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1. Introduction

The aim of this paper is to show that a strong purity, i.e., the affineness in the moduli theory of
abelian varieties modulo powers pm of a prime p is useful to study congruence and p-adic properties
of Siegel modular forms. More precisely, we study the p-adic monodromy on the affine ordinary locus
in the minimally compactified moduli scheme modulo pm . Using this tool, as a continuation of [3],
we can extend Katz’s results [5,6] on the description of

• the kernel of the Fourier expansion map modulo pm on the ring of elliptic modular forms,
• elliptic modular forms on Γ0(p) as p-adic elliptic modular forms

to the Siegel modular case of degree g > 1. Note that his results are obtained by considering mod-
ular forms as automorphic sections on the Igusa tower over the affine ordinary locus in the moduli
scheme, and that the affineness is easily seen in the elliptic modular case.

In this paper, for any g > 1, we show that the determinant of the p-adic monodromy rep-
resentation on the ordinary locus in the moduli scheme modulo pm factors through a surjective
1-dimensional p-adic representation on the affine ordinary locus in the minimal compactification.
From this result, we can provide an Igusa tower consisting of affine schemes over truncated Witt

E-mail address: ichikawa@ms.saga-u.ac.jp.
0022-314X/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jnt.2012.09.014

http://dx.doi.org/10.1016/j.jnt.2012.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:ichikawa@ms.saga-u.ac.jp
http://dx.doi.org/10.1016/j.jnt.2012.09.014


T. Ichikawa / Journal of Number Theory 133 (2013) 1362–1371 1363
rings whose automorphic sections are controlled by Siegel modular forms. The existence of such a
tower plays a key role extending Katz’s results to the Siegel modular case, especially we describe

• the kernel of the Fourier expansion map modulo pm on the ring of Siegel modular forms (cf.
Theorem 2),

• Siegel modular forms on Γ0(p) as p-adic Siegel modular forms (cf. Theorem 3).

We only indicate the proof of this extension since the readers familiar with Katz’s results can easily
complete this. Note that results of Böcherer and Nagaoka [1,8,9] on lifts of generalized Hasse invari-
ants are necessary to prove and improve some of our results.

2. Moduli spaces and modular forms

2.1. Review of moduli spaces and modular forms

We review results of Chai and Faltings [2] on moduli spaces and modular forms. For positive
integers g and N , let ζN be a primitive N-th root of 1, and let Ag,N be the moduli stack over
Z[1/N, ζN ] which classifies principally polarized abelian schemes of relative dimension g with sym-
plectic level N structure. Then the associated complex orbifold Ag,N (C) is of dimension g(g + 1)/2,
and is represented as the quotient space Hg/Γg,N of the Siegel upper half-space Hg of degree g by
the integral symplectic group Γg,N = Ker(Spg(Z) → Spg(Z/NZ)) of degree g and level N . There exists
the universal abelian scheme X with 0-section s over Ag,N , and the Hodge line bundle ω is defined as
det(s∗(ΩX /Ag,N )) which corresponds to the automorphic factor over Ag,N (C). In [2, Chapter IV], Chai

and Faltings constructed a smooth compactification Ag,N of Ag,N associated with a good cone de-
composition of the set of positive semi-definite symmetric bilinear forms on Rg , and a semi-abelian
scheme G with 0-section s over Ag,N extending X → Ag,N . Then ω = det(s∗(ΩG/Ag,N )) gives an
extension of ω to Ag,N , and

A∗
g,N = Proj

(⊕
h�0

H0(Ag,N ,ω⊗h))

is a projective scheme over Z[1/N, ζN ] called Satake’s minimal compactification.
Assume that N � 3. Then Ag,N becomes the fine moduli scheme. Further, A∗

g,N contains Ag,N , and
its complement has a natural stratification by locally closed subschemes, each of which is isomorphic
to Ai,N (0 � i � g −1). There is a natural morphism Ag,N →A∗

g,N (which is an isomorphism if g = 1)
extending the identity map on Ag,N such that ω is the pullback by this morphism of the tautological
line bundle ω∗ on A∗

g,N .
Following [2, Chapter V], for any Z[1/N, ζN ]-algebra R , we define the R-module Mg,h,N(R) of

