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0. Introduction

In [5] Greither and Kučera managed to obtain new annihilators of the ideal class group 
of certain real cyclic fields (i.e., cyclic extensions of Q). They modified Rubin-Thaine 
machinery to accept so-called semispecial units. In order to get some units which are 
semispecial, they enlarged the Sinnott’s group of circular units by adding nontrivial roots 
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of circular units. The idea of taking roots can also be applied to Gauss sums. For certain 
imaginary cyclic fields this approach leads to new annihilators of the ideal class group.

Let � be a fixed odd prime number. Let K be a cyclic number field of �-power degree 
d = �k = [K : Q]. Let p1, . . . , pt be the primes ramified in K/Q. Let F be an imaginary 
cyclic number field whose degree r = [F : Q] is not divisible by �. Hence the compositum 
L = FK is cyclic, too. We suppose that � does not ramify in L/Q. Let f be the conductor 
of F and m be the conductor of K, so � � fm. We assume that f and m are relatively 
prime, i.e., the product fm is the conductor of L. For every prime number q and every 
ideal A ⊆ Z[Gal(L/Q)] we shall denote AZq[Gal(L/Q)] by Aq.

We begin with a module generated by Gauss sums. Distribution relations satisfied by 
these sums allow us to work with some Sinnott module instead. It is more convenient, 
since in [3] Greither and Kučera described the image of its top generator in any linear 
form. This allows us to prove that a nontrivial root of a certain modified Gauss sum be-
longs to L. Factoring this nontrivial root gives rise to an element ξL of the integral group 
ring Z[Gal(L/Q)]. In the same fashion we shall construct an element ξM ∈ Z[Gal(M/Q)]
for every imaginary subfield M ⊆ L. The ideal of Z[Gal(L/Q)] generated by the core-
strictions of all these elements will be denoted by J L. In this paper we shall prove:

Theorem 9.5. The ideal J L annihilates the ideal class group Cl(L) of L.

In order to decide whether J L contains new annihilators or not, we compare J L to 
IL which is essentially the minus part of the Stickelberger ideal of the field L. Even 
though we are unable to determine the index [J L : IL] in general, we can compute the 
index [J L

q : IL
q ] for almost all primes q (see Theorem 9.4). It can be shown that the index 

[J L
� : IL

� ] is greater than 1 if and only if there exist at least two primes ramified in K/Q

which split completely in F0/Q where F0 is the smallest imaginary subfield of F .
The case of F being a quadratic imaginary field was already studied by Greither and 

Kučera in [2, section 6]. Using our approach one may obtain even stronger annihilation 
result in this concrete situation. A detailed comparison of these results is provided at 
the end of Section 9.

1. Cyclotomic polynomials

This section is devoted to a result on polynomials with integral coefficients which we 
shall need later on. Even though the following lemma is probably well-known and it 
might have been already published, the author could not find any source.

Lemma 1.1. Let F, G ∈ Z[X] be polynomials which have no common root in C and 
suppose that F is monic. Then the index of the ideal (F, G) in Z[X] is equal to the 
absolute value of the resultant of F and G, i.e. we have

∣∣Z[X]/
(
F,G

)∣∣ =
∣∣Res

(
F,G

)∣∣ .



P. Francírek / Journal of Number Theory 213 (2020) 187–220 189
Proof. At first, let us suppose that G is also monic, so we can write

F (X) = Xn + a1X
n−1 + · · · + an−1X + an

and

G(X) = Xs + b1X
s−1 + · · · + bs−1X + bs,

where ai and bi are integers. If F = 1 or G = 1, then the lemma holds, so we can assume 
that both s and n are at least 1. Third isomorphism theorem gives us the following 
isomorphism of groups

Z[X]/(F,G) ∼= Z[X]/(F ·G)
/

(F,G)/(F ·G) .

Let X be the class of Z[X]/(F ·G) containing X. Clearly Z[X]/(F ·G) is a free Z-module 
of rank n + s and the elements 1, X, . . . , X

n+s−1 form its Z-basis. Since F and G have 
no common root in C, every element of the ideal (F, G) can be uniquely expressed in 
the form

u · F + v ·G + w · F ·G

with u, v, w ∈ Z[X] satisfying deg u < degG and deg v < degF . It follows that the 
following s + n elements

F (X), XF (X), . . . ,Xn−1
F (X), G(X), XG(X), . . . ,Xs−1

G(X)

form a Z-basis for

(F,G)/(F ·G).

Therefore the index

[Z[X]/(F ·G) : (F,G)/(F ·G)]

is finite and it is equal to the absolute value of the following determinant
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 1 0 · · · 0
a1 1 · · · 0 b1 1 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

...
. . . 1

...
...

. . . 1

an an−1 · · ·
... bs bs−1 · · ·

...

0 an
. . .

... 0 bs
. . .

...
...

...
. . . an−1

...
...

. . . bs−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

0 0 · · · an 0 0 · · · bs



190 P. Francírek / Journal of Number Theory 213 (2020) 187–220
which is the resultant Res(F, G). We shall suppose now that G is not monic. We take 
the following polynomial

H = X1+deg G · F + G ∈ Z[X].

Clearly H is monic and we have (F, G) = (F, H). Therefore it only remains to show the 
equality of resultants Res(F, G) = Res(F, H). Let α1, α2, . . . , αn ∈ C be all the roots of 
F . Then we have

Res(F,H) =
n∏

i=1
H(αi) =

n∏
i=1

(
αs+1
i F (αi) + G(αi)

)
=

n∏
i=1

G(αi) = Res(F,G)

and the lemma follows. �
The sth cyclotomic polynomial will be denoted by Φs.

Proposition 1.2. Let s, n, s < n be positive integers. Then we have

|Z[ζn]/
(
Φs(ζn)

)
| =

{
pϕ(s) if n

s = pk for some prime p,

1 otherwise.

Proof. It follows immediately from [1, Theorem 4] using Lemma 1.1. �
Proposition 1.3. Let n, r1, r2, . . . , ru be positive integers such that ri | n for all i = 1, . . . , u
and ri � rj for all i, j, i �= j. For every i = 1, 2, . . . , u we define

fi(X) = Xn − 1
Xri − 1 =

∏
j|n
j�ri

Φj(X).

For each i = 1, . . . , u we put

gi(X) = gcd
(
f1(X), f2(X), . . . , fi(X)

)
.

Then for each i = 1, . . . , u we have
∣∣∣∣Z[X]

/(
f1
gi
, f2
gi
, . . . , fi

gi

)∣∣∣∣ = 1.

Proof. We prove this by induction on i: if i = 1 then g1 = f1. Assume that i ≥ 2 and 
that the lemma has been proved for i − 1. The induction hypothesis gives the following 
equality of ideals in Z[X]

(
f1

,
f2

, . . . ,
fi−1

)
= (1),
gi−1 gi−1 gi−1
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hence (
f1

gi
,
f2

gi
, . . . ,

fi−1

gi

)
=

(
gi−1

gi

)
.

It follows that (
f1

gi
,
f2

gi
, . . . ,

fi−1

gi
,
fi
gi

)
=

(
gi−1

gi
,
fi
gi

)
.

It can be easily shown that

gi−1(X)
gi(X) =

∏
j|n

j�r1,...,j�ri−1,j|ri

Φj(X) and fi(X)
gi(X) =

∏
j|n,j�ri

∃ a ∈ {1,...,i−1} : j|ra,

Φj(X).

Therefore we obtain using Lemma 1.1 that
∣∣∣∣Z[X]

/(
gi−1
gi

, fi
gi

)∣∣∣∣ =
∣∣∣∣Res

(
gi−1

gi
,
fi
gi

)∣∣∣∣ =
∏
j1

∏
j2

|Res(Φj1 ,Φj2)|

=
∏
j1

∏
j2

|Z[X]/(Φj1 ,Φj2)|,

where neither of j1j2 and j2j1 is an integer. Proposition 1.2 gives

|Z[X]/(Φj1 ,Φj2)| = 1 for all j1, j2

and the result follows. �
Corollary 1.4. Keep the same notation as above. For every i = 1, 2, . . . , u there exists 
Pi ∈ Z[X] such that

u∑
i=1

Pifi = gu.

