}. It is obvious that rankgrMy = rankgpNy = degFy. The map
R[X]/(Fy) — My given by

[f]Hf£Oa

where [a] denotes the coset containing a, is a surjective homomorphism of R[X]-modules.
Since they have the same R-rank and R[X]/(Fp) is a free R-module, it is an isomorphism.
The preimage of Nz in this isomorphism is the ideal ([Hp]). Therefore the quotient
My /Ny is isomorphic to

RIX]/(Fo) /(1))
which is isomorphic to
R[X]/(Fo, Ho).

Now suppose that Z has at least two elements. Let m be a maximal element of Z. The
lower set Z ~. {m} will be denoted by Z’. Let Tz be the R[X]-module generated by Mz
and »,,, so Ny C Ty C My. We have

[le Nz] = [Mzt Tz] . [Tzl Nz].

From the induction hypothesis we derive that the modules Mz, Nz and Tz have the
same R-rank. Indeed, we have

rankgr Nz = rankgr Nz () + deg I, = rankg Mz () + deg F, = rankgp M.

Moreover, the R-bases of Tz and of Nz can be obtained by adding {X? - »,,;0 < i <
deg F,} to R-bases of Mz and of N/, respectively. Hence, using the determinants of
transition matrices we get

[Tzl Nz] = [MZ/Z NZ’]- (25)
The map R[X]/(F.,) — Mz /My given by

is a surjective homomorphism of R[X]-modules. Since they have the same R-rank and
R[X]/(Fy) is a free R-module, it is an isomorphism. The preimage of Tz /M in this
isomorphism is the ideal ([H,,]). Therefore we have

Mz/TZ = MZ/MZI/Tz/MZ’ = R[X]/(Fm)/([Hm])’
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which is isomorphic to
R[X]/(Fun, Hp).
The induction hypothesis together with (25) gives

[Mz: Nz| = |R[X]/(Fp, Hi)| - [Mz:: Nz/] =

= |R[X]/(Fpm, Hp) H |R[X]/(F;, Hy)).
i€z’

To conclude the proof it remains to show that the polynomials F; and H; have no common
root for each i € Z. Suppose that for some ¢ € Z the polynomials F; and H; have a
common root in ). Let us denote P € R[X] their monic greatest common divisor, so we
can write

F, = PF! and H; = PH]
for suitable polynomials F}, H! € R[X]. It follows that the polynomial F is monic. The

lower set Z(i) \ {i} will be denoted by Z’. Let Tz(;y be the R[X]-module generated by
Mz and ;. Now we have

Hence

rankRTZ(i) <rankp My + deg Fz/ <rankpMy + deg F; = rankRMZ(i),
which is not possible. O
9. Computing the index [J q‘:: I(f']

Since not all the relations derived in Section 7 hold in Z[{7)] (see Corollary 7.5), one
cannot compute the index [J%: Z¥] in general. Nevertheless, we can always determine
the exact power of ¢ dividing this index. Moreover, it turns out that apart from ¢ only
odd primes dividing the degree [F': Q] could possibly divide the index [J*: T¥].

Recall that ¢ = 2 or ¢ is an odd prime not dividing [F': Q].

Proposition 9.1. For every lower set Z C L we have

rankij = rankz, 7 Z deg Fas.
MeZ
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Proof. It follows from Proposition 7.8 that

rankz, Z7 < > deg Fu. (26)
MeZ

If there were a sharp inequality in (26) for some lower set Zy C L, then there would be a
sharp inequality for all lower sets that contain Zjy. In particular, there would be a sharp
inequality for £ since

ranquI(‘f < ranquIqZO + Z deg Far < Z deg Fas.
MeLNZg MeL

Using Lemma 7.7, we would obtain
kg, TE < 2[L:
rankz, 7, <§[ : Q).

However, this is not the case since by Proposition 6.3 we have

1
ranquIqL = rankg, (I£ ®z Lq) = rankz 7% = rankz S~ = §[L: Q]J.

It remains to show that ranquIqZ = ranquJqZ. Clearly ranquIqZ < ranquJqZ. It
follows from Proposition 7.8 that

rankijqz < Z deg Far,
MeZz

hence

rankz, I7 < rankz, J7 < Z deg Fyy = rankz, 77
MeZ

and the result follows. O

Proposition 9.2. For any lower set Z = {M;, M, ..., M,} C L we have

n

(77 77) = [T 124[X)/(Far,(X), Har, (X))
i=1
Proof. To apply Proposition 8.1 we need to show that
ranquIqZ = ranquIqZ\{M} + deg Fur

rankijqz = rankz, qu\{M} + deg Fs

for every lower set Z C L and every maximal M € Z. But this was established in the
proof of Proposition 9.1. 0O



216 P. Francirek / Journal of Number Theory 213 (2020) 187-220

Recall that

0, for j + [M: Q]
anr; = 3 Il for j =1
max{0, [{i € Ins; j | nju;}| — 1}, otherwise.

Proposition 9.3. Let M € L be an arbitrary field. Then we have

ZIX))(Far (), Haa (X)) = [ £ v,
Jj=0

where u =[M N F: Q] and v =ordy,([M N K: Q)).
Proof. The degree [M: Q] is uf’. By (24) we have

Far(X) = By (X).
The polynomial H; is by definition equal to

Hy(X) = [] @5(X)%s.

jluer

Therefore we have

ZIX]/(Fa(X), Hyu (X))| = |Z[X]/(@uee (X), [T @5(X)%59))

jlulv

= H |Z[Cuév]/(q)j(cuev)>|0«M,J'.

