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We obtain an asymptotic formula for the first moment of quadratic
Dirichlet L-functions over the rational function field at the central
point s = 1

2 . Specifically, we compute the expected value of L( 1
2 ,χ)

for an ensemble of hyperelliptic curves of genus g over a fixed
finite field as g → ∞. Our approach relies on the use of the ana-
logue of the approximate functional equation for such L-functions.
The results presented here are the function field analogues of those
obtained previously by Jutila in the number-field setting and are
consistent with recent general conjectures for the moments of L-
functions motivated by Random Matrix Theory.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is an important problem in analytic number theory to estimate moments of families of
L-functions. For the classical Riemann zeta function the problem is to understand the asymptotic
behaviour of
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Mk(T ) =
T∫

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2k

dt. (1.1)

The leading order asymptotic for Mk(T ) is known just for k = 1, due to Hardy and Littlewood [7]

M1(T ) ∼ T log T , (1.2)

and for k = 2, due to Ingham [9]

M2(T ) ∼ 1

2π2
T log4 T . (1.3)

For positive real k, it is conjectured that

Mk(T ) ∼ Ck T (log T )k2
(1.4)

for a positive constant Ck . Using Random Matrix Theory, Keating and Snaith [13] conjectured a precise
value for Ck for all k > 0 and more generally for R(k) > − 1

2 . The conjectures about moments of the
Riemann zeta function and other L-functions were developed in [4,5] and [14], where they were
extended to include all the principal lower order terms in the asymptotics; for example, when k is a
positive integer 1

T Mk(T ) is given, conjecturally, as a polynomial of degree k2 in log T with a reminder
that vanishes like a power of T .

Considering the family of Dirichlet L-functions L(s,χd), with χd a real primitive Dirichlet character
modulo d defined by the Jacobi symbol χd(n) = ( d

n ), the problem of mean values is to understand the
asymptotic behaviour of

∑
0<d�D

L

(
1

2
,χd

)k

, (1.5)

as D → ∞. In this context Jutila [10] proved that

∑
0<d�D

L

(
1

2
,χd

)
= P (1)

4ζ(2)
D

{
log

(
D

π

)
+ Γ ′

Γ

(
1

4

)
+ 4γ − 1 + 4

P ′

P
(1)

}

+ O
(

D3/4+ε
)

(1.6)

where

P (s) =
∏

p

(
1 − 1

(p + 1)ps

)
,

and

∑
0<d�D

L

(
1

2
,χd

)2

= c

ζ(2)
D log3 D + O

(
D(log D)5/2+ε

)
(1.7)

with
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c = 1

48

∏
p

(
1 − 4p2 − 3p + 1

p4 + p3

)
.

Restricting d to be odd, square-free and positive, so that χ8d are real, primitive characters with con-
ductor 8d and with χ8d(−1) = 1, Soundararajan [18] proved that

1

D∗
∑∗

0<d�D

L

(
1

2
,χ8d

)3

∼ 1

184320

∏
p�3

(
1 − 12p5 − 23p4 + 23p3 − 15p2 + 6p − 1

p6(p + 1)

)
(log D)6, (1.8)

where the sum
∑∗ over d indicates that d is odd and square-free, and D∗ is the number of such d

in (0, D]. Note that (1.6) includes all lower order terms in the sense of [4], in that the error term
is o(D).

Keating and Snaith [14] put forward the following conjecture for the leading order asymptotic for
mean values of quadratic Dirichlet L-functions.

Conjecture 1.1. For k fixed with R(k) � 0, as D → ∞

1

D∗
∑∗

0<d�D

L

(
1

2
,χ8d

)k

∼ ak,Sp
G(k + 1)

√
Γ (k + 1)√

G(2k + 1)Γ (2k + 1)
(log D)k(k+1)/2 (1.9)

where

ak,Sp = 2−k(k+2)/2
∏
p�3

(1 − 1
p )k(k+1)/2

1 + 1
p

( (1 − 1√
p )−k + (1 + 1√

p )−k

2
+ 1

p

)

and G(z) is Barnes’ G-function.

Conjectures for the lower order terms are given in [4]. These conjectures coincide with the results
listed above.

The main result of this paper, Theorem 2.1, can be seen as the function field analogue of Jutila’s
result (1.6), in that it constitutes an asymptotic formula for the first moment of quadratic L-functions
over function fields that includes the lower order terms, in the sense of [4].

2. Statement of results

Let Fq be a fixed finite field of odd cardinality and A = Fq[x] be the polynomial ring over Fq in
the variable x. Let C be any smooth, projective, geometrically connected curve of genus g � 1 defined
over the finite field Fq . The zeta function of the curve C was introduced by Artin [1] and is defined
as

ZC (u) := exp

( ∞∑
n=1

Nn(C)
un

n

)
, |u| < 1/q (2.1)

where Nn(C) := Card(C(Fq)) is the number of points on C with coordinates in a field extension Fqn

of Fq of degree n � 1. It was shown by Weil [20] that the zeta function associated to C is a rational
function of the form
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ZC (u) = P C (u)

(1 − u)(1 − qu)
, (2.2)

where PC (u) ∈ Z[u] is a polynomial of degree 2g , with P C (0) = 1, and that it satisfies the functional
equation

P C (u) = (
qu2)g

P C

(
1

qu

)
. (2.3)

By the Riemann Hypothesis for curves over finite fields, proved by Weil [20], one knows that the
zeros of PC (u) all lie on the circle |u| = q−1/2, i.e.,

P C (u) =
2g∏
j=1

(1 − α ju), with |α j| = √
q for all j.