Proof. Lemma 1.3 implies that
∣∣∣∣Z[X]

/(
f1
gu
, f2
gu
, . . . , fu

gu

)∣∣∣∣ = 1,

which is equivalent to
(
f1

gu
,
f2

gu
, . . . ,

fu
gu

)
= (1).

This means that for every i = 1, 2, . . . , u there exists Pi ∈ Z[X] such that
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u∑
i=1

Pi
fi
gu

= 1.

Multiplying both sides by gu proves the corollary. �
2. Distribution relations for Gauss sums

For any positive integer n let ζn = e2πi/n. Let us fix a prime number p ≡ 1 (mod fm). 
Fix a prime P of Q(ζfm) dividing p. Let ω : F×

p → 〈ζfm〉 be the fm-th power residue 
symbol determined by P, i.e. for any a ∈ Z[ζfm] such that P � a we have

ω(a mod P) ≡ a(p−1)/fm (mod P).

Let ψ : Fp → Q(ζp) be the usual additive character of Fp, i.e. ψ(c) = ζcp. For any 
multiplicative character χ : F×

p → C× we define the Gauss sum

g(χ, ψ) = −
p−1∑
c=1

χ(c)ψ(c).

For any n | fm let χn : F×
p → 〈ζn〉 be the multiplicative character of F×

p given by

χn = ω− fm
n .

For any a ∈ Z we set

z(a, n) =
{

1, if n | a
g(χa

n, ψ)n(1−τ), otherwise,
(1)

where τ is the complex conjugation. The following lemma describes basic properties 
of the numbers z(a, n). For any n | fm and any integer b relatively prime to n let 
σb,n ∈ Gal

(
Q(ζn)/Q

)
be the automorphism determined by ζn �→ ζbn.

Lemma 2.1. For any n | fm, any a ∈ Z and any b ∈ Z relatively prime to n we have

1. z(a, n) ∈ Q(ζn).
2. z(a, n)σb,n = z(ab, n).
3. z(aq, n) = z(a, n/q)q for any prime q | n.

Proof. The first two properties follow from [8, Lemma 6.4] and for any prime q | n we 
have

z(aq, n) = g(χaq
n , ψ)n(1−τ) = g(χa

n/q, ψ)q(n/q)(1−τ) = z(a, n/q)q. �
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Let q be a prime number. Let qa be the highest power of q dividing fm, so we can 
write fm = qab with b relatively prime to q. By Frob(q) we shall denote the unique 
element of Gal(Q(ζfm)/Q) satisfying

resQ(ζfm)/Q(ζqa )Frob(q) = id and resQ(ζfm)/Q(ζb)Frob(q) = σq,b.

If there is no danger of confusion all its restrictions will be also denoted by Frob(q).
We remark that our number z(a, n) is equal to z(n)

a · (−1)p−1/2 which is defined in [2, 
section 5].

Proposition 2.2. Let n | fm. Let s > 1 be a power of a prime q dividing n. Then we have

NQ(ζn)/Q(ζn/s)
(
z(1, n)

)
=

{
z(1, n/s)s

(
1−Frob(q)−1) if (s, n/s) = 1,

z(1, n/s)s otherwise.

Proof. It follows from [2, Corollary 5.2] and [2, Corollary 5.3] using z(a, n) = z
(n)
a ·

(−1) p−1
2 . �

Let I = {1, . . . , t} be the set of indices of primes ramified in K/Q. For each i ∈ I

let Ki be the unique subfield of the pi-th cyclotomic field Q(ζpi
) whose degree is equal 

to the ramification index of pi in K/Q. For every subset T ⊆ I let mT =
∏

i∈T pi and 
LT = FKT , where KT =

∏
i∈T Ki, the compositum of fields Ki for i ∈ T . Then KI is 

the genus field of K and L is a subfield of LI . Let GT = Gal(LT /F ). Each group GT

may be canonically identified (via restrictions) with the product of the groups G{i} with 
i running over T . Finally, let J = {1, . . . , t + 1} and GJ = Gal(LI/Q). So GT is also 
canonically (via restriction) identified with the subgroup Gal(LI/LI−T ) of GJ . For any 
T ⊆ I we define

xT = NQ(ζfmT
)/LT

(
z(1, fmT )

) 2fm
mT . (2)

Corollary 2.3. The system of numbers xT ∈ LT , T ⊆ I, satisfies distribution relations, 
i.e. for any T ⊆ I and any i ∈ T we have

NLT /LT−{i}(xT ) = x
1−Frob(pi)−1

T−{i} .

Proof. For any T ⊆ I and any i ∈ T we have by Proposition 2.2

NLT /LT−{i}(xT ) = NQ(ζfmT
)/LT−{i}

(
z(1, fmT )

) 2fm
mT

= NQ(ζfmT−{i} )/LT−{i}

(
NQ(ζfmT

)/Q(ζfmT−{i} )
(
z(1, fmT )

) 2fm
mT

)

= NQ(ζfmT−{i} )/LT−{i}

(
z(1, fmT−{i})

2fm
(
1−Frob(pi)

−1
)

mT−{i}

)
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= NQ(ζfmT−{i} )/LT−{i}

(
z(1, fmT−{i})

) 2fm
(
1−Frob(pi)

−1
)

mT−{i}

= x
1−Frob(pi)−1

T−{i} . �
3. Sinnott module

Recall that J = {1, 2, . . . , t +1} and GJ = Gal(LI/Q). We also recall that the numbers 
xT were defined by (2). Now for each T ⊆ J we define

yT =
{
xT�{t+1}, if t + 1 ∈ T

1, otherwise.

Let U ′ be the Sinnott module defined in [3] for v = t + 1, Ti = G{i} for i �= t + 1, 
Tt+1 = Gal(LI/KI), λi = Frob(pi) for i �= t + 1 and λt+1 = id. Since the complex 
conjugation τ lies in Gal(LT /KT ) for each T ⊆ I we have

NLT /KT
(yT∪{t+1}) = NLT /KT

(xT ) = 1. (3)

Let D be the Z[GJ ]-submodule of L×
I generated by yT , T ⊆ J .

Lemma 3.1. There is a surjective homomorphism of Z[GJ ]-modules

ν : U ′ → D

determined by ν(
′J−T ) = yT for all T ⊆ J .

Proof. This follows from Corollary 2.3 and (3) using the presentation of U ′ given by [3, 
Corollary 1.6(i)]. �

For any i ∈ J , the kernel of the natural map

Z[GJ ] → Z[GJ/〈λi, Ti〉]

will be denoted by Ii. The ideal Ii is generated by λi − 1 and g − 1 for all g ∈ Ti. For 
any H ⊆ GJ let s(H) =

∑
h∈H h ∈ Z[GJ ].

Proposition 3.2. Let H be a subgroup of GJ and ϕ ∈ HomZ[Γ]
(
(U ′)H , Z[Γ]

)
where Γ =

GJ/H.

(i) There is ψ ∈ HomZ[GJ ](U ′, Z[GJ ]) such that ψ|(U ′)H = cor ◦ ϕ.
(ii) We have

ϕ
(
s(H)ρ′∅

)
∈ res

t+1∏
Ii,
i=1
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where cor : Z[Γ] → Z[GJ ] and res : Z[GJ ] → Z[Γ] means the corestriction and re-
striction maps, respectively.

Proof. Part (i) can be proved in the same way as part (i) of [3, Corollary 1.7]. It follows 
immediately that

cor resψ(ρ′∅) = s(H)ψ(ρ′∅) = corϕ
(
s(H)ρ′∅

)
.

