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Chakraborty and Rao [4] considered the θ-expansions of 
numbers in [0, θ), where 0 < θ < 1. A Wirsing-type approach 
to the Perron–Frobenius operator of the generalized Gauss 
map under its invariant measure allows us to study the 
optimality of the convergence rate. Actually, we obtain upper 
and lower bounds of the convergence rate which provide a 
near-optimal solution to the Gauss–Kuzmin–Lévy problem.
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1. Introduction

Motivated by problems in random number generation, the study initiated by Bhat-
tacharya and Goswami [1] leads to the interesting concept of θ-expansions of numbers 
in [0, θ), where 0 < θ < 1. We mention that the case θ = 1 refers to regular continued 
fraction (RCF) expansions. Note that in the literature there exist several generalizations 
of the RCF expansions (see [6,17,11] for some background information).
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Our aim here is to give a solution to the Gauss–Kuzmin–Lévy problem for 
θ-expansions.

The outline of this paper is as follows. We start with a quick review of the theory 
of RCFs in Section 2. Among other things, we describe the dynamical system given 
by the Gauss map on the unit interval and mention some classical results of Kuzmin 
[12] and Lévy [16]. In Section 3 we describe the θ-expansions extensively studied by 
Chakraborty and Rao [4] and Chakraborty and Dasgupta [3]. We present the problem 
concerning the symbolic dynamics of the generalized Gauss map and the existence of 
an absolutely continuous invariant probability. It is only recently that Sebe and Lascu 
[24] proved the first Gauss–Kuzmin theorem for θ-expansions. The solution presented is 
based on the ergodic behavior of a certain random system with complete connections. 
Following the treatment in the case of the RCF, the Gauss–Kuzmin–Lévy problem for 
the new transformation can be approached in terms of the associated Perron–Frobenius 
operator [8]. In Section 4 we focus our study on the Perron–Frobenius operator under 
the invariant measure induced by the limit distribution function. In Section 5 we use 
as in [22,23] a Wirsing-type approach [25] to get close to the optimal convergence rate. 
The strategy is to restrict the domain of the Perron–Frobenius operator to the Banach 
space of functions which have a continuous derivative on [0, θ]. Actually, in Theorem 5.3
of Section 5 we obtain upper and lower bounds of the convergence rate which provide 
a near-optimal solution to the Gauss–Kuzmin–Lévy problem. The last section collects 
some concluding remarks.

2. Generalities on RCF expansions

Classically, the idea of continued fractions evolved as a method of representing positive 
real numbers by means of a terminating or non-terminating sequence of positive integers. 
The RCF representation of numbers in the unit interval is closely connected with the 
following dynamical system. Let I = [0, 1] and consider the RCF transformation (or 
Gauss map) T : I → I defined as

T (x) =

⎧⎨
⎩

1
x
−

⌊
1
x

⌋
if x �= 0,

0 if x = 0,
(2.1)

where �·� stands for integer part. Any irrational 0 < x < 1 can be written as the infinite 
RCF

x = 1

a1 + 1

a2 + 1

a3 +
.. .

:= [a1, a2, a3, . . .], (2.2)

where an ∈ N+ := {1, 2, 3, . . .}. Writing Tn for the n-th iterate of T , where n ∈ N, with 
T 0 being the identity map, the positive integers an(x) = a1(Tn−1(x)), n ∈ N+, with 
a1(x) =

⌊ 1 ⌋, are the RCF digits (also known as incomplete quotients) of x.
x
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One of the major discoveries in the context of the above dynamical system was a 
result of Gauss’ investigation (around 1800) of the measure λ 

(
(Tn)−1) on I, where λ

denotes the Lebesgue measure on I. Gauss wrote that (in modern notation)

lim
n→∞

λ (Tn ≤ x) = log(1 + x)
log 2 , x ∈ I. (2.3)

