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1. Introduction

Let D(x) = x2g+1 + d2g x2g + · · · + d1x + d0 be a square-free polynomial of odd degree defined over
the rational integers Z. Let C be the hyperelliptic curve defined by the equation

y2 = D(x).

The ideal class group of K = Q(C) is isomorphic to the Jacobian J (C) and also to the group of strict
ideal classes of binary quadratic forms over Z[x] of discriminant D (see [3]).

Each ideal class can be represented by an integral ideal of the form (A, y − B/n) where A, B ∈ Z[x]
and n ∈ Z such that B2 − n2 D = AC for some polynomial C ∈ Z[x]. Only ideals such that the greatest
common divisor gcd(A, B, C) = 1 are considered. For square-free discriminants D(x), this always is
the case.

In the case of elliptic curves (g = 1) the Jacobian is also isomorphic to the group of rational points
on the curve. In [2], this situation was studied and it was shown that there is a homomorphism from
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the group of rational points on C to the ideal class group of the order Z[√d0] of the quadratic field
Q(

√
d0). This was done under the assumption that the constant term d0 is square-free. The order

Z[√d0] has even discriminant � = 4d0.
The result above was rediscovered in [5], and generalized in the sense that the restriction to

square-free d0 was removed. This was made possible by restricting the homomorphism to a sub-
group of the rational points called the group of primitive points. If d0 is square-free, all points are
primitive.

In [4] elliptic curves of the form y2 + a3 y = x3 + a2x2 + a4x + a6 with odd a3 were studied. It was
shown that there is a homomorphism from the group of primitive points on such curves to the ideal
class group of Q(

√
�) for � = a2

3 + 4a6. Notice that the discriminant � = a2
3 + 4a6 is odd.

Hyperelliptic curves were considered in [1]. Rational points on the curve are mapped to ideals
in Q(

√
d0) in the same way as in the above articles, and a subgroup S of the class group Cl of

Q(
√

d0) is defined to be generated by certain “exceptional” primes. It is proven that if all the points
of intersection of a straight line with the curve are rational, then the product of the ideals derived
from these collinear points is the identity of Cl/S .

In this article we generalize the above results to hyperelliptic curves. We consider hyperelliptic
curves of odd degree and we prove that there is a homomorphism from a subgroup of the ideal class
group of K to the ideal class group of the order Z[√d0]. Under a reasonable restriction the result is
valid also for even degree curves.

2. Main theorem

For polynomials A(x), B(x), etc., we make the convention that a = A(0), b = B(0), etc. For the
above polynomial D(x) we then have D(0) = d0 = d.

Let O K = Q[x, y]/(y2 − D(x)) denote the ring of integers in K . For the quadratic number field
k = Q(

√
d), we let Ok = [1,

√
d]. This may or may not be the maximal order in k. A subring of Ok is

in general denoted by O, and if we consider a special conductor n, we denote it by On .
For an ideal I of O K , the notation I = [α1,α2] means that I is generated as a Q[x]-module by α1

and α2. The notation I = (α1,α2) means that I is generated as an O K -module by α1 and α2. The
same convention is adopted for ideals in Ok and On with Q[x] replaced by Z.

For a polynomial T (x) = at xt + at−1xt−1 + · · · + a1x + a0 ∈ Z[x], the content of T (x) is cont(T ) =
gcd(at ,at−1, . . . ,a1,a0).

Definition 2.1. An ideal [A, y − B/n] with B2 − n2 D = AC , is said to be in Z-primitive form if
gcd(a,2b, c) = 1. We say that the class of [A, y − B/n] is Z-primitive if it contains an ideal in Z-
primitive form.

Proposition 2.2. The set of Z-primitive ideal classes is a subgroup of the ideal class group of O K .

To prove this proposition, we will need the tools developed in the proof of the main theorem. The
proof is included in Section 3.

Lemma 2.3.

(a) Let I = [A, y − B/n] be an ideal of O K and let M be any polynomial in Z[x]. Then there is an equivalent
ideal [A′, y − B ′/n] with A′ prime to M.

(b) Let I = [A, y − B/n] be a Z-primitive ideal of O K and let m be any integer. Then there is an equivalent
ideal [A′, y − B ′/n′] such that gcd(a′,m) = 1.