This means that resψ(ρ′∅) = ϕ
(
s(H)ρ′∅

)
because cor is injective. Using part (i) of [3, 

Theorem 1.1] we obtain that

ψ(ρ′∅) ∈
t+1∏
i=1

Ii,

hence

ϕ
(
s(H)ρ′∅

)
= resψ(ρ′∅) ∈ res

t+1∏
i=1

Ii

and the lemma is proved. �
4. Extracting roots

The aim of this section is to show that one may extract certain roots of modified 
Gauss sums. Recall that r = [F : Q] and d = [K : Q]. For each i ∈ I let ni be the index 
of the decomposition group of pi in Gal(K/Q). Let ei be the ramification index of pi in 
K. By fi and si we shall denote the degree of inertia of pi in K and F , respectively. The 
quotient r/si will be denoted by ui. Hence ni, ui, and niui equals the number of prime 
ideals dividing pi in K, F , and L, respectively. We have

L

K

nifiei

F

siui

Q

Now we fix a generator γ of Gal(L/Q). We define

gi(X) =
{
Xniui − 1, for i ∈ I,

X − 1, for i = t + 1.
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Lemma 4.1. Let H = Gal(LI/L) ⊆ GJ . For each i ∈ J we have

res Ii ⊆
(
gi(γ)

)
Z[〈γ〉],

where res : Z[GJ ] → Z[GJ/H] is the restriction.

Proof. Clearly we have res Ii ⊆ (γ − 1)Z[〈γ〉] for all i ∈ J . Now suppose i ∈ I. Since Ii
is generated by Frob(pi) − 1 and g− 1 for all g ∈ Ti, it suffices to show that res Frob(pi)
and res g lies in 〈γniui〉. For each g ∈ Ti we have

gei = id,

therefore

res g ∈ 〈γsiuinifi〉.

Since si and eifi are coprime, the order of res Frob(pi) ∈ Gal(L/Q) divides sifiei, so

res Frob(pi) ∈ 〈γniui〉.

Clearly both res Frob(pi) and all res g lie in 〈γniui〉 and the lemma follows. �
For each i ∈ I let Mi be the decomposition field of pi in L, so Mi is the maximal 

subfield of L where the prime pi splits completely, and let Mt+1 = Q. Now define 
h(X) ∈ Z[X] as the least common multiple of polynomials gi for i ∈ J . Observe that for 
every j ∈ N we have

Φj(X) | h(X) ⇒ Xj − 1 | h(X). (4)

We put

f(X) = gcd(g̃1, g̃2, . . . , g̃t+1),

where

g̃i(X) = Xrd − 1
gi(X) .

Hence

f(X) · h(X) = Xrd − 1.

Let

H(X) =
∏t+1

i=1 gi(X)
h(X) . (5)
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Lemma 4.2. The polynomials H(X) and f(X) are coprime.

Proof. If Φj(X) | f(X) then Φj(X) | g̃i(X) for each i = 1, . . . , t + 1. It follows that 
Φj(X) � gi(X) for each i = 1, . . . , t + 1. Hence Φj(X) � H(X). �

Recall that D is the Z[GJ ]-module generated by yT . Let R = Z[〈γ〉]/
(
f(γ)

) ∼=
Z[X]/

(
f(X)

)
. Then

M = {α ∈ D ∩ L;αf(γ) = 1}

is an R-module.

Lemma 4.3. The Z-module D ∩ L has no Z-torsion.

Proof. Using (2), it follows from the definition of the numbers yT that any element of D
is a 2f -th power in LI . Therefore any α ∈ D ∩ L satisfying αc = 1 for a positive integer 
c is the 2f -th power of a root of unity in LI . We assume (f, m) = 1, hence any root of 
unity in LI is the product of a root of unity in F and a root of unity in KI , and since 
KI is real, such a root of unity belongs to F , and so its 2f -th power equals 1. Thus 
α = 1. �

It is easy to see that g̃i(γ) is the norm operator with respect to L/Mi for each i ∈ J . 
Let

Mi = {α ∈ D ∩ L; NL/Mi
(α) = 1}.

Corollary 4.4. We have M =
⋂t+1

i=1 Mi.

Proof. Clearly M ⊆
⋂t+1

i=1 Mi. Now we shall prove the other inclusion. Let α ∈
⋂t+1

i=1 Mi

be an arbitrary element. We have

αg̃i(γ) = 1

for all i = 1, . . . , t + 1. Using Bézout’s identity in Q[X] we deduce that there exist 
polynomials v1, . . . , vt+1 ∈ Z[X] and a positive integer n such that

v1(X)g̃1(X) + v2(X)g̃2(X) + · · · + vt+1(X)g̃t+1(X) = nf(X).

It follows

αnf(γ) = αv1(γ)g̃1(γ)+···+vt+1(γ)g̃t+1(γ) =
t+1∏
i=1

(αg̃i(γ))vi(γ) = 1.

Since D ∩ L has no Z-torsion by Lemma 4.3, we must have αf(γ) = 1, hence α belongs 
to M. �
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Lemma 4.5. Let z = NLI/L(yJ ) = NLI/L(xI). Then z ∈ M.

Proof. By Lemma 4.4 it is enough to show that z ∈ Mi for all i ∈ J . For i = t + 1 we 
have τ ∈ Gal(LI/Q), hence

NL/Q(z) = NLI/Q(xI) = 1.

Since LI−{i} is the maximal subfield of LI where pi is unramified, Mi is a subfield of 
LI−{i} for each i ∈ I, and we have

NL/Mi
(z) = NLI/Mi

(xI) = NLI−{i}/Mi

(
NLI/LI−{i}(xI)

)
= NLI−{i}/Mi

(xI−{i})1−Frob(pi)−1

by Corollary 2.3. Since Frob(pi) ∈ Gal(L/Mi), we have NL/Mi
(z) = 1. �

Lemma 4.6. The Z-module (D ∩ L)/M has no Z-torsion.

Proof. If any α ∈ D∩L satisfies αc ∈ M for a positive integer c, then αcf(γ) = (αf(γ))c =
1. By Lemma 4.3 the Z-module D ∩ L has no Z-torsion, hence αf(γ) = 1. �
Proposition 4.7. Let δ = H(γ), where H(X) was defined by (5). Then there is β ∈ M
such that z = βδ.

Proof. Since H(X) and f(X) are coprime by Lemma 4.2, it follows that [δ] ∈ R

is a nonzerodivisor. By [4, Proposition 6.2(2)] it suffices to show that for any ρ ∈
HomR(M, R) we have ρ(z) ∈ [δ]R. Let λ : R → h(γ)Z[〈γ〉] be the isomorphism of 
Z[〈γ〉]-modules determined by λ([x]) = h(γ)x, where x is a representative of a class 
[x] ∈ R. Then

λ ◦ ρ ∈ HomZ[〈γ〉](M,Z[〈γ〉]).

Lemma 4.6 and [4, Proposition 6.2(1)] for f(X) = Xrd − 1 gives

Ext1Z[〈γ〉]((D ∩ L)/M,Z[〈γ〉]) = 0,

and so there is φ ∈ HomZ[〈γ〉](D ∩ L, Z[〈γ〉]) such that φ|M = λ ◦ ρ. Let H =
Gal(LI/L) ⊆ GJ . Then GJ/H ∼= 〈γ〉, D ∩ L = DH and the restriction of ho-
momorphism ν of Lemma 3.1 gives the homomorphism ν̄ : (U ′)H → DH satisfying 
ν̄
(
s(H)
′∅

)
= NLI/L(yJ ) = z. Proposition 3.2 for ϕ = φ ◦ ν̄ together with Lemma 4.1

implies that

λ
(
ρ(z)

)
= φ(z) = ϕ

(
s(H)
′∅

)
∈
( t+1∏

gi(γ)
)
·Z[〈γ〉] = h(γ)δ · Z[〈γ〉].
i=1
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This means ρ(z) ∈ [δ]R and the theorem follows. �
5. Stickelberger ideal

For any n ∈ N and any b ∈ Z relatively prime to n let σb,n ∈ Gal(Q(ζn)/Q) be the 
automorphism determined by ζn �→ ζbn. For any n ∈ N and any a ∈ Z we define

θn(a) =
∑

1≤b≤n
(b,n)=1

〈
−ab

n

〉
σ−1
b,n ∈ Q[Gal(Q(ζn)/Q)],

where 〈x〉 is the fractional part of the real number x, i.e., the unique real number x′

satisfying 0 ≤ x′ < 1 and x − x′ ∈ Z. Let p denote the prime ideal of L lying under P, 
where P was introduced at the beginning of Section 2. The Stickelberger factorization 
of the principal ideal generated by the Gauss sum (see [8, page 99]) gives

g(χfm, ψ)fm · OQ(ζfm) = Pfmθfm(−1).

