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Abstract

Let f (z) and g(z) be Hecke eigenforms for �0(p), where p is a prime. If both f (z) and
g(z) are non-cuspidal forms and p�7, then the product is a Hecke eigenform only if it comes
trivially from a level 1 solution. If g(z) is a cuspform and p�5, then in addition to the level 1
solutions, there are 8 new cases where the product of Hecke eigenforms is a Hecke eigenform.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For k�4 even, let

Ek(z) = 1

2�(k)

∑
m,n

′ (mz + n)−k

= 1 + (2 � i)k

(k − 1)!�(k)

∞∑
n=1

�k−1(n) qn
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be the normalized Eisenstein series of weight k in Mk(�). The identities

E4E4 = E8, E4E6 = E10, E4E10 = E14, E6E8 = E14 (1)

are well-known and follow from the fact that the vector space of modular forms
of weight k for the full modular group � = SL2(Z) is one-dimensional when k ∈
{4, 6, 8, 10, 14} [5]. In addition, if we let �l (z) be the unique normalized cusp form in
Sl(�) for l ∈ {12, 16, 18, 20, 22, 26}, then we get the following product identities:

E4�12 = �16, E4�16 = �20, E4�18 = �22, E4�22 = �26,

E6�12 = �18, E6�16 = �22, E6�20 = �26, E8�12 = �20,

E8�18 = �26, E10�12 = �22, E10�16 = �26, E14�12 = �26.

(2)

Duke showed that these are the only cases where the product of two non-cuspidal
eigenforms is another Hecke eigenform for the full modular group � [2]. In [4], Ghate
considered the problem of looking at products of newforms in Mk(�1(N)) where N is
square-free, where it is shown that the product is not an eigenform except when forced
to by dimension considerations. Both results use the Rankin–Selberg method.

In this paper, we consider modular forms f (z) and g(z) for the congruence subgroups
�0(p) where p is a prime and drop the condition that f and g are newforms. The
proofs of the main theorems consider the relations on the Fourier coefficients of Hecke
eigenforms. For each solution f (z)g(z) = h(z) in Eqs. (1) and (2), we get a trivial
solution of the form f (p z)g(p z) = h(p z). The question is whether we get any
solutions which are not trivial oldform solutions.

In Section 2, we consider f (z)g(z) = h(z) where f, g and h are non-cuspidal Hecke
eigenforms in �0(p). We say a modular form f (z) ∈ Mk(�0(N)) is a Hecke eigenform
if f (z) is an eigenform for all Hecke operators Tk(p) where (p, N) = 1.

Theorem 1. Let p�7 be a prime, and let f (z) ∈ Mk(�0(p)) and g(z) ∈ Ml(�0(p)) be
non-cuspidal Hecke eigenforms. If h(z) = f (z)g(z) is a non-cuspidal Hecke eigenform,
then

(l, k) ∈ {(4, 4), (4, 6), (4, 10), (6, 4), (6, 8), (8, 6), (10, 4)}.

Moreover, if (l, k) �= (4, 4), then f (z) = Ek(z) and g(z) = El(z) or f (z) = Ek(p z)

and g(z) = El(p z). If (l, k) = (4, 4), then we get a 1-parameter family of solutions of
the form

(E4(z) + b E4(p z))(E4(z) − b E4(p z)) = E8(z) − b2 E8(p z).

Theorem 2. Let p�5 be a prime, and let f (z) ∈ Mk(�0(p)) and g(z) ∈ Sl(�0(p))

be Hecke eigenforms. If the product h(z) = f (z)g(z) is a Hecke eigenform, then h(z)
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is an oldform solution, or

(p, k, l) ∈ {(11, 4, 2), (7, 2, 6), (7, 4, 4), (5, 2, 4), (5, 2, 8), (5, 4, 4), (5, 4, 6), (5, 6, 4)}

in which case there is a unique solution.

The proofs of both theorems make use of the fact that if f (z) is a non-cuspidal
eigenform of weight k for �0(p) then f (z) = a Ek(z) + b Ek(p z) for constants a and
b, see [6].