Proof. (a) is a standard result from the literature. See for example [3]. We give the proof of (b).
By Lemma 3.2 below we may assume n = 1. Let m = m1m2 · · ·mr where each mi is a power of a

prime pi . The binary quadratic form associated to I = [A, y − B] is q = A X2 + 2B XY + C Y 2. It will be
sufficient to find coprime (u, v) in Z2 such that q(u, v)(0) is prime to m. To see this, let r and s be
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integers such that us − rv = 1. Then q′ = q(u X + vY , r X + sY ) = A′ X2 + 2B ′ XY + C ′Y 2 is equivalent
to q, and A′ = q(u, v).

If we can find, for each i, coprime integers ui , vi such that di = q(ui, ui)(0) is prime to mi , we can,
by the Chinese remainder theorem, find u and v in Z such that

(u, v) ≡ (ui, vi) mod mi .

Then q(u, v)(0) ≡ di mod mi , so q(u, v)(0) is prime to m.
Hence, we may assume that m is a prime p. Since q is a Z-primitive quadratic form, i.e.

gcd(a,2b, c) = 1, at least one of a, a + 2b + c or c is prime to p. Thus, at least one (u, v) ∈
{(1,0), (1,1), (0,1)} gives q(u, v)(0) prime to p. Note that primes dividing both u and m cannot
divide v .

To finish the proof we have to prove that there are solutions (u, v) with gcd(u, v) = 1. Assume
we have a solution with u > v and let d = gcd(u,m). We may replace u by any integer of the form
u + km. By the Dirichlet theorem we may choose one such that u′ = u + km = dq for a prime q. Also
we may choose q > v and therefore v is prime to u′ . This proves (b). �
Proposition 2.4. If an ideal I = [A, y − B/n] is in Z-primitive form, then gcd(a, c,n) = 1. If d is square-free,
then all ideal classes are Z-primitive.

Proof. Since b2 − n2d = ac, any common prime factor of a and n will divide b also. Then it cannot
divide c. Let I = [A, y − B/n] be any ideal. By the above lemma we may assume that gcd(a,2n) = 1.
If an odd prime p divides gcd(a,2b, c), then since b2 − n2d = ac, p2 divides n2d. If d is square-free,
this cannot happen. �

Let I = [A, y − B/n] be an ideal of O K such that gcd(a,n, c) = 1. Putting x = 0 in B2 − AC = n2 D
we get an ideal J = [a,nw − b], w2 = d, in On , such that b2 − ac = n2d.

Thus, we have a mapping ϕ sending the ideal I = [A, y − B/n] of O K to the ideal J ′ = J Ok of Ok .
This ideal is also equal to the Ok ideal (a,nw − b).

We will prove that the mapping ϕ is indeed a homomorphism from ideal classes of O K to ideal
classes of Ok . In particular it is well defined on ideal classes.

Main Theorem 2.1. With the above notation, the mapping ϕ , sending the ideal I = [A, y − B/n] of O K to the
ideal J = (a,nw − b) in Ok, is a homomorphism from the group of Z-primitive ideal classes of O K to ideal
classes of Ok.

3. Proof of main theorem

By Proposition 2.4 we may assume that gcd(a,n, c) = 1. We must prove that the mapping ϕ is
independent of the representative of the ideal class, as long as the representative I = [A, y − B/n]
satisfies gcd(a,n, c) = 1. Then we show that the mapping is multiplicative.

We begin with some preliminary lemmas.

Lemma 3.1. Let I = [A, y − B/n] be an ideal with gcd(a,n, c) = 1 which maps to J ⊂ Ok. Then, there is an
equivalent ideal I ′ = [A′, y − B ′/n] with gcd(a′,n) = 1, which maps to an ideal in Ok, equivalent to J .

Proof. Let I = [A, y − B/n] satisfy gcd(a,n, c) = 1 and write n = n1n2 with gcd(a,n1) = 1, gcd(c,
n2) = 1. If any prime factor of n2 does not divide a, then we may transfer it to n1. Hence, we may
assume that all prime factors of n2 divide a. Since b2 − ac = n2d, all prime factors of n2 also divide b.
The ideal I ′ = [A + 2Bn1 + Cn2

1, y − (B + Cn1)/n] is equal to I and a + 2bn1 + cn2
1 is prime to n.