In 1812 Gauss asked Laplace [2] to estimate the n-th error term en(x) defined by

en(x) = λ(T−n[0, x]) − log(1 + x)
log 2 , n ≥ 1, x ∈ I. (2.4)

This has been called Gauss’ problem. The first known proof of this is due to Kuzmin 
[12], who showed in 1928 that en(x) = O(q

√
n) as n → ∞, uniformly in x with some 

(unspecified) 0 < q < 1. This has been called the Gauss–Kuzmin theorem. Lévy [16]
improved Kuzmin’s result by showing that |en(x)| ≤ qn for n ∈ N+, x ∈ I, with 
q = 0.67157 . . . . For such historical reasons, the Gauss–Kuzmin–Lévy theorem is re-
garded as the first basic result in the rich metrical theory of RCFs. An advantage of the 
Gauss–Kuzmin–Lévy theorem relative to the Gauss–Kuzmin theorem is the determina-
tion of the value of q.

Recall that the Gauss measure γ on I defined by

dγ(x) = 1
log 2

dx
1 + x

(2.5)

is invariant for the transformation T , i.e., γ = γT−1, and the dynamical system (I, T )
is ergodic under γ.

In the results of Kuzmin and Lévy the constants are far from optimal. In 1974 a 
decisive step in the final solution of Gauss’ problem was taken by Wirsing [25]. Full 
proofs of these results and all the details in the classical theory are discussed by Iosifescu 
and Kraaikamp [8].

Apart from the RCF expansion there are many other continued fraction expansions. 
Such a development has led to the appearance of various studies on the Gauss’ problem 
for non-RCFs. We mention just a few recent as [10,13,14,19–21].

3. θ-expansions and the generalized Gauss map

For a fixed θ ∈ (0, 1), Chakraborty and Rao [4] have considered a generalization of 
the Gauss map (2.1), Tθ : [0, θ] → [0, θ] defined as

Tθ(x) :=

⎧⎨
⎩

1
x
− θ

⌊
1
xθ

⌋
if x ∈ (0, θ],

0 if x = 0.
(3.1)
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Note that the classical Gauss map is just the special case θ = 1. The transformation Tθ

is connected with the θ-expansion for a number in (0, θ) as follows. The numbers θ
⌊

1
yθ

⌋
obtained by taking y successively equal to x, Tθ(x), T 2

θ (x), . . . , lead to the θ-expansion 
of x as

x = 1

a1θ + 1

a2θ + 1

a3θ +
.. .

= [a1θ, a2θ, a3θ . . .], (3.2)

where an ∈ N+. The positive integers an = an(x) = a1(Tn−1
θ (x)), n ∈ N+, with T 0

θ (x) =
x and a1 = a1(x) =

⌊ 1
xθ

⌋
are also called digits or incomplete quotients of x with respect 

to the θ-expansion in (3.2).
It was shown in [4] that this expansion has many of the usual properties of RCFs. 

A natural question is whether the dynamical system given by the transformation Tθ

admits an absolutely continuous invariant probability like the Gauss measure (2.5) in 
the case θ = 1. Chakraborty and Rao [4] have identified that for certain values of θ
(for example, if θ2 = 1/m, m ∈ N+) the invariant measure for the generalized Gauss 
transformation Tθ as

dγθ = 1
log (1 + θ2)

θdx
1 + xθ

. (3.3)

Moreover, if θ2 = 1/m, m ∈ N+, [a1θ, a2θ, a3θ . . .] is the θ-expansion of any x ∈ (0, θ) if 
and only if the following conditions hold:

(i) an ≥ m for any m ∈ N+;
(ii) in case when x has a finite expansion, i.e., x = [a1θ, a2θ, a3θ, . . . , anθ], then an ≥

m + 1.

It was proved in [4] that the dynamical system ([0, θ], Tθ) is ergodic and the measure 
γθ is invariant under Tθ, that is, γθ(A) = γθ(T−1

θ (A)) for any A ∈ B[0,θ], where B[0,θ]
denotes the σ-algebra of all Borel subsets of [0, θ].