Siegel modular forms over R of degree g, weight h and level N by

Mg,h,N(R) = H0(Ag,N ,ω⊗h ⊗Z[1/N,ζN ] R
)
,

and the ring M∗
g,N (R) of Siegel modular forms over R of degree g and level N by

M∗
g,N(R) =

⊕
h�0

Mg,h,N(R)

which is a graded R-algebra. Then by Koecher’s principle,

Mg,h,N(R) = H0(Ag,N ,ω⊗h ⊗Z[1/N,ζN ] R
)
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if g > 1, and by Serre’s GAGA and Hartogs’ theorem, Mg,h,N (C) becomes the space of holomorphic
functions on Hg with the automorphic condition of weight h for Γg,N (and the cusp condition if
g = 1).

Let qij (1 � i, j � g) be variables with symmetry qij = q ji , and put

Ag,N = Z
[
1/N, ζN ,q±1/N

ij (i �= j)
][[

q1/N
11 , . . . ,q1/N

gg
]]

.

Then for each 0-dimensional cusp on A∗
g,N , there exists the associated Mumford’s semi-abelian

scheme (cf. [7]) formally represented as

G
g
m/

〈
(qij)1�i�g

∣∣ 1 � j � g
〉

over Ag,N with principal polarization and symplectic level N structure. By evaluating Siegel modular
forms on this semi-abelian scheme, we have an R-linear ring homomorphism

F R : M∗
g,N(R) −→ Ag,N ⊗Z[1/N,ζN ] R.

This is called the Fourier (q-)expansion map and satisfies the following (cf. [2, Chapter V]):

• F R is functorial for R ,
• FC becomes the classical Fourier expansion,
• F R is injective on each Mg,h,N (R), and further for f ∈ Mg,h,N (R) and a sub-Z[1/N, ζN ]-

algebra R ′ of R ,

F R( f ) ∈ Ag,N ⊗Z[1/N,ζN ] R ′ ⇐⇒ f ∈ Mg,h,N
(

R ′).
These statements are known as the q-expansion principle, and follow from the irreducibility of
geometric fibers of Ag,N .

2.2. Generalized Hasse invariants

We review a Siegel modular form hp−1 over Fp given by the generalized Hasse invariant (cf. [9]).
This is obtained as the image of 1 under the homomorphism OAg,1⊗Fp → ω⊗(p−1) which comes

from the bundle map ω → ω(p) = ω⊗p associated with the Verschiebung. Then hp−1 is an element of
Mg,p−1,1(Fp) satisfying that FFp (hp−1) = 1, and such an element is unique by the q-expansion prin-
ciple. Further, the divisor of hp−1 is the complement of the ordinary locus which consists of principally
polarized ordinary abelian varieties in characteristic p.

It is shown by Nagaoka [8,9] and by Böcherer and Nagaoka [1] that when p satisfies the condition:

(BN) p � g + 3, or p ≡ 1 mod (4), or p is a regular prime � g/2 + 3,

there exists an element H p−1 of Mg,p−1,1(Q∩Zp) such that FZp (H p−1) ≡ 1 mod (p) which is equiv-
alent to that H p−1 is a lift of hp−1, i.e., H p−1 mod (p) = hp−1 by the q-expansion principle.

2.3. Moduli spaces and modular forms modulo pm

Assume that N � 3, let k be a perfect field of positive characteristic p containing 1/N and ζN

(hence p is prime to N), and denote by W = W (k) the ring of Witt vectors over k which also contains
1/N and ζN . For an integer m � 1, let Wm = W /pm W be the ring of Witt vectors of length m over k,
and put

Am = Ag,N ⊗ Wm, Am = Ag,N ⊗ Wm, A∗
m = A∗

g,N ⊗ Wm.
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Proposition 1.

