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0. Introduction

We shall study Z[G]-linear forms on a modified Sinnott module U defined in [11].
The Sinnott module U can be defined in abstract terms, only using the Galois group G,
the inertia subgroups Ti and Frobenius elements, without referring to a concrete abelian
number field. It is fundamental in the study of units and of the Stickelberger ideal
as it describes the algebraic aspects of these modules while the arithmetical aspects
are governed by values of L-functions. Even though the Sinnott module has a difficult
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structure, it is useful since it is completely explicit and allows to understand the structure
of the original module.

We should explain why linear forms are important in the subject. On the one hand they
appear explicitly in the statement of the Rubin–Stark conjectures where they measure
the integrality of the Stark unit. On the other hand they can be used to prove divisibility
of elements in a module of Stark units by an element of the group ring (see [5]), for the
simple reason that linear forms transfer the divisibility question from the module to the
group ring itself, making it much easier.

The main motivation to write this paper was the fact that we need its main result
in [6], in order to be able to extract some nontrivial roots of circular units which are
necessary for the arithmetical problem considered in that paper. But we also think that
the result offers some interest on its own.

Let us conclude this short introduction by giving a little background and discussing
related research. If we set our group G to be equal to the absolute Galois group of the
n-th cyclotomic field Q(ζn) (and the subgroups Ti correspond to inertia subgroups and
the elements λi correspond to the Frobenius automorphisms of ramified primes) then our
modules (1+j)U ′ and (1+j)U , where j means the complex conjugation, are not identical
to, but closely related to certain modules called the universal even distribution A+

n and
the universal punctured even distribution (A0

n)+, for the definitions see §12.3 of [13].
The importance of (A0

n)+ is that this module comes with a canonical surjection to the
group of circular numbers (modulo roots of unity) of Q(ζn). An unpublished conjecture
of Milnor stated that this surjection is an isomorphism modulo torsion. This conjecture
was in fact proven by Bass [1]; Ennola [4] found later on that the (torsion) kernel may
be a nontrivial 2-elementary finite group.

A very important contribution is due to Sinnott [10], who in contrast with Bass and
Ennola did not use A+

n , which is a quotient of free group modulo the obvious relations,
but introduced instead a new module U (corresponding to U ′ in the setting of this paper)
which is a submodule of the rational group ring Q[G]. In the subsequent paper [11] he
generalized the construction of U to any abelian number field. Going a step further,
Solomon [12] has found a system of generators and relations of several different groups
of circular units and circular numbers of any abelian number field as a Galois module,
showing that the quotient of the group of all relations modulo the subgroup of obvious
relations is always finite. There is also an extension into a different direction: Yin in [14]
generalized the notion of distributions to ray class fields over any global field. An analog
of Sinnott’s module U for an abelian extension of an imaginary quadratic field is studied
by Oukhaba [9], and in a more general setting by Belliard and Oukhaba [2].

After this very brief tour of work on explicit modules that are “close” to groups of
circular numbers and units, let us come back to our own situation. Starting with an
abelian number field K, which is its own genus field in narrow sense, we consider the
module U which maps surjectively to the group of circular numbers of this field modulo
roots of unity, the top generator of U being mapped to the circular number η ∈ K of
the conductor level. Then we study the image of this top generator in any equivariant
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linear map to the group ring Z[G], where G = Gal(K/Q). The knowledge of the possible
images of this top generator of U under all these maps can then be used, for a suitable
subfield L of K, to construct a nontrivial root of NK/L(η) in K which turns out to be
useful in applications (see [6] and [7]). We are not aware of earlier work in this direction,
besides Proposition 5.5 in [8] (see our comments comparing this proposition with our
results in Remarks 1.2 and 4.2).

We would like to thank the referee, who encouraged us to include a little more in-
formation on background and context and provided precious suggestions as to what we
might say in this respect.

1. The Sinnott modules U ′ and U

As mentioned in the introduction, the structure of the Sinnott module is very com-
plicated in general. It is defined in [11] for any abelian field K, so there is a possibility
to study Sinnott’s module assuming only that G = Gal(K/Q) is a quotient of the direct
product T1 ×· · ·×Tv, where the Ti are the inertia groups of ramified primes. But in this
paper we shall assume that G equals this direct product, in other words that K is equal
to its genus field in the narrow sense. Nevertheless Corollary 1.7 gives a result which can
be useful for any abelian field whose genus field is K.

In fact, no field K will appear explicitly in this paper, since our approach is entirely
algebraic. We describe the Sinnott module U ′ and the modified Sinnott module U in an
abstract way as follows:

Let T1, . . . , Tv be finite abelian groups written multiplicatively, v � 1, and let

G = T1 × · · · × Tv

be their direct product. For any N ⊆ I = {1, . . . , v} let TN =
∏

i∈N Ti ⊆ G, so TI = G

and T∅ = {1} by definition. For any i ∈ I we fix some element λi ∈ TI−{i}, denote
ti = |Ti|, and define

Ii = ker
(
Z[G] → Z

[
G/〈λi, Ti〉

])
,

the ideal of Z[G] generated by 1− λi and 1− g for all g ∈ Ti. Let e1, . . . , ev be the usual
basis of the Z[G]-module Zv which has trivial action of G, i.e. ei is the v-tuple having
all zeros but one 1 in the i-th position. For any H ⊆ G let s(H) =

∑
h∈H h ∈ Z[G] and

for any N ⊆ I define ρN ∈ Q[G] ⊕ Zv as follows

ρN =
{
s(TN ) ·

∏
i∈I−N (1 − t−1

i λ−1
i s(Ti)), if |I −N | �= 1,

s(TN ) · (1 − t−1
j λ−1

j s(Tj)) + ej , if I −N = {j}.