Recall that

xI = NQ(ζfm)/LI

(
g(χfm, ψ)fm(1−τ)

)2f
.

It follows that

NLI/L(xI) · OL = pΘL , (6)

where

ΘL = 2f(1 − τ)
∑

1≤b<fm
(b,fm)=1

b · resQ(ζfm)/Lσ
−1
b,fm ∈ Z[〈γ〉]. (7)

For any n ∈ N and any a ∈ Z we put

θ′n(a) = corL/L∩Q(ζn)resQ(ζn)/L∩Q(ζn)θn(a) ∈ Q[〈γ〉]. (8)

Let S′ ⊆ Q[〈γ〉] be the abelian group generated by all the elements θ′n(a) for all n ≥ 1
and all a ∈ Z. In fact, S′ is a Z[〈γ〉]-module and it follows from [6, Remark following 
Lemma 15] that this module is generated by

{θ′n(−1);n | fm} ∪ {1
2N1}, (9)

where N1 =
∑rd

i=1 γ
i. The Sinnott’s Stickelberger ideal S of L is defined by S = S′∩Z[〈γ〉]

and this ideal annihilates Cl(L), the ideal class group of L, see [7, Theorem 3.1]. The 
equality S′ = S does not hold in general. Nevertheless, for each prime q � 2fm all the 
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generators (9) belong to Zq[〈γ〉], hence we have Sq = S′
q, where Sq = SZq[〈γ〉] and 

S′
q = S′Zq[〈γ〉].
Let e− = 1

2 (1 −τ) ∈ Q[〈γ〉]. When L ∩Q(ζn) is real, we have θ′n(−1) = ϕ(n)
2[L∩Q(ζn) : Q]N1. 

Since e−N1 = 0, it follows that the module e−S′ is generated by

{e−θ′n(−1);n | fm,L ∩Q(ζn) is imaginary}.

We finish this section by determining the Z-rank of e−S′ which we shall use later on. It 
follows from [7, Theorem 2.1] and [7, Proposition 2.1] that

rankZS′ = 1
2[L : Q] + 1.

Then [7, Lemma 2.1] implies

rankZe−S′ = 1
2[L : Q].

6. Construction of a new annihilator

Recall that P is an unramified prime of Q(ζfm) of absolute degree 1, p = P ∩OL and 
p is the prime number below P. The principal ideal of OLI

generated by any element of 
D is supported only on conjugates of P ∩LI . Therefore for β from Proposition 4.7 there 
is ξ ∈ Z[〈γ〉] such that

β · OL = pξ. (10)

Hence

z · OL = pδξ

and the comparison with (6) gives

δξ = ΘL. (11)

Since p splits completely in L/Q, this ξ is unique and the equality βf(γ) = 1 implies that

f(γ) · ξ = 0.

It follows that there exists ξ′ ∈ Z[〈γ〉] such that

ξ = h(γ) · ξ′. (12)

The polynomial H(X) defined by (5) can be written uniquely in the form
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H(X) =
∏
j|rd

Φj(X)aj

for suitable nonnegative integers aj , so we have

δ =
∏
j|rd

Φj(γ)aj . (13)

For each divisor j of rd let

Nj =
rd/j∑
i=1

γij and Δj =
(rd/j)−1∑

i=1
iγij ,

so (1 − γj)Nj = 0 and (1 − γj)Δj = Nj − rd
j .

Proposition 6.1. The equalities (11) and (12) determine ξ ∈ Z[〈γ〉] uniquely, in fact

ξ = ΘL ·
∏
j|rd

( j

rd
Δj

∏
i|j
i�=j

Φi(γ)
)aj

. (14)

Proof. Equalities (11) and (13) imply

ΘL ·
∏
j|rd

(
Δj

∏
i|j
i�=j

Φi(γ)
)aj

= δξ ·
∏
j|rd

(
Δj

∏
i|j
i�=j

Φi(γ)
)aj

=

= ξ ·
∏
j|rd

(
Δj(γj − 1)

)aj

= ξ ·
∏
j|rd

(rd
j

−Nj

)aj

.

If aj �= 0 then Φj(X) | h(X). By (4) we have (Xj − 1) | h(X), hence (γj − 1) | h(γ). It 
follows that

Njh(γ) = 0 (15)

whenever aj �= 0, and so (12) gives

ΘL ·
∏
j|rd

(
Δj

∏
i|j
i�=j

Φi(γ)
)aj

= ξ ·
∏
j|rd

(rd
j

)aj

and the proposition follows. �
Let M be an abelian field. By Cl(M)q we shall denote the q-Sylow subgroup of the 

ideal class group Cl(M) of M . For every odd q and every Zq[Gal(M/Q)]-module A we 
define A− = 1−τA and A+ = 1+τA.
2 2
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Proposition 6.2. Let q be an odd prime. The element ξ ∈ Z[〈γ〉] given by (14) is an 
annihilator of Cl(L)−q .

Proof. The natural map Cl
(
Q(ζfm)

)−
q

→ Cl(L)−q is surjective by [2, Lemma 1.6(a)], 
and so every element in Cl(L)−q is represented by some prime p of L lying under an 
unramified prime P of Q(ζfm) of absolute degree 1, by Čebotarev’s Density Theorem 
applied to Q(ζfm). Proposition 6.1 implies that ξ does not depend on p and (10) shows 
that ξ annihilates the element of Cl(L)−q represented by p. �

Let L be the lattice of all imaginary subfields of L ordered by inclusion. For every 
M ∈ L we define

κM = corL/MΘM ∈ Z[〈γ〉],

where ΘM means ΘL of (7) for M instead of L. We also define

ξM = corL/MξM ∈ Z[〈γ〉],

where ξM means ξ of Proposition 6.1 for the field M instead of L. Let Z =
{M1, M2, . . . , Mn} ⊆ L be a lower set, i.e. a set with the property that, if M is in 
Z, M ′ ∈ L, and M ′ ⊆ M , then M ′ is in Z. We define the following ideals of Z[〈γ〉]:

IZ = (κM1 ,κM2 , . . . ,κMn
) and J Z = (ξM1 , ξM2 , . . . , ξMn

).

Recall that for every ideal A ⊆ Z[〈γ〉] the ideal AZq[〈γ〉] is denoted by Aq.

Proposition 6.3. The ideal IL has the following properties:

1. IL annihilates Cl(L).
2. IL

q = S−
q for every odd prime number q not dividing fm.

3. rankZIL = 1
2 [L : Q].

Proof. Let n | fm and suppose that L ∩Q(ζn) is imaginary. Using (7) and (8) we obtain

κL∩Q(ζn) = 2fnn(1 − τ)θ′n(−1), (16)

where fn is the conductor of F ∩Q(ζn). Suppose M ∈ L is a field of conductor n. Then 
we have

κM = f(γ)κL∩Q(ζn),

where

f(X) = X [L∩Q(ζn) : Q] − 1
[M : Q] ∈ Z[X].
X − 1
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It means that IL is generated as a Z[〈γ〉]-module by

{κL∩Q(ζn);n | fm,L ∩Q(ζn) is imaginary}.

Recall that e−S′ is generated as a Z[〈γ〉]-module by

{1
2 (1 − τ)θ′n(−1);n | fm,L ∩Q(ζn) is imaginary}.

It follows IL ⊆ e−S′ ∩ Z[〈γ〉] ⊆ S using [7, Lemma 2.1], hence IL annihilates Cl(L)
using [7, Theorem 3.1]. The quotient group e−S′/IL is clearly finitely generated and 
by (16) torsion, hence it is finite. Therefore rankZIL = rankZe−S′ = 1

2 [L : Q]. Since 
Sq = S′

q and |e−S′/IL| is a unit in Zq for every prime number q � 2fm, we obtain 
IL
q = (e−S′)q = (S′

q)− = S−
q . �

7. Relations among generators

In this section we derive relations that are satisfied by the numbers κM and ξM . These 
relations will be needed for calculating the index [J L : IL]. Let M ∈ L be an imaginary 
subfield of L of degree s = [M : Q]. The conductor of M is fMmIM , where fM is the 
conductor of F ∩M and IM ⊆ I is defined by

IM = {i ∈ I; pi is ramified in M ∩K},

because mIM is the conductor of K ∩M and M is equal to the compositum of F ∩M

and K ∩M . Let

zM = NQ(ζfMmIM
)/EM

(
z(1, fMmIM )

)2fM
,

where EM = (M ∩ F )KIM and z(1, fMmIM ) is defined by (1). Note that IL = I and 
xI = zL. We define θM ∈ Z[Gal(EM/Q)] by

zM · OEM
= (P ∩ EM )θ

M

. (17)

We have

ΘM = resEM/MθM .