Obviously the On ideal [a + 2bn1 + cn2
1,nw − (b + c)] is equal to [a,nw −b]. Multiplication by Ok will

give equivalent ideals in Ok . �
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The next lemma shows that for an ideal I = [A, y − B/n], we can find an equivalent ideal I ′ =
[A′, y − B ′/n′] with n′ as small as we desire, n′ = 1 being no exception.

Lemma 3.2. Let I = [A, y − B/n], n > 1, be any O K ideal. Then there exists an ideal I ′ = [A′, y − B ′/n′],
equivalent to I such that n′ divides n, and n′ < n.

Proof. Let p be a prime number dividing n. For a polynomial T ∈ Z[x] we denote by T̄ the image
of T in Z/pZ[x] (reduction modulo p). Since B2 − AC = n2 D we have B̄2 = ĀC̄ . Then 2 deg B̄ =
deg Ā + deg C̄ . Now, either all three degrees are equal, or either deg Ā or deg C̄ is less than deg B̄ . If
deg C̄ < deg B̄ we can replace I = [A, y − B/n] by the equivalent ideal [C, y + B/n].

Hence we may assume deg Ā � deg B̄ . Write B̄ = Ā Q̄ + R̄ with R̄ ∈ Z/pZ[x] satisfying deg R̄ <

deg Ā, and let Q be a lifting of Q̄ to Z[x]. We have I = [A, y − B ′/n′] where B ′/n′ = (B − A Q )/n. Let
v p(n) be the order of n at p. If R̄ = 0, we have v p(n′) < v p(n). If R̄ �= 0, we have deg B̄ ′ = deg R̄ <

deg B̄ and we repeat the process until R̄ = 0. �
Example 3.3. Consider the ideal [25x − 19,− 103

125 + y] of discriminant x3 − x + 1 and p = 5. We have

Ā = 1, B̄ = 3 = −2∗ Ā. We replace B by B +2A = 50x+65. This gives the ideal [25x−19,− 10x+13
25 + y].

In the next step we replace 10x + 13 by 10x + 13 + 2(25x − 19) = 60x − 25. We now have the ideal
[25x−19,− 12x−5

5 + y]. In the final step we replace 12x−5 by 12x−5−2x(25x−19) = −50x2 +50x−5
to end up with the ideal [25x − 19,10x2 − 10x + 1 + y] with no denominators. Here we never had to
interchange A and C .

Proposition 3.4. Let I1 = [A1, y − B1/n1] and I2 = [A2, y − B2/n2] be two equivalent O K -ideals. Then the
two Ok-ideals J1 = (a1,n1 w − b1) and J2 = (a2,n2 w − b2) are equivalent.

Proof. Note that by Lemma 3.1 we may assume that gcd(ai,ni) = 1, i = 1,2. We shall prove that there
exist integers f ′ , f , g such that

( f + g w) J1 = (
f ′) J2.

Note also that cont(Ai) = 1. To see this, assume that a prime p divides cont(Ai). Then B2
i ≡

n2
i D mod pZ[x], which is not possible since D is assumed to be monic of odd degree, unless p

divides ni . Since gcd(ai,ni) = 1, we conclude that cont(Ai) = 1.
Since I1 and I2 are equivalent O K ideals, there exist polynomials F , G , F ′ in Q[x] such that

[A1, y − B1/n1](F + G y) = [A2, y − B2/n2]
(

F ′). (1)

After multiplying the generators of the two principal ideals by suitable rational numbers if neces-
sary, we may assume F , G , F ′ in Z[x], that cont(F ′) = 1, and that gcd(cont(F ), cont(G)) = 1.

We now prove that J1( f + g w) = J2( f ′). We first consider norms. Since I1(F + G y) = I2(F ′), we
know that

A1
(

F 2 − G2 D
) = r A2 F ′2 (2)

for some non-zero integer r and obviously r = cont(F 2 − G2 D). If p is a prime dividing r, we would
have F 2 ≡ G2 D mod pZ[x], which is impossible since D is monic of odd degree. Therefore r = 1.
Putting x = 0 in (2), we see that a1( f 2 − g2 D) = a2 f ′ 2 and we conclude that

Norm
(

J1( f + g w)
) = Norm

(
J2

(
f ′)).