Note that ρN = s(TN ) · (1− t−1
j s(Tj))+ ej if I −N = {j}. The modified Sinnott module

U is defined as the Z[G]-submodule of Q[G] ⊕ Zv generated by all ρN , N ⊆ I.
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We have the projection to the first coordinate π : Q[G] ⊕ Zv → Q[G]; we define the
Sinnott module U ′ by U ′ = π(U). In explicit terms, U ′ is the Z[G]-submodule of Q[G]
generated by ρ′N for all N ⊆ I, where

ρ′N = π(ρN ) = s(TN ) ·
∏

i∈I−N

(
1 − t−1

i λ−1
i s(Ti)

)
∈ Q[G]. (1.1)

We remark that our module U ′ corresponds to U in Sinnott’s notation in [11].
For each i ∈ I we define the projection pri : G → Ti by the condition g =

∏v
i=1 pri(g)

for each g ∈ G. For each i, j ∈ I let gij = pri(λj), then gij ∈ Ti, gjj = 1 and

λj =
∏
i∈I

gij . (1.2)

We are going to prove the following

Theorem 1.1.

(i) Every ψ ∈ HomZ[G](U ′,Z[G]) satisfies ψ(ρ′∅) ∈
∏v

i=1 Ii.
(ii) Every ψ ∈ HomZ[G](U,Z[G]) satisfies

ψ(ρ∅) ≡
v∑

j=1
cjψ

1(tjej)
(

mod
v∏

i=1
Ii

)
, (1.3)

where ψ1(tjej) ∈ Z is determined by ψ(tjej) = ψ1(tjej)s(G) and

cj ∈
∏

i∈I−{j}
Ii ⊆ Z[G].

More precisely, if v = 1 then c1 = 1, and if v > 1 then

cj =
∑

∅=R0�R1�···�Rr=I−{j}
(−1)r+v−1 ·

r∏
c=1

∏
k∈Rc−Rc−1

(
1 − λ−1

k

∏
i∈Rc

gki

)

=
∑

∅=R0�R1�···�Rr=I−{j}
(−1)r+v−1 ·

r∏
c=1

∏
k∈Rc−Rc−1

(
1 − λ−1

k

∏
i∈Rc

gik

)
.

The first part of the previous theorem is a kind of divisibility statement, and we repeat
that we use it in [6] to obtain divisibility statements for circular units.

Remark 1.2. Formula (1.3) in Theorem 1.1(ii) looks very similar to the formula in Propo-
sition 5.5 of [8]. But in fact we prove a sharper congruence for a wider class of linear
forms, since our modulus

∏v
i=1 Ii is usually smaller than Hayward’s. Our terms ci are
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not identical to Hayward’s terms AB
i . Indeed, in Section 4 we explain the exact relation-

ship between Hayward’s result and ours, which can in fact be seen as a strengthening.
Our modulus is more closely related to the modulus IS,TH defined by Burns in [3] by
formula (8) and used in his main result Theorem 3.1, but still IS,TH is in general bigger
than our modulus.

Remark 1.3. Let us show that part (i) of Theorem 1.1 is optimal in the following sense:
for any x ∈

∏v
i=1 Ii there is ψ ∈ HomZ[G](U ′,Z[G]) satisfying ψ(ρ′∅) = x. It is enough

to show this for x of the form x =
∏v

i=1 xi, where xi ∈ Ii for all i ∈ I. Since s(Ti)Ii =
s(Ti)(1 − λ−1

i )Z[G], for each i ∈ I we can choose yi ∈ Z[G] satisfying

s(Ti)xi = s(Ti)
(
1 − λ−1

i

)
yi. (1.4)

We define

ψ
(
ρ′N

)
=

(∏
i∈N

s(Ti)yi
)
·

∏
i∈I−N

xi (1.5)

for each N ⊆ I. We will see in Corollary 1.6(i) below that ψ ∈ HomZ[G](U ′,Z[G])
is well-defined by the above equations if and only if the right-hand terms satisfy the
relations (1.7) and (1.8), that is

g · ψ
(
ρ′N

)
= ψ

(
ρ′N

)
for each N � I, g ∈ TN

and

s(Ti) · ψ
(
ρ′N

)
=

(
1 − λ−1

i

)
· ψ

(
ρ′N∪{i}

)
for each N � I, i ∈ I −N.

But this easily follows from (1.4) and (1.5).

Remark 1.4. The definition (1.1) gives

|G| =
v∏

i=1

(
ti − λ−1

i s(Ti) + λ−1
i s(Ti)

)
=

∑
N⊆I

(∏
i∈N

(
λ−1
i s(Ti)

))
·
( ∏

i∈I−N

(
ti − λ−1

i s(Ti)
))

=
∑
N⊆I

(∏
i∈N

λ−1
i

)
·
( ∏

i∈I−N

ti

)
· ρ′N ∈ U ′

and

|G| · ρ′∅ =
v∏(

ti − λ−1
i s(Ti)

)
=

v∏ ∑(
1 − λ−1

i g
)
∈

v∏
Ii.
i=1 i=1 g∈Ti i=1
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Similarly |G| · ρ′N ∈ Z[G] for each N ⊆ I. For every ψ ∈ HomZ[G](U ′,Z[G]) this immedi-
ately gives

|G|2 · ψ
(
ρ′∅
)

=
(

v∏
i=1

∑
g∈Ti

(
1 − λ−1

i g
))

ψ
(
|G|

)
∈

v∏
i=1

Ii.