Our main goal is to establish an asymptotic formula for the average value of P C (u) at the central
point u = 1/

√
q as we vary C in a family of hyperelliptic curves of increasing genus g defined over Fq

where q is fixed and assumed to be odd. To establish the result we choose the particular family,
denoted by H2g+1,q , of all hyperelliptic curves given in affine form by

C D : y2 = D(x)

where

D(x) = x2g+1 + a2g x2g + · · · + a1x + a0 ∈ Fq[x]

is a square-free, monic polynomial of degree 2g + 1. The curve C D is thus nonsingular and of genus g
and the family is denoted by

H2g+1,q = {
D monic, deg(D) = 2g + 1, D square-free, D ∈ Fq[x]

}
.

In this paper we establish an asymptotic formula for

∑
D∈H2g+1,q

P C D

(
q−1/2) (2.4)

as g → ∞.

Theorem 2.1. Let q be the fixed cardinality of the ground field Fq and assume for simplicity that q ≡ 1 (mod 4).
Then

∑
D∈H2g+1,q

P C D

(
q−1/2)

= P (1)

2ζA(2)
|D|

{
logq |D| + 1 + 4

log q

P ′

P
(1)

}
+ O

(|D|3/4+ logq 2
2

)
, (2.5)

where
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P (s) =
∏

P monic
irreducible

(
1 − 1

(|P | + 1)|P |s

)
, (2.6)

| f | = qdeg( f ) for any polynomial f ∈ Fq[x] (so |D| = q2g+1), and

ζA(s) = 1

1 − q1−s
(2.7)

is the zeta function associated to A = Fq[x].

Comparing (1.6) with Theorem 2.1, one sees clearly the analogy between function fields and the
number-field result.

Corollary 2.2. Under the same assumptions of Theorem 2.1 we have

1

#H2g+1,q

∑
D∈H2g+1,q

P C D

(
q−1/2) ∼ 1

2
P (1)(logq |D|) = 1

2
P (1)(2g + 1) (2.8)

as g → ∞.

It seems likely that the calculations presented in this paper can be extended to establish the corre-
sponding asymptotic formula for the second power moment of Dirichlet L-functions over the rational
function field, and possibly for the third power moment also, in the same way that for the classical
quadratic L-functions Jutila established the second moment and Soundararajan the third moment.

Previously, J. Hoffstein and M. Rosen [8] obtained an asymptotic formula for the first moment of
Dirichlet L-functions over function fields making use of Eisenstein series for the metaplectic two-fold
cover of GL(2,k∞). They considered the sum over all square-free polynomials of a prescribed de-
gree. One important difference between Hoffstein and Rosen’s result and ours is that we sum over
square-free and monic polynomials, which means that we are averaging over positive and fundamen-
tal discriminants in this setting. The two results have the same general form, but are different in their
details. Our calculation is complementary to that developed in [8], being more similar to the classical
methods employed in [10].

In a recent paper A. Bucur and A. Diaconu [3] established the following result:

Theorem 2.3 (Bucur, Diaconu). As q → ∞, we have

∑
d∈A

d monic
deg(d)=2g

L

(
1

2
,χd

)4

∼ g(1 + g)2(2 + g)2(3 + g)(1 + 2g)(3 + 2g)2(5 + 2g)

75600
q2g .

Theorem 2.3 is the fourth power moment for quadratic Dirichlet L-functions as q → ∞ and g is
fixed. This is therefore the opposite limit to that which we consider in this paper. To establish the
result above Bucur and Diaconu make use of Multiple Dirichlet Series and the Weyl group action of a
particular Kac–Moody algebra.

The calculations presented here to establish an asymptotic formula for the first moment of
quadratic Dirichlet L-functions over the rational function field are based on elementary estimates
and techniques which are in the spirit of those used by Faifman and Rudnick [6], Kurlberg and Rud-
nick [15] and Rudnick [17]. Specifically, we make use of the analogue of the approximate functional
equation for L-functions over function fields. It is important to emphasize that the limit we consider
here is q is fixed and g → ∞, rather than the limit q → ∞ and g fixed. In the latter case Katz and
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Sarnak [11,12] established that the conjugacy classes {ΘC : C ∈ H2g+1} become uniformly distributed
in USp(2g) in the limit q → ∞, and so the determination of the moments of P C (u) becomes a purely
Random Matrix Theory calculation. In this context we note explicitly that in many of our estimates
(e.g. when we use the O and 
 notations) the implied constant may depend on q.

3. Preliminaries on quadratic L-functions and Dirichlet characters for function fields

We begin by presenting some background on the zeta functions associated with hyperelliptic
curves. The theory was initiated by E. Artin [1]. For a general reference, see [16].

3.1. Basic facts about Fq[x]

We define the norm of a polynomial f ∈ Fq[x] in the following way. For f �= 0, set | f | := qdeg( f )

and if f = 0, set | f | = 0. A monic irreducible polynomial is called a “prime” polynomial.
The zeta function of A = Fq[x], denoted by ζA(s), is defined by the infinite series

ζA(s) :=
∑
f ∈A

f monic

1

| f |s
=

∏
P monic

irreducible

(
1 − |P |−s)−1

, R(s) > 1 (3.1)

which is

ζA(s) = 1

1 − q1−s
. (3.2)

We can also define the analogue of the Mobius function μ( f ) and the Euler totient function Φ( f ) for
A = Fq[x] as follows:

μ( f ) =
{

(−1)t , f = αP1 P2 · · · Pt,

0, otherwise,
(3.3)

where each P j is a distinct monic irreducible, and

Φ( f ) =
∑

g monic
deg(g)<deg( f )

