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1. Introduction

In the theory of mathematical constants, an important concern is the definition of 
new sequences which converge to these fundamental constants with increasingly higher 
speed. These convergent sequences and constants play a key role in many areas of mathe-
matics and science in general, as theory of probability, applied statistics, physics, special 
functions, number theory, or analysis.

One of the most useful convergent sequence in mathematics is

wn =
n∑

k=1

k ln(k) −
(
n2

2 + n

2 + 1
12

)
ln(n) + n2

4 , (1.1)

which converges towards the well-known Glaisher–Kinkelin’s constant ln(A) and 
A ≈ 1.282427130 . . . .

This constant appeared in Barnes [2]. Up to now, it has been computed to great 
depth, which means that there must be some way to approximate it to high accuracy 
at modest computational cost. One such approach would be by way of Euler–Maclaurin 
summation. A good reference is Brendan McKay’s article [1], available in the “Talk” 
page associated with the (defective in its discussion of error terms) Wikipedia page on 
Euler Maclaurin summation.

It is not hard to see that

ln(A) − wn =
∞∑

k=n+1

[
2k − 1

4 +
(
k2 − k

2 + 1
12

)
ln(1 − 1/k)

]
.

Replacing ln(1 − 1/k) with its series expansion and rearranging gives

ln(A) − wn =
∞∑
j=3

∞∑
k=n+1

k−j

(
− 1

12j + 1
2(j + 1) − 1

2(j + 2)

)
. (1.2)

This last expression can be estimated term by term via Euler–Maclaurin techniques. The 
problem of estimating 

∑∞
k=n k−j is known to history as the ‘Basel problem’ and it was 

for the express purpose of tackling it that Euler invented the method. (Maclaurin hit 
upon it separately, and with a different purpose in mind.) The upshot of this approach 
is that

ln(A) − wn = −1
720n

−2 + 1
5040n

−4 − 1
10 080n

−6 + 1
9504n

−8 + O[n−10].

The expansion can be taken to arbitrary depth.
Related to Glaisher–Kinkelin’s constant, the following sequences are defined,

sn =
n∑

k2 ln(k) −
(
n3

3 + n2

2 + n

6

)
ln(n) + n3

9 − n

12 (1.3)

k=1
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and

tn =
n∑

k=1

k3 ln(k) −
(
n4

4 + n3

2 + n2

4 − 1
120

)
ln(n) + n4

16 − n2

12 , (1.4)

which converge towards the well-known Bendersky–Adamchik’s constant ln(B) and 
ln(C), where B ≈ 1.03091675 . . . and C ≈ 0.97955746 . . . . These two constants were 
considered by Choi and Srivastava in [3–5] in the theory of multiple gamma func-
tions.

Up until now, many researchers made great efforts in the area of concerning the rate of 
convergence of the sequences (wn)n≥1, (sn)n≥1 and (tn)n≥1, and establishing sequences 
which converge faster to Glaisher–Kinkelin’s and Bendersky–Adamchik’s constants and 
had a lot of inspiring results. For example, in [13], Mortici provided some new inequalities 
for these constants as follows:

wn − 1
720n2 + 1

5040n4 − 1
10 080n6 < ln(A) < wn − 1

720n2 + 1
5040n4 , (1.5)

sn + 1
360n − 1

7560n3 < ln(B) < sn + 1
360n, (1.6)

tn + 1
5040n2 − 1

33 600n4 < ln(C) < tn + 1
5040n2 . (1.7)

In addition, the method using continued fraction to approximate the well known con-
stants often appeared in many literatures. For example, Mortici [12] and [14] used 
continued fraction to approximate gamma function. Lu [7] provided approximation of 
Euler’s constant by using continued fraction. From above works, we can see that the 
approximations which used continued fraction have quicker convergence rates than the 
others which used polynomials. In view of this fact, in this paper, using continued fraction 
approximation, we provide some quicker convergent sequences for Glaisher–Kinkelin’s 
and Bendersky–Adamchik’s constants as follows:

Theorem 1.1. For Glaisher–Kinkelin’s constant, we have

ln(A) ≈ wn + 1
n

a1

n + a2
n+ a3

n+···

, (1.8)

where

a1 = − 1
720 , a2 = 1

7 , a3 = 5
14 , . . . .

