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1. Introduction

Studying the non-vanishing of special L-values is interesting as fascinating mathemat-
ical techniques and ingredients are involved. There are plenty of non-vanishing results 
from which important arithmetic consequences arise.

Rohrlich [8] shows the non-vanishing of the special values of cyclotomic modular 
L-values by estimating the Galois averages of fast convergent series expressions of the 
special L-values. As a consequence, Rohrlich [8] deduces that the Mordell-Weil groups 
of CM elliptic curves over the cyclotomic Zp-extension of Q are finitely generated.

One can consider more general settings. Rohrlich [9] proves that the L-values of auto-
morphic forms on GL(2) are non-vanishing for infinitely many GL(1) twists by modifying 
the idea of Shintani cone decomposition [10] to count the number of ideals with bounded 
norm in an arithmetic progression. Van Order [12] gives a proof of the non-vanishing of 
cyclotomic L-values of non-dihedral automorphic forms on GL(2) over totally real fields.

The main result of the present paper is to show the non-vanishing of the special 
L-values of automorphic forms on GL(2) over general number fields twisted by Hecke 
characters of p-power order and totally split prime power conductors, which is a gener-
alization of Rohrlich [8, Theorem] or Luo and Ramakrishnan [5, Proposition 2.2].

1.1. Main theorems

Let us give some notations and settings. Let F be a number field, N an integral ideal 
of F , S(k,m),J(N, χ) the space of cuspidal automorphic forms over F of a cohomological 
weight (k, m), type J and level N with a central character χ. Let k

2 ∈ 1
2Z>0 be the 

central critical point for f in the arithmetic normalization. Let p be a prime ideal of 
F lying above an odd prime number p. Let f ∈ S(k,m),J(N, χ) be a newform, ψ be a 
Hecke character of p-power order with p-power conductors, L(s, f ⊗ ψ) the L-function 
attached to f and ψ, Kf the Hecke field of f over Q, which is the field adjoining all the 
Fourier-Whittaker coefficients of f to Q, and n0 := max{m ∈ Z| μpm ⊂ Kf}.

To obtain fast convergent series expressions of twisted modular L-values, namely the 
approximate functional equation of the L-function, we have to find the Fourier-Whittaker 
expansions of automorphic forms and its Mellin transforms. Also we need Atkin-Lehner 
theory for automorphic forms of GL(2) over F . These ingredients will be developed in 
Section 2 and 3 together with a brief introduction to automorphic forms of GL(2) over F .

In Section 5, we estimate the number of ideals of bounded norm and the lower bound 
of absolute norms of elements in an arithmetic progression, which make it possible to 
calculate the limit of the Galois averages for our case. These are achieved by using the 
coherent cone decomposition (see Rohrlich [9]).

Define the Galois averages of special L-values by

Lav(f ⊗ ψ) := 1
[Kf (ψ) : Kf ]

∑
L
(k

2 , f ⊗ ψσ
)
.

σ∈Gal(Kf (ψ)/Kf )
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In Section 4 and Section 6, we will discuss the Galois averages of twisted L-values and 
obtain their estimations, which play the key role in the proofs of main theorems. We 
would like to remark that for a prime p of F which does not split totally, the corre-
sponding estimations of the Galois averages over the characters are worse than ones in 
the present paper, due to the existence of the corank one group of p-adic units.

We set θ ∈ [0, 12 ] as a bound of an exponent of the eigenvalues of a Hecke eigenform. 
Let us assume that p is a totally split prime and coprime to hF dFN. Then we obtain an 
estimation of the Galois averages of special L-values which depends on θ:

Theorem 1.1. Suppose some parity condition (see (3.8) and Remark 3.3) on F , (k, m)
and J . If we have θ less than 1

4 , an estimation of Lav(f ⊗ ψn) is given by

Lav(f ⊗ ψn) = 1 + o(1) (1.1)

as n tends to the infinity.

Note that the more optimal θ we have, the better estimation on the error of the Galois 
averages we have.

Let (ψn)n be a primitive element of Homcont(Cl(F, p∞), μ∞). By applying Theorem 1.1
together with the algebraicity result of Hida [3] and the bound θ = 7/64, which is 
obtained by Blomer-Brumley [1] and Nakasuji [6], we obtain the following non-vanishing 
result:

Theorem 1.2. Suppose the parity condition on F , (k, m) and J . Then we have

L
(k

2 , f ⊗ ψ
)
�= 0

for almost all Hecke characters ψ over F of p-power order and p-power conductor.

Kim-Sun [4] obtain partial results toward the mod p non-vanishing of cyclotomic 
modular L-values by studying the homological nature of modular symbols. Sun [11]
proves that the Hecke field of a newform can be generated by a single special value of 
the modular L-function, by studying an additive variant of the Galois average, which 
supersedes the non-vanishing results. The first named author plans to generalize the 
results in Kim-Sun [4] and Sun [11] to the current setting.

1.2. Notations

Let us provide some notations which will be used globally in this paper. Let F be a 
number field, AF the adele ring of F , A(∞)

F the finite adele of F , F∞ := F ⊗Q R the 
infinite adele of F , OF the integer ring of F , dF the different ideal of F/Q, dF a finite 
idele of dF , DF the discriminant of F , hF the class number of F , and | ·|AF

= | ·|F∞ | ·| (∞)
AF
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the idelic norm. For any place v of F , denote by OF,v the completion of OF with respect 
to v. Let Â := A ⊗Z Ẑ for a Z-algebra A. Let p be an odd prime number coprime to 
DF , ζm a primitive pm-th root of unity and μm the set of pm-th roots of unity. Let us 
set by N the norm map of F/Q (or 

∏
p|p NFp/Qp

) and by Tr the trace map of F/Q (or ∑
p|p TrFp/Qp

). For z ∈ C, denote e(z) := exp(2πiz).