Similar to classical results on RCFs, using the ergodicity of Tθ and Birkhoff’s ergodic 
theorem [5], a number of results were obtained in [4]. It should be stressed that the 
ergodic theorem does not yield any information on the convergence rate in the Gauss 
problem that amounts to the asymptotic behavior of μ((Tθ)−n) as n → ∞, where μ is 
an arbitrary probability measure on B[0,θ]. So, that a Gauss–Kuzmin theorem is needed.

Until now, the estimate of the convergence rate remains an open question. The first 
attempt of a version of a Gauss–Kuzmin theorem was made by Sebe and Lascu [24]. 
Using the natural extension for θ-expansions, we obtained an infinite-order-chain repre-
sentation of the sequence of the incomplete quotients of these expansions. Together with 
the ergodic behavior of a certain homogeneous random system with complete connections 
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(see [7] for the general theory), this allowed us to solve a variant of the Gauss–Kuzmin 
problem. Then Lascu and Nicolae [15] obtained another solution to this problem apply-
ing the method of Rockett and Szüsz [18]. We emphasize that an important tool in these 
approaches is the Perron–Frobenius operator under the invariant measure γθ.

4. The associated Perron–Frobenius operator

Let μ be a probability measure on ([0, θ], B[0,θ]) such that μ((Tθ)−1(A)) = 0 whenever 
μ(A) = 0 for any A ∈ B[0,θ]. In particular, this condition is satisfied if Tθ is μ-preserving, 
that is, μ(Tθ)−1 = μ. Let

L1
μ := {f : [0, θ] → C :

θ∫
0

|f |dμ < ∞}.

The Perron–Frobenius operator of Tθ under μ is defined as the bounded linear operator 
Uμ which takes the Banach space L1

μ into itself and satisfies the equation
∫
A

Uμf dμ =
∫

(Tθ)−1(A)

f dμ for all A ∈ B[0,θ], f ∈ L1
μ. (4.1)

Throughout the paper we will assume that θ2 = 1/m, m ∈ N+. Recall a result 
obtained in [24].

Proposition 4.1.

(i) The Perron–Frobenius operator U := Uγθ
of Tθ under the invariant probability mea-

sure γθ is given a.e. in [0, θ] by the equation

Uf(x) =
∑
j≥m

Pj(x) f(uj(x)), m ∈ N+, f ∈ L1
γθ
, (4.2)

where

Pj(x) := xθ + 1
(x + jθ)(x + (j + 1)θ) and uj(x) := 1

x + jθ
,

with j ≥ m and x ∈ [0, θ].
(ii) Let μ be a probability measure on ([0, θ], B[0,θ]) such that μ is absolutely continuous 

with respect to the Lebesgue measure λθ on ([0, θ], B[0,θ]) and let h := dμ/dλθ a.e. 
in [0, θ]. For any n ∈ N and A ∈ B[0,θ], one has

μ
(
(Tθ)−n(A)

)
=

∫
A

Unf(x)dγθ(x), (4.3)

where f(x) := (log(1 + θ2))xθ+1h(x), x ∈ [0, θ].
θ
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Remark 4.2. In hypothesis of Proposition 4.1(ii) it follows that

μ((Tθ)−n(A)) − γθ(A) =
∫
A

(Unf(x) − 1)dγθ(x), (4.4)

for any n ∈ N and A ∈ B[0,θ], where f(x) := (log(1 + θ2))xθ+1
θ h(x), x ∈ [0, θ]. The last 

equation shows that the asymptotic behavior of μ((Tθ)−n(A)) −γθ(A) as n → ∞ is given 
by the asymptotic behavior of the n-th power of the Perron–Frobenius operator U on 
L1
γθ

.