Recall that

κM = corL/MΘM and ξM = corL/MξM ,

where ξM means ξ of Proposition 6.1 for the field M instead of L. For each i ∈ IM let 
gMi be the polynomial gi for M instead of L, so we have
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gMi (X) = Xni gcd(ui,s) − 1,

where s = [M : Q]. Note that gcd(ui, s) is the number of prime ideals dividing pi in 
M ∩ F . Let hM be the least common multiple of polynomials X − 1 and gMi for i ∈ IM . 
We set

HM (X) =
(X − 1) ·

∏
i∈IM

gMi (X)
hM (X) .

The equality (12) applied for M gives us α ∈ Z[Gal(M/Q)] such that

ξM = hM

(
resL/M (γ)

)
α = α · resL/M

(
hM (γ)

)
.

It follows that

ξM = corL/M (ξM ) = corL/M

(
α · resL/M

(
hM (γ)

))
= hM (γ)corL/M (α), (18)

hence hM (γ) | ξM in Z[〈γ〉]. Let δM be δ of Proposition 4.7 for the field M instead of L. 
We define

δM = HM (γ).

It follows that

δM = HM

(
resL/M (γ)

)
= resL/MδM ,

so by (11) we have

κM = corL/MΘM = corL/M

(
δM · ξM

)
= corL/M

(
resL/M (δM ) · ξM

)
= δMξM . (19)

Let M, M ′ ∈ L be two imaginary fields and denote their absolute degrees by s and s′, 
respectively. Suppose that M ′ ⊆ M . We set

NM/M ′
(X) =

∏
j|s Φj(X)∏
j|s′ Φj(X) =

s
s′ −1∑
j=0

Xjs′ ∈ Z[X],

so resL/MNM/M ′(γ) = NM/M ′(resL/Mγ) is the norm operator from M to M ′. The 
following proposition describes a relation between κM and κM ′ . The set of all primes 
that are ramified in M is denoted by SM .

Proposition 7.1. Let M, M ′ ∈ L and suppose M ′ ⊆ M . Then we have

NM/M ′
(γ)κM = f2

MmIM

f2
M ′mIM′

( ∏
q∈SM�SM′

(
1 − Frob(q)−1))κM ′ .
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Proof. It follows from (17) that

NEM/EM′ (zM ) · OEM′ = (P ∩ EM ′)resEM/E
M′ θ

M

. (20)

However, the number NEM/EM′ (zM ) can also be computed using the distribution rela-
tions for Gauss sums from Proposition 2.2

NEM/EM′ (zM ) = z

f2
MmIM

f2
M′mI

M′
·
∏

q∈SM �S
M′ (1−Frob(q)−1)

M ′ .

Hence we have

NEM/EM′ (zM ) · OEM′ = (P ∩ EM ′)
θM′ ·

f2
MmIM

f2
M′mI

M′
·
∏

q∈SM �S
M′ (1−Frob(q)−1)

and the comparison with (20) gives

resEM/EM′ θ
M = θM

′ · f2
MmIM

f2
M ′mIM′

·
∏

q∈SM�SM′

(1 − Frob(q)−1).

Applying resEM′/M ′ to both sides gives

resEM/M ′θM = f2
MmIM

f2
M ′mIM′

· ΘM ′ ·
∏

q∈SM�SM′

(1 − Frob(q)−1).

Now we apply corL/M ′ and we obtain

corL/M ′resEM/M ′θM = f2
MmIM

f2
M ′mIM′

( ∏
q∈SM�SM′

(1 − Frob(q)−1)
)
κM ′ .

The left-hand side can be further simplified

corL/M ′resEM/M ′θM = corL/McorM/M ′resM/M ′resEM/MθM

= corL/McorM/M ′resM/M ′ΘM

= corL/M

(
ΘM · resL/MNM/M ′

(γ)
)

= NM/M ′
(γ)κM

and the result follows. �
The polynomial HM (X) can be uniquely written in the form

HM (X) =
∏
j|s

Φj(X)aM,j ,

where aM,j are nonnegative integers depending only on M and j. The following lemma 
shows how to compute the numbers aM,j.
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Lemma 7.2. For every M ∈ L and j ∈ N we have

aM,j =

⎧⎪⎪⎨
⎪⎪⎩

0, for j � [M : Q]
|IM |, for j = 1
max

{
0, |{i ∈ IM ; j | niui}| − 1

}
, otherwise.

Proof. It follows from the definition of aM,j . �
Proposition 7.3. Let M, M ′ ∈ L and suppose M ′ ⊆ M with [M : M ′] = �n for some 
n ∈ N. Then we have

NM/M ′
(γ)ξM ∈ ξM ′Z[〈γ〉].

Proof. Let us denote the degrees [M : Q] and [M ′ : Q] by s and s′, respectively. We shall 
further denote 

f2
MmIM

f2
M′mI

M′
∈ N by b. By Proposition 7.1 we have

NM/M ′
(γ)κM = b

( ∏
q∈SM�SM′

(
1 − Frob(q)−1))κM ′ ,

which together with the equality (19) gives

NM/M ′
(γ)δMξM = b

( ∏
q∈SM�SM′

(
1 − Frob(q)−1))δM ′ξM ′ .

By assumption, the degree [M : M ′] is a power of �. It follows that

SM � SM ′ = {pi; i ∈ IM � IM ′}.

Hence
∏

q∈SM�SM′

(
1 − Frob(q)−1) =

∏
i∈IM�IM′

(
1 − Frob(pi)−1).

It also follows that gcd(ui, s) = gcd(ui, s′) for every i ∈ I, so

gMi = gM
′

i for every i ∈ IM ′ .

Since Frob(pi) lies in 〈γniui〉 and gMi = Xni gcd(ui,s)−1 divides Xniui−1 for each i ∈ IM , 
there exists ω ∈ Z[〈γ〉] such that

b
∏ (

1 − Frob(pi)−1) =
( ∏

gMi (γ)
)
ω.
i∈IM�IM′ i∈IM�IM′
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The equality (18) applied for M and M ′ gives us α ∈ Z[Gal(M/Q)] and α′ ∈
Z[Gal(M ′/Q)] such that

ξM = hM (γ)corL/M (α) and ξM ′ = hM ′(γ)corL/M ′(α′). (21)

Therefore we have

NM/M ′
(γ)δMhM (γ)corL/M (α) =

( ∏
i∈IM�IM′

gMi (γ)
)
ωδM ′hM ′(γ)corL/M ′(α′).

Recall that δM ′ = HM ′(γ), where

HM ′(X) =
(X − 1)

∏
i∈IM′ g

M ′

i (X)
hM ′(X) .

It follows that

δM ′hM ′(γ) = HM ′(γ)hM ′(γ) = (γ − 1)
∏

i∈IM′

gM
′

i (γ) = (γ − 1)
∏

i∈IM′

gMi (γ).

Putting all this together we obtain

NM/M ′
(γ)δMhM (γ)corL/M (α) = δMhM (γ)ωcorL/M ′(α′). (22)

Now we use the same trick as in Proposition 6.1. For every j | s let

NM
j =

s/j∑
i=1

γij and ΔM
j =

(s/j)−1∑
i=1

iγij .

We define ΛM ∈ Z[〈γ〉] by

ΛM =
∏
j|s

(
ΔM

j

∏
i|j
i�=j

Φi(γ)
)aM,j

∈ Z[〈γ〉].