( f ,g)=1

1. (3.4)

3.2. Quadratic characters and the corresponding L-function

Assume that q is odd and let P (x) ∈ Fq[x] be an irreducible polynomial. Then by [16, Proposi-
tion 1.10] if f ∈ A and P � f we know that the congruence xd ≡ f (mod P ) is solvable if and only
if

f
|P |−1

d ≡ 1 (mod P ),

where d is a divisor of q − 1. The quadratic residue symbol arises when we consider d = 2 and is
denoted by ( f /P ) ∈ {±1}:

(
f

P

)
≡ f (|P |−1)/2 (mod P ), (3.5)

for f coprime to P .
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We also can then define the Jacobi symbol ( f /Q ) for arbitrary monic Q . Let f be coprime to Q
and Q = P e1

1 P e2
2 · · · P es

s so

(
f

Q

)
=

s∏
j=1

(
f

P j

)e j

.

If f , Q are not coprime we set ( f /Q ) = 0 and if α ∈ F∗
q is a scalar then

(
α

Q

)
= α((q−1)/2) deg Q .

The analogue of the quadratic reciprocity law for function fields is

Theorem 3.1 (Quadratic reciprocity). Let A, B ∈ Fq[x] be relatively prime and A �= 0 and B �= 0. Then,

(
A

B

)
=

(
B

A

)
(−1)((q−1)/2) deg(A) deg(B) =

(
B

A

)
(−1)((|A|−1)/2)((|B|−1)/2).

Definition 3.2. Let D ∈ Fq[x] be square-free. We define the quadratic character χD using the quadratic
residue symbol for Fq[x] by

χD( f ) =
(

D

f

)
. (3.6)

So, if P ∈ A is monic irreducible we have

χD(P ) =
⎧⎨
⎩

0, if P | D,

1, if P � D and D is a square modulo P ,

−1, if P � D and D is a non-square modulo P .

We define the L-function corresponding to the quadratic character χD by

L(u,χD) :=
∏

P monic
irreducible

(
1 − χD(P )udeg P )−1

, |u| < 1/q (3.7)

where u = q−s . The L-function above can also be expressed as an infinite series in the usual way:

L(u,χD) =
∑
f ∈A

f monic

χD( f )udeg f = L(s,χD ) =
∑
f ∈A

f monic

χD( f )

| f |s
. (3.8)

We can write (3.8) as

L(u,χD) =
∑
n�0

∑
deg( f )=n

f monic

χD( f )un. (3.9)

If we denote
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AD(n) :=
∑

f monic
deg( f )=n

χD( f ),

we can write (3.9) as

∑
n�0

AD(n)un, (3.10)

and by [16, Proposition 4.3], if D is a non-square polynomial of positive degree, then AD(n) = 0 for
n � deg(D). So in this case the L-function is in fact a polynomial of degree at most deg(D) − 1.

We now assume the primitivity condition that D is a square-free monic polynomial of positive
degree. Following the arguments presented in [17] we have that L(u,χD) has a “trivial” zero at u = 1
if and only if deg(D) is even, which enables us to define the “completed” L-function

L(u,χD) = (1 − u)λL∗(u,χD), λ =
{

1, deg(D) even,

0, deg(D) odd,
(3.11)

where L∗(u,χD) is a polynomial of even degree

2δ = deg(D) − 1 − λ

satisfying the functional equation

L∗(u,χD) = (
qu2)δL∗(1/qu,χD).

By [16, Propositions 14.6 and 17.7], L∗(u,χD) is the Artin L-function corresponding to the unique
nontrivial quadratic character of Fq(x)(

√
D(x) ). The fact that is important for this paper is that the

numerator PC (u) of the zeta function of the hyperelliptic curve y2 = D(x) coincides with the com-
pleted Dirichlet L-function L∗(u,χD) associated with the quadratic character χD , as was found in
Artin’s thesis. So we can write L∗(u,χD) as

L∗(u,χD) =
2δ∑

n=0

A∗
D(n)un, (3.12)

where A∗
D(0) = 1 and A∗

D(2δ) = qδ .
For D monic, square-free, and of positive degree, the zeta function (2.2) of the hyperelliptic curve

y2 = D(x) is

ZC D (u) = L∗(u,χD)

(1 − u)(1 − qu)
. (3.13)

As we are interested in computing

1

#H2g+1,q

∑
D∈H2g+1,q

P C D

(
q−1/2), (3.14)

where D ∈ H2g+1,q , we have that deg(D) is odd and so by (3.11) we have that L∗(u,χD) = L(u,χD)

and (3.14) becomes
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1

#H2g+1,q

∑
D∈H2g+1,q

L
(
q−1/2,χD

)
, (3.15)

which will be the principal quantity of study. So the principal problem we consider is to obtain an
asymptotic formula for

∑
D∈H2g+1,q

L
(
q−1/2,χD

)
(3.16)

as g → ∞, where L(u,χD) is the Dirichlet L-function associated with the quadratic character χD of
Fq[x].
3.3. The hyperelliptic ensemble H2g+1,q

Let Hd be the set of square-free monic polynomials of degree d in Fq[x]. The cardinality of Hd is

#Hd =
{

(1 − 1/q)qd, d � 2,

q, d = 1.