For Bendersky–Adamchik’s constants, we have

ln(B) ≈ sn + b1

n + b2
b3

(1.9)

n+n+···
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and

ln(C) ≈ tn + 1
n

c1
n + c2

n+ c3
n+···

, (1.10)

where

b1 = 1
360 , b2 = 1

21 , b3 = 53
210 , . . .

and

c1 = 1
5040 , c2 = 3

20 , c3 = 703
1980 , . . . .

Remark 1.1. Let c[r] = −1/(12r) +1/(2(r+1)(r+2)). A proof that the desired asymptotic 
continued fraction-type expansion exists for ln(A) − wn would be at hand if only the 
following identity could be established: for integer q with q ≥ 2,

1
2q + 1c[2q + 2] − 1

2c[2q + 1] + 1
2q + 1

q−1∑
s=1

B2s

(
2q + 1

2s

)
c[2q + 2 − 2s] = 0. (1.11)

However we do not provide a direct proof and more work needs to be done in this 
direction. It also seems a challenging problem to give a proof of the equality (1.11).

Next, using Theorem 1.1, we provide some inequalities for Glaisher–Kinkelin’s and 
Bendersky–Adamchik’s constants.

Theorem 1.2. For all natural numbers n ≥ 1, we have

wn + 1
n

− 1
720

n +
1
7

n+
5
14
n

< ln(A) < wn + 1
n

− 1
720

n +
1
7
n

; (1.12)

sn +
1

360

n +
1
21
n

< ln(B) < sn +
1

360

n +
1
21

n+
53
210
n

; (1.13)

tn + 1
n

1
5040

n +
3
20
n

< ln(C) < tn + 1
n

1
5040

n +
3
20

n+
703
1980
n

. (1.14)

Finally, to show that the three continued fraction approximations convergence faster, 
combining Theorems 1.1 and 1.2, we provide the rates of convergence of these three 
sequences as follows:
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Theorem 1.3. For all natural numbers n ≥ 2, we have

1
14 112(n + 1)6 < wn + 1

n

− 1
720

n +
1
7
n

− ln(A) < 1
14 112(n− 1)6 ; (1.15)

53
1 587 600(n + 1)5 < ln(B) − sn −

1
360

n +
1
21
n

<
53

1 587 600(n− 1)5 ; (1.16)

703
66 528 000(n + 1)6 < ln(C) − tn − 1

n

1
5040

n +
3
20
n

<
703

66 528 000(n− 1)6 . (1.17)

To obtain Theorem 1.1, we need the following lemma which was used in [8–12] and 
very useful for constructing asymptotic expansions.

Lemma 1.1. If (xn)n≥1 is convergent to zero and there exists the limit

lim
n→∞

ns(xn − xn+1) = l ∈ [−∞,+∞], (1.18)

with s > 1, then

lim
n→∞

ns−1xn = l

s− 1 . (1.19)

Lemma 1.1 was first proved by Mortici in [11]. From Lemma 1.1, we can see that 
the speed of convergence of the sequence (xn)n≥1 increases together with the value s
satisfying (1.18).

The rest of this paper is arranged as follows: In Section 2, we provide the proof of 
Theorem 1.1. In Section 3, the proof of Theorem 1.2 is given. In Section 4, we complete 
the proof of Theorem 1.3. In Section 5, we give some numerical computations which 
demonstrate the superiority of our new convergent sequences over the classical sequences 
and Mortici’s sequence.

2. Proof of Theorem 1.1

First, we deal with (1.8). Based on the argument of Theorem 2.1 in [12] or Theorem 5 
in [14], we need to find the value a1 ∈ R which produces the most accurate approximation 
of the form

w(1)
n =

n∑
k=1

k ln(k) −
(
n2

2 + n

2 + 1
12

)
ln(n) + n2

4 + a1

n2 . (2.1)

To measure the accuracy of this approximation, a method is to say that an approximation 
(2.1) is better if w(1)

n − ln(A) converges to zero faster. Using (2.1) and developing the 
power series in 1/n, we have
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w(1)
n − w

(1)
n+1 = 720a1 + 1

360n3 + −720a1 − 1
240n4 + 840a1 + 1

210n5 + O

(
1
n6

)
. (2.2)

From Lemma 1.1, we know that the speed of convergence of the sequence (w(1)
n −

ln(A))n≥1 is even higher as the value s satisfying (1.18). Thus, using Lemma 1.1, we 
have:

(i) If a1 �= −1/720, then the rate of convergence of the sequence (w(1)
n − ln(A))n≥1

is n−2, since

lim
n→∞

n2(w(1)
n − ln(A)) = 720a1 + 1

720 �= 0.