But this falls short of proving part (i) of Theorem 1.1 as |G| can be a zero divisor in the
quotient ring Z[G]/

∏v
i=1 Ii. Nevertheless |G| ∈ U ′ and |G| · U ′ ⊆ Z[G] imply at least

that the Z-rank of U ′ is |G|. For each j ∈ I we have tjej = s(Tj) · ρI−{j} ∈ U ∩ kerπ,
hence the Z-rank of U ∩ kerπ is v and so the Z-rank of U is |G|+ v because U ′ = π(U).

The following lemma describes the additive structure of both U ′ and U completely.

Lemma 1.5.

(i) The system

ρ′N ·
∏

i∈I−N

gi, (1.6)

where N runs over the set of all subsets of I and each gi runs over Ti − {1}, forms
a Z-basis of U ′.

(ii) The system t1e1, . . . , tvev and

ρN ·
∏

i∈I−N

gi,

where N runs over the set of all subsets of I and each gi runs over Ti − {1}, forms
a Z-basis of U .

Proof. (i) The number of elements mentioned in the statement of the lemma is equal to∑
N⊆I

∏
i∈I−N

(ti − 1) = |G|,

which is the Z-rank of U ′ due to Remark 1.4. So it is enough to show that they gener-
ate U ′, which is – as an additive group – generated by ρ′N ·

∏
i∈I−N gi, where N ⊆ I and

gi ∈ Ti because

g · ρ′N = ρ′N for each N � I, g ∈ TN . (1.7)

Using the relation

s(Ti) · ρ′N =
(
1 − λ−1

i

)
· ρ′N∪{i} for each N � I, i ∈ I −N, (1.8)
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we shall show that each of these generators is a Z-linear combination of the elements
mentioned in (1.6) by means of a double induction: with respect to |N |, and for a fixed
N with respect to the number of i’s with gi = 1. Indeed, if |N | = v then N = I and ρ′I
belongs to the elements (1.6). So suppose that |N | < v and that for all L ⊆ I, |L| > |N |,
we know that h ·ρ′L is a Z-linear combination of the elements (1.6) for any h ∈ G. For any
g =

∏
i∈I−N gi, where gi ∈ Ti, let R(g) denote the set of all i’s with gi = 1. If R(g) = ∅

then g · ρ′N belongs to the elements (1.6). So suppose that R(g) �= ∅ and that for all
h ∈ TI−N with |R(h)| < |R(g)| we already know that h · ρ′N is a Z-linear combination of
the elements (1.6) for any h ∈ G. Fixing i ∈ R(g) and multiplying (1.8) by g we obtain

g · ρ′N = g ·
(
1 − λ−1

i

)
· ρ′N∪{i} −

∑
k∈Ti−{1}

kg · ρ′N

and we can use our induction hypotheses since |N ∪{i}| > |N | and also |R(kg)| < |R(g)|
to finish the proof.

(ii) This can be proved in the same way; the number of elements is equal to |G| + v,
which is the Z-rank of U . We have again

g · ρN = ρN for each N � I, g ∈ TN . (1.9)

Instead of (1.8) one uses the relations

s(Ti) · ρN =
(
1 − λ−1

i

)
· ρN∪{i} for each N � I, {i} � I −N, (1.10)

and

s(Tj) · ρI−{j} = tjej for each j ∈ I, (1.11)

by the same double induction. �
Corollary 1.6. (i) The set of generators {ρ′N ; N ⊆ I} together with the relations (1.7)
and (1.8) defines a presentation of the module U ′ over Z[G].

(ii) The set of generators {ρN ; N ⊆ I} together with the relations (1.9) and (1.10)
defines a presentation of the module U over Z[G].

Proof. This was in fact established in the proof of Lemma 1.5. �
Let us postpone the proof of Theorem 1.1 and give a corollary first. (We are using it

in [7].) Let H be a subgroup of G and consider the usual Z[G]-module homomorphisms

res : Q[G] → Q[G/H],

cor : Q[G/H] → Q[G].
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Then for any x ∈ Q[G/H] and y ∈ Q[G] we have res corx = [G : H]x and cor res y =
s(H)y.

Corollary 1.7. Let H be a subgroup of G and ϕ ∈ HomZ[G/H](UH ,Z[G/H]).

(i) There is ψ ∈ HomZ[G](U,Z[G]) such that ψ|UH = cor ◦ ϕ.
(ii) We have

ϕ
(
s(H)ρ∅

)
≡

v∑
j=1

ϕ1(tjej) res cj

(
mod res

v∏
i=1

Ii

)
,

where ϕ1(tjej) ∈ Z is determined by ϕ(tjej) = ϕ1(tjej)
∑

τ∈G/H τ and the elements
cj are defined in Theorem 1.1.

Proof. This is just what is called the “lowering the top field” argument in [8] and [5]. Let
ν : Z[G/H] → Z be determined by ν(

∑
τ∈G/H aττ) = aH , i.e. ν computes the coefficient

of the identity in G/H. The given ϕ then produces ν ◦ ϕ ∈ HomZ(UH ,Z). Since U

is a free Z-module, U/UH has no Z-torsion and there is ϕ1 ∈ HomZ(U,Z) such that
ϕ1|UH = ν ◦ ϕ. Then we define ψ ∈ HomZ[G](U,Z[G]) by

ψ(x) =
∑
τ∈G

ϕ1(τx)τ−1

for each x ∈ U and we see that ψ|UH = cor ◦ ϕ. Then

cor resψ(ρ∅) = s(H)ψ(ρ∅) = ψ
(
s(H)ρ∅

)
= corϕ

(
s(H)ρ∅

)
.