(1) There are canonical isomorphisms

Mg,h,N(W ) ∼= H0(A∗
g,N ⊗ W ,

(
ω∗)⊗h)

, Mg,h,N(Wm) ∼= H0(A∗
m,

(
ω∗)⊗h)

.

(2) The natural homomorphisms Mg,h,N(W ) →Mg,h,N(Wm) give rise to an isomorphism

Mg,h,N(W ) ∼= lim←−Mg,h,N(Wm).

(3) For a sufficiently large positive integer h, Mg,h,N(W ) ⊗ Wm ∼=Mg,h,N(Wm).

Proof. These statements are shown by Katz [5,6] when g = 1, and hence we assume that g > 1. First,
we prove (1). Since the construction of Satake’s minimal compactification works over the complete
discrete valuation ring W in the same way to [2, Chapter V],

A∗
g,N ⊗ W = Proj

(⊕
h�0

H0(Ag,N ,ω⊗h ⊗ W
))

is normal, flat over W and codimW (A∗
g,N ⊗ W − Ag,N ⊗ W ) = g > 1. This together with Koecher’s

principle imply that

Mg,h,N(W ) = H0(Ag,N ⊗ W ,ω⊗h) = H0(A∗
g,N ⊗ W ,

(
ω∗)⊗h)

.

Fix m � 1. Since Am is Zariski dense in Am , and Am is smooth over Wm with geometrically irre-
ducible special fiber, the restriction maps

H0(Am, plω⊗h/pl+1) → H0(Am, plω⊗h/pl+1) (0 � l � m − 1)

are injective, and hence the restriction map H0(Am,ω⊗h) → H0(Am,ω⊗h) is also injective. Since
A∗

m =A∗
g,N ⊗ Wm is flat over Wm , any nonzero meromorphic local section s of OA∗

m
is represented as

pl f / f ′ , where 0 � l � m − 1 and f , f ′ are regular local sections of OA∗
m

such that f , f ′ /∈ pOA∗
m

. If s
is regular on Am , then f / f ′ mod (p) is regular on A∗

m ⊗k, and hence s is regular on A∗
m since A∗

m ⊗k
is geometrically normal (cf. [2, Chapter V, 2.7]) and A∗

m −Am is a union of finite copies of Ai,N ⊗ Wm

(0 � i � g − 1) whose relative codimension is g > 1. Therefore, local sections of ω⊗h are uniquely
extended to those of (ω∗)⊗h , and hence the restriction map H0(A∗

m, (ω∗)⊗h) → H0(Am,ω⊗h) is
an isomorphism. The homomorphism H0(A∗

m, (ω∗)⊗h) → H0(Am,ω⊗h) induced from the morphism
Am →A∗

m is compatible with the above two restriction maps, and hence it is an isomorphism.
Second, we prove (2) and (3). By (1), the exact sequence

0 → (
ω∗)⊗h pm−→ (

ω∗)⊗h → (
ω∗)⊗h ⊗ Wm → 0

of sheaves on the flat W -scheme A∗
g,N ⊗ W gives the exact sequence

0 → Mg,h,N(W )
pm−→ Mg,h,N(W ) → Mg,h,N(Wm) → H1(A∗

g,N ⊗ W ,
(
ω∗)⊗h)[

pm]
,

where G[pm] = Ker(pm : G → G) for an additive group G . Therefore, (2) and (3) follow from that
H1(A∗

g,N ⊗ W , (ω∗)⊗h) is a finitely generated W -module and becomes {0} for h � 0 since A∗
g,N ⊗ W

is proper over W and ω∗ is ample on A∗
g,N ⊗ W . This completes the proof. �
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3. p-Adic monodromy and Igusa towers

3.1. p-Adic monodromy

Assume that N � 3. Let Sm (resp. Sm , S∗
m) be the ordinary locus, i.e., the open subspace of Am