Recall that δM = HM (γ) =
∏
j|s

Φj(γ)aM,j . Since

(γj − 1)ΔM
j =

(
s

j
− 1

)
γs −

s/j−1∑
i=1

(
i− (i− 1)

)
γij = s

j
γs −

s/j∑
i=1

γij = s

j
γs −NM

j ,

it follows that

ΛMδM =
∏(

ΔM
j (γj − 1)

)aM,j

=
∏(s

j
γs −NM

j

)aM,j

.

j|s j|s
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The equation (15) applied for M instead of L gives us that

resL/M

(
NM

j hM (γ)
)

= 0,

so we have

resL/M

(
ΛMδMhM (γ)

)
= resL/M

(
hM (γ)

∏
j|s

(s
j

)aM,j
)
.

Therefore

NM/M ′
(γ)δMhM (γ)corL/M (α)ΛM = NM/M ′

(γ)hM (γ)corL/M (α)
∏
j|s

(s
j

)aM,j

and also

δMhM (γ)ωcorL/M ′(α′)ΛM = ωhM (γ)corL/M ′(α′)
∏
j|s

(s
j

)aM,j

.

Multiplying both sides of the equation (22) by ΛM we thus obtain

NM/M ′
(γ)ξM

∏
j|s

(s
j

)aM,j

= hM (γ)ωcorL/M ′(α′)
∏
j|s

(s
j

)aM,j

.

The number 
∏
j|s

(
s
j

)aM,j ∈ N is a nonzerodivisor in Z[〈γ〉] and hM (X) is divisible by 

hM ′(X), so there exists an element 
 ∈ Z[〈γ〉] such that

NM/M ′
(γ)ξM = hM (γ)ωcorL/M ′(α′) = 
hM ′(γ)ωcorL/M ′(α′) = 
ωξM ′

and the proposition is proved. �
Proposition 7.4. Let M, M ′ ∈ L and suppose M ′ ⊆ M with � � [M : M ′]. Then we have

NM/M ′
(γ)ξM ∈ ξM ′Zq[〈γ〉]

for every prime number q � [M : M ′].

Proof. We derive, as in the proof of Proposition 7.3, that there exist α ∈ Z[Gal(M/Q)], 
α′ ∈ Z[Gal(M ′/Q)] such that (21) and that

NM/M ′
(γ)δMhM (γ)corL/M (α) = βδM ′hM ′(γ)corL/M ′(α′), (23)

for suitable β ∈ Z[〈γ〉]. By assumption, the degree [M : M ′] is not divisible by �, hence 
M ∩K = M ′ ∩K. It follows that IM = IM∩K = IM ′∩K = IM ′ , so we can write
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HM (X)hM (X)
HM ′(X)hM ′(X) =

∏
i∈IM

gMi (X)
gM

′
i (X)

∈ Z[X].

Now recall that

NM/M ′
(X) =

∏
j|s
j�s′

Φj(X),

where s = [M : Q] and s′ = [M ′ : Q]. Since gM
i

gM′
i

∣∣∣NM/M ′ for every i ∈ IM , we conclude 

that there exists v ∈ Z[X] such that

(
NM/M ′

(X)
)|IM |

HM ′(X)hM ′(X) = v(X)HM (X)hM (X).

Therefore we have

(
NM/M ′

(γ)
)|IM |

δM ′hM ′(γ) = v(γ)δMhM (γ).

Multiplying both sides of the equality (23) by 
(
NM/M ′(γ)

)|IM | we obtain

(
NM/M ′

(γ)
)|IM |+1

δMhM (γ)corL/M (α) = βv(γ)δMhM (γ)corL/M ′(α′).

By the same reasoning as we used at the end of the proof of Proposition 7.3, we have

(
NM/M ′

(γ)
)|IM |+1

ξM = β′ξM ′

for suitable β′ ∈ Z[〈γ〉]. Since resL/M

(
NM/M ′(γ)

)
is the norm operator from M to M ′, 

it follows that

resL/M

((
NM/M ′

(γ)
)|IM |+1

)
=

( s

s′

)|IM |
resL/M

(
NM/M ′

(γ)
)
.

Consequently,

(
NM/M ′

(γ)
)|IM |+1

ξM =
( s

s′

)|IM |
NM/M ′

(γ)ξM .

The number s
s′ is not divisible by q. Therefore the number 

(
s
s′

)|IM | is a unit in Zq, so 
we have

NM/M ′
(γ)ξM =

(
s′

s

)|IM |
β′ξM ′ ,

where (s′/s)|IM |β′ ∈ Zq[〈γ〉]. �
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In what follows, we shall suppose that q = 2 or q is an odd prime not dividing 
r = [F : Q].

Corollary 7.5. Let M, M ′ ∈ L and suppose M ′ ⊆ M . Then we have

NM/M ′
(γ)ξM ∈ ξM ′Zq[〈γ〉].

Proof. Let T denote the compositum of M ′ and M ∩K. This is the unique subfield of 
M containing M ′ such that [M : T ] is not divisible by � and [T : M ′] is a power of �. 
Clearly we have

NM/M ′
(X) = NM/T (X) · N T/M ′

(X)

and the result follows from Proposition 7.3 and Proposition 7.4. �
Lemma 7.6. Let M ∈ L be an arbitrary field of degree s = [M : Q]. Then we have

(γ s
2 + 1) · κM = (γ s

2 + 1) · ξM = 0.

Proof. It follows from Proposition 6.1 that there exists α ∈ Q[Gal(M/Q)] such that

ξM = corL/M (ΘM · α).

Hence we have

(γ s
2 + 1) · ξM = (γ s

2 + 1) · corL/M (ΘM · α)

= corL/M

(
resL/M (γ s

2 + 1) · ΘM · α
)

= corL/M

(
resEM/M

(
(1 + τ) · θM

)
· α

)
= 0

and the result follows. �
Let M ∈ L be a field of degree s = [M : Q]. The set of all subfields of M that lie in L, 

will be denoted by Z(M). We define FM ∈ Z[X] to be the greatest common divisor of 
X

s
2 + 1 and NM/M ′ for all M ′ ∈ Z(M) � {M}. Since M/Q is cyclic, it follows that for 

every j | s, j � s
2 , j �= s there exists M ′ ∈ Z(M) �{M} such that Φj � NM/M ′ . Therefore 

we have

FM (X) = Φs(X). (24)

Lemma 7.7. For every M ∈ L we have

∑
T∈Z(M)

degFT = 1
2[M : Q].
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Proof. Since M is imaginary, the degree [M : Q] is even. Write [M : Q] = 2ab with a > 0
and b odd. Then

∑
T∈Z(M)

degFT =
∑
s|2ab
2a|s

ϕ(s) =
∑
s|b

ϕ(2a)ϕ(s) = ϕ(2a)b = 2a−1b = 1
2[M : Q],

as desired. �
Proposition 7.8. Let Z = {M1, M2, . . . , Mn} ⊆ L be a non-empty lower set and let M1

be a maximal element of Z. Suppose that q = 2 or q is an odd prime not dividing r. If 
n ≥ 2, then we have

FM1(γ)κM1 ∈ IZ�{M1}
q and FM1(γ)ξM1 ∈ J Z�{M1}

q .

If n = 1 then we have

FM1(γ)κM1 = FM1(γ)ξM1 = 0.

Proof. Let us denote the degree [Mi : Q] by si. If n = 1, then FM1(X) = X
s1
2 + 1

and the result follows from Lemma 7.6. Suppose that n ≥ 2 and that M2, M3, . . . , Mu, 
u ≤ n, are all the maximal elements of Z(M1) � {M1}. Clearly FM1(X) is the greatest 
common divisor of X

s1
2 + 1 and NM1/Mi for all i = 2, . . . u. Applying Corollary 1.4 for 

n = s1, r1 = s1
2 and ri = si for each i = 2, . . . , u we obtain that there exist polynomials 

P1, P2, . . . , Pu ∈ Z[X] such that

P1(X)(X
s1
2 + 1) +

u∑
i=2

Pi(X)NM1/Mi(X) = FM1(X).