This means ϕ(s(H)ρ∅) = resψ(ρ∅) because cor is injective. Part (ii) of Theorem 1.1
states the congruence (1.3) and so

ϕ
(
s(H)ρ∅

)
= resψ(ρ∅) ≡ res

s∑
j=1

cjψ
1(tjej)

(
mod res

s∏
i=1

Ii

)
.

Since ψ(tjej) = corϕ(tjej), we have ψ1(tjej) = ϕ1(tjej). �
2. Auxiliary polynomials and isotone maps

This section is devoted to some preparations that are necessary for the proof of The-
orem 1.1 in the next section.

Let us fix a nonempty subset J ⊆ I. Let Chain(J) mean the set of all subchains of
the ordered set (2J ,⊆) containing both ∅ and J . For any R ∈ Chain(J) and any j ∈ J

we define M(R, j) = min{U ∈ R | j ∈ U}.
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We define polynomials FJ , F̂J with integral coefficients in |J |2 indeterminates li, i ∈ J ,
and yij , i, j ∈ J , i �= j. To wit, FJ is given by

FJ =
∑

R∈Chain(J)

(−1)|R| ·
∏
j∈J

(
1 − lj ·

∏
i∈M(R,j)−{j}

yij

)
, (2.1)

and F̂J is obtained from FJ by the exchange yij ↔ yji, i.e.

F̂J =
∑

R∈Chain(J)

(−1)|R| ·
∏
j∈J

(
1 − lj ·

∏
i∈M(R,j)−{j}

yji

)
.

For example, if J = {1, 2}, the definition of FJ gives

FJ = (1 − l1y21) · (1 − l2y12) − (1 − l1) · (1 − l2y12) − (1 − l1y21) · (1 − l2).

After simplification we get

FJ = −1 + l1 + l2 + l1l2(y12y21 − y12 − y21),

which clearly shows that FJ is invariant under yij ↔ yji. This symmetry holds in general:

Proposition 2.1. For each ∅ �= J ⊆ I we have F̂J = FJ .

Proof. Let us introduce new indeterminates: for each i, j ∈ J , i �= j, we put xij = yij−1.
Then yij = xij + 1 and we have

FJ =
∑

R∈Chain(J)

(−1)|R| ·
∏
j∈J

(
(1 − lj) − lj ·

∑
∅�=N⊆M(R,j)−{j}

∏
i∈N

xij

)
(2.2)

and F̂J is again obtained from FJ by the exchange xij ↔ xji. It is clear that both
polynomials FJ and F̂J are linear in each of the variables, so to prove the lemma it is
enough to show that they have the same values if each of li, i ∈ J , equals either 0 or 1.
Let us fix any subset Z ⊆ J and put

hi(Z) =
{

0 if i ∈ Z,

1 if i ∈ J − Z.
(2.3)

Then the value of FJ for li = hi(Z) determined by (2.3) is a sum where each summand
is up to a sign equal to

X(A) =
∏

xij (2.4)

(i→j)∈A
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for an oriented graph A ∈ OrGr(J), where OrGr(J) means the set of all oriented graphs
(without loops) on the set of vertices J and (i → j) ∈ A denotes that A contains the
arrow going from i to j. It is clear that each summand appearing in this value of FJ

corresponds to an A ∈ OrGr(J) whose set Z(A) of all vertices with in-degree zero is equal
to Z, but we need to compute the total contribution of A. Let us fix an A ∈ OrGr(J)
with Z(A) = Z, this A gives a summand for exactly those R ∈ Chain(J) which satisfy
M(R, i) ⊆ M(R, j) for each (i → j) ∈ A. Therefore the value of FJ for li = hi(Z)
determined by (2.3) is

FJ

(
li := hi(Z); i ∈ J

)
= −(−1)|J−Z|

∑
A∈OrGr(J)
Z(A)=Z

nAX(A), (2.5)

where

nA = −
∑

R∈Chain(J)
∀(i→j)∈A: M(R,i)⊆M(R,j)

(−1)|R|.

Similarly

F̂J

(
li := hi(Z); i ∈ J

)
= −(−1)|J−Z|

∑
A∈OrGr(J)
Z(Â)=Z

nÂX(A), (2.6)

where Â means the dual graph to A, i.e. for each i, j ∈ J , i �= j, we have (i → j) ∈ Â if
and only if (j → i) ∈ A.