(ii) If a1 = −1/720, then from (2.2), we have

w(1)
n − w

(1)
n+1 = − 1

1260
1
n5 + O

(
1
n6

)

and the rate of convergence of the sequence (w(1)
n − ln(A))n≥1 is n−4, since

lim
n→∞

n4(w(1)
n − ln(A)) = − 1

5040n4 .

We know that the fastest possible sequence (w(1)
n )n≥1 is obtained only for a1 = −1/720.

Next, we define the sequence (w(2)
n )n≥1 by the relation

w(2)
n =

n∑
k=1

k ln(k) −
(
n2

2 + n

2 + 1
12

)
ln(n) + n2

4 + 1
n

− 1
720

n + a2
n

. (2.3)

Using the same method from (2.1) to (2.2), we have

w(2)
n − w

(2)
n+1 = 7a2 − 1

1260n5 + 1 − 7a2

504n6 + 140a2 − 17 − 42a2
2

5040n7 + O

(
1
n8

)
. (2.4)

The fastest possible sequence (w(2)
n )n≥1 is obtained only for a2 = 1/7. Then, from (2.4), 

we have

w(2)
n − w

(2)
n+1 = 1

2352n7 + O

(
1
n8

)

and the rate of convergence of the sequence (w(2)
n − ln(A))n≥1 is n−6, since

lim
n→∞

n6(w(2)
n − ln(A)) = 1

14 112 .

Similarly, we have a3 = 5/14, · · ·, the new sequence (1.8) is obtained.
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Next, we deal with (1.9). We need to find the value b1 ∈ R which produces the most 
accurate approximation of the form

s(1)
n =

n∑
k=1

k2 ln(k) −
(
n3

3 + n2

2 + n

6

)
ln(n) + n3

9 − n

12 + b1
n
. (2.5)

Using (2.5) and developing the power series in 1/n, we have

s(1)
n − s

(1)
n+1 = 360b1 − 1

360n2 + 1 − 360b1
360n3 + 420b1 − 1

420n4 + O

(
1
n5

)
. (2.6)

From Lemma 1.1, we know that the speed of convergence of the sequence (s(1)
n −ln(B))n≥1

is even higher as the value s satisfying (1.18). Thus, using Lemma 1.1, we have:
(i) If b1 �= 1/360, then the rate of convergence of the sequence (s(1)

n −ln(B))n≥1 is n−1, 
since

lim
n→∞

n(s(1)
n − ln(B)) = 360b1 − 1

360 �= 0.

(ii) If b1 = 1/360, then from (2.6), we have

s(1)
n − s

(1)
n+1 = 1

2520n4 + O

(
1
n5

)

and the rate of convergence of the sequence (s(1)
n − ln(B))n≥1 is n−3, since

lim
n→∞

n3(s(1)
n − ln(B)) = 1

7560 .

We know that the fastest possible sequence (s(1)
n )n≥1 is obtained only for b1 = 1/360.

Similarly, we have b2 = 1/21, b3 = 53/210, · · ·, and the new sequence (1.9) is obtained.
Finally, we deal with (1.10). We need to find the value c1 ∈ R which produces the 

most accurate approximation of the form

t(1)n =
n∑

k=1

k3 ln(k) −
(
n4

4 + n3

2 + n2

4 − 1
120

)
ln(n) + n4

16 − n2

12 + c1
n2 . (2.7)

Using the same method from (2.5) to (2.6), we have

t(1)n − t
(1)
n+1 = 5040c1 − 1

2520n3 + 1 − 5040c1
1680n4 + 100 800c1 − 17

25 200n5 + O

(
1
n6

)
. (2.8)

The fastest possible sequence (t(1)n )n≥1 is obtained only for c1 = 1/5040. Then, from 
(2.8), we have
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t(1)n − t
(1)
n+1 = 1

8400n5 + O

(
1
n6

)

and the rate of convergence of the sequence (t(1)n − ln(C))n≥1 is n−4, since

lim
n→∞

n4(t(1)n − ln(C)) = 1
33 600 .

Similarly, we have c2 = 3/20, c3 = 703/1980, · · ·, and the new sequence (1.10) is 
obtained.

