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1. Introduction

Given a group Γ, write Perm(Γ) for its symmetric group, and recall that a subgroup 
D of Perm(Γ) is said to be regular if the map

ξD : D −→ Γ; ξD(δ) = δ(1Γ)

is bijective. The images of the left and right regular representations

{
λ : Γ −→ Perm(Γ); λ(γ) = (x �→ γx)
ρ : Γ −→ Perm(Γ); ρ(γ) = (x �→ xγ−1)

of Γ are examples of regular subgroups of Perm(Γ). Recall also that

Hol(Γ) = ρ(Γ) � Aut(Γ)

is the holomorph of Γ. Alternatively, it is easy to check that

Norm(λ(Γ)) = Hol(Γ) = Norm(ρ(Γ)),

where Norm(−) denotes the normalizer in Perm(Γ).
Given a finite Galois extension L/K with Galois group G, by work of [11], we know 

that the number of Hopf-Galois structures on L/K is equal to

e(G) = #{regular subgroups of Perm(G) normalized by λ(G)}.

In particular, for each group N having the same order as G, the number of Hopf-Galois 
structures on L/K of type N is equal to

e(G,N) = #
{

regular subgroups of Perm(G) which are
isomorphic to N and normalized by λ(G)

}
. (1.1)

By [3], this finer count may be calculated via the formula

e(G,N) = |Aut(G)|
|Aut(N)| · #

{
regular subgroups of Hol(N)
which are isomorphic to G

}
. (1.2)
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The computation of e(G, N) has been a problem of interest in the literature; see [1,4,6,
14,15,20] for some related work. We shall refer the reader to [9, Chapter 2] for a more 
detailed discussion on Hopf-Galois structures.

This paper is motivated by the case when G is the symmetric group Sn for n ≥ 5. 
First, by [8, Theorems 5 and 9], we know that

e(Sn, Sn) = 2 + 2 · #{σ ∈ An : σ has order 2}, (1.3)

e(Sn, An × C2) = 2 · #{σ ∈ Sn \An : σ has order 2}, (1.4)

where An is the alternating group and C2 is the cyclic group of order 2. Also see [8, 
Corollaries 6 and 10], which give explicit formulae in terms of n for these two numbers. 
The case n = 6 is slightly different because S6 is not the full automorphism group of A6, 
and as noted on [8, p. 91], we have

e(S6,PGL2(9)) = 0 and e(S6,M10) = 72, (1.5)

where M10 is the Mathieu group of degree 10. Recently, the present author has shown 
in [21] that in fact

e(Sn, N) �= 0 only if N �
{
Sn, An × C2 for n �= 6,
S6, A6 × C2,M10,PGL2(9) for n = 6.

(1.6)

Hence, the number e(Sn, N) is known for every group N of order n!.
Recall that a group Γ is said to be almost simple if

A ≤ Γ ≤ Aut(A) for some non-abelian simple group A,

where A is identified with its inner automorphism group Inn(A), and in this case A is the 
socle of Γ. For n ≥ 5, the symmetric group Sn is almost simple with socle An of index 
2. Note also that PGL2(9) and M10 are almost simple groups with socle A6 of index 2.

The purpose of this paper is to investigate to what extent the results (1.3), (1.4), and 
(1.6) for the symmetric groups may be generalized to an arbitrary finite almost simple 
group in which its socle has prime index.

Notation. In the rest of this paper, assume that G is a finite almost simple group with 
socle A such that A has prime index p in G. Note that then

A is the unique non-trivial proper normal subgroup of G. (1.7)

Also, we shall use the symbol N to denote a group of the same order as G.

For (1.3), as shown in [22, Theorem 1.3], we already know:
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Theorem 1.1. We have

e(G,G) = 2 + 2 ·#{σ ∈ A : σ has order p}

+ 2 · p− 2
p− 1 · #{σ ∈ G \A : σ has order p},

provided that Inn(G) is the only subgroup isomorphic to G in Aut(G).

For (1.4), in Section 4, we shall prove:

Theorem 1.2. We have

e(G,A× Cp) = 2 · 1
p− 1 · #{σ ∈ G \A : σ has order p},

where Cp is the cyclic group of order p.

Recall that a group Γ is perfect if it equals its own commutator subgroup [Γ, Γ], and 
quasisimple if it is perfect and Γ/Z(Γ) is simple, where Z(Γ) is the center of Γ.

For (1.6), we shall study the cases when N is non-perfect and perfect separately. In 
Sections 5 and 6, respectively, we shall prove:

Theorem 1.3. If N is non-perfect and e(G, N) �= 0, then N � A ×Cp or N is an almost 
simple group with socle isomorphic to A.

Theorem 1.4. If N is perfect and e(G, N) �= 0, then all of the conditions

(1) N is a quasisimple group with N/Z(N) isomorphic to A;
(2) A admits an automorphism having exactly p fixed points;
(3) N/Z(N) has an element ζ̃Z(N) of order p such that

ηζ̃ ≡ ζ̃η (mod Z(N)) implies ηζ̃ = ζ̃η for all η ∈ N ;

hold, and in the case that Z(N) is fixed pointwise by Aut(N), the condition

(4) A has an element ζ of order p such that

σζ = ζσ for some σ ∈ G \A;

holds as well.

For n ≥ 5, we know that Inn(Sn) is the only subgroup isomorphic to Sn in Aut(Sn). 
This is because Aut(Sn) = Inn(Sn) for n �= 6 and was proven in [16] for n = 6. Also, 
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when N = 2An is the double cover of An, condition (3) in Theorem 1.4 fails by the proof 
of [21, Lemma 2.7]. Hence, Theorems 1.1 to 1.4 imply the case when G is Sn.

The converse of Theorem 1.3 is false by (1.5). By Theorem 1.2, we have

e(G,A× Cp) �= 0 if and only if G splits over A as a group extension.