(This can be proved using

∑
d>0

#Hd

qds
=

∑
f monic

square-free

| f |−s = ζA(s)

ζA(2s)

and (3.2). For a complete proof see [16, Proposition 2.3].) In particular, for g � 1 we have

#H2g+1,q = (q − 1)q2g = |D|
ζA(2)

. (3.17)

We can treat H2g+1,q as a probability space (ensemble) with uniform probability measure. Thus
the expected value of any continuous function F on H2g+1,q is defined as

〈
F (D)

〉 := 1

#H2g+1,q

∑
D∈H2g+1,q

F (D). (3.18)

Using the Mobius function μ of Fq[x] defined in (3.3) we can sieve out the square-free polynomi-
als, since

∑
A2|D

μ(A) =
{

1, D square-free,

0, otherwise.
(3.19)

And in this way we can write the expected value of any function F as

〈
F (D)

〉 = 1

#H2g+1,q

∑
D monic

deg(D)=2g+1

∑
A2|D

μ(A)F (D)

= 1

(q − 1)q2g

∑
2α+β=2g+1

∑
B monic
deg B=β

∑
A monic

deg A=α

μ(A)F
(

A2 B
)
. (3.20)
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3.4. Spectral interpretation and the Katz–Sarnak philosophy

As already noted, the goal of this paper is to explore the limit q fixed and g → ∞, as in [6,15,17].
It is worth explaining an important difference from the opposite limit in which q → ∞ with g fixed.

The Riemann Hypothesis for curves over a finite field, proved by Weil [20], is that all zeros of
ZC (u), and hence L∗(u,χD), lie on the circle |u| = q−1/2. Equivalently, all the roots of L(s,χD) lie on
the line R(s) = 1

2 .
The polynomial L∗(u,χD) is the characteristic polynomial of a unitary symplectic matrix ΘC D ∈

USp(2g), defined up to conjugacy, and we can write

L∗(u,χD) = det(I − u
√

qΘC D ).

The eigenvalues of ΘC D are of the form e(θC, j), j = 1, . . . ,2g , where e(θ) = e2π iθ .
For a fixed genus g , Katz and Sarnak [11] showed that the conjugacy classes (Frobenius classes)

{ΘC D : C D ∈H2g+1,q} become equidistributed (with respect to Haar measure) in the unitary symplectic
group USp(2g) in the limit q → ∞. That is, for any continuous function on the space of conjugacy
classes of USp(2g),

lim
q→∞

〈
F (ΘC D )

〉 = ∫
USp(2g)

F (A)dA

where dA is the Haar measure.
This result allows one to compute arithmetic quantities such as mean values of log(L∗(u,χD))

and the moments of L∗(u,χD) as C D varies in H2g+1,q by using the corresponding computation in
Random Matrix Theory for USp(2g). For example, setting u = q−1/2 one has in general that

lim
q→∞

1

#H2g+1,q

∑
D∈H2g+1,q

(
L∗(q−1/2,χD

))s =
∫

USp(2g)

(
det(I − A)

)s
dA,

and Keating and Snaith [14] computed the moments of the characteristic polynomial in USp(2g):

∫
USp(2g)

det(I − A)s dA = 22gs
g∏

j=1

Γ (1 + g + j)Γ (1/2 + s + j)

Γ (1/2 + j)Γ (1 + s + g + j)
.

In our case here, where q is fixed and g → ∞ the matrices ΘC D inhabit different spaces as g grows,
and we do not know how to formulate an equidistribution problem.

3.5. “Approximate” functional equation

The starting point in the proof of Theorem 2.1 is a representation for L(u,χD) which can be
viewed as the analogue of the approximate functional equation for the Riemann zeta function
(Eq. (4.12.4) in [19]) or for the quadratic Dirichlet L-function (Lemma 3 in [10]). In our case the
formula is an identity rather than an approximation.

Lemma 3.3 (“Approximate” functional equation). Let χD be a quadratic character, where D ∈H2g+1,q. Then

P C D

(
q−1/2) = L

(
q−1/2,χD

) =
g∑

n=0

∑
f1 monic

deg( f1)=n

χD( f1)q
−n/2 +

g−1∑
m=0

∑
f2 monic

deg( f2)=m

χD( f2)q
−m/2.

(3.21)
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Proof. Following [4] we substitute P C (u) = ∑2g
n=0 anun into the functional equation (2.3)

2g∑
n=0

anun = qg u2g
2g∑

m=0

am

(
1

qu

)m

= qg u2g
2g∑

m=0

amq−mu−m

=
2g∑

m=0

amqg−mu2g−m =
2g∑

k=0

a2g−kqk−g uk.

Therefore,

2g∑
n=0

anun =
2g∑

k=0

a2g−kqk−g uk.

Equating coefficients we have that

an = a2g−nqn−g or a2g−n = anqg−n

and so we can write the polynomial PC (u) as

2g∑
n=0

anun =
g∑

n=0

anun +
g−1∑
m=0

a2g−mu2g−m

=
g∑

n=0

anun +
g−1∑
m=0

amqg−mu2g−m

=
g∑

n=0

anun + qg u2g
g−1∑
m=0

amq−mu−m. (3.22)

Writing an = ∑
f monic

deg( f )=n
χD( f ) and u = q−1/2 in (3.22) proves the lemma. �

We can write the polynomial PC (u) using the variable s and so (3.22) becomes

L(u,χD) = L(s,χD) =
∑

f1 monic
deg( f1)�g

χD( f1)

| f1|s
+ (

q1−2s)g ∑
f2 monic

deg( f2)�g−1

χD( f2)

| f2|1−s
. (3.23)

3.6. Two simple lemmas

We will state two simple lemmas which will be used in the calculations below. The proofs can be
found in [16, Propositions 1.7 and 2.7].