3. Proof of Theorem 1.2

First, we deal with (1.12). Let

w(3)
n = wn + 1

n

− 1
720

n +
1
7

n+
5
14
n

, w(2)
n = wn + 1

n

− 1
720

n +
1
7
n

.

Since w(3)
n , w(2)

n converge to ln(A), we only need to show that (w(3)
n )n≥1 is strictly 

increasing and (w(2)
n )n≥1 is strictly decreasing.

Let fA(x) = w
(3)
x − w

(3)
x+1, gA(x) = w

(2)
x − w

(2)
x+1. By some calculations, we have

f ′′′
A (x) = FA(x)

210x5(x + 1)(2x2 + 1)4(2x3 + 6x2 + 7x + 3)4 > 0,

g′′′A (x) = − GA(x)
30x3(x + 1)3(7x2 + 1)4(7x2 + 14x + 8)4 < 0,

where

FA(x) = 23 680x14 + 165 760x13 + 556 384x12 + 1 183 424x11 + 1 792 624x10

+ 2 065 680x9 + 1 891 520x8 + 1 417 184x7 + 885 344x6 + 465 184x5

+ 204 710x4 + 73 500x3 + 20 655x2 + 4185x + 405,

GA(x) = 37 059 435x12 + 222 356 610x11 + 583 202 900x10 + 877 745 575x9

+ 839 828 983x8 + 538 765 192x7 + 241 633 896x6 + 79 832 221x5

+ 20 927 802x4 + 4 831 498x3 + 1 021 440x2 + 143 360x + 20 480.

Combining f ′′
A(∞) = 0, g′′A(∞) = 0 and f ′′′

A (x) > 0, g′′′A (x) < 0, we have f ′′
A(x) < 0, 

g′′A(x) > 0 for x ≥ 1. Thus, fA(x) is strictly concave, and gA(x) is strictly convex. 
Combining fA(∞) = 0 and gA(∞) = 0, we obtain fA(x) < 0 and gA(x) > 0 for x ≥ 1. 
The proof of (1.12) is completed.
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Next, we deal with (1.13). Let

s(2)
n = sn +

1
360

n +
1
21
n

, s(3)
n = sn +

1
360

n +
1
21

n+
53
210
n

.

We only need to show that (s(2)
n )n≥1 is strictly increasing and (s(3)

n )n≥1 is strictly de-
creasing. Let fB(x) = s

(2)
x − s

(2)
x+1, gB(x) = s

(3)
x − s

(3)
x+1. By similar calculations, we 

have f ′′′
B (x) > 0 and g′′′B (x) < 0. Combining f ′′

B(∞) = 0, g′′B(∞) = 0 and f ′′′
B (x) > 0, 

g′′′B (x) < 0, we have f ′′
B(x) < 0, g′′B(x) > 0 for x ≥ 1. Thus, fB(x) is strictly concave, and 

gB(x) is strictly convex. Combining fB(∞) = 0 and gB(∞) = 0, we obtain fB(x) < 0
and gB(x) > 0 for x ≥ 1. The proof of (1.13) is completed.

Finally, we deal with (1.14). Let

t(2)n = tn + 1
n

1
5040

n +
3
20
n

, t(3)n = tn +
1

5040

n +
3
20

n+
703
1980
n

.

We only need to show that (t(2)n )n≥1 is strictly increasing and (t(3)n )n≥1 is strictly de-
creasing. Let fC(x) = t

(2)
x − t

(2)
x+1, gC(x) = t

(3)
x − t

(3)
x+1. By similar calculations, we 

have f ′′′
C (x) > 0 and g′′′C (x) < 0. Combining f ′′

C(∞) = 0, g′′C(∞) = 0 and f ′′′
C (x) > 0, 

g′′′C (x) < 0, we have f ′′
C(x) < 0, g′′C(x) > 0 for x ≥ 1. Thus, fC(x) is strictly concave, and 

gC(x) is strictly convex. Combining fC(∞) = 0 and gC(∞) = 0, we obtain fC(x) < 0
and gC(x) > 0 for x ≥ 1. The proof of (1.14) is completed.