(resp. Am , A∗
m) on which the generalized Hasse invariant hp−1 is invertible. Then there is a natural

morphism ϕ : Sm → S∗
m compatible with the inclusions ι : Sm ↪→ Sm and ι∗ : Sm ↪→ S∗

m , and hence we
have a commutative diagram of homomorphisms

π1(Sm)

π1(Sm) π1(S∗
m)

For each integer n � 0, denote by (G[pn]◦)∨ the Cartier dual of the connected component containing 1
of the group scheme G[pn] defined as the kernel of pn : G → G . Then (G[pn]◦)∨ is an étale sheaf
which is a free (Z/pnZ)-module of rank g in the étale topology on Sm , and hence we have the
associated monodromy representation

ρm,n : π1(Sm) → GLg
(
Z/pnZ

)
.

Therefore, combining the natural homomorphism π1(Sm) → π1(Sm), we have the representation
ρm,n : π1(Sm) → GLg(Z/pnZ) which is associated with the étale quotient A[pn]et of A[pn]. Then
by a result of Chai and Faltings (cf. [2, Chapter V, 7.2]), ρm,n , and hence ρm,n are surjective. Therefore,
the representations

{
χm,n = det(ρm,n) : π1(Sm) → (

Z/pnZ
)×

,

χm,n = det(ρm,n) : π1(Sm) → (
Z/pnZ

)×

obtained by taking the determinant in GLg(Z/pnZ) are also surjective. Note that this fact can be di-
rectly deduced from the surjectivity shown by Igusa [4] of p-adic monodromy in the elliptic modular
case.

Proposition 2.

(1) S∗
m is an affine and flat Wm-scheme whose special fiber is integral.

(2) There exists a unique system

{
χ∗

m,n : π1
(

S∗
m

) → (
Z/pnZ

)×}
m,n

of representations satisfying that χ∗
m,m corresponds to an étale sheaf Em,m on S∗

m such that

Em,m ⊗Z/pmZ OS∗
m

∼= ω∗∣∣
S∗

m
,

and that χ∗
m,n = χ∗

1,n via the natural identification π1(S∗
m) = π1(S∗

1). Further, {χ∗
m,n} satisfies that

χ∗
m,n = χ∗

m,n+1 mod (pn) and that χm,n,χm,n factor through χ∗
m,n via the natural homomorphisms

π1(Sm) → π1
(

S∗
m

)
, π1(Sm) → π1

(
S∗

m

)
respectively.
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Proof. These statements are shown by Katz [5,6] when g = 1, and hence we assume that g > 1. First,
we prove (1). As seen in the proof of Proposition 1, A∗

g,N ⊗ W is flat over W and geometrically
normal. Hence the open subscheme S∗

m of A∗
m = A∗

g,N ⊗ Wm is flat over Wm with integral special
fiber. By Proposition 1(3), one can take a sufficiently large positive integer c such that there is a basis
of Mg,c(p−1),N (W ) over W which contains a lift of hc

p−1 and gives rise to a closed immersion of A∗
m

into a projective space Pd
Wm

. Therefore, S∗
m is a closed subscheme of the affine subspace Ad

Wm
of Pd

Wm

on which hc
p−1 (and hence hp−1) is invertible. Therefore, S∗

m becomes an affine scheme.
Second, we prove (2). Each local isomorphism (Z/pmZ)g ∼−→ (G[pm]◦)∨ in the étale topology on

Sm corresponds to

ι : G[
pm]◦ ∼−→ (μpm )g ↪→G

g
m = Spec

(
Z
[

X±1
1 , . . . , X±1

g

])
by the Cartier duality, and then ι∗(dXi/Xi) (i = 1, . . . , g) are uniquely extended to a basis of 1-forms
on G . Hence we have

(
G
[

pm]◦)∨ ⊗Z/pmZ OSm
∼= s∗(ΩG/Sm

)

which gives isomorphisms

det
((
G
[

pm]◦)∨) ⊗Z/pmZ OSm
∼= ω|Sm

and

det
(
X

[
pm]et) ⊗Z/pmZ OSm

∼= ω|Sm .