5. A Wirsing-type approach

Let μ be a probability measure on B[0,θ] such that μ 
 λθ. For any n ∈ N put 
Fn
θ (x) = μ(Tn

θ < x), x ∈ [0, θ], where T 0
θ is the identity map. As (Tn

θ < x) = T−n
θ ((0, x)), 

by Proposition 4.1 (ii) we have

Fn
θ (x) =

x∫
0

Unf0
θ (u)

1 + uθ
θdu, n ∈ N, (5.1)

with f0
θ (x) = xθ+1

θ (F 0
θ )′(x), x ∈ [0, θ], where (F 0

θ )′ = dμ/dλθ.
We will assume that (F 0

θ )′ ∈ C1([0, θ]). So, we study the behavior of Un as n → ∞, 
assuming that the domain of U is C1([0, θ]), the collection of all functions f : [0, θ] → C

which have a continuous derivative.
Let f ∈ C1([0, θ]). Then the series (4.2) can be differentiated term-by-term, since the 

series of derivatives is uniformly convergent. We get

(Uf)′(x) =
∑
j≥m

[
(Pj(x))′f

(
1

x + jθ

)
− Pj(x)f ′

(
1

x + jθ

)
1

(x + jθ)2

]

=
∑
j≥m

[(
jθ − 1

θ

(x + jθ)2 −
(j + 1)θ − 1

θ

(x + (j + 1)θ)2

)
f

(
1

x + jθ

)

− Pj(x) 1
(x + jθ)2 f

′
(

1
x + jθ

)]

= −
∑
j≥m

[ (j + 1)θ − 1
θ

(x + (j + 1)θ)2

[
f

(
1

x + jθ

)
− f

(
1

x + (j + 1)θ

)]

+ Pj(x) 1
(x + jθ)2 f

′
(

1
x + jθ

)]
, x ∈ [0, θ]. (5.2)

Thus, we can write

(Uf)′ = −V f ′, f ∈ C1([0, θ]), (5.3)
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where V : C([0, θ]) → C([0, θ]) is defined by

V g(x) =
∑
j≥m

⎛
⎜⎝ (j + 1)θ − 1

θ

(x + (j + 1)θ)2

1
x+jθ∫
1

x+(j+1)θ

g(u)du + Pj(x) 1
(x + jθ)2 g

(
1

x + jθ

)⎞⎟⎠ (5.4)

with g ∈ C([0, θ)) and x ∈ [0, θ]. Clearly, (Unf)′ = (−1)nV nf ′, n ∈ N+, f ∈ C1([0, θ]).
We are going to show that V n takes certain functions into functions with very small 

values when n ∈ N+ is large.

Proposition 5.1. There are positive constants vθ < wθ < 1 and a real-valued function 
ϕθ ∈ C([0, θ]) such that

vθϕθ ≤ V ϕθ ≤ wθϕθ, θ2 = 1/m, m ∈ N+. (5.5)

Proof. Let hθ : R+ → R, with θ2 = 1/m, m ∈ N+, be a continuous bounded function 
such that limx→∞ hθ(x) < ∞. We look for a function gθ : (0, θ] → R such that Ugθ = hθ, 
assuming that the equation

Ugθ(x) =
∑
j≥m

Pj(x)gθ (uj(x)) = hθ(x) (5.6)

holds for x ∈ R+. By reducing the terms of the series involved (5.6) yields

hθ(x)
xθ + 1 − hθ(x + θ)

θ(x + θ) + 1 = 1
(x + mθ)(x + (m + 1)θ)gθ

(
1

x + mθ

)
, x ∈ R+. (5.7)

Hence

gθ(u) =
(

1
uθ

+ 1
)
hθ

(
1
u
−mθ

)
− 1

uθ
hθ

(
1
u
− (m− 1)θ

)
, u ∈ (0, θ], (5.8)

and we indeed have Ugθ = hθ since

Ugθ(x) =
∑
j≥m

xθ + 1
(x + jθ)(x + (j + 1)θ)gθ

(
1

x + jθ

)