However, the author does not know whether there is any simple criterion on an almost 
simple N with socle isomorphic to A such that e(G, N) �= 0. Also, she does not know 
whether there exist any examples of G and perfect N for which all four conditions in 
Theorem 1.4 are satisfied. It is possible that in fact e(G, N) = 0 for all perfect N , but 
currently we are unable to prove this, and the conditions in Theorem 1.4 might not be 
sufficient to rule out these N . But observe that if e(G, N) �= 0 with N perfect, then p
divides the order of the Schur multiplier of A by condition (1) in Theorem 1.4. Since 
p divides the order of the outer automorphism group of A by hypothesis, this already 
gives restrictions on G. We shall discuss more applications of our theorems in Section 7.

Finally, let us make one remark. The following is due to N. P. Byott.

Conjecture 1.5. Given any finite groups Γ and Δ of the same order, if Γ is insolvable 
and e(Γ, Δ) �= 0, then Δ is also insolvable.

It is known that Conjecture 1.5 is true when Γ is non-abelian simple [5] and when 
Γ is the double cover of An for n ≥ 5 [19]. Recently, it was further shown in [23] that 
Conjecture 1.5 holds when the order of Γ and Δ is cubefree, less than 2000, or satisfy 
some suitable conditions. Our Theorem 1.3 implies that Conjecture 1.5 is true when Γ
is almost simple in which the socle has prime index. Let us remark that in the preprint 
[24], the author has also extended the result of [5] to the case when Γ is quasisimple.

2. Preliminaries

In this section, let Γ be a finite group.

2.1. Regular subgroups in the holomorph

Let Δ be a finite group, not necessarily of the same order as Γ. Let us recall some 
known methods which may be used to study regular subgroups of Hol(Γ).

Definition 2.1. We have the following definitions.

(1) Given any f ∈ Hom(Δ, Aut(Γ)), a map g from Δ to Γ is said to be a crossed homo-
morphism with respect to f if

g(δ1δ2) = g(δ1) · f(δ1)(g(δ2)) for all δ1, δ2 ∈ Δ. (2.1)
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Write Z1
f (Δ, Γ) for the set of all such crossed homomorphisms.

(2) Given any ϕ, ψ ∈ Hom(Δ, Γ), a fixed point of (ϕ, ψ) is an element δ ∈ Δ such that 
ϕ(δ) = ψ(δ), and (ϕ, ψ) is said to be fixed point free if it has no fixed point other 
than 1Δ.

Proposition 2.2. The regular subgroups of Hol(Γ) isomorphic to Δ are precisely the sub-
sets of the shape

D = {ρ(g(δ)) · f(δ) : δ ∈ Δ}

as f ranges over Hom(Δ, Aut(Γ)) and g over the bijective maps in Z1
f (Δ, Γ).

Proof. This follows directly from the definition that Hol(Γ) = ρ(Γ) � Aut(Γ); or see [19, 
Proposition 2.1] for a proof. �
Proposition 2.3. Given f ∈ Hom(Δ, Aut(Γ)) and g ∈ Z1

f (Δ, Γ), define

h : Δ −→ Aut(Γ); h(δ) = conj(g(δ)) · f(δ), (2.2)

where conj(−) = λ(−)ρ(−). Then:

(a) The map h is a homomorphism.
(b) The fixed points of (f, h) are precisely the elements of g−1(Z(Γ)).
(c) For all δ1 ∈ ker(f) and δ2 ∈ Δ, we have g(δ1δ2) = g(δ1)g(δ2).
(d) For all δ1 ∈ ker(h) and δ2 ∈ Δ, we have g(δ1δ2) = g(δ2)g(δ1).

Proof. See [22, Proposition 3.4] for (a) and the rest are easily verified. Let us just note 
that for (b), by definition δ ∈ Δ is a fixed point of (f, h) if and only if conj(g(δ)) = IdΓ, 
which is equivalent to g(δ) ∈ Z(Γ). �

Recall that a subgroup Λ of Γ is characteristic if ϕ(Λ) = Λ for all ϕ ∈ Aut(Γ). In this 
case, clearly Λ is normal in Γ, and

Aut(Γ) −→ Aut(Γ/Λ); ϕ �→ (xΛ �→ ϕ(x)Λ)

is a well-defined homomorphism.

Proposition 2.4. Let Λ be a characteristic subgroup of Γ. Given

f ∈ Hom(Δ,Aut(Γ)) and g ∈ Z1
f (Δ,Γ),

they induce two canonical maps

fΛ : Δ −→ Aut(Γ) −→ Aut(Γ/Λ) and gΛ : Δ −→ Γ −→ Γ/Λ,
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respectively, via compositions with the map Aut(Γ) −→ Aut(Γ/Λ) above and the natural 
quotient map Γ −→ Γ/Λ. Then:

(a) We have fΛ ∈ Hom(Δ, Aut(Γ/Λ)) and gΛ ∈ Z1
fΛ

(Δ, Γ/Λ).
(b) The subset g−1(Λ) is a subgroup of Δ.
(c) In the case that g is bijective, there is a regular subgroup of Hol(Λ) which is isomor-

phic to g−1(Λ).

Proof. Both (a) and (b) are clear; see [19, Lemma 4.1] for a proof of (b). For part (c), 
see [23, Proposition 3.3]. �

Following [5] or [19, Section 4], we shall apply Proposition 2.4 to a maximal characteris-
tic subgroup Λ of Γ. In this case, the quotient Γ/Λ is a finite non-trivial characteristically 
simple group, and so we know that

Γ/Λ � Tm, where T is a finite simple group and m ∈ N. (2.3)

This shall be a crucial step in the proof of Theorems 1.3 and 1.4.

2.2. Some group-theoretic facts

We shall need the following basic properties of groups in which there is a normal copy 
of A of index p.

Lemma 2.5. Assume that Γ has a normal subgroup Λ isomorphic to A and [Γ : Λ] = p. 
Then, either Γ � Λ × Cp or Γ is almost simple with socle Λ.

Proof. Since Λ is normal in Γ, we have a homomorphism

Φ : Γ −→ Aut(Λ); Φ(γ) = (x �→ γxγ−1).

Put C = ker(Φ), which is the centralizer of Λ in Γ, and C ∩Λ = 1 because Λ has trivial 
center. If C �= 1, then since [Γ : Λ] = p, we deduce that

Γ = ΛC = Λ × C and C � Cp.