Proposition 7.1 and Lemma 7.6 imply

FM1(γ)κM1 = P1(γ)(γ
s1
2 + 1)κM1 +

u∑
i=2

Pi(γ)NM1/Mi(γ)κM1 ∈ IZ�{M1}
q

and Corollary 7.5 together with Lemma 7.6 gives

FM1(γ)ξM1 = P1(γ)(γ
s1
2 + 1)ξM1 +

u∑
i=2

Pi(γ)NM1/Mi(γ)ξM1 ∈ J Z�{M1}
q

and the proposition is proved. �
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8. Index of some finitely generated R[X]-modules

Let R be either Z or Zq, where q is a prime number. The algebraic closure of the 
field of fractions of R will be denoted by Ω. Let L be a finite partially ordered set which 
form a lattice. The least element of L will be denoted by 0. Recall that a lower set of a 
partially ordered set is a subset Z with the property that, if x is in Z, y ∈ L, and y ≤ x, 
then y is in Z. For each i ∈ L let Z(i) be the lower set generated by i, i.e.

Z(i) = {j ∈ L; j ≤ i}.

Suppose that M is a finitely generated R[X]-module whose generators will be denoted 
by ξi, i ∈ L. For each i ∈ L let κi be an element of M given by

κi = Hi · ξi

for some Hi ∈ R[X]. By N we shall denote the submodule of M generated by all the 
elements κi. For each lower set Z ⊆ L we define the following submodules:
Let MZ be the submodule of M generated by ξi for all i ∈ Z. Let NZ be the submodule 
of N generated by κi for all i ∈ Z. For Z = ∅ we thus have M∅ = N∅ = {0}. We further 
assume that the elements ξi and κi satisfy the following relations:
For each i ∈ L there is a polynomial Fi ∈ R[X] such that

Fi · κi ∈ NZ(i)\{i} and Fi · ξi ∈ MZ(i)\{i}.

We shall prove the following proposition:

Proposition 8.1. Suppose that all the polynomials Fi are monic. We shall further assume 
that for every lower set ∅ �= Z ⊆ L and every maximal element m of Z we have

rankRMZ = rankRMZ�{m} + degFm,

rankRNZ = rankRNZ�{m} + degFm.

It follows that rankRM = rankRN and

[M : N ] =
∏
i∈L

∣∣R[X]/
(
Fi, Hi

)∣∣.
Moreover, the polynomials Fi and Hi have no common root in Ω for each i ∈ L.

Proof. Using induction with respect to the size of Z we shall prove that

rankRMZ = rankRNZ

and that
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[MZ : NZ ] =
∏
i∈Z

∣∣R[X]/
(
Fi, Hi

)∣∣.
Suppose Z = {0}. It is obvious that rankRMZ = rankRNZ = degF0. The map 
R[X]/(F0) → MZ given by

[f ] �→ f · ξ0,

where [a] denotes the coset containing a, is a surjective homomorphism of R[X]-modules. 
Since they have the same R-rank and R[X]/

(
F0

)
is a free R-module, it is an isomorphism. 

The preimage of NZ in this isomorphism is the ideal ([H0]). Therefore the quotient 
MZ/NZ is isomorphic to

R[X]/(F0)
/

([H0]) ,

which is isomorphic to

R[X]/(F0, H0).

Now suppose that Z has at least two elements. Let m be a maximal element of Z. The 
lower set Z � {m} will be denoted by Z ′. Let TZ be the R[X]-module generated by MZ′

and κm, so NZ ⊆ TZ ⊆ MZ . We have

[MZ : NZ ] = [MZ : TZ ] · [TZ : NZ ].

From the induction hypothesis we derive that the modules MZ , NZ and TZ have the 
same R-rank. Indeed, we have

rankRNZ = rankRNZ�{m} + degFm = rankRMZ�{m} + degFm = rankRMZ .

Moreover, the R-bases of TZ and of NZ can be obtained by adding {Xi · κm; 0 ≤ i <
degFm} to R-bases of MZ′ and of NZ′ , respectively. Hence, using the determinants of 
transition matrices we get

[TZ : NZ ] = [MZ′ : NZ′ ]. (25)

The map R[X]/(Fm) → MZ/MZ′ given by

[f ] �→ f · [ξm]

is a surjective homomorphism of R[X]-modules. Since they have the same R-rank and 
R[X]/

(
Fm

)
is a free R-module, it is an isomorphism. The preimage of TZ/MZ′ in this 

isomorphism is the ideal ([Hm]). Therefore we have

MZ/TZ
∼= MZ/MZ′

/
T /M ′

∼= R[X]/(Fm)
/

([H ]) ,
Z Z m
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which is isomorphic to

R[X]/(Fm, Hm).

The induction hypothesis together with (25) gives

[MZ : NZ ] = |R[X]/(Fm, Hm)| · [MZ′ : NZ′ ] =

= |R[X]/(Fm, Hm)| ·
∏
i∈Z′

|R[X]/(Fi, Hi)|.

To conclude the proof it remains to show that the polynomials Fi and Hi have no common 
root for each i ∈ Z. Suppose that for some i ∈ Z the polynomials Fi and Hi have a 
common root in Ω. Let us denote P ∈ R[X] their monic greatest common divisor, so we 
can write

Fi = PF ′
i and Hi = PH ′

i

for suitable polynomials F ′
i , H

′
i ∈ R[X]. It follows that the polynomial F ′

i is monic. The 
lower set Z(i) � {i} will be denoted by Z ′. Let TZ(i) be the R[X]-module generated by 
MZ′ and κi. Now we have

F ′
i · κi = F ′

i · (Hi · ξi) = PF ′
iH

′
i · ξi = H ′

iFi · ξi ∈ MZ′ .

Hence

rankRTZ(i) ≤ rankRMZ′ + degF ′
i < rankRMZ′ + degFi = rankRMZ(i),

which is not possible. �
9. Computing the index [J L

q : IL
q ]

Since not all the relations derived in Section 7 hold in Z[〈γ〉] (see Corollary 7.5), one 
cannot compute the index [J L : IL] in general. Nevertheless, we can always determine 
the exact power of � dividing this index. Moreover, it turns out that apart from � only 
odd primes dividing the degree [F : Q] could possibly divide the index [J L : IL].

Recall that q = 2 or q is an odd prime not dividing [F : Q].

Proposition 9.1. For every lower set Z ⊆ L we have

rankZq
J Z
q = rankZq

IZ
q =

∑
M∈Z

degFM .
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Proof. It follows from Proposition 7.8 that

rankZq
IZ
q ≤

∑
M∈Z

degFM . (26)

If there were a sharp inequality in (26) for some lower set Z0 ⊆ L, then there would be a 
sharp inequality for all lower sets that contain Z0. In particular, there would be a sharp 
inequality for L since

rankZq
IL
q ≤ rankZq

IZ0
q +

∑
M∈L�Z0

degFM <
∑
M∈L

degFM .

Using Lemma 7.7, we would obtain

rankZq
IL
q <

1
2 [L : Q].

However, this is not the case since by Proposition 6.3 we have

rankZq
IL
q = rankZq

(IL ⊗Z Zq) = rankZIL = rankZS− = 1
2[L : Q].

It remains to show that rankZq
IZ
q = rankZq

J Z
q . Clearly rankZq

IZ
q ≤ rankZq

J Z
q . It 

follows from Proposition 7.8 that

rankZq
J Z
q ≤

∑
M∈Z

degFM ,

hence

rankZq
IZ
q ≤ rankZq

J Z
q ≤

∑
M∈Z

degFM = rankZq
IZ
q

and the result follows. �
Proposition 9.2. For any lower set Z = {M1, M2, . . . , Mn} ⊆ L we have

[J Z
q : IZ

q ] =
n∏

i=1
|Zq[X]/(FMi

(X), HMi
(X))|.

Proof. To apply Proposition 8.1 we need to show that

rankZq
IZ
q = rankZq

IZ�{M}
q + degFM

rankZq
J Z
q = rankZq

J Z�{M}
q + degFM

for every lower set Z ⊆ L and every maximal M ∈ Z. But this was established in the 
proof of Proposition 9.1. �
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Recall that

aM,j =

⎧⎪⎪⎨
⎪⎪⎩

0, for j � [M : Q]
|IM |, for j = 1
max

{
0, |{i ∈ IM ; j | niui}| − 1

}
, otherwise.