The correspondence G �→ G/G[p]◦ gives rise to a morphism φ : Sm → Sm which is the p-th
power map on Sm ⊗ k = S1 such that under the above isomorphism, m ⊗ f �→ m ⊗ φ( f ) gives
F : φ∗(ω|Sm

)
∼−→ ω|Sm

. Further, the abelian part of each fiber (G/G[p]◦)s becomes As/As[p]◦ which
is represented by only the abelian part As of Gs . Therefore, φ factors through a morphism S∗

m → S∗
m

which we denote by the same symbol, and hence we have F : φ∗(ω∗|S∗
m
)

∼−→ ω∗|S∗
m

.
Then we recall Katz’s p-adic monodromy theorem [5, Proposition 4.1.1] which states the following:

Let X be a flat Wm-scheme with integral special fiber, and let φ : X → X be a morphism such that
φ|X⊗k is the q-th power map (q is a power of p such that Fq ⊂ k). Then

E �→ (F = E ⊗Wm(Fq) OX , F = idE ⊗φ)

is a fully faithful functor from the category of étale sheaves E on X as free Wm(Fq)-modules of finite
rank to that of locally free sheaves F on X of finite rank with isomorphism F : φ∗(F)

∼−→F . Further,
this functor gives an equivalence between these categories if X is affine. By applying this theorem
to q = p, X = S∗

m and F = ω∗|S∗
m

, there exists uniquely an étale sheaf Em,m on S∗
m as an invertible

(Z/pmZ)-module such that Em,m ⊗Z/pmZ OS∗
m

∼= ω∗|S∗
m

. Let χ∗
m,m be the corresponding representation

of π1(S∗
m), and put

χ∗
m,n : π1

(
S∗

m

) = π1
(

S∗
n

) χ∗
n,n−−→ (

Z/pnZ
)×

.

Then {χ∗
m,n}m,n is uniquely determined and satisfies the desired properties since

(
ω∗∣∣

S∗
m+1

)∣∣
S∗

m
= ω∗∣∣

S∗
m
, ι∗

(
ω∗∣∣

S∗
m

) = ω|Sm , ϕ∗(ω∗∣∣
S∗

m

) = ω|Sm
,

and Katz’s functor is fully faithful for X = Sm, Sm . This completes the proof. �
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3.2. Igusa towers

Let

Tm,n → Sm, T m,n → Sm, T ∗
m,n → S∗

m

be the étale and finite coverings defined by Ker(χm,n), Ker(χm,n), Ker(χ∗
m,n) respectively. Then by

Proposition 2(2), the above ι : Sm ↪→ Sm , ι∗ : Sm ↪→ S∗
m and ϕ : Sm → S∗

m lift to natural inclusions
ι : Tm,n ↪→ T m,n , ι∗ : Tm,n ↪→ T ∗

m,n and a morphism ϕ : T m,n → T ∗
m,n such that ϕ ◦ ι = ι∗ . The systems

of coverings {Tm,n}, {T m,n} and {T ∗
m,n} are called Igusa towers.

Proposition 3. Assume that g > 1.

(1) T ∗
m,n is an affine and flat Wm-scheme whose special fiber is integral.

(2) Let F , F , F∗ be invertible sheaves on Tm,n, T m,n, T ∗
m,n respectively such that (ι)∗(F) = F , (ι∗)∗(F∗) =

F , ϕ∗(F∗) =F . Then there are compatible isomorphisms

H0(Tm,n,F) ∼= H0(T m,n,F) ∼= H0(T ∗
m,n,F∗).