If C = 1, then Γ embeds into Aut(Λ) via Φ, and since Φ(Λ) = Inn(Λ), this implies that 
Γ is almost simple with socle Λ. �
Lemma 2.6. Assume that Γ = A × Cp. Then:

(a) The non-trivial proper normal subgroups of Γ are exactly A and Cp.
(b) The subgroups A and Cp of Γ are characteristic.
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(c) We have Aut(Γ) = Aut(A) × Aut(Cp).

Proof. Let Λ be any normal subgroup of Γ. Note that Λ ∩A is normal in A. Since A is 
simple, there are only two possibilities.

• Λ ∩A = A: Then A ⊂ Λ, so Λ = A or Λ = Γ since A has prime index in Γ.
• Λ ∩ A = 1: Then Λ has exponent dividing p. The projection of Λ onto A, which is 

normal in A, hence cannot be A and so must be trivial. It follows that Λ ⊂ Cp, so 
Λ = 1 or Λ = Cp.

This proves (a), which in turn implies (b) and then (c). �
Lemma 2.7. Assume that Γ is almost simple with socle A. Then:

(a) The center of Γ is trivial;
(b) The group Aut(Γ) embeds into Aut(A) via restriction to A.

Proof. This is well-known; or see [22, Lemmas 4.1 and 4.3] for a proof. �
The next lemma gives some consequences of the classification of finite simple groups 

which we shall need.

Lemma 2.8. Assume that Γ is non-abelian simple. Then:

(a) The outer automorphism Out(Γ) of Γ is solvable.
(b) Every ϕ ∈ Aut(Γ) has a fixed point other than 1Γ.
(c) There is no subgroup isomorphic to Γ in Aut(Γ) other than Inn(Γ).

Proof. See [10, Theorems 1.46 and 1.48] and [22, Corollary 5.3]. �
3. The case when N has a normal copy of A

In this section, assume that N contains A as a normal subgroup. In this case we have 
[N : A] = p because N is assumed to have the same order as G. Then, by Lemma 2.5, 
either N � A × Cp or N is almost simple with socle A. We shall prove an alternative 
formula for the number e(G, N) which is similar to but not quite the same as (1.2).

3.1. A key observation

Let us first prove:

Proposition 3.1. A regular subgroup G of Hol(N) isomorphic to G, which is not equal to 
λ(N) or ρ(N), is normalized by exactly one of λ(N) and ρ(N).
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Let G be a regular subgroup of Hol(N) isomorphic to G which is not equal to λ(N)
or ρ(N). By Proposition 2.2, we know that

G = {ρ(g(σ)) · f(σ) : σ ∈ G}, where
{
f ∈ Hom(G,Aut(N)),
g ∈ Z1

f (G,N) is bijective.

We may also rewrite it as

G = {λ(g(σ))−1 · h(σ) : σ ∈ G}, where h ∈ Hom(G,Aut(N)) (3.1)

is defined as in (2.2). Note that both f and h are non-trivial because

{
G ⊂ ρ(N) if f were trivial,
G ⊂ λ(N) if h were trivial,

in which case we would have equality by the bijectivity of g. From (1.7), we then deduce 
that ker(f) and ker(h) are either trivial or equal to A.

Lemma 3.2. The following are true.

(a) If f is injective, then G is not normalized by ρ(N).
(b) If h is injective, then G is not normalized by λ(N).

Proof. Suppose that f is injective. For any σ ∈ G and η ∈ N , we have

ρ(η) · ρ(g(σ))f(σ) · ρ(η)−1 = ρ(ηg(σ)f(σ)(η)−1) · f(σ).

By the injectivity of f, the above element lies in G if and only if

ηg(σ)f(σ)(η)−1 = g(σ), or equivalently h(σ)(η) = η.

But h is non-trivial and so G is not normalized by ρ(G). This proves (a), and a similar 
argument using (3.1) shows (b). �

Note that A is characteristic in N . This is Lemma 2.6(b) if N � A ×Cp and is because 
A is the socle of N if N is almost simple. Hence, we have

fA, hA ∈ Hom(G,Aut(N/A)) and gA ∈ Z1
fA

(G,N/A)

defined as in Proposition 2.4 and (2.2). Note that

Aut(N/A) � Aut(Cp) � Cp−1 (cyclic group of order p− 1).
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This, together with (1.7), implies that fA is trivial, and so gA is a homomorphism by 
Proposition 2.3(c). But N/A � Cp, and gA is surjective because g is bijective. Again from 
(1.7), we see that ker(gA) = A, which gives g(A) = A. This equality shall be important 
in the arguments that follow. Note that hA is trivial similarly by (1.7).

For any σ ∈ G and η ∈ N , since fA and hA are trivial, we have

η · f(σ)(η)−1 ∈ A and η · h(σ)(η)−1 ∈ A.

Since g(A) = A, there exist ση,f, ση,h ∈ A such that

g(ση,f) = η · f(σ)(η)−1 and g(ση,h) = η · h(σ)(η)−1.

Let us rewrite the above as

g(ση,f)g(σ)−1 = ηg(σ)−1h(σ)(η)−1,

g(ση,h)g(σ) = ηg(σ)f(σ)(η)−1.

We may now prove the next lemmas.

Lemma 3.3. The following are true.

(a) If ker(f) = A, then G is normalized by ρ(N).
(b) If ker(h) = A, then G is normalized by λ(N).

Proof. Suppose that ker(f) = A. For any σ ∈ G and η ∈ N , we have

ρ(η) · ρ(g(σ))f(σ) · ρ(η)−1 = ρ(g(ση,h)g(σ)) · f(σ),

where ση,h ∈ A. Since ker(f) = A, from Proposition 2.3(c), we deduce that

ρ(g(ση,h)g(σ)) · f(σ) = ρ(g(ση,hσ)) · f(ση,hσ),

whence G is normalized by ρ(N). This proves (a). A similar argument using (3.1) and 
Proposition 2.3(d) shows (b). �
Lemma 3.4. The kernels ker(f) and ker(h) are not both trivial or both A.