There is a one-to-one correspondence between Chain(J) and the set of all surjective
mappings J → {1, 2, . . . , r} for some positive integer r � |J | as follows: a chain R ∈
Chain(J) of the form

∅ = R0 � R1 � R2 � · · · � Rr = J

corresponds to the mapping fR : J → {1, 2, . . . , r} determined by

fR(i) = min{a | i ∈ Ra}

for any i ∈ J . It is clear that |R| = r + 1 = |fR(J)| + 1. Having fixed the oriented
graph A, we need to compute nA =

∑
f (−1)|f(J)| where f runs over the set of all

surjective mappings J → {1, 2, . . . , r} such that f(i) � f(j) for each (i → j) ∈ A. Let
� be the coarsest preordering on J containing A, i.e. we have i � j if and only if i = j

or there is an oriented path in A going from i to j. Such a preordering can be viewed as
a partially ordered decomposition (DA,�) on J : any i, j ∈ J belong to the same coset
[i] = [j] ∈ DA if and only if both i � j and j � i; we have [i] � [j] if and only if i � j.
So we are computing nA =

∑
f (−1)|f(DA)| for f running over the set of all surjective

isotone mappings (DA,�) → ({1, 2, . . . , r},�). We shall use the following
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Lemma 2.2. For any finite non-empty ordered set (D,�) let

n(D,�) =
∑
f

(−1)|f(D)|

where f runs over the set of all surjective isotone mappings

(D,�) →
(
{1, 2, . . . , r},�

)
for all r. Then

n(D,�) =
{

(−1)|D| if (D,�) is an antichain, i.e. � is equality,
0 otherwise.

We postpone the proof of Lemma 2.2 to finish the proof of Proposition 2.1 first.
Lemma 2.2 implies nÂ = nA. Moreover, (DA,�) is an antichain if and only if the
coarsest preordering on J containing A is an equivalence, which is the case if and only
if there is no arrow in A between vertices belonging to different components of A (by
a component of A we mean a maximal connected subgraph of A, so a subgraph having
a path from any vertex to any other vertex). In this case any i ∈ J has in-degree
zero if and only if it is the only vertex in its component, which appears if and only if
its out-degree is zero. Lemma 2.2 together with (2.5) and (2.6) imply FJ(li = hi(Z);
i ∈ J) = F̂J(li = hi(Z); i ∈ J) and Proposition 2.1 follows. �
Proof of Lemma 2.2. We shall use induction with respect to the number a of maximal
elements in (D,�). At first let us assume a = 1 and let m denote the only maximal
element. The statement is clear if D = {m}, so we can assume that |D| > 1. Consider
any surjective isotone mapping f : D → {1, 2, . . . , r}. We have m ∈ f−1(r). On the one
hand, if f−1(r) = {m} we define f̃ : D → {1, 2, . . . , r − 1} by

f̃(u) =
{
f(u) if u �= m,

r − 1 if u = m.

On the other hand, if f−1(r) �= {m} we define f̃ : D → {1, 2, . . . , r + 1} by

f̃(u) =
{
f(u) if u �= m,

r + 1 if u = m.

Then f �→ f̃ is a parity-changing involution on our set of all surjective isotone mappings
f : D → {1, 2, . . . , r} and the lemma follows for a = 1.

Let us now assume that a > 1 and that the lemma has been proved for any finite
ordered set whose number of maximal elements is smaller than a. Let us choose maximal
elements m1 �= m2 ∈ D. We define a new ordering �1 on D enlarging � by relations
d �1 m1 for all d ∈ D, d � m2. Similarly a new ordering �2 on D is obtained by enlarging
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� by relations d �2 m2 for all d ∈ D, d � m1. Finally, let the ordered set (D′,�3) be
obtained from (D,�) as follows: we amalgamate the two elements m1 and m2 into a new
element m, so D′ = {m} ∪D − {m1,m2}, and modify � by adding relations d �3 m if
and only if d � m1 or d � m2.

A surjective mapping f : D → {1, 2, . . . , r} is isotone with respect to (D,�1) if and
only if it is isotone with respect to (D,�) and satisfies f(m1) � f(m2). Similarly f is
isotone with respect to (D,�2) if and only if it is isotone with respect to (D,�) and
satisfies f(m1) � f(m2). Moreover there is a one-to-one correspondence between the
set of all surjective mappings f ′ : D′ → {1, 2, . . . , r} which are isotone with respect to
(D′,�3) and the set of all surjective mappings f : D → {1, 2, . . . , r} which are isotone
with respect to (D,�) and satisfy f(m1) = f(m2). Therefore

n(D,�) = n(D,�1) + n(D,�2) − n(D′,�3)

and the lemma follows from the induction hypothesis as the number of maximal elements
in any of the three involved ordered sets equals a− 1, noticing that neither (D,�1) nor
(D,�2) is an antichain, and (D′,�3) is an antichain if and only (D,�) is. �
3. Proof of the main result

Now we can use the result of the previous section to start the proof of Theorem 1.1.
Recall that for each i ∈ I we have defined the projection pri : G → Ti by the condition
g =

∏v
i=1 pri(g) for each g ∈ G and that gij = pri(λj) for each i, j ∈ I, so λj =

∏
i∈I gij ,

see (1.2).

Proof of Theorem 1.1. Recall that U ′ = π(U), where π : Q[G] ⊕ Zv → Q[G] is the
projection to the first coordinate. So the restriction π̃ : U → U ′ is surjective and satisfies
π̃(ρJ) = ρ′J for each J ⊆ I. Since

ker π̃ = U ∩ Zv = 〈t1e1, . . . , tvev〉

due to part (ii) of Lemma 1.5, this gives a bijection

HomZ[G]
(
U ′,Z[G]

)
→

{
ψ ∈ HomZ[G]

(
U,Z[G]

)
; ∀j ∈ I: ψ(tjej) = 0

}
determined by sending ϕ to ϕ ◦ π̃ for each ϕ ∈ HomZ[G](U ′,Z[G]). Therefore part (i) of
Theorem 1.1 is a consequence of part (ii).