Proof. The assertion (1) follows from Proposition 2(1), and hence we prove (2). The open sub-
stack Sm ⊂ Am and its étale covering T m,n are smooth over Wm with integral special fiber, and
Tm,n is Zariski dense in T m,n . Hence as in the proof of Proposition 1(1), one can show that
the restriction map H0(T m,n,F) → H0(Tm,n,F) is injective. We will prove that any local section
of F is uniquely extended to that of F∗ , which implies that H0(T ∗

m,n,F∗) → H0(Tm,n,F) and

H0(T ∗
m,n,F∗) → H0(T m,n,F) are isomorphisms. We may assume that F and F∗ are the structure

sheaves on Tm,n and T ∗
m,n respectively. As stated above, A∗

m ⊗ k is geometrically normal, A∗
m − Am

is a union of smooth schemes over Wm whose relative codimension is g > 1. Therefore, T ∗
m,n and

T ∗
m,n − Tm,n have the same properties, and hence as in the proof of Proposition 1(1), one can

show that any local section of OTm,n is uniquely extended to that of OT ∗
m,n

. This completes the
proof. �

By Proposition 3, we have an Igusa tower {T ∗
m,n}m,n consisting of affine schemes whose coordinate

rings

Vm,n = H0(T ∗
m,n,OT ∗

m,n

) = H0(Tm,n,OTm,n )

make a sequence of Artin–Schreier’s extensions

Vm,0 ⊂ Vm,1 ⊂ Vm,2 ⊂ · · · ,

and satisfy that Vm+1,n/pm Vm+1,n ∼= Vm,n . Further, by Propositions 2(2) and 3(2),

H0(Sm, (ω|Sm )⊗h) ∼= H0(S∗
m,

(
ω∗∣∣

S∗
m

)⊗h)
∼= {

φ ∈ Vm,m
∣∣ [a]φ = ahφ

(
a ∈ (

Z/pmZ
)×)}

,

where [∗] denotes the natural action of (Z/pmZ)× on Vm,m . Therefore, as will be seen below, Katz’s
argument in [5,6] on the elliptic modular case can be applicable to our Vm,n .
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4. Congruences and p-adic properties

4.1. Congruences

We prove congruence properties of Siegel modular forms extending results on elliptic modular
forms given in [5,6,10–12]. First, we restate Theorem 1 in [3] in a more accurate form, especially
noting that for any prime p, congruences between Siegel modular forms deduce congruences between
their weights.

Theorem 1. Assume that two Siegel modular forms fi ∈ Mg,hi ,N(Wm) (i = 1,2) have the same Fourier ex-
pansion over Wm which are not congruent to 0 modulo p at (at least) one 0-dimensional cusp. Then we have:

(1) The weights hi of f i satisfy the congruence h1 ≡ h2 modulo the exponent e(pm) of (Z/pmZ)× .
(2) When p satisfies the condition (BN) in Section 2.2 and H p−1 ∈Mg,p−1,1(Q∩Zp) is a lift of hp−1 ,

f i = f j · (H
(hi−h j)/(p−1)

p−1 mod
(

pm))
if hi � h j . Therefore, f1 and f2 have the same Fourier expansion over Wm at any cusp.

(3) When m = 1, the same statement to (2) holds for any prime p replacing H p−1 mod (p) with hp−1 .

From (3) of this theorem, we have the following extension of a result of Katz [6, Theorem 2.2] to
the Siegel modular case by applying his argument to the affine morphism S∗

1 ↪→A∗
1.

Corollary. The kernel of the Fourier expansion homomorphism Fk : M∗
g,N (k) → Ag,N ⊗ k is the ideal gener-

ated by 1 − hp−1 .

Second, we consider higher congruences between Siegel modular forms. Let

Il =
{∑

h

fh ∈
⊕
h�0

Mg,h,N(W )

∣∣∣ F W

(∑
fh

)
def=

∑
F W ( fh) ≡ 0 mod

(
pl)}

be the non-graded ideal of M∗
g,N (W ), put

D = M∗
g,N(W ) + (1/p) · I1 + (

1/p2) · I2 + · · · =
⋃
l�0

p−l · Il,

and let Z×
p act on D as

[a]
(∑

h

fh

)
=

∑
h

ah fh
(
a ∈ Z×

p , fh ∈ Mg,h,N(W )[1/p]).
Then we have the following extension of a result of Katz [6, Theorem 3.3] to the Siegel modular case
by replacing his Vm,n with our Vm,n .