2. Cusp forms

2.1. Cusp forms on GL(2)

In this section, we will briefly give the definition of cuspidal automorphic forms on 
GL2(AF ) of cohomological weight. From now on, these are called cusp forms for simplic-
ity. All the settings in this section come from Hida [3].

Let us give some notations. Let IF := Gal(F/Q) and Z[IF ] the free Z-module gener-
ated by IF . Let id and c ∈ IF be the identity map and complex conjugation on F (or on 
C), respectively. Let Σ(R) be the set of real places of F , Σ(C) the set of complex places 
of F , and J a subset of Σ(R). Note that Σ(R) and Σ(C) can be considered as subsets in 
IF . Let k =

∑
σ∈IF

kσσ and m =
∑

σ∈IF
mσσ be elements in Z[IF ] satisfying following 

conditions:

1. kσ ≥ 2,
2. kσ + 2mσ = kτ + 2mτ for any σ, τ ∈ IF ,
3. kσ = kσ c for any σ ∈ Σ(C).

Let t =
∑

σ∈IF
σ, n = k − 2t, and n∗ =

∑
σ∈IF

n∗
σσ ∈ Z[IF ], where n∗

σ = nσ + nσ c + 2
for σ ∈ Σ(C) and n∗

σ = 0 for σ ∈ Σ(R) ∪Σ(C) c. Let N be a non-zero integral ideal of F
and define subgroups of GL2(ÔF ) by

U0(N) :=
{(

a b
c d

)
∈ GL2(ÔF ) : c ∈ N̂

}
,

U1(N) :=
{(

a b
c d

)
∈ U0(N) : d ∈ 1 + N̂

}
.

Let us denote xσ =
(

Xσ

Yσ

)
, x = ⊗σ∈Σ(C)xσ where Xσ, Yσ’s are indeterminates. For a 

commutative ring R with unity and d =
∑

IF
dσσ ∈ Z[IF ], let L(d, R) := ⊗σ∈IF L(dσ, R)

where L(dσ, R) is the space of homogeneous polynomials of variable xσ of degree dσ with 
the coefficients in R. Note that there is a usual action of GL(2) on L(d, R). Let C+

F,∞
be the maximal compact subgroup of SL2(F∞), which is given by

C+
F,∞ =

∏
σ∈Σ(R)

SO2(R) ×
∏

σ∈Σ(C)

SU2(C).
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Definition 2.1 (Hida [3, Section 2]). Let χ : F×\A×
F → C× be a Hecke character of 

modulus N satisfying χ∞(z∞) = z
−(n+2m)
∞ for z∞ ∈ F×

∞. A cusp form on GL2(AF ) of 
weight (k, m), a type J , a level U0(N), and a central character χ, is a C∞-function 
f : GL2(AF ) → L(n∗, C) such that

(1) Dσf =
(n2

σ

2 + nσ

)
f for σ ∈ IF , where Dσ is the Casimir operator for GL2 corre-

sponding to σ.
(2) f(γzgu) = χ(z)χN(u)f(g) for γ ∈ GL2(F ), z ∈ A×

F , g ∈ GL2(AF ) and u ∈ U0(N)
where χN

( (
a b
c d

) )
:=

∏
v|N χ(dv).

(3) f(gu∞)(x) = e
(∑

σ∈J kσθσ −
∑

σ∈Σ(R)\J kσθσ
)
f(g)

(
⊗σ∈Σ(C) uσxσ

)
for g ∈

GL2(AF ) and

u∞ =
(((

cos(2πθσ) sin(2πθσ)
−sin(2πθσ) cos(2πθσ)

))
σ∈Σ(R)

, (uσ)σ∈Σ(C)

)
∈ C+

F,∞.

(4)
∫
F\AF

f(
(
u 0
0 1

)
g)(s)du = 0 for g ∈ GL2(AF ) where du is a Haar measure on F\AF .

From now on, we denote by S(k,m),J(N, χ) the space of the aforementioned cusp forms 
on GL2(AF ).

Let us denote by Kj the j-th modified Bessel function of the second kind, and write 
y∞ = (yσ)σ ∈ F×

∞. Let Wk,m : F×
∞ → L(n∗, C) be the Whittaker function defined by

Wk,m(y∞)(x) :=
∏

σ∈Σ(R)

Wk,m,σ(yσ) ·
⊗

σ∈Σ(C)

Wk,m,σ(yσ)(xσ)

where Wk,m,σ(yσ) := |yσ|−mσe(i|yσ|) for σ ∈ Σ(R) and

Wk,m,σ(yσ)(xσ) :=
n∗
σ∑

jσ=0

(
n∗
σ

jσ

)
y−mσ
σ y−mσ c

σ

(
yσ
i|yσ|

)nσ c+1−jσ

×Kjσ−1−nσ c(4π|yσ|)X
n∗
σ−jσ

σ Y jσ
σ

for σ ∈ Σ(C). Then we have the Fourier-Whittaker expansion of a cusp form on GL2(AF ):

Proposition 2.2 (Hida [3, Theorem 6.1]). Let F be the group of fractional ideals of F . For 
f ∈ S(k,m),J(N, χ), there exists a function af : F → C satisfying following properties:

(1) af (a) = 0 if a ∈ F is not integral.
(2) We have the Fourier-Whittaker expansion of f by

f

((
y x
0 1

))
(x) = |y|AF

∑
×

af (ξydF )Wk,m(ξy∞)(x)eF (ξx)

ξ∈F ,[ξ]=J
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for x, y ∈ AF , where [ξ] := {σ ∈ Σ(R) : ξσ > 0}, y∞ ∈ F∞ is the infinite 
part of y, and eF : AF /F → C× is the additive character such that eF (z∞) :=∏

σ∈Σ(R)∪Σ(C) e(TrFσ/R(zσ)) for z∞ = (zσ)σ ∈ F∞.