Lemma 3.4.

Φ( f ) = | f |
∏

P monic
irreducible

P | f

(
1 − 1

|P |
)

. (3.24)
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Lemma 3.5.

∑
f monic

deg( f )=n

Φ( f ) = q2n(1 − q−1). (3.25)

4. Setting up the problem

The basic quantity of study (2.4) can be viewed, from (3.13) and (3.15), as

∑
D∈H2g+1,q

L
(
q−1/2,χD

) =
∑

D∈H2g+1,q

2g∑
n=0

∑
f monic

deg( f )=n

χD( f )q−n/2. (4.1)

Using Lemma 3.3 we can save g terms and write (4.1) as

∑
D∈H2g+1,q

L
(
q−1/2,χD

)

=
∑

D∈H2g+1,q

g∑
n=0

∑
f1 monic

deg( f1)=n

χD( f1)q
−n/2 +

∑
D∈H2g+1,q

g−1∑
m=0

∑
f2 monic

deg( f2)=m

χD( f2)q
−m/2. (4.2)

As both terms on the right-hand side of (4.2) are similar we need only worry about computing one
of them to obtain the final result.

4.1. Averaging the approximate functional equation

We are interested in obtaining an asymptotic formula for the first term on the RHS of (4.2) and so
we need to compute

∑
D∈H2g+1,q

g∑
n=0

∑
f monic

deg( f )=n

χD( f )q−n/2

=
g∑

n=0

q−n/2
∑

D∈H2g+1,q

∑
f monic

deg( f )=n
f =�=l2

χD( f ) +
g∑

n=0

q−n/2
∑

D∈H2g+1,q

∑
f monic

deg( f )=n
f �=�

χD( f )

=
g∑

n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

χD
(
l2

) +
g∑

n=0

q−n/2
∑

f monic
deg( f )=n

f �=�

∑
D∈H2g+1,q

χD( f )

=
g∑

n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1 +
g∑

n=0

q−n/2
∑

f monic
deg( f )=n

f �=�

∑
D∈H2g+1,q

χD( f ), (4.3)
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where the first term on the RHS of the final expression corresponds to contributions of squares to the
average and the second term to the contributions of non-squares.

Basically the problem is the following: for the square contributions we need to count square-free
polynomials which are coprime to a fixed monic polynomial and to perform the summation over
monic polynomials l and over integers n up to g , and for the non-square contributions the difficulty
is to average the nontrivial quadratic character.

5. The main term

In this section we will derive an asymptotic formula for

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1 (5.1)

which corresponds to the contributions of squares to the average. As in the number-field case, the
contribution of squares gives the main term of the first moment. The principal result in this section
is

Proposition 5.1. With the same notation as in Theorem 2.1,

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1

= P (1)

ζA(2)
|D|

{([g/2] + 1
) +

∑
P monic

irreducible

deg P

|P |(|P | + 1) − 1

}
+ O

(
gq

3
2 g). (5.2)

We will need some preliminary lemmas.

5.1. Counting square-free polynomials which are coprime to another monic polynomial

We will prove here the following proposition.

Proposition 5.2.

∑
D∈H2g+1,q

(D,l)=1

1 = |D|
ζA(2)

∏
P |l(1 + |P |−1)

+ O

(√|D|Φ(l)

|l|
)

. (5.3)

We will need the following three lemmas.

Lemma 5.3. Let Vd = {D ∈ Fq[x]: D monic, deg(D) = d}. Then,

#
{

D ∈ Vd: (D, l) = 1
} = qd Φ(l)

|l| . (5.4)
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Proof.

#
{

D ∈ Vd: (D, l) = 1
} =

∑
D monic

deg(D)=d
(D,l)=1

1 =
∑

D monic
deg(D)=d

∑
h|(D,l)

μ(h)

=
∑
h|l

μ(h)
∑

D monic
deg(D)=d

h|D

1 =
∑
h|l

μ(h)
∑

m monic
deg(m)=d−deg h

1

=
∑
h|l

μ(h)qd−deg(h) = qd
∑
h|l

μ(h)

|h|

= qd
∏

P
P |l

(
1 − 1

|P |
)

= qd Φ(l)

|l| (5.5)

where we used Lemma 3.4 in (5.5). �
Lemma 5.4. We have

∑
Q monic

deg(Q )>
2g+1

2
(Q ,l)=1

μ(Q )

|Q |2 
 q−1/2q−g . (5.6)

Proof.

∑
Q monic

deg(Q )>
2g+1

2
(Q ,l)=1

μ(Q )

|Q |2 �
∑

Q monic
deg(Q )>

2g+1
2

(Q ,l)=1

1

|Q |2

�
∑

n>
2g+1

2

∑
Q monic

deg(Q )=n

1

|Q |2

=
∑

n>
2g+1

2

1

qn

 q−1/2q−g . � (5.7)

Lemma 5.5. We have that,

∑
Q monic

deg(Q )� 2g+1
2

(Q ,l)=1

μ(Q )

|Q |2 = 1

ζA(2)

1∏
P |l(1 − 1/|P |2) + O

(
q−1/2q−g). (5.8)
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Proof.