=
∑
j≥m

xθ + 1
θ

[
hθ(x + jθ −mθ)

x + jθ
− hθ(x + (j + 1)θ −mθ)

x + (j + 1)θ

]

= xθ + 1
θ

(
hθ(x)
x + mθ

− lim
j→∞

hθ(x + (j + 1)θ −mθ)
x + (j + 1)θ

)
= hθ(x), x ∈ R+. (5.9)

In particular, for any fixed aθ ∈ [0, θ] we consider the function haθ
: R+ → R defined 

as
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haθ
(x) = 1

eθx + aθ + 1 , x ∈ R+ (5.10)

where the coefficient eθ will be specified later. By the above, the function gaθ
: (0, θ] → R

defined as

gaθ
(x) =

(
1
xθ

+ 1
)
haθ

(
1
x
−mθ

)
− 1

θx
haθ

(
1
x
− (m− 1)θ

)

=
(

1
xθ

+ 1
)

1
eθ

( 1
x −mθ

)
+ aθ + 1

− 1
xθ

1
eθ

( 1
x − (m− 1)θ

)
+ aθ + 1

= 1
θ

[
xθ + 1

eθ + x(−eθmθ + aθ + 1) − 1
eθ + x(−eθ(m− 1)θ + aθ + 1)

]
(5.11)

for any x ∈ (0, θ] satisfies

Ugaθ
(x) = haθ

(x), x ∈ [0, θ]. (5.12)

Setting

ϕaθ
(x) = g′aθ

(x) = 1
θ

[
eθ(m + 1)θ − aθ − 1

(eθ + x(−eθmθ + aθ + 1))2 − eθ(m− 1)θ − aθ − 1
(eθ + x(−eθ(m− 1)θ + aθ + 1))2

]

(5.13)

we have

V ϕaθ
(x) = −(Ugaθ

)′(x) = −(haθ
)′(x) = eθ

(eθx + aθ + 1)2 , x ∈ [0, θ]. (5.14)

We choose aθ by asking that (ϕaθ
/V ϕaθ

)(0) = (ϕaθ
/V ϕaθ

)(θ). Since

(ϕaθ
/V ϕaθ

)(0) = 2(aθ + 1)2

e2
θ

(5.15)

and

(ϕaθ
/V ϕaθ

)(θ) = (aθ + 1 + eθθ)2

eθθ3

[
eθ(m + 1)θ − aθ − 1

(aθ + 1)2 − eθ(m− 1)θ − aθ − 1
(aθ + 1 + eθθ)2

]
,

(5.16)

this amounts to the equation

Hθ(aθ) = 2θ(aθ + 1)4 − e3
θ [(2m + 1)(aθ + 1) + eθ(m + 1)θ] = 0. (5.17)

We choose the coefficient eθ such that the equation Hθ(x) = 0, x ∈ [0, θ], yields a unique 
solution aθ ∈ [0, θ]. Asking that
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Hθ(0) < 0, Hθ(θ) > 0, and dHθ

daθ
> 0, (5.18)

we may determine eθ (see Appendix A.1). For this unique acceptable solution aθ ∈ [0, θ]
the function ϕaθ

/V ϕaθ
attains its maximum equal to 2(aθ + 1)2/e2

θ at x = 0 and x = θ, 
and has a minimum m(aθ) = (ϕaθ

/V ϕaθ
)
(
xθ
min

)
> 1 (see Appendix A.2). It follows that 

for ϕθ = ϕaθ
we have

e2
θϕθ

2(aθ + 1)2 ≤ V ϕθ ≤ ϕθ

m(aθ)
, (5.19)

that is, vθϕθ ≤ V ϕθ ≤ wθϕθ, where

vθ = e2
θ

2(aθ + 1)2 and wθ = 1
m(aθ)

. � (5.20)

Corollary 5.2. Let f0
θ ∈ C1([0, θ]) such that (f0

θ )′ > 0. Put αθ = min
x∈[0,θ]

ϕθ(x)/(f0
θ )′(x)

and βθ = max
x∈[0,θ]