When considering the dimension of the vector space Sk+l (�0(p)) we would expect
only the trivial oldform solutions. However, Sk(�0(p)) decomposes into eigenspaces of
the Fricke involution wp,

Sk(�0(p)) = S+
k (�0(p)) ⊕ S−

k (�0(p))

and one of the S±
k may be one-dimensional. In that case, let g±

k (z) be the unique
normalized cuspform in the respective space.

If we have a pair of spaces S±
l and S±

k+l which are one-dimensional, and if k�4
we can construct

f (z) = Ek(z) ± pk/2Ek(p z) (3)

which is in Mk(�0(p)) and is an eigenvector of the Fricke involution. And so necessarily
we have the identity

(
Ek(z) ± pk/2Ek(p z)

)
g±

l (z) = g±
k+l (z). (4)

If k = 2 we may only construct

f (z) = Ek(z) − pk/2Ek(p z)

and so the signs in S±
l and S∓

2+l must be of opposite parity.
For example, the spaces S−

2 (�0(11)) and S+
6 (�0(11)) are one-dimensional. We need

to multiply the weight 2 cusp form g−
2 (z) by a weight 4 modular form in M−

4 (�0(11))

to get the weight 6 cusp form g+
6 (z). The weight 4 modular form is

f (z) = E4(z) − 121 E4(11 z),

which accounts for the solution (p, k, l) = (11, 4, 2). All of the non-trivial solutions in
Theorem 2 are obtained this way, where the relevant spaces are

S+
2 (�0(11)), S+

6 (�0(11)), S+
4 (�0(7)), S−

8 (�0(7)), S+
6 (�0(7)),

S+
4 (�0(5)), S−

6 (�0(5)), S−
8 (�0(5)), S+

10(�0(5)).
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2. Proof of Theorem 1

We are looking for solutions to the equation

f (z)g(z) = h(z),

where f, g and h are non-cuspidal Hecke eigenforms. In what follows we would like to
be able to normalize the factors f (z) and g(z) so that the coefficients of q are both 1.
It is not immediately obvious that we would be able to do this. The following lemma
shows us that it is possible for the cases we want.

Lemma 1. Let p > 2 be a prime and let f (z) ∈ Mk(�0(p)) and g(z) ∈ Ml(�0(p))

be non-cuspidal eigenforms such that f (z)g(z) is an eigenform. Then f (z), g(z) and
f (z)g(z) are normalizable, or wp(f )(z), wp(g)(z) and wp(fg)(z) are normalizable.

Proof. Let f (z), g(z) and h(z) be as in the statement of the lemma. Then

f (z) = a Ek(z) + b Ek(p z),

g(z) = c El(z) + d El(p z)

and

h(z) = � Ek+l (z) + � Ek+l (p z),

where f (z)g(z) = h(z). Both f (z) and g(z) are normalizable when a �= 0 and c �= 0.
If either a = 0 or c = 0, we consider the effect of the involution wp on the product,
where

wp(f )(z) = f |k
[(

0 −1
p 0

)]
(z).

If f (z) is not normalizable, then wp(f )(z) is normalizable.

If both a = 0 and c = 0, then applying the involution makes wp(f ) and wp(g) both
normalizable.

The problem occurs when b = 0 and c = 0. Here g(z) is not normalizable, but when
we apply the involution to the product, wp(f ) is no longer normalizable. But in this
case, f (z) = Ek(z) and g(z) = El(p z), and so

f (z)g(z) = Ek(z)El(p z)

=
(
Dk + q + �k−1(2) q2 + · · ·

) (
Dl + qp + · · ·)

= Dk Dl + Dl q + Dl �k−1(2) q2 + · · · ,
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where

Dk = (k − 1)!�(k)

(2 � i)k
.