Here we used the fact that gcd(ai,ni) = 1, i = 1,2.
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The equality (1) means that {A1(F +G y), (y − B1/n1)(F +G y)} and {A2 F ′, (y − B2/n2)F ′} are bases
for the same Q[x] module. Thus, there is a matrix

(
T1/τ1 T2/τ2
T3/τ3 T4/τ4

)
∈ GL2

(
Q[x])

taking the first basis to the second. We may assume Ti ∈ Z[x], τi ∈ Z, and that gcd(cont(Ti), τi) = 1,
i = 1,2,3,4. This gives the two equations

(F + G y)A1 = T1 F ′ A2

τ1
+ T2 F ′(y − B2/n2)

τ2
, (3)

(F + G y)(y − B1/n1) = T3 F ′ A2

τ3
+ T4 F ′(y − B2/n2)

τ4
. (4)

Looking at the coefficient of y in (3) we see that G A1τ2 = T2 F ′ . Since τ2 must divide cont(T2 F ′) =
cont(T2), we conclude that τ2 = 1. The rational part of the same equation gives F A1n2τ1 =
T1 F ′ A2n2 − T2 F ′B2τ1. Here τ1 must divide cont(T1 F ′ A2n2) and therefore τ1|n2.

The coefficient of y in (4) gives Fn1τ4 − G B1τ4 = T4 F ′n1, which implies that τ4|n1. The rational
part of this equation gives

G Dn1n2τ3τ4 − F B1n2τ3τ4 = T3 F ′ A2n1n2τ4 − T4 F ′B2n1τ3.

Since we already know that τ4|n1 we conclude that τ3|n1n2.
Specializing x 	→ 0 in (3) and (4) and multiplying by n2 and n1n2 respectively gives the following

two equations:

n2( f + g w)a1 = n2t1 f ′a2

τ1
+ t2 f ′(n2 w − b2)

τ2
, (5)

n2( f + g w)(n1 w − b1) = n1n2t3 f ′a2

τ3
+ n1t4 f ′(n2 w − b2)

τ4
. (6)

Since τ1|n2, τ2 = 1, τ3|n1n2, τ4|n1, the first Eq. (5) says that n2( f + g w)a1 ∈ f ′ J2 and the second
(6) says that n2( f + g w)(n1 w − b1) ∈ f ′ J2. We can conclude that n2( f + g w) J1 ⊂ f ′ J2. Assume first
that gcd(n2, f ′) = 1. Then since gcd(n2,a2) = 1, we also conclude that ( f + g w) J1 ⊂ f ′ J2. But as we
saw above, the norms on both sides are equal. Thus we must have ( f + g w) J1 = f ′ J2 which is the
desired result.

If gcd(n2, f ′) �= 1, we can by Lemma 3.2 find an ideal I ′2 = [A′
2, y − B ′

2/n′
2] equivalent to I2 with

n′
2 as small as we want, and in particular we may assume n′

2 = 1. Then by the above reasoning J2 is
equivalent to J ′

2. Likewise J1 is equivalent to J ′
2 and therefore J1 is equivalent to J2. This completes

the proof of the proposition. �
To complete the proof of the main theorem we must prove that the mapping ϕ is multiplicative.

Proposition 3.5. Let [Ai, y − Bi
ni

], i = 1,2,3, be three O K ideals such that I1 I2 is equivalent to I3 . Let J i =
(ai,ni w − bi), i = 1,2,3, be the corresponding Ok ideals. Then J1 J2 is equivalent to J3 in the ideal class
group of Ok.

Proof. Since the mapping ϕ is independent of choice of representative for the ideal classes we may,
using Lemma 3.2, assume that n1 = n2 = n3 = 1. Lemma 2.3(b) does not introduce new denominators.
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Therefore we may also assume that a1, a2 and a3 are relatively prime. As in the proof of Proposi-
tion 3.4 we assume that there are polynomials F , G , F ′ in Q[x] such that

I1 I2
(

F ′) = I3(F + G y). (7)

And by multiplying the generators of the two principal ideals by suitable rational numbers, we
may assume that F , G , F ′ in Z[x], cont(F ′) = 1, and that gcd(cont(F ), cont(G)) = 1.