4. Proof of Theorem 1.3

First, we prove (1.15). Based on the argument of Theorem 1 in [6], it is easy to 
have

w(2)
n − ln(A) =

∞∑
k=n

(w(2)
n − w

(2)
n+1) =

∞∑
k=n

fw(k). (4.1)

By some calculations, we have

f ′
w(x) = −Fw(x)/Gw(x), (4.2)

where

Gw(x) = 360x(x + 1)(7x2 + 1)2(7x2 + 14x + 8)2

and
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Fw(x) = 1920 + 600 663x3 + 29 809x− 74 880 ln(x + 1)x2 + 864 360 ln(x)x11

+ 136 762x2 − 15 188 040 ln(x + 1)x8 − 7 717 500 ln(x + 1)x6

+ 3 582 180 ln(n)x5 + 864 360x10 + 4 321 800x9 + 9 209 550x8

+ 10 907 400x7 + 1 330 560 ln(x)x4 + 11 520 ln(x)x− 4 753 980 ln(x + 1)x10

− 1 330 560 ln(x + 1)x4 + 15 188 040 ln(x)x8 + 1 833 174x4 + 4 288 431x5

+ 8 104 257x6 + 12 947 760 ln(x)x7 − 12 947 760 ln(x + 1)x7 + 74 880 ln(x)x2

− 360 720 ln(x + 1)x3 − 11 520 ln(x + 1)x− 864 360 ln(x + 1)x11

+ 7 717 500 ln(x)x6 − 11 298 420 ln(x + 1)x9 − 3 582 180 ln(x + 1)x5

+ 360 720 ln(x)x3 + 4 753 980 ln(x)x10 + 11 298 420 ln(x)x9.

By some calculations, we have

Gw(x) − 336x8Fw(x) > 0 (4.3)

as x ≥ 1. For the upper bound in (1.15), we have

−f ′
w(x) = Fw(x)

Gw(x) <
1

336x8 . (4.4)

Since fw(∞) = 0, we have

fw(k) = −
∞∫
k

f ′
w(x)dx <

1
336

∞∫
k

x−8dx = 1
2352k

−7 <
1

2352

k∫
k−1

x−7dx. (4.5)

Combining (4.1) and (4.5), for all natural numbers n ≥ 2, we have

w(2)
n − ln(A) <

∞∑
k=n

1
2352

k∫
k−1

x−7dx = 1
2352

∞∫
n−1

x−7dx = 1
14 112(n− 1)6 . (4.6)

For the lower bound, combining (4.2), we have

−f ′
w(x) = Fw(x)

Gw(x) >
1

336(x + 1)8 , (4.7)

where we use the following fact, for x ≥ 1,

Gw(x) − 336(x + 1)8Fw(x) < 0. (4.8)

Combining (4.7), we have
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fw(k) = −
∞∫
k

f ′
w(x)dx >

1
336

∞∫
k

(x + 1)−8dx = 1
2352(k + 1)−7 >

1
2352

k+2∫
k+1

x−7dx.

(4.9)

Combining (4.1) and (4.9), we have

w(2)
n − ln(A) >

∞∑
k=n

1
2352

k+2∫
k+1

x−7dx = 1
2352

∞∫
n+1

x−7dx = 1
14 112(n + 1)6 . (4.10)

Combining (4.6) and (4.10), we complete the proof of (1.15).
Next, we prove (1.16). It is easy to have

ln(B) − s(2)
n =

∞∑
k=n

(s(2)
k+1 − s

(2)
k ) =

∞∑
k=n

fs(k). (4.11)

For the upper bound in (1.16), by similar calculation, we have

−f ′
s(x) < 53

52 920x7 , (4.12)

for x ≥ 1. Since fs(∞) = 0, we have

fs(k) = −
∞∫
k

f ′
s(x)dx <

53
52 920

∞∫
k

x−7dx = 53
317 520k

−6 <
53

317 520

k∫
k−1

x−6dx. (4.13)

Combining (4.11) and (4.13), for all natural numbers n ≥ 2, we have

ln(B) − s(2)
n <

∞∑
k=n

53
317 520

k∫
k−1

x−6dx = 53
317 520

∞∫
n−1

x−6dx = 53
1 587 600(n− 1)5 .

(4.14)

For the lower bound, by similar calculation we have

−f ′
s(x) > 53

52 920(x + 1)7 , (4.15)

for x ≥ 1. Combining (4.15), we have

fs(k) = −
∞∫
k

f ′
s(x)dx >

53
52 920

∞∫
k

(x + 1)−7dx = 53
317 520(k + 1)−6 >

53
317 520

k+2∫
k+1

x−6dx.