∑
Q monic

deg(Q )� 2g+1
2

(Q ,l)=1

μ(Q )

|Q |2 =
∑

Q monic
(Q ,l)=1

μ(Q )

|Q |2 −
∑

Q monic
deg(Q )>

2g+1
2

(Q ,l)=1

μ(Q )

|Q |2

=
∏
P �l

(
1 − 1

|P |2
)

−
∑

Q monic
deg(Q )>

2g+1
2

(Q ,l)=1

μ(Q )

|Q |2 , (5.9)

and

∏
P �l

(
1 − 1

|P |2
)

=
∏

P

(
1 − 1

|P |2
)∏

P |l

(
1 − 1

|P |2
)−1

= 1

ζA(2)

1∏
P |l(1 − 1/|P |2) . (5.10)

Thus,

∑
Q monic

deg(Q )� 2g+1
2

(Q ,l)=1

μ(Q )

|Q |2 = 1

ζA(2)

1∏
P |l(1 − 1/|P |2) −

∑
Q monic

deg(Q )>
2g+1

2
(Q ,l)=1

μ(Q )

|Q |2 , (5.11)

and using the estimate of Lemma 5.4 proves the result. �
Proof of Proposition 5.2. Following the proof of Lemma 4.2 in [2] we have that

∑
D∈H2g+1,q

(D,l)=1

1 =
∑

D∈V 2g+1
(D,l)=1

∑
Q 2|D

μ(Q ) =
∑

Q monic
deg(Q )� 2g+1

2
(Q ,l)=1

μ(Q )
∑

D∈V 2g+1−2 deg(Q )

(D,l)=1

1

=
∑

Q monic
deg(Q )� 2g+1

2
(Q ,l)=1

μ(Q )#
{

D ∈ V 2g+1−2 deg(Q ): (D, l) = 1
}
. (5.12)

By Lemma 5.3, we have

∑
D∈H2g+1,q

(D,l)=1

1 =
∑

Q monic
deg(Q )� 2g+1

2
(Q ,l)=1

μ(Q )q2g+1−2 deg(Q ) Φ(l)

|l|

= |D|Φ(l)

|l|
∑

Q monic
deg(Q )� 2g+1

2
(Q ,l)=1

μ(Q )

|Q |2 . (5.13)
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Invoking Lemma 5.5 we obtain

∑
D∈H2g+1,q

(D,l)=1

1 = |D|Φ(l)

|l|
(

1

ζA(2)

1∏
P |l(1 − 1/|P |2) + O

(
q−1/2q−g))

= |D|Φ(l)

|l|
1

ζA(2)

1∏
P |l(1 − 1/|P |2) + O

(
|D|Φ(l)

|l| q−1/2q−g
)

, (5.14)

and using Φ(l)
|l| = ∏

P |l(1 − |P |−1), we end up with

∑
D∈H2g+1,q

(D,l)=1

1 = |D|
ζA(2)

∏
P |l(1 + |P |−1)

+ O

(√|D|Φ(l)

|l|
)

, (5.15)

which proves Proposition 5.2. �
5.2. A sum over monic polynomials

In this section we prove the following two lemmas.

Lemma 5.6. We have that,

∏
P

P |l

(
1 + |P |−1)−1 =

∑
d monic

d|l

μ(d)
∏
P |d

1

|P | + 1
. (5.16)

Proof. Obviously,

∏
P

P |l

(
1 + |P |−1)−1 =

∏
P

P |l

(
1 − 1

|P | + 1

)
.

Let P1, . . . , Pm be the primes that divide l. Then

∏
P

P |l

(
1 − 1

|P | + 1

)
=

(
1 − 1

|P1| + 1

)(
1 − 1

|P2| + 1

)
· · ·

(
1 − 1

|Pm| + 1

)

= 1 −
(

1

|P1| + 1
+ · · · + 1

|Pm| + 1

)
+

(
1

|P1| + 1

1

|P2| + 1
+ · · ·

)
− · · ·

=
∑

d monic
d|l

μ(d)
∏
P |d

1

|P | + 1
,

which proves the lemma. �
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Lemma 5.7. We have

∑
l monic

deg(l)=n/2

∏
P |l

(
1 + |P |−1)−1 = qn/2

∑
d monic

deg(d)�n/2

μ(d)

|d|
∏
P |d

1

|P | + 1
. (5.17)

Proof. Using Lemma 5.6 we have

∑
l monic

deg(l)=n/2

∏
P |l

(
1 + |P |−1)−1 =

∑
l monic

deg(l)=n/2

∑
d monic

d|l

μ(d)
∏
P |d

1

|P | + 1

=
∑

d monic
deg(d)�n/2

∑
l monic

deg(l)=n/2
d|l

μ(d)
∏
P |d

1

|P | + 1

=
∑

d monic
deg(d)�n/2

μ(d)
∏
P |d

1

|P | + 1

∑
l monic

deg(l)=n/2
d|l

1

=
∑

d monic
deg(d)�n/2

μ(d)
∏
P |d

1

|P | + 1
qn/2−deg(d)

= qn/2
∑

d monic
deg(d)�n/2

μ(d)

|d|
∏
P |d

1

|P | + 1
. �

5.3. Auxiliary lemmas

To prove Proposition 5.1, which is the main result of this section, we will need some additional
lemmas which we will now establish.

Lemma 5.8. We have that,

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√|Q |Φ(l)

|l| = √|Q |(1 − q−1)([g/2] + 1
)
. (5.18)

Proof.

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√|Q |Φ(l)

|l| = √|Q |
g∑

n=0
2|n

q−n
∑

l monic
deg(l)=n/2

Φ(l)

= √|Q |
g∑

n=0
2|n

(
1 − q−1),

where we have used Lemma 3.5 to obtain the last equation. Hence
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√|Q |
g∑

n=0
2|n

(
1 − q−1) = √|Q |(1 − q−1) g∑

n=0
2|n

1,

which proves the lemma, since n is even. �
So, from this lemma we can conclude that

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√|Q |Φ(l)

|l| = O
(

gqg), (5.19)

which is a result that will be of use later.
Using the Euler product formula we can prove the following lemma.