As in Proposition 3.4 we find that Norm( J1 J2 f ′) = Norm( J3( f + g w)).
Since I3(F + G y) ⊂ I1 F ′ , the same reasoning as in Proposition 3.4 gives J3( f + g w) ⊂ J1 f ′ . And

likewise we get J3( f + g w) ⊂ J2 f ′ .
Since J1 + J2 = 1, we conclude that J3( f + g w) ⊂ J1 J2 f ′ . Since the norms on both sides are

equal, the inclusion is actually an equality. �
Proof of Proposition 2.2. Because the mapping ϕ is multiplicative we have ϕ(I−1) = ϕ(I)−1. Let I =
[A, y − B/n] be a Z-primitive ideal with B2 − n2 D = AC , and let Ī = [A, y + B/n]. Then

I Ī = [
A2 A(y + B/n), A(y − B/n), AC

]
= (A)[A, y + B/n, y − B/n, C].

If a square-free polynomial divides A, B and C , it would divide D at least twice, which is impossible
since D is assumed to be square-free. Therefore the ideal [A, y + B/n, y − B/n, C] is trivial and I Ī =
(A). This means that I−1 = Ī in the ideal class group.

For the corresponding Ok ideals we have J J̄ = (a, wn − b)(a, wn + b) = (a)(a, wn + b, wn − b, c),
and again, if we assume gcd(a,2b, c) = 1, then J J̄ = (a). So J−1 = J̄ in the ideal class group of Ok .

Let I1 = [A1, y − B1/n1] and I2 = [A2, y − B2/n2] be two Z-primitive O K -ideals and let I3 =
[A3, y − B3/n3] be an ideal equivalent to their product I1 I2. Let J i = (ai, wni − bi), i = 1,2,3, be the
corresponding Ok-ideals and let Ī i = [Ai, y + Bi/ni] and J̄ i = [ai, wni + bi], i = 1,2,3.

We know that Ii Ī i = (Ai), i = 1,2,3, and also that J i J̄ i = (ai), i = 1,2. If also J3 J̄3 = (a3), then
(a3, wn3 + b, wn3 − b, c) = 1 and therefore gcd(a3,2b3, c3) = 1, which would prove that the product
I3 is also Z-primitive.

Multiplying Eq. (7) with Ī1 Ī2 Ī3, we find that there are polynomials F ′, F , G ∈ Z[x] such that

F ′ A1 A2 Ī3 = A3(F + G y) Ī1 Ī2.

And multiplying by (F − G y) we obtain

A3
(

F 2 − G2 D
)

Ī1 Ī2 = A1 A2 F ′(F − G y) Ī3.

Since we may assume cont(F ′ A1 A2) = 1 and gcd(cont(F A3), cont(G A3)) = 1, we may proceed as in
the proof of Proposition 3.5 to get

a3
(

f 2 − g2d
)

J̄1 J̄2 = a1a2 f ′( f − g w) J̄3.

We also have

( f + g w) J3 = f ′ J1 J2.

Multiplying the last two equations, and cancelling common factors, we find that J3 J̄3 = (a3). This
proves that the set of Z-primitive points is a group. �
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4. Even degree curves

There are two points where the above proofs fail for even degree curves. In the proof of Proposi-
tion 3.4 we use the fact that D is monic of odd degree to prove that cont(Ai) = 1. The argument is
that if a prime p divides cont(Ai) then B2

i ≡ n2
i D mod pZ[x]. And therefore D is a square in pZ[x].

This is not possible for monic polynomials of odd degree, unless p divides ni . The same argument is
also used to prove that cont(F 2 − G2 D) = 1. For even degree curves the argument fails. One way to
overcome this problem is to consider only even degree curves y2 = D(x) such that D is not a square
modulo any rational prime p. Such a prime would have to divide the discriminant of D . We state this
as a theorem.

Theorem 4.1. Let y2 = D(x) be a hyperelliptic curve of even degree such that D is not a square modulo any
prime p dividing the discriminant of D. Then the mapping ϕ , sending the ideal I = [A, y − B/n] of O K to the
ideal J = (a,nw − b) in Ok, is a homomorphism from ideal classes of O K to ideal classes of Ok.
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