(4.16)
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Combining (4.11) and (4.16), we have

ln(B) − s(2)
n >

∞∑
k=n

53
317 520

k+2∫
k+1

x−6dx = 53
317 520

∞∫
n+1

x−6dx = 53
1 587 600(n + 1)5 .

(4.17)

Combining (4.14) and (4.17), we complete the proof of (1.16).
Finally, we prove (1.17).

ln(C) − t(2)n =
∞∑

k=n

(t(2)k+1 − t
(2)
k ) =

∞∑
k=n

ft(k). (4.18)

For the upper bound in (1.17), by some calculation, we have

−f ′
t(x) < 703

1 584 000x8 , (4.19)

for x ≥ 1. Since ft(∞) = 0, we have

ft(k) = −
∞∫
k

f ′
t(x)dx <

703
1 584 000

∞∫
k

x−8dx = 703
11 088 000k

−7 <
703

11 088 000

k∫
k−1

x−7dx.

(4.20)

Combining (4.18) and (4.20), for all natural numbers n ≥ 2, we have

ln(C) − t(2)n <

∞∑
k=n

703
11 088 000

k∫
k−1

x−7dx = 703
11 088 000

∞∫
n−1

x−7dx = 703
66 528 000(n− 1)6 .

(4.21)

For the lower bound, by similar calculation, we have

−f ′
t(x) > 703

1 584 000(x + 1)8 , (4.22)

for x ≥ 1. Combining (4.22), we have

ft(k) = −
∞∫
k

f ′
t(x)dx >

703
1 584 000

∞∫
k

(x + 1)−8dx

= 703
11 088 000(k + 1)−7 >

703
11 088 000

k+2∫
x−7dx. (4.23)
k+1
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Table 1
Simulations for wn, Wn and w(2)

n .

n wn−ln(A)
ln(A)

Wn−ln(A)
ln(A)

w(2)
n

−ln(A)
ln(A)

10 5.5754 × 10−5 3.9466 × 10−10 2.8087 × 10−10

25 8.9314 × 10−6 1.6308 × 10−12 1.1642 × 10−12

50 2.2332 × 10−6 2.5513 × 10−14 1.8221 × 10−14

100 5.5833 × 10−7 3.9877 × 10−16 2.8483 × 10−16

250 8.9334 × 10−8 1.6335 × 10−18 1.1668 × 10−18

1000 5.5834 × 10−9 3.9881 × 10−22 2.8487 × 10−22

Combining (4.18) and (4.23), we have

ln(C) − t(2)n >
∞∑

k=n

703
11 088 000

k+2∫
k+1

x−7dx = 703
11 088 000

∞∫
n+1

x−7dx = 703
66 528 000(n + 1)6 .

(4.24)

Combining (4.21) and (4.24), we complete the proof of (1.17).

5. Numerical computation

In this section, we give three tables to demonstrate the superiority of our new con-
vergent sequences

w(2)
n = wn + 1

n

− 1
720

n +
1
7
n

, s(2)
n = sn +

1
360

n +
1
21
n

, t(2)n = tn + 1
n

1
5040

n +
3
20
n

over the classical sequences wn, sn, tn, and Mortici’s sequences

Wn = wn − 1
720n2 + 1

5040n4 , Sn = sn + 1
360n − 1

7560n3 ,

Tn = tn + 1
5040n2 − 1

33 600n4 ,

respectively.
Combining Theorem 1.1, Theorem 1.2 and Theorem 1.3, we have Table 1, Table 2

and Table 3.
In conclusion, we assert that the use of continued fractions in the problem of approxi-

mating the constants of Glaisher–Kinkelin type is more adequate than the use of classical 
asymptotic series as in Mortici [13], since more accurate approximations are obtained.