Lemma 5.9. We have that,

∑
d monic

μ(d)

|d|
∏
P |d

1

|P | + 1
=

∏
P

(
1 − 1

|P |(|P | + 1)

)
. (5.20)

There are two additional lemmas which will be important in establishing the formula in Proposi-
tion 5.1.

Lemma 5.10. We have that,

([g/2] + 1
) ∑

d monic
deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1
= O

(
gq−g/2). (5.21)

Proof.

∑
d monic

deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1
�

∑
d monic

deg(d)>[g/2]

μ2(d)

|d|
∏
P |d

1

|P |

�
∑

d monic
deg(d)>[g/2]

|d|−2 =
∑

h>[g/2]
|d|−2

∑
d monic

deg(d)=h

1

=
∑

h>[g/2]
q−h 
 q−[g/2] 
 q−g/2. (5.22)

So,

([g/2] + 1
) ∑

d monic
deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1

 gq−g/2. �
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Lemma 5.11. We have that,

∑
d monic

deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1
deg(d) = O

(
gq−g/2). (5.23)

Proof. Using the same reasoning as in Lemma 5.10

∑
d monic

deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1
deg(d) �

∑
d monic

deg(d)>[g/2]

μ2(d)

|d|
∏
P |d

1

|P | deg(d)

=
∑

d monic
deg(d)>[g/2]

|d|−2 deg(d)

=
∑

h>[g/2]

∑
d monic

deg(d)=h

hq−2h

=
∑

h>[g/2]
hq−h 
 [g/2]q−[g/2]


 gq−g/2. �
Next we establish the following formula.

Proposition 5.12. We have that,

∑
d monic

μ(d)

|d|
∏
P |d

1

|P | + 1
deg(d)

= −
∏

P

(
1 − 1

|P |(|P | + 1)

) ∑
P monic

irreducible

deg(P )

|P |(|P | + 1) − 1
. (5.24)

Proof. Let

f (s) =
∑

d monic

deg(d)
μ(d)

|d|s

∏
P |d

1

|P | + 1
(5.25)

and

g(s) =
∑

d monic

μ(d)

|d|s

∏
P |d

1

|P | + 1
. (5.26)

A simple calculation shows that

g′(s) = − f (s) log q (5.27)

and by Lemma 5.9
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g(s) =
∏

P

(
1 − 1

|P |s(|P | + 1)

)
. (5.28)

Computing g′(s) using (5.28) and the product rule gives us

g′(s) = g(s) log q
∑

P monic
irreducible

deg(P )

|P |s(|P | + 1) − 1
. (5.29)

Combining (5.27) and (5.29) we have that

f (s) = −g(s)
∑

P monic
irreducible

deg(P )

|P |s(|P | + 1) − 1
. (5.30)

Putting s = 1 proves the theorem. �
Now we are ready to give a proof of our main result in this section.

Proof of Proposition 5.1. Let

B(n, l, D) =
g∑

n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1. (5.31)

By Proposition 5.2 we have that

B(n, l, D) = |D|
ζA(2)

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∏
P |l

(
1 + |P |−1)−1

+ O

( g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√|D|Φ(l)

|l|

)

and using (5.19) we can reduce B(n, l, D) to

B(n, l, D) = |D|
ζA(2)

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∏
P |l

(
1 + |P |−1)−1 + O

(
gqg). (5.32)

Using Lemma 5.7 we have

B(n, l, D) = |D|
ζA(2)

g∑
n=0
2|n

q−n/2qn/2
∑

d monic
deg(d)�n/2

μ(d)

|d|
∏
P |d

1

|P | + 1
+ O

(
gqg)

= |D|
ζA(2)

[g/2]∑
m=0

∑
d monic

deg(d)�m

μ(d)

|d|
∏
P |d

1

|P | + 1
+ O

(
gqg)
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= |D|
ζA(2)

∑
d monic

deg(d)�[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1

∑
deg(d)�m�[g/2]

1 + O
(

gqg)

= |D|
ζA(2)

∑
d monic

deg(d)�[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1

([g/2] + 1 − deg(d)
)

+ O
(

gqg). (5.33)

Hence

B(n, l, D) = |D|
ζA(2)

{([g/2] + 1
)( ∑

d monic

μ(d)

|d|
∏
P |d

1

|P | + 1

)}

− |D|
ζA(2)

{([g/2] + 1
)( ∑

d monic
deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1

)}

− |D|
ζA(2)

{ ∑
d monic

μ(d)

|d|
∏
P |d

1

|P | + 1
deg(d)

}

+ |D|
ζA(2)

{ ∑
d monic

deg(d)>[g/2]

μ(d)

|d|
∏
P |d

1

|P | + 1
deg(d)

}
+ O

(
gqg). (5.34)

The main term now comes from the two sums over all monic polynomials. The sums over monic
polynomials with deg(d) > [g/2] can be bounded. Combining Lemma 5.9, Lemma 5.10, Lemma 5.11
and Proposition 5.12 we have

B(n, l, D) = |D|
ζA(2)

([g/2] + 1
)

P (1) + |D|
ζA(2)

P (1)
∑

P monic
irreducible

deg(P )

|P |(|P | + 1) − 1
+ O

(
gq

3
2 g)

= P (1)

ζA(2)
|D|

{([g/2] + 1
) +

∑
P monic

irreducible

deg(P )

|P |(|P | + 1) − 1

}
+ O

(
gq

3
2 g),

which completes the proof of the proposition. �
6. Estimating the contributions of non-squares to the average