3. Approximate functional equations

Let N be a integral ideal of F , χ a Hecke character of modulus N satisfying 
χ∞(z∞) = z

−(n+2m)
∞ for z∞ ∈ F×

∞, and f ∈ S(k,m),J(N, χ). In this section, we obtain 
an approximate functional equation of the L-function L(s, f) of a cusp form f in a spirit 
of Luo-Ramakrishnan [5].

Let UF := F×
∞ × Ô×

F be the maximal compact subgroup of A×
F . Let F×

∞,+ :=∏
σ∈Σ(R) R

×
>0 ×

∏
σ∈Σ(C) C

× be the identity connected component of F×
∞. We can fix 

a representative {ai}hF
i=1 ⊂ A(∞),×

F of the class group Cl(F ) ∼= F×\A×
F /UF of F such 

that the corresponding integral ideals {ai}hF
i=1 of F . Let us set ti :=

(
ai 0
0 1

)
, then by the 

strong approximation theorem, we have

F×\A×
F
∼=

hF∐
i=1

ai ·
(
O×

F \UF

)
(3.1)

Define a number [d] ∈ Z by |a|2[d] := adad c for d ∈ Z[IF ]. In our case, [n + 2m] =
nσ + 2mσ, which is independent on σ ∈ IF due to our assumption on the weight (k, m). 
So from now on, we will write k := [n + 2m] + 2.

Recall that the L-function L(s, f) of f is given by analytic continuation of the following 
Dirichlet series

∑
0�=a<OF

af (a)
N(a)s for R(s) > k + 2

2

where a runs over the set of nonzero integral ideals of F .

3.1. Integral representation of special L-values

To obtain an approximate functional equation of the special L-value L
(
k
2 , f

)
, we need 

to compute the Mellin transform of f .
For j =

∑
σ∈Σ(C) jσσ ∈ Z[IF ], we define the j-th component fj of a L(n∗, C)-valued 

function f by fj(g) :=
∏

σ∈Σ(R) fσ(g) 
∏

σ∈Σ(C) fσ,jσ (g) where g ∈ GL2(AF ) and

f(g)(x) =
∏

σ∈Σ(R)

fσ(g) ·
⊗

σ∈Σ(C)

n∗
σ∑

jσ=0
fσ,jσ (g)Xn∗

σ−jσ
σ Y jσ

σ .

By Proposition 2.2, we obtain
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fj

((
y x
0 1

))
=|y|AF

∑
ξ∈F×,[ξ]=J

af (ξydF )W j
k,m(ξy∞)eF (ξx) (3.2)

where

W j
k,m(y∞) :=

∏
σ∈Σ(R)

W σ
k,m(yσ) ·

∏
σ∈Σ(C)

W σ,jσ
k,m (yσ)

and W σ
k,m(yσ)(xσ) =

∑n∗
σ

jσ=0 W
σ,jσ
k,m (yσ)Xn∗

σ−jσ
σ Y jσ

σ for σ ∈ Σ(C). Let us set the Haar 
measure d×y on F×\A×

F which satisfies the following conditions:

d×yσ =
{

dyσ

yσ
if σ ∈ Σ(R)

drdφ
2πr if σ ∈ Σ(C) and yσ = reiφ ∈ F×

σ

,
∫

O×
F,v

d×yv = 1 for v � ∞.

Note that we can easily obtain the following equality:

{ξ ∈ F× : [ξ] = J} = {ξε : ξ ∈ PF,J , ε ∈ O×
F,+}

where O×
F,+ is the group of totally positive units of F and PF,J is a representative set 

{ξ} of O×
F \F× such that [ξ] = J . Thus by using (3.1), (3.2), and the above equation, 

the Mellin transform of fn∗/2 is given by

∫
F×\A×

F

fn∗/2

((
y 0
0 1

))
|y|s−1

AF
d×y

=
hF∑
i=1

∑
ε∈O×

F,+

∑
ξ∈PF,J

∫
O×

F \UF

af (aiξεydF )|aiξεy|sAF
W

n∗/2
k,m (ξεy∞)d×y

(3.3)

for R(s) > 1 +maxσ∈IF mσ. As the integral in the above equation is invariant under the 
change of variable y �→ uy for u ∈ O×

F , (3.3) becomes

∑
∗

∫
O×

F \UF

af (aiξεuydF )|aiεuy|sAF
W

n∗/2
k,m (ξεuy∞)d×y

= 1
[O×

F : O×
F,+]

hF∑
i=1

∑
ξ∈PF,J

∫
Ô×

F

af (aiξy(∞)dF )|aiy(∞)|s
A(∞)

F

d×y(∞)

×
∫
F×

∞

W
n∗/2
k,m (ξy∞)|y∞|F∞d×y∞

(3.4)

where
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∑
∗ = 1

[O×
F : O×

F,+]
∑

u∈O×
F /O×

F,+

∑
ε∈O×

F,+

hF∑
i=1

∑
ξ∈PF,J

.