To prove part (ii), let us fix some ψ ∈ HomZ[G](U,Z[G]). For any N ⊆ I and any
h ∈ TN , we infer from (1.9) that h · ψ(ρN ) = ψ(h · ρN ) = ψ(ρN ) and so

ψ(ρN ) = s(TN ) ·
∑

h∈TI−N

aNh · h (3.1)

for suitable aNh ∈ Z. For any M , J such that M ⊆ J ⊆ I and |J | > 1 we have
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s(TM ) · ρI−J = s(T(I−J)∪M ) ·
∏
i∈J

(
1 − t−1

i λ−1
i s(Ti)

)
= ρI−(J−M) ·

∏
j∈M

(
1 − λ−1

j

)
and so

s(TM ) · ψ(ρI−J ) = ψ(ρI−(J−M)) ·
∏
j∈M

(
1 − λ−1

j

)
.

This gives (always assuming |J | > 1)

s(TM ) · s(TI−J) ·
∑

h∈TJ−M

∑
g∈TM

aI−J
gh · h

=
(∏

j∈M

(
1 − λ−1

j

))
· s(TI−(J−M)) ·

∑
h∈TJ−M

a
I−(J−M)
h · h

= s(TM ) · s(TI−J ) ·
(∏

j∈M

(
1 − λ−1

j

∏
i∈I−(J−M)

gij

))
·

∑
h∈TJ−M

a
I−(J−M)
h · h.

Since λ−1
j

∏
i∈I−(J−M) gij =

∏
i∈J−M g−1

ij ∈ TJ−M , we have (for |J | > 1)

∑
h∈TJ−M

∑
g∈TM

aI−J
gh · h =

(∏
j∈M

(
1 − λ−1

j

∏
i∈I−(J−M)

gij

))
·

∑
h∈TJ−M

a
I−(J−M)
h · h. (3.2)

The analogous formula for the case M = J = {j} follows from (1.11) in the same way
and reads ∑

g∈Tj

aI−{j}
g = ψ1(tjej). (3.3)

For each N ⊆ I we define πN : TN → Z[TN ] by

πN (g) =
∏
i∈N

(
pri(g) − 1

)
for any g ∈ TN . Moreover, let

αN =
∑
g∈TN

aI−N
g · g and ωN =

∑
g∈TN

aI−N
g · πN (g).

Therefore (3.1) gives ψ(ρN ) = s(TN ) · αI−N . Since πN (g) ∈
∏

i∈N Ii we have ωN ∈∏
i∈N Ii, too. Finally, to formulate the following lemma we need to define

ω′
N =

{
ωN , if N ⊆ I, |N | �= 1,
ω{j} + ψ1(tjej), if N = {j}. (3.4)
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Lemma 3.1. For each ∅ �= J ⊆ I we have

αJ = ω′
J +

∑
∅�=N�J

ω′
N · (−1)|J−N |

·
∑

∅=R0�R1�···�Rr=J−N

(−1)r ·
(

r∏
c=1

∏
j∈Rc−Rc−1

(
1 − λ−1

j

∏
i∈I−(J−Rc)

gij

))
. (3.5)

Let us finish the proof of Theorem 1.1 and prove Lemma 3.1 afterwards. For the
special case J = I, (3.5) states

αI = ω′
I +

∑
∅�=N�I

ω′
N · (−1)|I−N |

·
∑

∅=R0�R1�···�Rr=I−N

(−1)r ·
(

r∏
c=1

∏
j∈Rc−Rc−1

(
1 − λ−1

j

∏
i∈Rc

gij

))
. (3.6)

Let us fix N such that ∅ �= N � I. Proposition 2.1 gives the equality of polynomials
FI−N = F̂I−N , where

FI−N =
∑

∅=R0�R1�···�Rr=I−N

(−1)r+1 ·
(

r∏
c=1

∏
j∈Rc−Rc−1

(
1 − lj

∏
i∈Rc−{j}

yij

))

and F̂I−N is obtained from FI−N by the exchange yij ↔ yji. Therefore the two poly-
nomials have the same values if we set the indeterminates yij to be equal to gij ∈ Ti

defined by (1.2) and lj = λ−1
j . Noticing that gjj = 1 for each j ∈ I, this equality for

each ∅ �= N � I leads to the following variant of (3.6):

αI = ω′
I +

∑
∅�=N�I

ω′
N · (−1)|I−N |

·
∑

∅=R0�R1�···�Rr=I−N

(−1)r ·
(

r∏
c=1

∏
j∈Rc−Rc−1

(
1 − λ−1

j

∏
i∈Rc

gji

))
. (3.7)

We have ψ(ρ∅) = αI . If v = 1 then

ψ(ρ∅) = α{1} = ω′
{1} = ω{1} + ψ1(t1e1) ≡ ψ1(t1e1) (mod I1).

Let us assume v > 1 now. We have
∏

i∈Rc
gji ∈ Tj , which gives

1 − λ−1
j

∏
i∈Rc

gji ∈ Ij ,

and ωN ∈
∏

i∈N Ii. The theorem now follows from (3.7) using (3.4) and Proposition 2.1
again. �
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Proof of Lemma 3.1. For any g ∈ TJ we have g =
∏

i∈J pri(g) and

πJ(g) =
∏
i∈J

(
pri(g) − 1

)
=

∑
M⊆J

(−1)|M |
∏

i∈J−M

pri(g).