By comparing this product with

h(z) = � Ek+l (z) + � Ek+l (p z)

= (� + �) Dk+l + � q + � �k+l−1(2) q2 + · · · ,

we see that � = Dl and so �k−1(2) = �k+l−1(2). This is only true if l = 0. Thus we
have that either f (z) and g(z) are both normalizable, or both wp(f )(z) and wp(g)(z)

are normalizable. In either case, when we consider the product

f (z)g(z) = Dk Dl + (Dk + Dl) q + · · · ,

this can only fail to be normalizable if Dk = −Dl for some k and l. Since this is never
true, the product h(z) is also normalizable. �

We may now assume that f (z), g(z) and h(z) are all normalizable in what follows.
We multiply

f (z) = Ek(z) + b Ek(p z)

= x +
6∑

n=1

�k−1(n) qn + O(q7)

and

g(z) = El(z) + c El(p z)

= y +
6∑

n=1

�l−1(n) qn + O(q7)

and compare the coefficients of the product to that of

� h(z) = � (Ek+l (z) + d Ek+l (p z))

= z + �
6∑

n=1

�k+l−1(n) qn + O(q7).

Since p�7, the constants b, c and d will only make a contribution to the constant
coefficients of f, g and h, and the coefficients of the terms of higher order.
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We get a system of five equations in x, y, k, l and �. We see that � = (x + y), and so
we can set up a linear system in x and y. This system of equations only has a solution
when the pair (l, k) are as in the statement of the theorem. By substituting each of
these pairs, except for (4, 4), into the original equations we get values for the constant
coefficients of f (z) and g(z). In each case, we note that these values are exactly the
values of the constant coefficients of the Eisenstein series. Hence f (z) = Ek(z) and
g(z) = El(z) for the cases when k �= l.

For the case k = l = 4, consider the equation

(E4(z) + b E4(p z))(E4(z) + c E4(p z)) = �(E8(z) + d E8(p z)).

The constant coefficients of the factors on the left-hand side are

x = 1

240
(1 + b), y = 1

240
(1 + c).

By comparing the q coefficients we have � = x + y, and by comparing the q2 coeffi-
cients, we have

120 x + 120 y = 1.

Hence c = −b. This gives us a 1 parameter family of solutions of the form

(E4(z) + b E4(p z))(E4(z) − b E4(p z)) = E8(z) − b2 E8(p z)

as claimed. This completes the proof of Theorem 1. �

3. Proof of Theorem 2

If

f (z) = Ek(z) + b Ek(p z)

is a normalized non-cuspidal eigenform, then the normalized image under the Fricke
involution is

wp(f )(z) = Ek(z) + b−1 pkEk(p z).

The constant coefficient of the non-cuspidal eigenform may therefore be taken as
either (1 + b)Dk or (1 + b−1pk)Dk in what follows.

The following lemma gives a finite list of possible weight combinations for the
non-cuspidal eigenform and the cuspidal eigenform.
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Lemma 2. Let p�5 be a prime, and let f (z) ∈ Mk(�0(p)) and g(z) ∈ Sl(�0(p)) be
Hecke eigenforms. If f (z)g(z) is an eigenform, then one of the following holds: k = 2
and l�20, k = 4 and l�24, k = 6 and l�10, k = 8 and l�18, k = 10 and l�16,
or k = 14 and l�12.

Proof. If

f (z) g(z) = h(z), (5)

where g(z) = q +∑∞
n=2 an qn and h(z) = q +∑∞

n=2 bn qn, then

� (Dk � + q + · · ·)(q + a2 q2 + · · ·) = (q + b2 q2 + · · ·),

where � = (1 + b) or � = (1 + b−1pk). So � = 1
Dk � , and �(1 + a2 Dk �) = b2, so

1
Dk � + a2 = b2. Since a2 and b2 are algebraic integers, 1

Dk � is an algebraic integer.
When k /∈ {2, 4, 6, 8, 10, 14}, there is a prime � such that ord�(Dk) > 0. It can be
shown that ord�((Dk�)−1) < 0 for � = (1+b) or (1+b−1pk). This contradicts the fact
that (Dk�)−1 is an algebraic integer. Hence, the weight k of the non-cuspidal eigenform
must be in {2, 4, 6, 8, 10, 14}, as claimed.

Since g is a normalized cusp form of weight l, we have

g(z) = q + a2 q2 + a3 q3 + a4 q4 + a5 q5 + · · · .