Theorem 2. Assume that N � 3, p satisfies the condition (BN), and let H p−1 ∈ Mg,p−1,1(Q ∩ Zp) be a lift
of hp−1 . Then:

(1) For each integer n � 1, there exists an element dn of D such that d1 = (1 − H p−1)/p, and for any k � 0,

[
1 + pn+k](dn) ≡ dn + pk H p−1 mod

(
pk+1 D

)
.
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(2) rn = p(pn−1)/(p−1) · dn ∈ D belongs to M∗
g,N (W ), and hence to I(pn−1)/(p−1) .

(3) The ideal In of M∗
g,N (W ) is generated by pa0 · ra1

1 · · · r
a j

j such that

a0 +
j∑

i=1

ai
(

pi − 1
)
/(p − 1) = n.

From (3) of this theorem, we have immediately:

Corollary. Let the assumption and the notation be as in Theorem 2, and assume that n � p. Then In = (p,

1 − H p−1)
n = (I1)

n.

4.2. p-Adic properties

Let k be as above, and let K be the quotient field of the Witt ring W over k. Then for an el-
ement φ of K [q±1/N

ij (i �= j)][[q1/N
11 , . . . ,q1/N

gg ]], ordp(φ) is defined as the infimum of the order at p
of its coefficients in K . As in the elliptic modular case (cf. [11]), we call φ a p-adic Siegel modular
form over K of degree g and level N if there are integers hm � 0 and elements fm of Mg,hm,N(K ) such
that φ = limm→∞ F K ( fm). This means that limm→∞ ordp(φ − F K ( fm)) = ∞ for the Fourier expansion
map F K associated with a 0-dimensional cusp on A∗

g,N . Since Mg,hm,N(K ) = Mg,hm,N (W ) ⊗W K ,
such a φ has coefficients in W if and only if φ = limm→∞ F W ( fm) for fm ∈ Mg,hm,N(W ), in which
case φ is called a p-adic Siegel modular form over W . Then by Theorem 1, the weight limm→∞ hm of φ

is well defined as an element of

lim←−Z/(p − 1)pmZ ∼= Z/(p − 1)Z×Zp,

which is the closure of Z in the ring End(Z×
p ) of continuous endomorphisms of Z×

p (cf. [3, Theo-
rem 2]).

Applying Katz’s argument in [6, Appendix I] to our Vm,n and their inductive and projective limits,
one can see that each p-adic Siegel modular form over W of degree g , weight h and level N is a
rule φ associating isomorphism classes of (A, λ,α, τ ) over W -algebras R in which p is nilpotent with
elements φ(A, λ,α, τ ) of R . Here A are abelian schemes of relative dimension g over R with principal
polarization λ, symplectic level N structure α and isomorphism τ : A[p∞]◦ ∼−→ G

g
m[p∞]. Further, φ

satisfies the conditions:

• the commutativity with base extensions,
• the holomorphy at any cusp,
• φ(A, λ,α,a−1τ ) = ah · φ(A, λ,α, τ ) (a ∈ Z×

p ).

Therefore, we have the following extension of a result of Katz [5, Theorem 3.2] by applying his argu-
ment to the Siegel modular case.

Theorem 3. Assume that N � 3, and let f be a Siegel modular form over K of degree g, weight h and level N
on

Γ0(p) =
{

X ∈ Spg(Z)

∣∣∣ X ≡
(

A B
0 D

)
mod (p)

}
.

Then the Fourier expansion of f at each 0-dimensional unramified cusp becomes a p-adic Siegel modular form
over K of degree g, weight h and level N.
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