Proof. Recall from Proposition 2.3(b) that g−1(Z(N)), which has size |Z(N)| because g
is bijective, is precisely the set of fixed points of (f, h). We have

Z(N) =
{
Cp if N � A× Cp,

1 if N is almost simple with socle A,
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where the latter holds by Lemma 2.7(a). Then, clearly ker(f) and ker(h) are not both A, 
because elements of ker(f) ∩ ker(h) are fixed points of (f, h).

Suppose for contradiction that both f and h are injective. If N � A ×Cp, then in the 
notation of Lemma 2.6(c), both f(A), h(A) � A project trivially onto Aut(Cp) � Cp−1, 
whence they lie in Aut(A). If N is almost simple with socle A, then Aut(N) embeds into 
Aut(A) by Lemma 2.7(b). In both cases, we deduce from Lemma 2.8(c) that f(A) = h(A), 
which we shall denote by A. Then, via restriction f and h induce isomorphisms

res(f), res(h) : A −→ A, and res(f)−1 ◦ res(h) ∈ Aut(A).

The set of fixed points of res(f)−1 ◦ res(h) is equal to g−1(Z(N)) ∩ A, which is trivial 
because g(A) = A. This contradicts Lemma 2.8(b). �
Proof of Proposition 3.1. To summarize, we have shown:

• If ker(h) = 1 and ker(f) = A, then G is normalized by ρ(N) but not λ(N).
• If ker(f) = 1 and ker(h) = A, then G is normalized by λ(N) but not ρ(N).

Moreover, these are the only possibilities, and so the claim follows. �
3.2. An alternative formula

Let us now prove:

Proposition 3.5. We have

e(G,N) = 2 · #
{

regular subgroups of Hol(G) other than λ(G)
which are isomorphic to N and normalized by λ(G)

}
.

We shall prove this using (1.1) directly. Given a subgroup N of Perm(G), denote by 
N � its centralizer in Perm(G). In the case that N is regular:

• N � � N and (N �)� = N ;
• N � is also regular;
• N = N � if and only if N is abelian;
• N is normalized by λ(G) if and only N � is normalized by λ(G).

These facts are all easy to prove; see [18, Lemmas 2.1 and 2.3], for example. Since N is 
non-abelian, we see that the regular subgroups of Perm(G) which are isomorphic to N
and normalized by λ(G) come in pairs.
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Lemma 3.6. Let N be any regular subgroup of Perm(G) which is isomorphic to N and 
normalized by λ(G). If N is not equal to λ(G) or ρ(G), then exactly one of N and N �

lies in Hol(G).

Proof. The bijection ξN as in the introduction induces an isomorphism

ΞN : Perm(N ) −→ Perm(G); ΞN (π) = ξN ◦ π ◦ ξ−1
N

under which λ(N ) is sent to N . Note that ρ(N ) is the centralizer of λ(N ) in Perm(N )
and so is sent to N �. Let G denote the preimage of λ(G) under ΞN , which is a regular 
subgroup of Perm(N ) isomorphic to G. In summary:

ΞN : λ(N ) �→ N , ρ(N ) �→ N �, G �→ λ(G).

Recall that Hol(N ) is the normalizer of λ(N ) in Perm(N ). Since λ(G) normalizes N , 
we see that G lies in Hol(N ). Similarly, we have

N normalizes λ(G) ⇐⇒ λ(N ) normalizes G,
N � normalizes λ(G) ⇐⇒ ρ(N ) normalizes G.

If N is not equal to λ(G) or ρ(G), then G is not equal to λ(N ) or ρ(N ), and the above 
together with Proposition 3.1 show that exactly one of N and N � normalizes λ(G). The 
claim now follows. �
Proof of Proposition 3.5. Define

κ(N) = # ({λ(G), ρ(G)} ∩ {groups isomorphic to N})

=
{

2 if N � G,

0 if N �� G.

By Lemma 3.6, the number e(G, N) in (1.1) is equal to

κ(N) + 2 · #
{

regular subgroups of Hol(G) other than λ(G), ρ(G)
which are isomorphic to N and normalized by λ(G)

}
.

The claim is then clear. �
4. The case when N = A × Cp

In this section, assume that N = A ×Cp, and fix a generator ε of Cp. We shall apply 
Proposition 3.5 to prove Theorem 1.2. Let us define

InHol(G) = ρ(G) � Inn(G)
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to be the inner holomorph of G, which is a subgroup of Hol(G).

Lemma 4.1. A regular subgroup of Hol(G) isomorphic to N lies in InHol(G).

Proof. Let N be a regular subgroup of Hol(G) isomorphic to N . Write

N = {ρ(g(η)) · f(η) : η ∈ N}, where
{
f ∈ Hom(N,Aut(G))
g ∈ Z1

f (N,G) is bijective

as in Proposition 2.2, and let h ∈ Hom(N, Aut(G)) be as in (2.2). We have

N ⊂ InHol(G) ⇐⇒ f(N) ⊂ Inn(G) ⇐⇒ h(N) ⊂ Inn(G).

Since G has trivial center by Lemma 2.7(a), the pair (f, h) is fixed point free by Propo-
sition 2.3(b). It follows that A cannot lie in both ker(f) and ker(h), so at least one of f
and h is injective on A.

Without loss of generality, let us assume that f is injective on A. By Lemmas 2.7(b) 
and 2.8(c), we deduce that f(A) � A is the subgroup of Inn(G) consisting of the inner 
automorphisms

conj(σ) ∈ Inn(G); conj(σ)(x) = σxσ−1 for σ ∈ A.

Put θ = f(ε), which commutes with f(A). But then σ−1θ(σ) lies in the center of G for 
all σ ∈ A because for any x ∈ G, we have

σθ(x)σ−1 = (conj(σ) ◦ θ)(x) = (θ ◦ conj(σ))(x) = θ(σ)θ(x)θ(σ)−1.