Since g is an eigenform for Tl(2), a2
2 = a4 + 2l−1. And

f (z) = x + q + (1 + 2k−1) q2 + (1 + 3k−1) q3 + · · · ,

where x = Dk �. So

f (z)g(z) = x q + (1 + a2 x )q2 + ((1 + 2k−1) + a2 + a3 x) q3

+ ((1 + 3k−1) + a2 (1 + 2k−1) + a3 + a4 x) q4 + · · ·

and hence

Tk+l (2)(f (z) g(z)) = (1 + a2 x) q

+((1 + 3k−1) + a2 (1 + 2k−1) + a3 + a4 x + 2k+l−1 x) q2 + · · · .

Since f (z) g(z) is an eigenform for Tk+l (2) with eigenvalue 1+a2 x
x

, we have

(1 + a2 x)2

x
= (1 + 3k−1) + a2 (1 + 2k−1) + a3 + (a2

2 − 2l−1) x + 2k+l−1 x.
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Solving for 2l we obtain

2l = 2

x (1 − 2k)

((−1

x

)
+ a2 (2k−1 − 1) + (1 + 3k−1) + a3

)

�
∣∣∣∣ 2

x (1 − 2k)

∣∣∣∣
(∣∣∣∣ 1x

∣∣∣∣+
∣∣∣a2 (2k−1 − 1)

∣∣∣+ ∣∣∣1 + 3k−1
∣∣∣+ |a3|

)

� 8

|x| (2k − 1)
sup

(∣∣∣∣ 1x
∣∣∣∣ , |a2| (2k−1 − 1), (1 + 3k−1), |a3|

)
. (6)

By the Weil–Petersson estimate, for p′ �= p, we have
∣∣ap′

∣∣ �2 p′ k−1
2 [1]. Hence, if we

compare 2l to each term in (6), we get the following inequalities:

(
2√
3

)l

� 16√
3 |Dk| (2k − 1)

, (7)

(
√

2)l � 8
√

2

|Dk| , (8)

2l � 8

|Dk|2 (2k − 1)
(9)

and

2l � 8

|Dk| (2k − 1)
(3k + 1). (10)

By substituting each k ∈ {2, 4, 6, 8, 10, 14} into Eqs. (7)–(10) we get an upper bound
for the weight of the cusp form for each k. And by substitution, we determine that
the second line of (6) is not actually satisfied for 22� l�28, 26� l�34, 22� l�38,
20� l�24, 18� l�22, or 14� l�16, respectively. So we get the bounds as in the
statement of the lemma and this completes the proof of Lemma 2. �

The following lemma tells us that as long as the level p�17, we have no new
non-trivial level p solutions.

Lemma 3. Let f (z) and g(z) be as in Lemma 2. If p�17 and f (z)g(z) is an eigen-
form, then the solution comes from a level 1 solution.

Proof. Since p�17,

f (z) = Dk (1 + b) + q +
16∑
i=1

�k−1(n) qn + O(q17) (11)
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and g(z) = q +∑∞
n=2 an qn where the coefficients satisfy the identities

an m = an am if gcd(n, m) = 1,

a�r a� = a�r+1 + �k−1 a�r−1 for � prime, � �= p. (12)

Since p�17 we can write the first 16 coefficients an in terms of the api
, where the

pi are the primes less than or equal to 13.
If we multiply f (z) by g(z), and normalize so that the q coefficient is 1, we get

another expression

h(z) = f (z) g(z)

Dk (1 + b)
= q +

∞∑
n=2

bn qn,

where each bn is an expression involving b and api
for all primes pi such that pi �n.

Also, the coefficients bn must satisfy the relations in (12) the same way the coefficients
of g(z) did. Each one of these relations gives us an equation, and each prime pi gives
us a new unknown api

. By the q15 term, we get 8 equations, and 7 unknowns. We
can include the coefficient of q16 and get another equation.

The solutions to this system have (k, l, b) consistent with the known level 1 solutions,
except for

(k, l, b) ∈ {(2, 12, 0), (4, 4, 1), (4, 6, 0)}.