ϕθ(x)/(f0
θ )′(x). Then

αθ

βθ
vnθ (f0

θ )′ ≤ V n(f0
θ )′ ≤ βθ

αθ
wn

θ (f0
θ )′, n ∈ N+. (5.21)

Proof. Since V is a positive operator, we have

vnθ ϕθ ≤ V nϕθ ≤ wn
θϕθ, n ∈ N+. (5.22)

Noting that αθ(f0
θ )′ ≤ ϕθ ≤ βθ(f0

θ )′, we can write

αθ

βθ
vnθ (f0

θ )′ ≤ vnθ
βθ

ϕθ ≤ 1
βθ

V nϕθ ≤ V n(f0
θ )′ ≤ 1

αθ
wn

θϕθ ≤ βθ

αθ
wn

θ (f0
θ )′, n ∈ N+, (5.23)

which shows that (5.21) holds. �
Theorem 5.3 (Near-optimal solution to Gauss–Kuzmin–Lévy problem). Let f0

θ ∈
C1([0, θ]) such that (f0

θ )′ > 0 and let μ be a probability measure on B[0,θ] such that 
μ 
 λθ. For any n ∈ N+ and x ∈ [0, θ] we have

(log(1 + θ2))2 αθ

2θβθ
min

x∈[0,θ]
(f0

θ )′(x)vnθGθ(x)(θ −Gθ(x)) ≤ |μ(Tn
θ < x) −Gθ(x)|

≤ (log(1 + θ2))2 (1 + θ2)βθ

2θαθ
max
x∈[0,θ]

(f0
θ )′(x)wn

θGθ(x)(θ −Gθ(x)) (5.24)

where αθ, βθ, vθ and wθ are defined in Proposition 5.1 and Corollary 5.2, and

Gθ(x) = log(1 + xθ)
log(1 + θ2) . (5.25)
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Proof. For any n ∈ N and x ∈ [0, θ] set dn(Gθ(x)) = μ(Tn
θ < x) −Gθ(x). Then by (5.1)

we have

dn(Gθ(x)) =
x∫

0

Unf0
θ (u)

(θu + 1) θdu−Gθ(x). (5.26)

Differentiating twice with respect to x yields

d′n(Gθ(x)) 1
log(1 + θ2)

θ

θx + 1 = Unf0
θ (x)

θx + 1 θ − 1
log(1 + θ2)

θ

θx + 1 , (5.27)

(Unf0
θ (x))′ = θ

(log(1 + θ2))2
d′′n(Gθ(x))
θx + 1 , n ∈ N, x ∈ [0, θ]. (5.28)

Hence by (5.3) we have

d′′n(Gθ(x)) = (−1)n
(
log(1 + θ2)

)2 θx + 1
θ

V n(f0
θ )′(x), (5.29)

for any n ∈ N, x ∈ [0, θ]. Since dn(0) = dn(θ) = 0, a well-known interpolation formula 
yields

dn(x) = −x(θ − x)
2 d′′n(ξ), n ∈ N, x ∈ [0, θ], (5.30)

for a suitable ξ = ξ(n, x) ∈ [0, θ]. Therefore

μ(Tn
θ < x) −Gθ(x)

= (−1)n+1 (log(1 + θ2)
)2 θξθ + 1

θ
V n(f0

θ )′(ξθ)
Gθ(x)(θ −Gθ(x))

2 (5.31)

for any n ∈ N and x ∈ [0, θ], and another suitable ξθ = ξθ(n, x) ∈ [0, θ]. The result stated 
follows now from Corollary 5.2. �
6. Final remarks

To conclude, we use the values obtained in Appendix A.
Let us consider the case m = 2. The equation Hθ(x) = 0, with eθ = 1, has as 

unique acceptable solution aθ = 0.6445398. For this value of aθ the function ϕaθ
/V ϕaθ

attains its maximum equal to 5.409022308 at x = 0 and x = θ, and has a minimum 
m (aθ) = (ϕaθ