Since G has trivial center, we see that θ|A = IdA, so in fact θ = IdG by Lemma 2.7(b). 
This proves f(N) = f(A × Cp) = f(A), whence the claim. �

Now, since G has trivial center, the regular subgroups of InHol(G) isomorphic to N
are precisely the subgroups of the shape

N(f,h) = {ρ(h(η)) · λ(f(η)) : η ∈ N}

as f, h range over Hom(N, G) with (f, h) fixed point free, by [7, Proposition 6] or [19, 
Subsection 2.3.1]. Moreover, each N correspond to exactly |Aut(N)| pairs of (f, h). By 
Proposition 3.5 and Lemma 4.1, we then see that

e(G,N) = 2 · 1
|Aut(N)| · #

{
fixed point free (f, h) for f, h ∈ Hom(N,G)

such that N(f,h) is normalized by λ(G)

}
.

In what follows, let f, h ∈ Hom(N, G). Note that both ker(f) and ker(h) are non-trivial 
because N is not isomorphic to G. For the pair (f, h) to be fixed point free, the subgroups 
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ker(f) and ker(h) must intersect trivially, whence by Lemma 2.6(a), exactly one of them 
is A and the other is Cp. Also, notice that by Lemma 2.8(c), we must have h(A) = A if 
ker(h) = Cp and similarly f(A) = A if ker(f) = Cp.

Lemma 4.2. Let N = N(f,h) be as above.

(a) If ker(h) = Cp and ker(f) = A, then N is not normalized by λ(G).
(b) If ker(f) = Cp and ker(h) = A, then N is normalized by λ(G).

Proof. For any η ∈ N and σ ∈ G, we have

λ(σ) · ρ(h(η))λ(f(η)) · λ(σ)−1 = ρ(h(η)) · λ(σf(η)σ−1).

Note that ρ(G) and λ(G) intersect trivially since G has trivial center. Thus, for N to be 
normalized by λ(G), the subgroup f(N), which is non-trivial in both parts, is normal in 
G and in particular contains A. This yields (a).

Now, suppose that ker(f) = Cp and ker(h) = A. Write η = aεi for a ∈ A and i ∈ Z. 
Since f(A) = A and A is normal in G, there exists aσ ∈ A such that f(aσ) = σf(a)σ−1. 
It follows that

ρ(h(η)) · λ(σf(η)σ−1) = ρ(h(εi)) · λ(σf(a)σ−1) = ρ(h(aσεi)) · λ(f(aσεi)),

which lies in N . This proves (b). �
Lemma 4.3. Suppose that ker(f) = Cp and ker(h) = A. Then (f, h) is fixed point free if 
and only if h(ε) /∈ A.

Proof. Again f(A) = A. If h(ε) ∈ A, then f(a) = h(ε) for some a ∈ A, and so aε �= 1N is 
a fixed point of (f, h). If h(ε) /∈ A, then f(N) ∩ h(N) is trivial, and (f, h) is fixed point 
free because ker(f) ∩ ker(h) is also trivial. �
Proof of Theorem 1.2. By Lemmas 4.2 and 4.3 we have

e(G,N) = 2 · 1
|Aut(N)| · e1(G,N) · e2(G,N),

where we define

e1(G,N) = #{f ∈ Hom(N,G) : ker(f) = Cp},
e2(G,N) = #{h ∈ Hom(N,G) : ker(h) = A, h(ε) /∈ A}.

We have |Aut(N)| = (p − 1)|Aut(A)| by Lemma 2.6(c). Also, it is clear that

e2(G,N) = #{σ ∈ G \A : σ has order p}, and e1(G,N) = |Aut(A)|
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because f(A) = A whenever ker(f) = Cp. The theorem now follows. �
5. The case when N is non-perfect

In this section, assume that N is non-perfect and e(G, N) is non-zero. We shall prove 
Theorem 1.3. By (1.2) and Proposition 2.2, there exist

f ∈ Hom(G,Aut(N)) and a bijective g ∈ Z1
f (G,N).

Since N is non-perfect, it has a maximal characteristic subgroup M containing [N, N ]. 
We shall show that M � A.

Since M contains [N, N ], from (2.3), we see that

N/M � (Z/�Z)m, where � is prime and m ∈ N.

Recall that f and g, respectively, induce

fM ∈ Hom(G,Aut(N/M)) and a surjective gM ∈ Z1
fM

(G,N/M)

as in Proposition 2.4. Put H = g−1(M), which is a subgroup of G by Proposition 2.4(b), 
and has order |M | because g is bijective. Note that

[A : H ∩A] = [AH : H] = �m/[G : AH], and [G : AH] = 1 or p. (5.1)

In the case [G : AH] = 1, we shall use the next lemma.

Lemma 5.1. If A has a subgroup of index �m, then A � PSL2(7), or A does not embed 
into GLm(�).

Proof. See [5, Lemmas 4.2 and 4.4]. �
In the case [G : AH] = p, note that � = p necessarily, and we shall use the next two 

lemmas. Their proofs are refinements of [5, Section 4]. A key fact is [12, Theorem 1], 
which gives the subgroups of prime power index in A, and its proof uses the classification 
of finite simple groups. We shall also use the hypothesis that A has index p in G, which 
means that p divides the order of the outer automorphism group Out(A) of A.

Lemma 5.2. If A has a subgroup of index pm−1 with m ≥ 2, then

A � PSLn(q) with pm−1 = qn − 1
q − 1 , (5.2)

or G does not embed into GLm(p).
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Proof. Suppose that A has a subgroup of index pm−1 with m ≥ 2. Then, by [12, Theorem 
1], one of the following holds.

(a) A � Apm−1 with pm−1 ≥ 5;
(b) A � PSLn(q) with pm−1 = (qn − 1)/(q − 1);
(c) A � PSL2(11) with pm−1 = 11;
(d) A � M11 with pm−1 = 11, or A � M23 with pm−1 = 23;
(e) A � PSU4(2) with pm−1 = 27.

Recall that p divides the order of Out(A). Since

|Out(PSL2(11))| = 2 = |Out(PSU4(2))|, |Out(M11)| = 1 = |Out(M23)|,

cases (c), (d), (e) do not occur. Since |Out(An)| = 2 for all n ≥ 5 with n �= 6, we must 
have p = 2 with m ≥ 4 and G � S2m−1 in case (a). Notice that S2m−1 does not embed 
into GLm(2) for m ≥ 4 because

|GLm(2)| = 2m(m−1)/2 · s with s ∈ N odd,

|S2m−1 | = 2 · 22 · · · 2m−1 · 6 · t = 2m(m−1)/2+1 · 3t with t ∈ N.