Moreover, sequences in (1.8)–(1.10) were obtained by using a step-by-step procedure. 
We propose as an open problem the finding of an systematical method to present the 
general term of the sequences which define the continued fractions (1.8)–(1.10).
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Table 2
Simulations for sn, Sn and s(2)

n .

n ln(B)−sn

ln(B)
ln(B)−Sn

ln(B)
ln(B)−s(2)

n

ln(B)

10 9.1186 × 10−3 1.2935 × 10−8 1.0868 × 10−8

25 3.6489 × 10−3 1.3329 × 10−10 1.1211 × 10−10

50 1.8245 × 10−3 4.1692 × 10−12 3.5072 × 10−12

100 9.1228 × 10−4 1.3032 × 10−13 1.0963 × 10−13

250 3.6492 × 10−4 1.3345 × 10−15 1.1227 × 10−15

1000 9.1229 × 10−5 1.3033 × 10−18 1.0964 × 10−18

Table 3
Simulations for tn, Tn and t(2)n .

n ln(C)−tn
−ln(C)

ln(C)−Tn

−ln(C)
ln(C)−t(2)

n

−ln(C)

10 9.5911 × 10−5 7.2008 × 10−10 5.0429 × 10−10

25 1.5365 × 10−5 2.9755 × 10−12 2.0905 × 10−12

50 3.8419 × 10−6 4.6552 × 10−14 3.2721 × 10−14

100 9.6053 × 10−7 7.2761 × 10−16 5.1149 × 10−16

250 1.5369 × 10−7 2.9805 × 10−18 2.0953 × 10−18

1000 9.6054 × 10−9 7.2768 × 10−22 5.1156 × 10−22

Acknowledgments

The work of the first author was supported by the National Natural Science Founda-
tion of China (Grant No. 11571058) and the Fundamental Research Funds for the Central 
Universities (Grant No. DUT15LK19). The work of the second author was supported by 
a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, 
project number PN-II-ID-PCE-2011-3-0087. The work of the third author was supported 
by the National Natural Science Foundation of China (Grant No. 11371077). Computa-
tions made in this paper were performed using Maple software.

References

[1] http://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula.
[2] E.W. Barnes, The theory of the G-function, Quart. J. Math. 31 (1899) 264–314.
[3] J. Choi, A set of mathematical constants arising naturally in the theory of the multiple Gamma 

functions, Abstr. Appl. Anal. 2012 (2012) 121795, http://dx.doi.org/10.1155/2012/121795.
[4] J. Choi, H.M. Srivastava, Certain classes of series involving the zeta function, J. Math. Anal. Appl. 

231 (1999) 91–117.
[5] J. Choi, H.M. Srivastava, Certain classes of series associated with the zeta function and multiple 

Gamma functions, J. Comput. Appl. Math. 118 (2000) 87–109.
[6] D.W. DeTemple, A quicker convergences to Euler’s constant, Amer. Math. Monthly 100 (5) (1993) 

468–470.
[7] D. Lu, A new quicker sequence convergent to Euler’s constant, J. Number Theory 136 (2014) 

320–329.
[8] C. Mortici, Very accurate estimates of the polygamma functions, Asymptot. Anal. 68 (3) (2010) 

125–134.
[9] C. Mortici, A quicker convergence toward the gamma constant with the logarithm term involving 

the constant e, Carpathian J. Math. 26 (1) (2010) 86–91.
[10] C. Mortici, On new sequences converging towards the Euler–Mascheroni constant, Comput. Math. 

Appl. 59 (8) (2010) 2610–2614.

http://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4261726E657331383939s1
http://dx.doi.org/10.1155/2012/121795
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib43686F6931393939s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib43686F6931393939s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib43686F6932303030s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib43686F6932303030s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib446554656D706C6531393933s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib446554656D706C6531393933s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4C7532303134s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4C7532303134s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313063s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313063s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313062s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313062s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313061s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313061s1


448 D. Lu et al. / Journal of Number Theory 163 (2016) 434–448
[11] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117 (5) 
(2010) 434–441.

[12] C. Mortici, A new Stirling series as continued fraction, Numer. Algorithms 56 (1) (2011) 17–26.
[13] C. Mortici, Approximating the constants of Glaisher–Kinkelin type, J. Number Theory 133 (2013) 

2465–2469.
[14] C. Mortici, A continued fraction approximation of the gamma function, J. Math. Anal. Appl. 402 

(2013) 405–410.

http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F727469636932303130s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F727469636932303130s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F727469636932303131s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F727469636932303133s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F727469636932303133s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313361s1
http://refhub.elsevier.com/S0022-314X(16)00039-1/bib4D6F72746963693230313361s1

	Some new approximations of Glaisher-Kinkelin's and Bendersky-Adamchik's constants by continued fraction
	1 Introduction
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.2
	4 Proof of Theorem 1.3
	5 Numerical computation
	Acknowledgments
	References