Jlulv

It follows from the definition of numbers ays; that ans; = 0 whenever ¢¥ | j. Hence,
using Proposition 1.2 we obtain

ge)an,; if j=wlifori=1,2,...,0—1

| Z[Cuev]/ (25 (Cuee))| ™™ = {1

, otherwise
and the result follows. O

Theorem 9.4. Suppose that ¢ = 2 or q is an odd prime not dividing r. The relative index
[qu: Iqﬁ] is 1 whenever q # £. In case ¢ = £ the index is given by the following formula

k i—1

17F - 7f) = [T T IT et b,

u|7' i=175=0
2’[%
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where k = ordy([K: Q]) and b(u,i,j) = a with M being the unique subfield of

L of degree [qui): Q] = ut.

M i

Proof. This result follows from Proposition 9.2 using Proposition 9.3. O
Theorem 9.5. The ideal J* annihilates the ideal class group C1(L) of L.
Proof. At first we suppose ¢ is an odd prime. Proposition 6.2 implies that &M ¢

Z[Gal(M/Q)] annihilates CI(M), . It follows that &y = corp &M € Z[(7)] annihi-

lates C1(L), . Since J* annihilates C1(L)}, we conclude that it annihilates CI(L), for

every odd prime ¢. It remains to show that J* also annihilates C1(L),. It follows from
Proposition 6.3 that I§ annihilates Cl(L)2. Theorem 9.4 implies that jf = I2£, so J*
annihilates C1(L)2. O

We now consider a special case. Suppose [F: Q] = 2. For each i = 0,1,...k let L@
be the unique subfield of L of degree [L(*): Q] = 2¢*. The poset L is the following string

F=ILOcrWc...crk .
We have
Fro (X) = @op (X).

Theorem 9.4 gives

k i—1 k i—1
[‘7;:: IEL] — H H Zv(ch)aL(i>,2£C _ H (,eaL(i)g H g@cl(e_l)aL(i),MC)’
i=1c¢=0 i=1 c=1

where
ap gee = max{|{j € Iw;20° | nju;}| —1,0}.

We can compare this to the result of Greither and Kucera. Their index in [2, Theorem
6.5] is equal to

k

a
Hg L(l),27

i=1

which divides our index. Our index is strictly larger if and only if there exist two different
indices 4, j € Iy, such that both p; and p; split completely in LM,
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10. Examples

To find an example of fields for which our index is strictly larger than the index from
[2], we need to take k > 2, so the smallest possible degree of such a field over rationals
is 18. Suppose £ = 3, d = 3% and r = 2. We set F' = Q(v/—83), thus f = 83. Let us take
p1 =19, po = 7 and p3 = 31 and consider the following characters:

x1: (Z/192)* = C*  x1(2) = G,
x2: (Z)72)* — C* x2(3) = (s,
X3: (Z/SlZ)X - C* X3(3):<3.

Let K be the field belonging to x1x2x3. Let L be the compositum of F' and K, so
the conductor of L is n = 71931 - 83 = 342209. We have Gal(L/Q) = (v), where

Y= reSQ(Cn)/L034~
LM

KO

\/

e =283 (37 =3) - (" + M 2 90 18 0 1yt 7 1 ),
sepy =2-832-19- (697 + 10y +10) - (72 +4° + 1) - (% - 1),

It can be shown that

wp =2-83-n-(1—197) -5
where
1 = 6477 — 8475 +187° 4+ 29 — 1207 4 1872 — 62 — 36.

Since the primes 7 and 31 split completely in L) /Q and the prime 19 is totally ramified
in K/Q and inert in F//Q we have

arm =1, ar1 =3, are =1, ar3 =1, ar2 =1,
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which are the only nonzero values. We can compute £, &), €L
é-F = xF,
)
Ero =g - (BAFY) =38.832 (1392 + Ty =3) - (1—9%) - (1 +14° +1'2),
3
fo = (A7) (5820 - 1) (A5 (v~ 1)) - AT (' ++° =7 - 1))
:4.83%.(1_79).&
where
€L = 3298 + 297 — 3175 — 757° — 859* — 101> — 10742 — 87~ — 70.

We used the system PARI to check that all these elements actually annihilate C1(L).
The index [J*: Z¥] is given by

[jﬁ: IE} _ [%ﬁ: If] _ ?)CLL(U’2 .3aL.2 . 32(11“5 — 337

while the index from [2] is in this case equal to 3“2(").2 . 39L.2 = 3,

We conclude this section by exhibiting an example where F' is imaginary but not
quadratic. Suppose £ = d = 3 and r = 4. We set F' = Q((5), thus f = 5. Let us take
p1 =19, po = 31 and p3 = 61 and consider the following characters:

X1: (Z/IQZ)X —>(C>< X1(2):C3,
xo: (Z/31Z)C = C*  x2(3) =G,
x3: (Z/61Z)* — C* x3(2) = .

Let K be the field belonging to x1x2x3. Let L be the compositum of F and K, so
the conductor of L is n = 5-19-31-61 = 179645. We have Gal(L/Q) = (v), where
7 = resqQ(c,),/L033- It can be shown that

sap =10-(1 =% - (1 + 2y + 492 +39%) - (1 +9* +1°)
=10-(y+3)- (v =P+ =1+ - 1),
s, =10 -n - (649° — 329* + 267 — 7072 — 38y — 38) - (1 — 7).

We have ap; = 0 for all j € N, hence {f = sp. For the field L we obtain

3, Jj=1

2, Jj=2,
ar,j = .

1, J=4,

0 otherwise.

Therefore we have
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§r = xF,
&= (50F) - (3850 - 1) (3ake7 - 1)

=10-n-(367° + 329% — 49 — 38y — 40y — 70) - (1 — 7).

The fact that &7, annihilates C1(L) was again checked by PARI. The index [J*: T¥] is
equal to

[(TE: T8 = [JF: TF] = 3¢@Waers = 32,
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