We are left with case (b) and the claim now follows. �
To deal with the remaining case in (5.2), we shall follow [5, Section 4] and use [13,

17], which give lower bounds for the degrees of projective irreducible representations of 
projective special linear groups in cross characteristics. In particular, we shall use the 
version stated in [5, Theorem 4.3].

Lemma 5.3. If A � PSLn(q) is as in (5.2) with m ≥ 2, then A � PSL2(7), or A does 
not embed into GLm(p).

Proof. Suppose that A � PSLn(q) is as in (5.2) with m ≥ 2, and in particular

pm−1 = qn − 1
q − 1 . (5.3)

We already know by [23, Lemma 4.1(a)] that A does not embed into GL2(p). Hence, we 
may assume m ≥ 3, and together with (5.3), we deduce that

(n, q) �= (3, 2), (2, 4), (3, 4), (4, 2), (4, 3), (2, 9).

Suppose now that A embeds into GLm(p). By [5, Theorem 4.3], we have:

• If n ≥ 3, then m ≥ (qn − q)/(q − 1) − 1;
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• If n = 2, then m ≥ (q − 1)/ gcd(q − 1, 2).

In the first case, we have

m ≥ qn − q

q − 1 − 1 = qn − 1
q − 1 − 2 = pm−1 − 2.

Since m ≥ 3, this yields (m, p) = (3, 2), which cannot satisfy (5.3) for n ≥ 3. In the 
second case, we have

m ≥ q − 1
gcd(q − 1, 2) = pm−1 − 2

gcd(pm−1 − 2, 2) ≥ pm−1 − 2
2 .

Since m ≥ 3, this yields (m, p) = (3, 2), (4, 2), which corresponds to q = 3, 7, respectively, 
for n = 2. But PSL2(3) is non-simple, so we are left with the case A � PSL2(7), whence 
the claim. �
Lemma 5.4. If A �� PSL2(7), then g−1(M) = A and [N : M ] = p.

Proof. We have H = g−1(M) by definition and recall the equalities in (5.1). There are 
three cases, and recall that � = p necessarily when [G : AH] = p.

(1) [G : AH] = 1;
(2) [G : AH] = p and m = 1;
(3) [G : AH] = p and m ≥ 2.

Let us first prove that A ⊂ H. In case (2), we have [A : H ∩ A] = 1, so clearly A ⊂ H. 
In cases (1) and (3), suppose that A �� PSL2(7). Then, since the range of fM is equal to

Aut(N/M) � Aut((Z/�Z)m) � GLm(�),

we deduce from Lemma 5.1, 5.2, and 5.3 that fM is not injective. From (1.7), it follows 
that ker(fM ) has to contain A, whence (gM )|A is a homomorphism by Proposition 2.3(c). 
Since the range of gM is equal to

N/M � (Z/�Z)m,

necessarily (gM )|A is trivial, which means that g(A) ⊂ M , namely A ⊂ H. In all three 
cases, we have A ⊂ H. Since A has index p in G and H � G, we must have H = A. This 
in turn implies [N : M ] = [G : A] = p, as claimed. �
Proof of Theorem 1.3. Suppose first that A � PSL2(7). Then G � PGL2(7), and by [23, 
Theorem 1.10], we know that

e(PGL2(7), N) = 0 for all solvable N.
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Since PGL2(7) and PSL2(7) ×C2 are the only non-perfect insolvable groups of order 336, 
we see that Theorem 1.3 holds in this case.

Suppose now that A �� PSL2(7). Then g−1(M) = A by Lemma 5.4, so e(A, M) �= 0
by Proposition 2.4(c). Since A is non-abelian simple, by [5], this implies M � A. Since 
[N : M ] = p, the theorem follows from Lemma 2.5. �
6. The case when N is perfect

In this section, assume that N is perfect and e(G, N) is non-zero. We shall prove 
Theorem 1.4. As in Section 5, by (1.2) and Proposition 2.2, there exist

f ∈ Hom(G,Aut(N)) and a bijective g ∈ Z1
f (G,N).

Also, let h ∈ Hom(G, Aut(N)) be defined as in (2.2). Let M be any maximal character-
istic subgroup of N . We shall show that M = Z(N) and N/M � A.

Since N is perfect, from (2.3), we see that

N/M � Tm, where T is non-abelian simple and m ∈ N.

Recall that f and g, respectively, induce

fM ∈ Hom(G,Aut(N/M)) and a surjective gM ∈ Z1
fM

(G,N/M)

as in Proposition 2.4.

Lemma 6.1. The group A embeds into T .

Proof. It is known, by [5, Lemma 3.2] for example, that

Aut(N/M) � Aut(Tm) � Aut(T )m � Sm.

There exists a prime r �= p which divides |T | because groups of prime power order are 
nilpotent. Then, since

p|A| = |G| = |N | = |M ||T |m, we have rm divides |A|.

But rm does not divide m! as in the proof of [5, Lemma 3.3]. It follows that A cannot 
embed into Sm and so the homomorphism

A Aut(N/M) Aut(T )m � Sm Sm
fM identification projection

is trivial. Since Out(T ) is solvable by Lemma 2.8(a), the homomorphism
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A Aut(T )m Out(T )mfM quotient

is also trivial. We then see that fM (A) lies in Inn(T )m. Since A is simple, the homomor-
phism (fM )|A is either injective or trivial.

• If (fM )|A is injective, then clearly A embeds into Inn(T )m � Tm.
• If (fM )|A is trivial, then (gM )|A is a homomorphism by Proposition 2.3(c). Note that 

(gM )|A cannot be trivial, for otherwise A ⊂ g−1(M), and

p = |G|/|A| ≥ |G|/|g−1(M)| = |N |/|M | = |T |m,

which is impossible. It follows that (gM )|A is injective, so A embeds into N/M � Tm.