By the following integration formula (Hida [3, Section 7])

∞∫
0

ysKj(ay)
dy

y
= 2s−2a−sΓ

(s + j

2

)
Γ
(s− j

2

)
if R(s± j) > 0

and our assumption on the weight (k, m), we have∫
F×

∞

W
n∗/2
k,m (ξy∞)|y∞|sF∞d×y∞

=
∏

σ∈Σ(R)

∫
R×

W σ
k,m(ξσyσ)|yσ|sd×yσ ·

∏
σ∈Σ(C)

∫
C×

W σ,nσ c+1
k,m (ξσyσ)|yσ|2sd×yσ

=
∏

σ∈Σ(R)

2
|ξσ|s

∞∫
0

e−2πyys−mσ
dy

y
·

∏
σ∈Σ(C)

1
|ξσ|2s

∞∫
0

(
n∗
σ

nσ c+1

)
r2(s−mσ)K0(4πr)

dr

r

= 2|Σ(R)|

|N(ξ)|s
∏

σ∈Σ(C)

1
4

(
n∗
σ

nσ c+1

)
·
∏
σ∈IF

(2π)−(s−mσ)Γ(s−mσ)

(3.5)

for ξ ∈ PF,J and R(s) > maxσ∈IF mσ. Combining the equations (3.4) and (3.5), we 
obtain ∫

F×\A×
F

fn∗/2

((
y 0
0 1

))
|y|s−1

AF
d×y

=ΓF,k,m(s)
hF∑
i=1

∑
ξ∈PF,J

1
N(ξdF )s

∫
Ô×

F

af (aiξyδF )|aiy|sA(∞)
F

d×y

=ΓF,k,m(s)
hF∑
i=1

∑
a

af (aiadF )
N(aiadF )s = ΓF,k,m(s)L(s, f)

(3.6)

for R(s) > maxσ∈IF (1 + mσ), where a runs over the set of non-zero principal fractional 
ideals of F and

ΓF,k,m(s) := 2|Σ(R)||DF |s
[O×

F : O×
F,+]

∏
σ∈Σ(C)

1
4

(
n∗
σ

nσ c+1

)
·
∏
σ∈IF

(2π)−(s−mσ)Γ(s−mσ).

Note that the last equality holds due to the Proposition 2.2 (1).
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3.2. Fricke involution

To find an integral representation of the L-function which converges uniformly on 
the entire complex plane, we need to cut the integral representation (3.6) of completed 
L-function of f into two parts by using the Fricke involution, which is similar to the 
classical case.

From now on, we assume that f ∈ S(k,m),J(N, χ) is a newform. Let us write χ =
χ∞χ(∞) where χ∞ and χ(∞) are the infinite part and the finite part of χ, respectively. 
For any finite place v of F , let 
v be a uniformizer of OF,v. Let us define the Fricke 
involution WN for a newform f ∈ Sk,m,J (N, χ) by taking the right translation using an 

element 
(

0 −1
	N 0

)
of GL2(A(∞)

F ):

WNf(g)(x) := N(N)1− k
2 (χ| · |k−2

AF
)−1(det(g))f

(
g

(
0 −1


N 0

))
(x)

where χ| · |k−2
AF

is a normalization of χ and 
N :=
∏

v|N 

ordv(N)
v . Then we have the 

following fact:

Proposition 3.1. WNf is an element of S(k,m),J(N, χ). Furthermore, it is a Hecke eigen-
form.

Proof. See Hida [3, Section 8]. �
Using the decomposition GL2(AF ) = GL2(F∞) × GL2(A(∞)

F ), we have(
y 0
0 1

)(
0 −1


N 0

)
=

(
0 −1
1 0

)
·
((

1 0
0 y∞

)(
0 1
−1 0

)
,

(

N 0
0 y(∞)

))
where GL2(F ) acts on GL2(AF ) diagonally. From this matrix identity and the definition 
of cusp forms, it is easy to obtain that

WNf

((
y 0
0 1

))
(x) =N(N)1− k

2 e
(∑

σ∈J

kσ
4 −

∑
σ∈Σ(R)\J

kσ
4

)
|y|2−k

AF

× f

((

Ny−1 0

0 1

))((
0 1
−1 0

)
x
)
.

(3.7)

Also from the definition of WN and Proposition 3.1, we can check that

W 2
Nf = χ(∞)(−1)f = (−1)[F :Q](k−2)f.

From these formulas, we can obtain analytic continuation and the functional equation 
of a completed L-function Λ(s, f) attached to f , which is defined by

Λ(s, f) := ΓF,k,m(s)N(N) s
2L(s, f).
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Theorem 3.2. The completed L-function Λ(s, f) of f has analytic continuation to C. 
Furthermore, if

(−1)|Σ(R)|(k−2)C2
F,J,k = 1 (3.8)

where CF,J,k is a number defined by

CF,J,k = (−1)|Σ(R)|+
∑

σ∈Σ(C)(nσ+1)e
( ∑

σ∈Σ(R)\J

kσ
4 −

∑
σ∈J

kσ
4

)
,

then we have following functional equation:

Λ(s, f) = CF,J,kΛ(k − s,WNf) (3.9)

Remark 3.3. The condition (3.8) is satisfied, for example, when the weights kσ are all 
even.

Proof. By splitting integral (3.6) into two pieces, applying a change of variable y �→

Ny−1 and putting (3.7) into one of the integrals, one can obtain the following integral 
representation:

Λ(s, f) =N(N) s
2

∫
|y|AF

≥|	N|1/2
AF

fn∗/2

((
y 0
0 1

))
|y|s−1

AF
d×y

+ CF,J,kN(N)
k−s
2

∫
|y|AF

≥|	N|1/2
AF

WNfn∗/2

((
y 0
0 1

))
|y|k−1−s

AF
d×y.