/V ϕaθ
)(0.297421) = 5.28441. It follows that upper and lower bounds of 

the convergence rate are respectively O(wn
θ ) and O(vnθ ) as n → ∞, with vθ > 0.184876294

and wθ < 0.189235884.
For m = 3, the equation Hθ(x) = 0, with eθ = 0.67, has as unique acceptable solution 

aθ = 0.287897. For this value of aθ the function ϕaθ
/V ϕaθ

attains its maximum equal to 
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7.389969626 at x = 0 and x = θ, and has a minimum m(aθ) = (ϕaθ
/V ϕaθ

)(0.256122) =
7.29924. It follows that upper and lower bounds of the convergence rate are respectively 
O(wn

θ ) and O(vnθ ) as n → ∞, with vθ > 0.135318553 and wθ < 0.137000564.
Finally, let us consider the case m = 4. The equation Hθ(x) = 0, with eθ = 0.5772, has 

as unique acceptable solution aθ = 0.249911. For this value of aθ the function ϕaθ
/V ϕaθ

attains its maximum equal to 9.378546393 at x = 0 and x = θ, and has a minimum 
m(aθ) = (ϕaθ

/V ϕaθ)(0.228161) = 9.3072. It follows that upper and lower bounds of the 
convergence rate are respectively O(wn

θ ) and O(vnθ ) as n → ∞, with vθ > 0.106626331
and wθ < 0.107443699.

Obviously, the determination of the exact convergence rate remains an open question. 
We may derive it using the same strategy as in [9].

Appendix A

A.1. Imposing conditions (5.18) and using a mathematical software we obtain

m eθ aθ m eθ aθ

2 1 0.6445398 17 0.266721 0.121272
3 0.6704 0.287897 18 0.258692 0.117853
4 0.5772 0.249911 19 0.251324 0.114708
5 0.513167 0.223606 20 0.244533 0.111805
6 0.465794 0.204125 25 0.217106 0.100000
7 0.429017 0.188983 30 0.197052 0.0912886
8 0.399444 0.176778 35 0.181587 0.0845132
9 0.375022 0.166667 40 0.169204 0.0790571
10 0.354429 0.158113 45 0.159005 0.0745384
11 0.336772 0.150756 50 0.150419 0.0707134
12 0.321422 0.144338 60 0.136674 0.0645535
13 0.307923 0.138677 70 0.126065 0.0597579
14 0.295935 0.133633 80 0.117564 0.0559056
15 0.285198 0.129098 90 0.110555 0.0527013
16 0.275514 0.125003 100 0.104651 0.0499983

A.2. Since

(ϕaθ
/V ϕaθ

)′(x) = 2
θeθ

(eθx+aθ+1)
[

(Aθ+θeθ)(e2θ+Aθ(aθ+1))
(eθ−xAθ)3 − (Aθ−θeθ)(e2θ+(Aθ−θeθ)(aθ+1))

(eθ−x(Aθ−θeθ))3

]

where Aθ = θeθm − aθ − 1, the equation (ϕaθ
/V ϕaθ

)′(x) = 0 has a unique positive 
solution in (0, θ)

xθ
min = eθ(Bθ − Cθ)
(Aθ − θeθ)Bθ −AθCθ
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with

Bθ = 3
√

(Aθ + θeθ)(e2
θ + (aθ + 1)Aθ), Cθ = 3

√
(Aθ − θeθ)(e2

θ + (aθ + 1)(Aθ − θeθ)).

Since in the particular cases studied for m = 2, m = 3 and m = 4, the minimum 
m(aθ) = (ϕaθ

/V ϕaθ
) (xθ

min) has the following values

m = 2 m(aθ) = 5.28441 . . .
m = 3 m(aθ) = 7.29924 . . .
m = 4 m(aθ) = 9.3072 . . .

we may assume that m(aθ) > 1 for every m ∈ N+.
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