We will present in this section an estimate for the second term of (4.3) which allows us to give
an asymptotic formula for the first term of (4.2) where q ≡ 1 (mod 4) is fixed and g → ∞. Our main
result in this section is:

Proposition 6.1. We have

g∑
n=0

q−n/2
∑

f monic
deg( f )=n

f �=�

∑
D∈H2g+1,q

χD( f ) = O
(
2gq

3
2 g+ 3

4
)
. (6.1)
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For this we will need the following lemmas (cf. [6]):

Lemma 6.2. Let χ be a nontrivial Dirichlet character modulo f . Then for n < deg( f ),

∣∣∣∣ ∑
deg(B)=n

χ(B)

∣∣∣∣ �
(

deg( f ) − 1

n

)
qn/2 (6.2)

(the sum over all monic polynomials of degree n).

Proof. This is straightforward from the Riemann Hypothesis for function fields. All we need to do is
compare the series expansion of L(u,χ), which is a polynomial of degree at most deg( f ) − 1, with
the expression in terms of the inverse zeros:

∑
0�n<deg( f )

( ∑
deg(B)=n

χ(B)

)
un =

deg( f )−1∏
j=1

(1 − α ju)

to get

∑
deg(B)=n

χ(B) = (−1)n
∑

S⊂{1,...,deg( f )−1}
#S=n

∏
j∈S

α j

and then use |α j | � √
q for all j. �

Remark 6.3. Note that for n � deg( f ) the character sum vanishes.

Now we apply this result to quadratic characters.

Lemma 6.4. If f ∈ Fq[x] is not a square then

∣∣∣∣ ∑
D∈H2g+1,q

χD( f )

∣∣∣∣ 
 qg+1/22deg f −1. (6.3)

Proof. We use (3.20) to pick out the square-free monic polynomials. Thus the sum over all square-free
monic polynomials is given by

∑
D∈H2g+1,q

χD( f ) =
∑

deg(D)=2g+1

∑
A2|D

μ(A)

(
D

f

)

=
∑

deg(A)�g

μ(A)

(
A

f

)2 ∑
deg(B)=2g+1−2 deg(A)

(
B

f

)
. (6.4)

To deal with the inner sum, note that (•/ f ) is a nontrivial character since f is not a square, so we
can use Lemma 6.2 to obtain

∣∣∣∣ ∑
deg(B)=2g+1−2 deg(A)

(
B

f

)∣∣∣∣ �
(

deg( f ) − 1

2g + 1 − 2 deg(A)

)
qg+1/2−deg(A)



J.C. Andrade, J.P. Keating / Journal of Number Theory 132 (2012) 2793–2816 2815
if 2g + 1 − 2 deg(A) < deg( f ). The sum is zero otherwise. Hence we have

∣∣∣∣ ∑
D∈H2g+1,q

χD( f )

∣∣∣∣ �
∑

deg(A)�g

∣∣∣∣ ∑
deg(B)=2g+1−2 deg(A)

(
B

f

)∣∣∣∣
�

∑
g+1/2−(deg( f )/2)<deg(A)�g

(
deg( f ) − 1

2g + 1 − 2 deg(A)

)
qg+1/2−deg(A)

= qg+1/2
∑

g+1/2−(deg( f )/2)< j�g

(
deg( f ) − 1

2g + 1 − 2 j

)
� 2deg( f )−1qg+1/2. (6.5)

This completes the proof of Lemma 6.4. �
Proof of Proposition 6.1. Using Lemma 6.4 we have that,

g∑
n=0

q−n/2
∑

f monic
deg( f )=n

f �=�

∑
D∈H2g+1,q

χD( f ) �
g∑

n=0

q−n/2
∑

f monic
deg( f )=n

2deg f −1qg+1/2

=
g∑

n=0

q−n/22n−1qg+1/2qn


 qg
g∑

n=0

(
q1/22

)n


 qg(2q1/2)g+1


 q
3
2 g+ 3

4 2g . � (6.6)

7. Proof of the main theorem

Proof of Theorem 2.1. Now we are in a position to prove Theorem 2.1. For this we make use of
Proposition 5.1 and Proposition 6.1, which give us

∑
D∈H2g+1,q

g∑
n=0

∑
f1 monic

deg( f1)=n

χD( f1)q
−n/2

= P (1)

ζA(2)
|D|

{([g/2] + 1
) +

∑
P

deg(P )

|P |(|P | + 1) − 1

}
+ O

(
2gq

3
2 g+ 3

4
)
. (7.1)

For the dual sum in (4.2) we get, similarly, that

∑
D∈H2g+1,q

g−1∑
m=0

∑
f2 monic

deg( f2)=m

χD( f2)q
−m/2

= P (1)

ζA(2)
|D|

{([
g − 1

2

]
+ 1

)
+

∑ deg(P )

|P |(|P | + 1) − 1

}
+ O

(
2gq

3
2 g+ 3

4
)
. (7.2)
P
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So adding (7.1) with (7.2) we see that,

∑
D∈H2g+1,q

L
(
q−1/2,χD

)

= P (1)

2ζA(2)
|D|

{
logq |D| + 1 + 4

∑
P

deg(P )

|P |(|P | + 1) − 1

}
+ O

(
2gq

3
2 g+ 3

4
)
, (7.3)

and using the fact that |D| = q2g+1 we have precisely the statement of Theorem 2.1. �
The corollary is immediate using (3.17) and computing the limit as g → ∞.
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