From the above formula, we can easily obtain our functional equation. �
We follow Luo-Ramakrishnan [5]. Let Φ be an infinitely differentiable function on R×

>0
with compact support and 

∫∞
0 Φ(y)dyy = 1. Define

V1,s(x) := 1
2πi

2+i∞∫
2−i∞

κ(t)ΓF,k,m(s + t)x−t dt

t

V2,s(x) := 1
2πi

2+i∞∫
2−i∞

κ(−t)ΓF,k,m(s + t)x−t dt

t

where κ(t) :=
∫∞
0 Φ(y)yt dyy . By shifting the contour, one can show that V1,s and V2,s

satisfy following:
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Vi,s(x) = O(ΓF,k,m(R(s) + j))x−j) for all j ≥ 1 as x → ∞

Vi,s(x) = ΓF,k,m(s) + O

(
ΓF,k,m

(
R(s) − 1

2

)
x

1
2

)
as x → 0

(3.10)

where the implicit constants depend only on j and Φ. For R(s) > k+2
2 , maxσ∈IF (mσ−2)

and y > 0, we have

1
2πi

2+i∞∫
2−i∞

κ(t)ΓF,k,m(s + t)L(s + t, f)yt dt
t

=
∑

0�=a<OF

af (a)
N(a)sV1,s

(
N(a)
y

)
. (3.11)

By the Residue theorem, we have

ΓF,k,m(s)L(s, f) = 1
2πi

2+i∞∫
2−i∞

κ(t)ΓF,k,m(s + t)L(s + t, f)yt dt
t

+ 1
2πi

−2−i∞∫
−2+i∞

κ(t)ΓF,k,m(s + t)L(s + t, f)yt dt
t
.

Putting equations (3.9) and (3.11) in the above equation, we obtain

Λ(s, f) =N(N) s
2

∑
0�=a<OF

af (a)
N(a)sV1,s

(
N(a)
y

)

+ CF,J,kN(N)
k−s
2

∑
0�=a<OF

aWNf (a)
N(a)k−s

V2,k−s

(
N(a)y
N(N)

) (3.12)

when (−1)|Σ(R)|(k−2)C2
F,J,k = 1.

3.3. Twisted cusp forms

We will define and discuss a cusp form twisted by a Hecke character. In this subsection, 
we follow Hida [3, Section 6].

Let c be an integral ideal of F coprime to dF and ϕ : F×\A×
F → C× a Hecke 

character of finite order with conductor c. Denote by (c−1/OF )× the set of elements of ∏
v|c Fv corresponding to the elements of c−1/OF whose annihilator ideal is same as c. 

For a ∈ A(∞)
F , define the Gauss sum G(ϕ, a) of ϕ (Hida [3, Section 6]) by

G(ϕ, a) := ϕ−1(dF )
∑

u∈(c−1/OF )×
ϕ(
cu)eF (d−1

F au)

which is clearly independent on a choice of dF . Especially, we put G(ϕ, 1(∞)) = G(ϕ). 
Then we have the following lemma for the Gauss sums:
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Lemma 3.4.

1. For any a ∈ A(∞)
F , we have G(ϕ)ϕ(a) = G(ϕ, a).

2. |G(ϕ)|2 = N(c).
3. G(ϕ) = ϕ(∞)(−1)G(ϕ).
4. G(ϕ)G(ϕ) = ϕ(∞)(−1)N(c).

Proof. Those are immediate consequences of Neukirch [7, Chapter VII, Proposition 7.5]
by using a bijection (c−1/OF )× ∼= (ÔF /̂c)× defined by u �→ 
cu. �

Define a function f ⊗ ϕ : GL2(AF ) → L(n∗, C) by

f ⊗ ϕ(g)(x) := G(ϕ)−1ϕ(det(g))
∑

u∈(c−1/OF )×
ϕ(
cu)f

(
g

(
1 u
0 1

))
(x). (3.13)

Then we have the following proposition:

Proposition 3.5. We have f ⊗ ϕ ∈ Sk(N ∩ c2, χϕ2). Also we have af⊗ϕ(a) = af (a)ϕ(a).

Proof. A Hecke character ϕ of finite order with conductor c can be considered as a ray 
class character. Then our proof is immediate by Hida [3, Section 6]. �

Also we have the following relation between the Fricke involution and the twisting by 
Hecke characters:

Proposition 3.6. If c and N are coprime, then we have

WNc2(f ⊗ ϕ) = W (ϕ)(WNf) ⊗ ϕ

where W (ϕ) := N(c)1−kχ(
c)χN

( ( d −v	c

−	Ncu 	c

) )
ϕ(−
2

c )G(ϕ)2, a complex number of 
absolute value 1, and χN

( (
a b
c d

) )
:=

∏
v|N χ(dv).

Proof. In this proof, we keep using the bijection in the proof of Lemma 3.4. By our 
assumption, 
c and 
N
cu are coprime for any u ∈ (c−1/OF )×, thus there exist d and 

cv ∈ ÔF such that


cd−
N
cu
cv = 1.

From this, we can easily check that the map 
cu �→ 
cv is well-defined automorphism 
on (ÔF /̂c)×. By the definition of the Fricke involution, the equation (3.13), and Propo-
sition 3.5, we have
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WNc2(f ⊗ ϕ)(g)(x) =N(Nc2)1− k
2 (χϕ2| · |k−2)−1(det(g))G(ϕ)−1ϕ(det(g))ϕ(
Nc2)

×
∑

u∈(c−1/OF )×
ϕ(
cu)f

(
g

(
0 −1


Nc2 0

)(
1 u
0 1

))
(x).

Put the identities(
0 −1


Nc2 0

)(
1 u
0 1

)
=

(

c 0
0 
c

)(
1 v
0 1

)(
d −v
c

−
Ncu 
c

)(
0 −1


N 0

)
and 
Nc2uv ≡ −1 mod ĉ into the above equation, then by the Definition 2.1 and Propo-
sition 3.1, we obtain

WNc2(f ⊗ ϕ)(g)(x) =N(c)2−kχ(
c)χN

( ( d −v	c

−	Ncu 	c

) )
G(ϕ)−1ϕ(det(g))ϕ(−
2

c )

×
∑

u∈(c−1/OF )×
ϕ(
cv)WNf

(
g

(
1 v
0 1

))
(x).