The others all have b = 0, hence the non-cuspidal eigenform is just the level 1 Eisen-
stein series Ek(z). The cuspidal eigenforms g(z) each agree with the unique level 1
cusp form �l for l ∈ {12, 16, 18, 20, 22, 26} up to the q13 (and hence the q16) coeffi-
cient. To show that our results actually give �l and not some other cusp form whose
coefficients agree up the 16th coefficient, we have the following lemma:

Lemma 4. Let l ∈ {12, 16, 18, 20, 22, 26}, and (N, 2) = 1, and let g(z) ∈ Sl(�0(N)).
If g(z) and Ek(z)g(z) are eigenforms, and ord(g − �l ) > 2, then g(z) = �l (z).

Proof. For the values of l given, and for k ∈ {4, 6, 8, 10, 14}, we have for Ek(z) =
Dk +∑∞

n=1 �k−1(n) qn that Ek(z) �l (z) = Dk �k+l (z). We let

g(z) = q +
∞∑

n=2

an qn,

�l (z) = q +
∞∑

n=2

bn qn,

�k+l (z) = q +
∞∑

n=2

cn qn
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and

Ek(z) gl(z) = Dk

(
q +

∞∑
n=2

dn qn

)
.

Suppose that g �= �l , and let m = ord(g − �l ) < ∞. So for all n < m, we have
an = bn. Since m > 2 and gcd(N, 2) = 1, m must be a power of an odd prime. By
comparing coefficients in the equation Ek(z) �l (z) = Dk �k+l (z) we have for all n,

Dk cn = Dk bn +
n−1∑
i=1

�k−1(i) bn−i . (13)

And from Ek(z) gl(z) = Dk

(
q +∑∞

n=2 dn qn
)
, we get

Dk dn = Dk an +
n−1∑
i=1

�k−1(i) an−i . (14)

Since an = bn for all n < m, we see that cn = dn for all n < m as well. Since m
must be a power of some odd prime, m+ 1 must be even, in which case we can write
m + 1 = 2r · s, where s is odd and r �1. If s = 1, then we have

bm+1 = b2r = b2r−1 b2 − 2l b2r−1 = a2r−1 a2 − 2l a2r−1 = am+1,

since g(z) and �l (z) are eigenforms for Tl(2) and an = bn for n < m. Similarly, we
have cm+1 = dm+1 since both �k+l and Ek(z) g(z) are eigenforms for Tk+l (2). And if
s > 1, then we have

bm+1 = b2r s = b2r bs = a2r as = am+1

and also cm+1 = dm+1. By substituting n = m + 1 in Eqs. (13) and (14), we have

Dk cm+1 = Dk bm+1 +
m∑

i=1

�k−1(i) bm+1−i

and

Dk dm+1 = Dk am+1 +
m∑

i=1

�k−1(i) am+1−i ,
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and hence we have bm = am, which contradicts our assumption that m = ord(g − �l ).
Thus we must have g(z) = �l (z). �

The solutions

(k, l, b) ∈ {(2, 12, 0), (4, 4, 1), (4, 6, 0)}

do not correspond to a level 1 solution, and I claim that they do not give us new
solutions. The solution (k, l, b) = (2, 12, 0) indicates that the non-cuspidal eigenform
f (z) is exactly the weight 2 Eisenstein series f (z) = E2(z), and the cusp form in each
case is the weight 12 cusp form for the full modular group g(z) = �12(z), by Lemma
4. But

q

(
d

dq

)
�12(z) = −24 E2(z)�12(z). (15)

In general, if f is a modular form q d
dq

f is not a modular form [7]. Hence k = 2, l = 12,
and b = 0 do not give solutions to the problem.

The solution (k, l, b) = (4, 4, 1) gives us the equation

(E4(z) + E4(p z)) (E4(z) − E4(p z)) = E8(z) − E8(p z),

where the first factor is indicated by the fact that k = 4 and b = 1, and the second
factor has no constant coefficient in its q-expansion at ∞, hence it looked like a cusp
form to our computations.