In both cases A embeds into Tm. But the projection of A onto the m components of Tm

cannot be all trivial, so in fact A embeds into T . �
As in Section 5, we shall use [12, Theorem 1] as well as the hypothesis that A has 

index p in G. The former lists the subgroups of prime power index in a finite non-abelian 
simple group while the latter implies that p divides the order of the outer automorphism 
group Out(A) of A.

Lemma 6.2. We have m = 1 and |M | = p.

Proof. By Lemma 6.1, we know that A embeds into T , and write |T | = d|A| for d ∈ N. 
Then, we have

p|A| = |G| = |N | = |M ||T |m = dm|A|m|M |, and so p = dm|A|m−1|M |.

This gives m = 1, and |M | = 1 or p. Suppose for contradiction that |M | = 1, in which 
case N � T and A embeds into T as a subgroup of index p. Since T is non-abelian 
simple, one of the following holds by [12, Theorem 1].

(a) T � Ap and A � Ap−1 with p ≥ 5;
(b) T � PSLn(q) with p = (qn − 1)/(q − 1);
(c) T � PSL2(11) and A � A5 with p = 11;
(d) T � M11 and A � M10 with p = 11, or T � M23 and A � M22 with p = 23.

Note that M10 is non-simple. Since p divides |Out(A)| while

|Out(An)| = 2 or 4 for n ≥ 5 and |Out(M22)| = 2,

cases (a), (c), and (d) do not occur. To deal with case (b), observe that N � T has 
trivial center, so (f, h) is fixed point free by Proposition 2.3(b). Thus, the intersection 
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ker(f) ∩ ker(h) is trivial, and by (1.7), at least one of f and h has to be injective. Since 
Inn(N) � N has the same order but is not isomorphic to G, and by definition

f(G) ⊂ Inn(N) ⇐⇒ h(G) ⊂ Inn(N),

the image f(G) cannot lie in Inn(N) � N . It follows the homomorphism

G Aut(N) Out(N) Out(T )f quotient �

is non-trivial. From (1.7), we then deduce that p has to divide |Out(T )|. But for n ≥ 2, 
by [25, Theorem 3.2] for example, we know that

|Out(PSLn(q))| = 2 gcd(n, q − 1)f or gcd(n, q − 1)f,

where q = rf with r a prime. In case (b), note that

p = (qn − 1)/(q − 1) = qn−1 + · · · + q + 1 ≥ q + 1 > max{2, q − 1, f},

and we see that p cannot divide |Out(PSLn(q))|. Hence, all four cases (a) to (d) are 
impossible, so necessarily |M | = p, as desired. �
Proof of Theorem 1.4 Condition (1). So far, we have shown that

A embeds into T , N/M � T, and |M | = p.

By comparing orders, in fact T � A. We have a homomorphism

N −→ Aut(M); η �→ (x �→ ηxη−1)

because M is normal. But it must be trivial since N is perfect while Aut(M) is cyclic. 
This means that M ⊂ Z(N), and so M = Z(N) by the maximality of M . Condition (1) 
then follows. �

Now, we know that N is quasisimple, with N/Z(N) � A and |Z(N)| = p. Using this, 
we may prove the next two lemmas.

Lemma 6.3. There is no subgroup isomorphic to A in N .

Proof. Suppose for contradiction that B is such a subgroup. Then, we have

|BZ(N)| = |B||Z(N)|/|B ∩ Z(N)| = p|A| = |G| = |N |,

where B ∩ Z(N) is trivial because B has trivial center. But this implies that

N = BZ(N) and in particular [N,N ] = [B,B].
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This is impossible because B � N and N is perfect. �
Lemma 6.4. Both f and h embed A into Inn(N).

Proof. Notice that Out(N) is solvable by Lemma 2.8(a); see the proof of [19, Lemma 
3.6]. Since A is perfect, the homomorphisms

A Aut(N) Out(N)f,h quotient

are trivial, whence f(A) and h(A) lie in Inn(N). Observe that the map

A −→ N ;
{
x �→ g(x) if f|A were trivial
x �→ g(x)−1 if h|A were trivial

would be a homomorphism by Propositions 2.3(c), (d), and so A would embed into N
because g is bijective. But this is impossible by Lemma 6.3, so both f and h are injective 
on A, as desired. �

Lemma 6.4 tells us that f and h, respectively, induce isomorphisms

f, h : A −→ N/Z(N);
{
f(σ) = f̃(σ)Z(N),
h(σ) = h̃(σ)Z(N),

where f̃(σ), ̃h(σ) ∈ N are such that for all x ∈ N , we have

f(σ)(x) = f̃(σ)xf̃(σ)−1 and h(σ)(x) = h̃(σ)xh̃(σ)−1.

Since g is bijective, by Proposition 2.4(b) we know that g−1(Z(N)) = 〈ζ〉 for some ζ ∈ G

of order p. Note also that Z(N) = 〈g(ζ)〉.

Proof of Theorem 1.4 Condition (2). Consider ϕ = f−1 ◦ h, which is an automorphism 
on A. For any σ ∈ A, we have

ϕ(σ) = σ ⇐⇒ f(σ) = h(σ) ⇐⇒ f(σ) = h(σ) ⇐⇒ σ ∈ 〈ζ〉 ∩A

by Proposition 2.3(b). Since ϕ has a non-trivial fixed point by Lemma 2.8(b), we deduce 
that ζ ∈ A, and ϕ has exactly p fixed points, namely the elements of 〈ζ〉. This proves 
condition (2). �

Now, we also know that ζ ∈ A, so the element f̃(ζ) ∈ N is defined.



C. Tsang / Journal of Number Theory 214 (2020) 286–311 307
Proof of Theorem 1.4 Condition (3). Take ζ̃ = f̃(ζ), and ζ̃Z(N) = f(ζ) has order p
because f is an isomorphism. Suppose for contradiction that there exists η ∈ N with

ηf̃(ζ) ≡ f̃(ζ)η (mod Z(N)) but ηf̃(ζ) �= f̃(ζ)η.