Using Lemma 3.4, we can rewrite the above equation as

WNc2(f ⊗ ϕ) = N(c)1−kχ(
c)χN

( ( d −v	c

−	Ncu 	c

) )
G(ϕ)2ϕ(−
2

c )(WNf) ⊗ ϕ,

hence we are done. �
Note 3.7. Note that if c is a prime power, then one can easily observe that ϕ(
c) = 1, 
thus W (ϕ) = N(c)1−kχ(
c)χN

( ( d −v	c

−	Ncu 	c

) )
ϕ(−1)G(ϕ)2 if c is a prime power.

Finally, we can find a fast convergent series expression of the twisted special L-values: 
Suppose that c and dFN are coprime, and (−1)|Σ(R)|(k−2)C2

F,J,k = 1. Then by the equa-
tion (3.12) and Proposition 3.5, 3.6, we have

ΓF,k,m

(k
2

)
L
(k

2 , f ⊗ ϕ
)

=
∑

0�=a<OF

af (a)ϕ(a)
N(a)k/2

V1, k2

(
N(a)
y

)

+ CF,J,kW (ϕ)
∑

0�=a<OF

aWNf (a)ϕ(a)
N(a)k/2

V2, k2

(
N(a)y
N(Nc2)

)
.

(3.14)

4. Galois averages of Hecke characters

In this section, we are going to discuss the Galois averages of Hecke characters, which 
play a crucial role to show the non-vanishing of the special L-values.

Let K/Q be a finite extension and set n0 := max{m ∈ Z| μm ⊂ K}. For a Hecke 
character ϕ : F×\A×

F → C× of finite order with conductor c, or a ray class character, 
we define the Galois averages of ϕ over K by
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ϕav := 1
[K(ϕ) : K]

∑
σ∈Gal(K(ϕ)/K)

ϕσ

ϕι
av := 1

[K(ϕ) : K]
∑

σ∈Gal(K(ϕ)/K)

W (ϕσ)ϕσ

where K(ϕ) is the field determined by adjoining all the values of ϕ to K.
Let p be a prime ideal of F lying above p. We assume that p and dFN are coprime, 

which allows us to use the discussion in Subsection 3.3. We assume that p is coprime to 
hF , and ai is coprime to p for all i = 1, · · · , hF . Let us fix an embedding F ↪→ Fp. Let 
Cl(F, m) be the ray class group of a modulus m of F . Let us denote

OF,p := lim←−−
m

OF /p
m, O×

F := lim←−−
m

O×
F mod pm, and Cl(F, p∞) := lim←−−

m

Cl(F, pm).

Then we have the following exact sequences:

1 O×
F O×

F,p Cl(F, p∞) Cl(F ) 1 , (4.1)

1 1 + pOF,p O×
F,p (OF,p/p)× 1mod p

.

Let Δ be the torsion part of Cl(F, p∞), W be a split image of (OF,p/p)× in O×
F,p, and 

Γ′ := 1 + pOF,p. By decomposing (4.1) into the torsion part and the pro p-part, then we 
obtain the following exact sequences

W Δ Cl(F ) 1 , Γ′ Cl(F, p∞)p 1 .

Let us denote μ∞ := lim−−→n
μn and Ξp := Homcont(Cl(F, p∞), μ∞). Then there is a 

unique element (ψn)n ∈ lim−−→n
Homcont(Cl(F, pn), μ∞) ∼= Ξp corresponding to ψ. From 

now on, let us say that ψ ∈ Ξp is primitive if and the conductor of ψn is pn+n0 for 
all n. Let ψ = (ψn)n be a primitive element of Ξp, and ψ̃ be a lifting of ψ to Γ′. Let 
E := ker(ψ̃), then we have the following split exact sequence

1 E Γ′ μ∞ 1⊂ ψ̃
.

Let Γ be a split image of μ∞ in Γ′, whose Zp-rank is one. From the above exact 
sequences, we obtain the surjections

Δ × Γ′ ∼= Δ × E × Γ Cl(F, p∞) Cl(F, pn) , (4.2)

hence ψn can be considered as an element of Homcont(Δ × E × Γ, μ∞) for each n.
Let us define a filtration on Γ′ by Γ′

n := 1 + pnOF . Let us denote En := E ∩ Γ′
n and 

Γn := Γ ∩ Γ′
n. As ψn has a p-power order and (p, hF ) = 1, we have ψn(Δ) = {1}. So we 
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have ker(ψn) ⊃ Δ × E × Γn+n0 . The following proposition tells us that nonzero integral 
elements which make the Galois averages non-zero, are distributed sparsely.

Proposition 4.1. Let (hF , p) = 1. Let a be an element of Cl(F, p∞) and ψ = (ψn)n a 
primitive element of Ξp. Then for n ≥ 1, we have that ψn,av(a) �= 0 if and only if

a ∈
⋃

(b,ε,γ)∈Δ×E×Γn

{bεγ} =
⋃

(b,ε,γ)∈Δ×(E/En)×Γ′
n

{bεγ}.

Proof. Assume that ψn,av(a) �= 0, then we have ψn(a) ∈ μ∞ by our assumption. As the 
conductor of ψn is pn+n0 , ψ factors through Γ/Γn

∼= μn−1, hence ψn(a) = ζrn−1 for some 
r ∈ Z≥0. Our assumption ψn,av(a) �= 0 also says that

TrK(ζr
n−1)/K(ζrn−1) �= 0,

thus we have n − 1 − vp(r) ≤ n0. Note that we can write a = bεγ for some (b, ε, γ) ∈
Δ × E × Γ, thus we have

ψn(a) = ψn(γ) = ζrn−1 ∈ μn0 ,

which implies that γ ∈ Γn/Γn+n0
∼= μn0 .