Proposition 9.3. Let M ∈ L be an arbitrary field. Then we have

|Z[X]/(FM (X), HM (X))| =
v−1∏
j=0

�ϕ(u�j)aM,u�j ,

where u = [M ∩ F : Q] and v = ord�([M ∩K : Q]).

Proof. The degree [M : Q] is u�v. By (24) we have

FM (X) = Φu�v(X).

The polynomial HM is by definition equal to

HM (X) =
∏
j|u�v

Φj(X)aM,j .

Therefore we have

|Z[X]/(FM (X), HM (X))| = |Z[X]/(Φu�v (X),
∏
j|u�v

Φj(X)aM,j )|

=
∏
j|u�v

∣∣Z[ζu�v ]/
(
Φj(ζu�v)

)∣∣aM,j
.

It follows from the definition of numbers aM,j that aM,j = 0 whenever �v | j. Hence, 
using Proposition 1.2 we obtain

∣∣Z[ζu�v ]/
(
Φj(ζu�v )

)∣∣aM,j =
{
�ϕ(j)aM,j if j = u�i for i = 1, 2, . . . , v − 1
1, otherwise

and the result follows. �
Theorem 9.4. Suppose that q = 2 or q is an odd prime not dividing r. The relative index 
[J L

q : IL
q ] is 1 whenever q �= �. In case q = � the index is given by the following formula

[J L
� : IL

� ] =
∏
u|r

r

k∏
i=1

i−1∏
j=0

�ϕ(u�j)b(u,i,j),
2� u
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where k = ord�([K : Q]) and b(u, i, j) = a
M

(i)
u ,u�j

with M (i)
u being the unique subfield of 

L of degree [M (i)
u : Q] = u�i.

Proof. This result follows from Proposition 9.2 using Proposition 9.3. �
Theorem 9.5. The ideal J L annihilates the ideal class group Cl(L) of L.

Proof. At first we suppose q is an odd prime. Proposition 6.2 implies that ξM ∈
Z[Gal(M/Q)] annihilates Cl(M)−q . It follows that ξM = corL/MξM ∈ Z[〈γ〉] annihi-
lates Cl(L)−q . Since J L annihilates Cl(L)+q , we conclude that it annihilates Cl(L)q for 
every odd prime q. It remains to show that J L also annihilates Cl(L)2. It follows from 
Proposition 6.3 that IL

2 annihilates Cl(L)2. Theorem 9.4 implies that J L
2 = IL

2 , so J L

annihilates Cl(L)2. �
We now consider a special case. Suppose [F : Q] = 2. For each i = 0, 1, . . . k let L(i)

be the unique subfield of L of degree [L(i) : Q] = 2�i. The poset L is the following string

F = L(0) � L(1) � · · · � L(k) = L.

We have

FL(i)(X) = Φ2�i(X).

Theorem 9.4 gives

[J L
� : IL

� ] =
k∏

i=1

i−1∏
c=0

�
ϕ(2�c)a

L(i),2�c =
k∏

i=1

(
�
a
L(i),2

i−1∏
c=1

�
�c−1(�−1)a

L(i),2�c

)
,

where

aL(i),2�c = max
{
|{j ∈ IL(i) ; 2�c | njuj}| − 1, 0

}
.

We can compare this to the result of Greither and Kučera. Their index in [2, Theorem 
6.5] is equal to

k∏
i=1

�
a
L(i),2 ,

which divides our index. Our index is strictly larger if and only if there exist two different 
indices i, j ∈ IL such that both pi and pj split completely in L(1).



218 P. Francírek / Journal of Number Theory 213 (2020) 187–220
10. Examples

To find an example of fields for which our index is strictly larger than the index from 
[2], we need to take k ≥ 2, so the smallest possible degree of such a field over rationals 
is 18. Suppose � = 3, d = 32 and r = 2. We set F = Q(

√
−83), thus f = 83. Let us take 

p1 = 19, p2 = 7 and p3 = 31 and consider the following characters:

χ1 : (Z/19Z)× → C× χ1(2) = ζ9,

χ2 : (Z/7Z)× → C× χ2(3) = ζ3,

χ3 : (Z/31Z)× → C× χ3(3) = ζ3.

Let K be the field belonging to χ1χ2χ3. Let L be the compositum of F and K, so 
the conductor of L is n = 7 · 19 · 31 · 83 = 342209. We have Gal(L/Q) = 〈γ〉, where 
γ = resQ(ζn)/Lσ34.

L

23

L(1)

23

K

3

F

2

K(1)

3

Q

It can be shown that

κF = 2 · 832 · (3γ − 3) · (γ16 + γ14 + γ12 + γ10 + γ8 + γ6 + γ4 + γ2 + 1),

κL(1) = 2 · 832 · 19 · (6γ2 + 10γ + 10) · (γ12 + γ6 + 1) · (γ3 − 1),

κL = 2 · 83 · n · (1 − γ9) · κ̃L

where

κ̃L = 64γ7 − 84γ6 + 18γ5 + 2γ4 − 120γ3 + 18γ2 − 62γ − 36.

Since the primes 7 and 31 split completely in L(1)/Q and the prime 19 is totally ramified 
in K/Q and inert in F/Q we have

aL(1),1 = 1, aL,1 = 3, aL,6 = 1, aL,3 = 1, aL,2 = 1,
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which are the only nonzero values. We can compute ξF , ξL(1) , ξL:

ξF = κF ,

ξL(1) = κL(1) · (1
6ΔL(1)

1 ) = 38 · 832 · (13γ2 + 7γ − 3) · (1 − γ3) · (1 + γ6 + γ12),

ξL = κL ·
( 1

18ΔL
1
)3 · ( 1

9ΔL
2 (γ − 1)

)
·
( 1

6ΔL
3 (γ − 1)

)
·
( 1

3ΔL
6 (γ4 + γ3 − γ − 1)

)
= 4 · 83 · n · (1 − γ9) · ξ̃L

where

ξ̃L = 32γ8 + 2γ7 − 31γ6 − 75γ5 − 85γ4 − 101γ3 − 107γ2 − 87γ − 70.

We used the system PARI to check that all these elements actually annihilate Cl(L). 
The index [J L : IL] is given by

[J L : IL] = [J L
� : IL

� ] = 3aL(1),2 · 3aL,2 · 32aL,6 = 33,

while the index from [2] is in this case equal to 3aL(1),2 · 3aL,2 = 3.
We conclude this section by exhibiting an example where F is imaginary but not 

quadratic. Suppose � = d = 3 and r = 4. We set F = Q(ζ5), thus f = 5. Let us take 
p1 = 19, p2 = 31 and p3 = 61 and consider the following characters:

χ1 : (Z/19Z)× → C× χ1(2) = ζ3,

χ2 : (Z/31Z)× → C× χ2(3) = ζ3,

χ3 : (Z/61Z)× → C× χ3(2) = ζ3.

Let K be the field belonging to χ1χ2χ3. Let L be the compositum of F and K, so 
the conductor of L is n = 5 · 19 · 31 · 61 = 179645. We have Gal(L/Q) = 〈γ〉, where 
γ = resQ(ζn)/Lσ33. It can be shown that

κF = 10 · (1 − γ6) · (1 + 2γ + 4γ2 + 3γ3) · (1 + γ4 + γ8)

= 10 · (γ + 3) · (γ10 − γ8 + γ6 − γ4 + γ2 − 1),

κL = 10 · n · (64γ5 − 32γ4 + 26γ3 − 70γ2 − 38γ − 38) · (1 − γ6).

We have aF,j = 0 for all j ∈ N, hence ξF = κF . For the field L we obtain

aL,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3, j = 1,
2, j = 2,
1, j = 4,
0, otherwise.

Therefore we have
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ξF = κF ,

ξL = κL ·
(

1
12ΔL

1

)3
·
(

1
6ΔL

2 (γ − 1)
)2

·
(

1
3ΔL

4 (γ2 − 1)
)

= 10 · n · (36γ5 + 32γ4 − 4γ3 − 38γ2 − 40γ − 70) · (1 − γ6).

The fact that ξL annihilates Cl(L) was again checked by PARI. The index [J L : IL] is 
equal to

[J L : IL] = [J L
� : IL

� ] = 3ϕ(4)aL,4 = 32.
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