Hence

αJ =
∑
g∈TJ

aI−J
g ·

(
πJ(g) −

∑
∅�=M⊆J

(−1)|M |
∏

i∈J−M

pri(g)
)
,

so

αJ = ωJ −
∑

∅�=M⊆J

(−1)|M |
∑

h∈TJ−M

∑
g∈TM

aI−J
gh · h (3.8)

and, on the one hand, if |J | > 1 then (3.2) gives

αJ = ω′
J −

∑
∅�=M⊆J

(−1)|M |
(∏

j∈M

(
1 − λ−1

j

∏
i∈I−(J−M)

gij

))
· αJ−M . (3.9)

On the other hand, if J = {j}, then we obtain by (3.8) and (3.3)

αJ = ωJ +
∑
g∈Tj

aI−{j}
g = ωJ + ψ1(tjej) = ω′

J . (3.10)

But this means that (3.9) holds true also for J = {j} because

1 − λ−1
j

∏
i∈I

gij = 0. (3.11)

We shall prove by induction with respect to |J | � 1 that the recurrence relation (3.9)
implies the explicit relation (3.5). Indeed, if J = {j} then (3.5) is given by (3.10). Let
us fix any N ⊆ I such that |N | > 1 and let us suppose that the formula (3.5) has been
proved for any ∅ �= J � N . Using (3.9) and (3.11) we have

αN = ω′
N −

∑
∅�=J�N

(−1)|N−J|
( ∏

j∈N−J

(
1 − λ−1

j

∏
i∈I−J

gij

))
· αJ .

The induction hypothesis gives

αN = ω′
N −

∑
∅�=J�N

(−1)|N−J|
( ∏

j∈N−J

(
1 − λ−1

j

∏
i∈I−J

gij

))

·
(
ω′
J +

∑
ω′
M · (−1)|J−M | ·

∑
(−1)r
∅�=M�J ∅=R0�R1�···�Rr=J−M
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·
(

r∏
c=1

∏
j∈Rc−Rc−1

(
1 − λ−1

j

∏
i∈I−(J−Rc)

gij

)))
. (3.12)

For the set N that was fixed previously let us define the following set of indices

X =
{
(T,R1, . . . , Rr)

∣∣ ∅ �= T � N, r > 0, ∅ �= R1 � · · · � Rr = N − T
}
.

The formula (3.5) for N will be proved if we show that

αN = ω′
N +

∑
(T,R1,...,Rr)∈X

ω′
T · (−1)|N−T |+r

·
r∏

c=1

∏
j∈Rc−Rc−1

(
1 − λ−1

j

∏
i∈I−(N−Rc)

gij

)
, (3.13)

where R0 = ∅. Similarly, we define

Y =
{
(J,M,R1, . . . , Rr)

∣∣ ∅ �= M ⊆ J � N, r � 0, ∅ �= R1 � · · · � Rr = J −M
}
,

where the case r = 0 gives (J, J) ∈ Y for any ∅ �= J � N . Then (3.12) can be written as

αN = ω′
N −

∑
(J,M,R1,...,Rr)∈Y

ω′
M · (−1)|N−M |+r

( ∏
j∈N−J

(
1 − λ−1

j

∏
i∈I−J

gij

))

·
r∏

c=1

∏
j∈Rc−Rc−1

(
1 − λ−1

j

∏
i∈I−(J−Rc)

gij

)
, (3.14)

where again R0 = ∅. We can define a mapping Y → X as follows: the image of (J, J) ∈ Y

is (J,N − J) ∈ X and (J,M,R1, . . . , Rr) ∈ Y with r > 0 is mapped to (M,N − J,R1 ∪
(N − J), . . . , Rr ∪ (N − J)) ∈ X. One can see that this is a bijection which matches
up the summands in the two expressions for αN just given, see (3.13) and (3.14). The
lemma follows. �
4. Another description of the coefficients ck

To be able to describe the coefficients ck, k ∈ I, appearing on the right hand side
of (1.3) in another way, let OrGr(k, I) be the set of all graphs B ∈ OrGr(I) such that
the in-degree of the vertex k is zero and that for each vertex i ∈ I, i �= k, there is at
least one oriented path going from k to i.

Proposition 4.1. For any k ∈ I we have

ck
∏

λi =
∑

X ′(B), (4.1)

i∈I−{k} B∈OrGr(k,I)
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where

X ′(B) =
∏

(i→j)∈B

(gij − 1).

Proof. Let J = I − {k}. Theorem 1.1 and the definition of the polynomial FJ (see (2.1)
and (2.2)) give

ck = (−1)v · FJ

(
li := λ−1

i ; yij := gij
)

= (−1)v · FJ

(
li := λ−1

i ; xij := gij − 1
)
.

Since FJ is a linear polynomial in each variable lj , we have the equality

FJ =
∑
Z⊆J

(∏
i∈Z

(1 − li)
)( ∏

i∈J−Z

li

)
FJ

(
li := hi(Z)

)
,

where hi(Z) are determined by (2.3), because this holds true if each li is either 0 or 1.
Let OrGr′(J) be the set all graphs A ∈ OrGr(J) such that there is no arrow in A

between vertices belonging to different components of A. Equalities (2.4) and (2.5) and
Lemma 2.2 give

FJ = −
∑
Z⊆J

(∏
i∈Z

(1 − li)
)( ∏

i∈J−Z

li

)
(−1)|J−Z|

∑
A∈OrGr′(J)
Z(A)=Z

(−1)comp(A)X(A)

= (−1)v
∑

A∈OrGr′(J)

( ∏
i∈Z(A)

(1 − li)
)( ∏

i∈J−Z(A)

li

)
(−1)comp(A)−|Z(A)|X(A),

where comp(A) means the number of components of A. Hence

ck
∏
i∈J

λi =
∑

A∈OrGr′(J)

( ∏
i∈Z(A)

(λi − 1)
)

(−1)comp(A)−|Z(A)|X ′(A).