Conversely, if a = bεγ for some (b, ε, γ) ∈ Δ × E × Γn, then ψn(a) = ψn(γ) ∈ μn0 . 
Thus, ψn(a) = ζrn0

for some r ∈ Z≥0. Hence the Galois average of ψn(a) is given by

ψn,av(a) = 1
[K(ψn) : K]

∑
σ∈Gal(K(ψn)/K)

(ζrn0
)σ = ζrn0

�= 0.

Assume that a = bεγ for some γ ∈ Γ′. Then by (4.2), we have bεγ = b′ε′γ′ for some 
b′ε′γ′ ∈ Δ ×E ×Γ. Then ψn(γ) = ψn(γ′), which implies that γ ∈ γ′Γ = Γ. The converse 
direction is clear as Γ ⊂ Γ′. In conclude, γ ∈ Γn.

For ε1, ε2 ∈ E , we can easily check that ε1Γ′
n = ε2Γ′

n if and only if ε1ε−1
2 ∈ En. �

The following lemma allows us to estimate the size of ψι
n,av.

Proposition 4.2. For any integral ideal a of F . We have

|ψι
n,av(a)| �F,n0,p N(p)n( 1

2− 1
f(F,p) )

where f(F, p) is the residue degree of F at p.

Proof. If a is not coprime to p, then clearly the above inequality holds. Thus [a]n ∈
Cl(F, pn). Then a = aiα for some i and α ∈ OF which is coprime to p. By the definition 
of W (ϕ) (see Proposition 3.6 and Note 3.7), we have
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|ψι
n,av(a)| = 1

N(p)n+n0

∣∣∣∣ 1
|G|

∑
σ∈G

ψ
σ

n(aiαβd−2
F )G(ψσ

n)2
∣∣∣∣ (4.3)

where G = Gal(K(ψn)/K). By the definition of Gauss sum, we have

G(ψσ

n)2 =
∑
u,v

ψ
σ

n(uv)eF
(

u + v

dF

n+n0
p

)
(4.4)

where β, u and v runs over (OF /p
n+n0)×. Combining the equations (4.3) and (4.4), and 

using change of variable β = uv, we obtain

|ψι
n,av(a)| = 1

N(p)n+n0

∣∣∣∣∑
β

ψn,av(aiαβd−2
F )

∑
uv=β

eF
(

u + v

dF

n+n0
p

)∣∣∣∣. (4.5)

As αd−2
F is coprime to p, we can abbreviate αβd−2

F by β. By Proposition 4.1, ψn,av(β) �= 0
if and only if β ∈ W · E/En+n0 · Γn/Γn+n0 . So (4.5) is equal to

1
N(p)n+n0

∣∣∣∣ ∑
κ∈W

∑
ε∈E/En+n0

∑
γ∈Γn/Γn+n0

ψn,av(γ)
∑
u

eF
(
u + κεγu−1

dF

n+n0
p

)∣∣∣∣. (4.6)

By Bruggeman-Miatello [2, Proposition 9], which is about the estimation on the Kloost-
erman sums, (4.6) is less than

1
N(p)n+n0

∑
κ∈W

∑
ε∈E/En+n0

∑
γ∈Γn/Γn+n0

∣∣∣∣∑
u

eF
(
u + κεγu−1

dF

n+n0
p

)∣∣∣∣
≤ 2
N(p)

n+n0
2

∑
κ∈W

∑
ε∈E/En+n0

∑
γ∈Γn/Γn+n0

1 = 2|W |pn0·rkZp (Γ)p(n+n0−1)·rkZp (E)

N(p)
n+n0

2
.

Note that we can observe that rkZp
(E) = rkZp

(Γ′) −rkZp
(μ∞) = f(F, p) −1 and rkZp

(Γ) =
rkZp

(μ∞) = 1, where rkZp
(M) is the Zp-rank of M . Thus we can conclude the proof. �

5. Number of elements in arithmetic progressions

In this section, we obtain an estimation of the number of elements and the absolute 
norms of elements in arithmetic progressions by using the idea of Rohrlich [9], which 
plays a key role to estimate our twisted special L-values.

For each a = [an]n ∈ Cl(F, p∞), let an be an integral ideal of F which is a representa-
tive of a ray class [an] ∈ Cl(F, pn) modulo pn. Similarly, for each α = (αn)n ∈ Γ′, define 
〈α〉n ∈ OF \{0} by a representative of αn ∈ Γ′/Γ′

n. Then by Proposition 4.1, we have 
the following lemma:
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Lemma 5.1. Let (hF , p) = 1. Let a be an integral ideal of F and (ψn)n ∈ Ξp a primitive 
element. Then for n ≥ 1, we have that ψn,av(a) �= 0 if and only if

a ∈
⋃

(b,ε)∈Δ×(E/En)

{bn〈ε〉nγ : γ ∈ (1 + pn)}.

Proof. It is an immediate consequence of Proposition 4.1. �
Let us denote by FR := F ⊗QR the real Minkowski space of F , and C0

F a fundamental 
domain of FR/O×

F , where O×
F acts on FR via the natural embedding F ↪→ FR. For 

n ∈ Z>0, x > 0 and α ∈ OF coprime to p, let us define a number Uα,n(x) by

Uα,n(x) := #{β ∈ α(1 + pn) ∩ C0
F : |N(β)| ≤ x}.

Let us recall the following fact about coherent cone decomposition. By Rohrlich [9, 
Proposition 5], there is a finite collection B of coherent Z-cones in F such that

OF \{0} ⊂
⋃

u∈O×
F

⋃
B∈B

uB. (5.1)

Then we have the following estimations:

Proposition 5.2. For n ∈ Z>0, x > 0 and α ∈ OF coprime to p, we have

Uα,n(x) �F max
( x

N(p)n , 1
)
.