Since Z(N) = 〈g(ζ)〉, there exists i ∈ Z with i �≡ 0 (mod p) such that

f̃(ζ)ηf̃(ζ)−1η−1 = g(ζ)i, or equivalently f̃(ζ)ηf̃(ζ)−1 = g(ζ)iη.

Let j ∈ Z be such that ij ≡ −1 (mod p), and write ηj = g(σ), where σ ∈ G. Then, since 
g(ζ) ∈ Z(N), raising the above equation to the jth power yields

f̃(ζ)g(σ)f̃(ζ)−1 = g(ζ)−1g(σ).

But this implies that

g(ζσ) = g(ζ) · f(ζ)(g(σ)) = g(ζ)f̃(ζ)g(σ)f̃(ζ)−1 = g(σ),

which contradicts that g is bijective. This completes the proof of condition (3). �
Lemma 6.5. For any σ ∈ G such that f(σ) fixes Z(N) pointwise, we have

σζ = ζσ if and only if g(σ)f̃(ζ) = f̃(ζ)g(σ).

Proof. In the case that f(σ) fixes Z(N) pointwise, we have

g(σζ) = g(σ) · f(σ)(g(ζ)) = g(σ)g(ζ),

g(ζσ) = g(ζ) · f(ζ)(g(σ)) = g(ζ)f̃(ζ)g(σ)f̃(ζ)−1.

Since g is bijective and g(ζ) ∈ Z(N), we see that the claim holds. �
Let us use Cent∗(−) to denote the centralizer in a given group ∗.

Proof of Theorem 1.4 Condition (4). By the proof of condition (3), the map

CentN (f̃(ζ)) −→ CentN/Z(N)(f(ζ)); η �→ ηZ(N)

is surjective. Its kernel is clearly Z(N), and this implies that

|CentN (f̃(ζ))| = p · |CentN/Z(N)(f(ζ))| = p · |CentA(ζ)|,

where the second equality holds because f is an isomorphism. Suppose now that Z(N)
is fixed pointwise by Aut(N). Then, from Lemma 6.5, we see that

|CentG(ζ)| = |CentN (f̃(ζ))|
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since g is bijective. Putting the equalities together, we obtain

|CentG(ζ)| = p · |CentA(ζ)|,

from which condition (4) follows. �
7. Almost simple groups of alternating or sporadic type

In this section, let Γ be a finite almost simple group, which is non-simple, and whose 
socle is an alternating group or a sporadic simple group. We shall apply our theorems to 
determine the numbers e(Γ, Δ) for all groups Δ of order |Γ|, except when Γ � Aut(A6).

First, suppose that the socle of Γ is an alternating group. It is known that

Out(An) � C2 for n ≥ 5 with n �= 6, and Out(A6) = C2 × C2.

Since we assumed that Γ is non-simple, either

Γ � Sn with n ≥ 5, or Γ � PGL2(9),M10,Aut(A6).

For Γ � Sn with n ≥ 5, the numbers e(Sn, Δ) are already known by [8] and [21]. For 
both Γ � PGL2(9), M10, by Theorems 1.3 and 1.4(a), we know that

e(Γ,Δ) �= 0 only if Δ � A6 × C2, S6,PGL2(9),M10, 2A6,

where 2A6 is the double cover of A6. By applying Theorems 1.1 and 1.2, we computed 
in Magma [2] that

{
e(PGL2(9),PGL2(9)) = 92 and e(PGL2(9), A6 × C2) = 72,
e(M10,M10) = 92 and e(M10, A6 × C2) = 0.

Since 2A6 does not satisfy Condition (3) in Theorem 1.4, as shown in [21, Lemma 2.7]
for example, we also have

e(PGL2(9), 2A6) = 0 = e(M10, 2A6).

Using (1.2) and a similar code as in the appendix of [21], we found that

{
e(PGL2(9), S6) = 0 and e(PGL2(9),M10) = 60,
e(M10, S6) = 72 and e(M10,PGL2(9)) = 60.

We have thus determined e(Γ, Δ) completely except when Γ � Aut(A6).
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Remark 7.1. Observe that

e(Γ1,Γ2) = e(Γ2,Γ1) for all Γ1,Γ2 ∈ {S6,PGL2(9),M10}

by the above and (1.5). These symmetries could possibly be a special case of a more 
general phenomenon, and perhaps come from the fact that

Aut(A6) � Aut(S6) � Aut(PGL2(9)) � Aut(M10),

together with the formulae in (1.2) and Proposition 3.5.

Next, suppose that the socle of Γ is one of the 26 sporadic simple groups. The outer 
automorphism group of a sporadic simple group A has order dividing two, and is non-
trivial precisely when

A � M12,M22,HS, J2,McL,Suz,He,HN,Fi22,Fi’24,O’N, J3,

where the notation is standard. Since we assumed that Γ is non-simple, we see that 
Γ � Aut(A) for one of the sporadic simple groups A listed above. By Theorems 1.3
and 1.4(a), we know that

e(Γ,Δ) �= 0 only if Δ � A× C2,Aut(A), or Δ is a double cover of A.

The element structures of A as well as its covers and Aut(A) are available in the Atlas

[26]. Using [26] and Theorem 1.1, the number e(Γ, Γ) has already been computed in [22, 
p. 953]. Similarly, we found that

A e(Γ, A× C2) for Γ � Aut(A)
M12 1, 584
M22 3, 432
HS 48, 400
J2 3, 600

McL 226, 800
Suz 5, 458, 752
He 533, 120
HN 150, 480, 000
Fi22 83, 521, 152
Fi’24 11, 373, 535, 579, 392
O’N 5, 249, 664
J3 41, 040
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by applying Theorem 1.2. A double cover of A exists if and only if the Schur multiplier 
Schur(A) of A has order divisible by two. Among the 12 sporadic simple groups A above, 
it is known that

Schur(A) has even order ⇐⇒ A � M12,M22,HS, J2,Suz,Fi22.

For these six sporadic simple groups A, based on [26], there is no element in Aut(A)
whose centralizer has order 2 or 4. This implies that condition (2) in Theorem 1.4 is not 
satisfied, so e(Γ, Δ) = 0 if Δ is a double cover of A. We have thus determined e(Γ, Δ)
completely.
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