The solution (k, l, b) = (4, 6, 0) can be realized by applying q
(

d
dq

)
to both sides

of E4 E4 = E8. This gives us

2 E4

(
q

d

dq

)
E4 =

(
q

d

dq

)
E8,

which is the solution that we obtained, where q d
dq

E4 and q d
dq

E8 are multiplicative,
but not modular forms. This completes the proof of Lemma 3. �

For levels p = 5, 7, 11 and 13, the systems of equations will be almost identical
to the system of equations we had for the level p�17 case, except Ek(p z) will
contribute to the qp m terms. Each of these low primes have all of the solutions which
are the known level 1 solutions. Similar to the levels p�17 case, we need to rule
out the possibility that a new solution agrees with these known solutions up to the
q16 coefficient. This follows from Lemma 4. Most of the new solutions will not give
new product identities for the same reason they did not give product identities for the
p�17 case.
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There are two new solutions which do not give product identities which must be
addressed. The case (p, k, l, b) = (11, 2, 2, 11) does not give a new solution. Here

f (z) = E2(z) + 11 E2(11 z)

and

g(z) = �(z)2�(11 z)2,

which is a cusp form for �0(11) [3]. Here the product

f (z) g(z) = − 1
2 g′(z),

where g′(z) is multiplicative, but not modular. Hence this is not a solution.
Similarly it can be shown that the solution where (p, k, l, b) = (5, 2, 4, 5) is f (z) =

E2(z) + 5 E2(5 z), g(z) = �(z)4 �(5 z)4, and

f (z)g(z) = − 1
4 g′(z)

where g′(z) is multiplicative, but not modular. Hence this is not a solution.
The remaining 8 solutions each give a new case where the product of two Hecke

eigenforms is another eigenform. The argument for why this is so is given in the
introduction. �

4. New product identities

In the previous section we obtained 8 new product identities for prime levels p�5.
The discussion in the introduction can be used to find solutions to the problem for
levels 2 and 3. The following is a list of vector spaces of cusp forms which are
one-dimensional [8] and hence consist of Hecke eigenforms.

S−
6 (�0(3)), S+

8 (�0(3)), S−
10(�0(3)), S+

10(�0(3)), S+
14(�0(3)).

For pairs of vector spaces whose weights differ by at least 4, and for pairs whose
weights differ by 2 with opposite parity, we can construct an eigenform in Mk(�0(p))

as in (3). If we let g±
l (z) be the unique normalized cusp form in S±

l (�0(p)), then we
get eight new product identities similar to that in equation (4).

Similarly in level 2 the following vector spaces of cusps forms are one-dimensional
[8], and hence consist entirely of eigenforms:

S+
8 (�0(2)), S−

10(�0(2)), S+
12(�0(2)),

S−
12(�0(2)), S+

14(�0(2)), S−
14(�0(2)).

Similar to the level 3 discussion, we have 10 new level 2 identities.
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It is interesting to note that we have 2-level 2 solutions where the non-cuspidal
eigenform is of weight 4, and the cusp form is of weight 8. Each of the factors and
the product can be identified in terms of known functions, and we get the interesting
identities

(E4(z) − 4 E4(2 z)) ·
(
�8(z)�8(2 z)

)
= −3 (�12(z) − 64 �12(2 z))

and

(E4(z) + 4 E4(2 z)) ·
(
�8(z)�8(2 z)

)
= 5 (�12(z) + 64 �12(2 z)) .

The eigenforms E4(z)−4 E4(2 z) and E4(z)+4 E4(2 z) span the set of all non-cuspidal
eigenforms of weight 4 and level 2. Since they are equivalent eigenforms and the
product of each one of these with �8(z)�8(2 z) is an eigenform in S12(�0(2)) which
are themselves equivalent, any linear combination a E4(z)+b E4(2 z) times �8(z)�8(2 z)

is an eigenform in S12(�0(2)).
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Berlin, 1999, pp. 737–741.

[3] D. Dummit, H. Kisilevsky, J. McKay, Multiplicative products of �-functions, in: J. McKay (Ed.),
Finite groups—Coming of Age (Montreal, Que., 1982), Contemporary Mathematics, vol. 45, American
Mathematical Society, Providence, RI, 1985.

[4] E. Ghate, On products of eigenforms, Acta Arith. 102 (1) (2002) 27–44.
[5] A.W. Knapp, Elliptic Curves, Princeton University Press, Princeton, NJ, 1992.
[6] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (47) (1977)

33–186.
[7] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. (1916) 159–184.
[8] W. Stein, The Modular Forms Database, http://modular.fas.harvard.edu/Tables, 2003.