Due to (1.2) we have

λj − 1 = −1 +
∏
i∈I

gij =
∑

∅�=L⊆I−{j}

∏
i∈L

(gij − 1)

and so

ck
∏
i∈J

λi =
∑

A∈OrGr′(J)

(−1)comp2(A)X ′(A)
∏

j∈Z(A)

∑
∅�=Lj⊆I−{j}

∏
i∈Lj

(gij − 1), (4.2)

where comp2(A) = comp(A) − |Z(A)| is the number of components of A consisting
of at least two vertices. Let us call a graph B ∈ OrGr(I) a completion of the graph
A ∈ OrGr′(J) if B is obtained from A by adding a new vertex k and by adding arrows
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ending in elements of Z(A) such that every j ∈ Z(A) is the end point of at least one
(new) arrow. (Note that such arrow can start at k or at j′ ∈ Z(A), j′ �= j, or in J−Z(A).)
Such a graph B satisfies that the in-degree of k is zero while the in-degree of any other
vertex is positive and that there is no arrow going from any vertex in Z(A)∪{k} to any
vertex in J − Z(A). Then we have

X ′(A)
∏

j∈Z(A)

∑
∅�=Lj⊆I−{j}

∏
i∈Lj

(gij − 1) =
∑

B∈Compl(A)

X ′(B),

where Compl(A) means the set of all completions of A.
Let OrGr′(k, I) be the set of all graphs B ∈ OrGr(I) such that the in-degree of k is

zero while the in-degree of any other vertex is positive. Then the equality (4.2) can be
rewritten as

ck
∏
i∈J

λi =
∑

B∈OrGr′(k,I)

X ′(B)
∑

A∈OrGr′(J)
B∈Compl(A)

(−1)comp2(A). (4.3)

Let us fix B ∈ OrGr′(k, I). To understand the last sum in the previous equation, we
need to know which graphs A ∈ OrGr′(J) have B as their completion. Let U(B) be the
set of all vertices i ∈ J which cannot be reached from the vertex k by a path in B. So
there is no arrow in B going from any vertex in I − U(B) to any vertex in U(B).

On the one hand, suppose that U(B) = ∅, which means that B ∈ OrGr(k, I). If B is
a completion of A ∈ OrGr′(J), then Z(A) = J so A has no arrows. Hence there is only
one such A and the contribution to (4.3) is X ′(B).

On the other hand, suppose that U(B) �= ∅, which means B /∈ OrGr(k, I). Let us
decompose the subgraph U(B) into its components. The set of these components can
be understood again as an oriented graph: there is an arrow between two components
if and only if there is at least one arrow in U(B) between vertices in these components.
Let C1, . . . , Cn be the components which are roots of this acyclic graph on components
of U(B); it is clear that n � 1 because U(B) is finite and nonempty, and also that
each component Cr has at least two vertices because the in-degree of each its vertex is
positive. Recalling that graphs A ∈ OrGr′(J) have no arrows between components, it is
clear that B can be a completion of A if and only if J −Z(A) is a union of any number
of components C1, . . . , Cn. Then A has no other arrows, but the arrows given by the
chosen components C1, . . . , Cn, and comp2(A) equals the number of these components.
Therefore the total contribution of these A’s in formula (4.3) is

X ′(B)
∑

Y⊆{C1,...,Cn}
(−1)|Y | = 0

and the proposition follows, because OrGr(k, I) is just the set of all B ∈ OrGr′(J)
satisfying U(B) = ∅. �
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Remark 4.2. Note that each B ∈ OrGr(k, I) which is not a tree has at least v arrows
and that all factors gij −1 belong to the augmentation ideal IG of G. Therefore the right
hand side of (4.1) is congruent modulo IvG to the analogous sum, S(k, I) say, taken over
all trees B ∈ OrGr(k, I). We also see that the left hand side of (4.1) is congruent modulo
IvG to ck since ck ∈ Iv−1

G . Using the Kirchhoff–Tutte theorem, the sum S(k, I) can be
written as the (k, k)th minor of the matrix with zero row sums whose nondiagonal entries
are 1−gji (where i is the row index as usual). Modulo the vth power of the augmentation
ideal, this is congruent to the (k, k)th minor of the matrix with zero row sums whose
nondiagonal entries are g−1

ji − 1. This is exactly the description of the coefficients used
in Proposition 5.5 of [8] (see also page 114 and Lemma 5.4 of loc. cit.).

Remark 4.3. It should be noted that the right hand side of (4.1) has very many sum-
mands, much more than the sum S(k, I) involving trees and also than the sums in
the formulae for cj in Theorem 1.1. To be a little more concrete, for v = 3, we have
|OrGr(k, I)| = 8, whereas there are only 3 trees with root k and 3 chains. For v = 4,
the corresponding numbers are 304, 16, and 13. The number of trees is vv−2 due to
the well-known formula, but we do not know any counting formulae for the other two
objects, the number of chains or the number of graphs in OrGr(k, I). We have an upper
bound (and conjectural asymptotic formula) for the number of chains and this shows
that the ratio of the number of chains to the number of trees goes to zero for |I| → ∞.
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