Proof. The inequality holds by the equation (21) in Rohrlich [9, Proposition 5] since

α(1 + pn) ∩ C0
F ⊂ (OF \{0})/O×

F ⊂
( ⋃

u∈O×
F

⋃
B∈B

uB

)
/O×

F =
⋃

B∈B

B

by the equation (5.1). Also we can observe that the implicit constant in the equation 
(21) in Rohrlich [9, Proposition 5] depends only on the coherent cone decomposition B
of OF , which is a finite collection of cones and depends only on F . �
Lemma 5.3. If α ∈ (1 + pn)\{1}, then we have |N(α)| �F N(p)n.

Proof. Let α = 1 + β ∈ (1 + pn)\{1} ∩ C0
F . Then by the equation (5.1), we have

N(p)n ≤ |N(β)| = |N(α− 1)| = |N(α)|
∏
σ∈IF

|1 − σ(α)−1|.

Note that for B ∈ B, there is a basis {zj}dj=1 of F over Q such that B = Z>0〈{zj}dj=1〉
where d = [F : Q]. Let σ ∈ IF and z =

∑d
j=1 njzj ∈ B, then we have max({nj}dj=1) �B

|σ(z)| as B is a coherent Z-cone (Rohrlich [9]). Thus the above equation becomes
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N(p)n ≤ |N(α)|
∏
σ∈IF

(1 + |σ(α)|−1) �F |N(α)|,

as α ∈ (1 + β ∈ (1 + pn)\{1} ∩ C0
F ⊂

⋃
B∈B B by the equation (5.1). For α〈κ〉n + β ∈

(1 + pn)\{1}, there exists α′ ∈ (1 + pn)\{1} ∩ C0
F and u ∈ O×

F such that α = α′u. Thus 
we have N(α) = N(α′) �F N(p)n by the above inequality. Hence we are done. �
Lemma 5.4. Suppose (hF , p) = 1. Define i be the identity element of Δ. For b ∈ Δ\{i}, 
we have N(bn) �F N(p)n/|Δ|.

Proof. Let b ∈ Δ\{i}. If b|Δ|
n = OF , then bn = OF , which is a contradiction. So a 

generator of b|Δ|
n is an element of (1 + pn)\{1}. By Lemma 5.3, we have N(bn) �F

N(p)n/|Δ|. �
6. Galois averages of the special L-values

In this section, we obtain an estimation on the twisted special L-values which allows 
us to verify the non-vanishing of L-values under the assumption that p splits completely 
over Q.

Let us recall that p is a prime ideal of F lying above p, and coprime to hF dF p. For x > 0
and α ∈ OF which is coprime to p, we set Uα,n(x) = #{β ∈ α(1 +pn) ∩C0

F : |N(β)| ≤ x}
and C0

F = FR/O×
F .

Let f ∈ S(k,m),J(N, χ) be a newform and Kf the Hecke field of f over Q (cf. subsection 
1.1). Let (−1)|Σ(R)|(k−2)C2

F,J,k = 1 and set K = Kf . For a Hecke character ϕ : F×\A×
F →

C× of finite order with conductor c, or a ray class character, define the Galois average 
of the twisted special L-value by

Lav(f ⊗ ϕ) := 1
[Kf (ϕ) : Kf ]

∑
σ∈Gal(Kf (ϕ)/Kf )

L
(k

2 , f ⊗ ϕσ
)
.

Then we can obtain the following estimation on the averaged special L-values, which 
will be proved in the end of this section:

Theorem 6.1. Let Δ be the set described in Section 4 and (ψn)n be a primitive element 
of Ξp where Ξp = Homcont(Cl(F, p∞), μ∞), thus the conductor of ψn is pn+n0 for each 
n. Assume that f(F, p) = 1. For a > 1 and ε > 0, an estimation of Lav(f ⊗ ψn) is given 
by

Lav(f ⊗ ψn) −
V1, k2

( 1
y

)
ΓF,k,m

(
k
2
) �ε,p N(p)n(θ+ε− 1

2 )/|Δ|

+ N(p)n(a( 1
2+θ+ε)−(1+ 1

|Δ| )) + N(p)n((2θ+2ε+ 1
2 )−a(θ+ε+ 1

2 ))

(6.1)

as n tends to the infinity.
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By (3.14), the Galois average Lav(f ⊗ ψn) is given by

1
ΓF,k,m

(
k
2
) ∑

0�=a<OF

af (a)ψn,av(a)
N(a)k/2

V1, k2

(
N(a)
y

)
(6.2)

+ CF,J,k

ΓF,k,m
(
k
2
) ∑

0�=a<OF

aWNf (a)ψι
n,av(a)

N(a)k/2
V2, k2

(
N(a)y

N(Np2n+2n0)

)
, (6.3)

as f ⊗ ϕ ∈ S(k,m),J (N ∩ c2, χϕ2) by Proposition 3.5.
Now we will estimate the quantity Lav(f ⊗ ψn) for each n. To do this, we need a 

bound for the Hecke eigenvalues of f . Let us assume that the coefficients satisfy

|af (p)| ≤ 2N(p)
k−1
2 +θ

for any prime ideals p of OF and a number θ ∈ [0, 12 ] to be specified in Section 7. Hence, 
for ε > 0 and each integral ideal a of OF , we have

|af (a)| ≤ 2d(a)N(a)
k−1
2 +θ �ε N(a)

k−1
2 +θ+ε (6.4)

where d(a) is the number of the integral ideals of F dividing a.
From now on, we do not consider the variables related to f and F in the implicit 

constants of our estimations. First, we estimate the last term (6.3) of the averaged 
L-value by following:

Proposition 6.2. For ε > 0 and y > 0, we have that

(6.3) �ε,p
N(p)n(2θ+2ε+ 3

2− 1
f(F,p) )

yθ+ε+ 1
2

where f(F, p) is the residue degree of F/Q at p.

Proof. Note that WNf is also an Hecke eigenform by Proposition 3.1. By the Ramanujan-
Petersson bound (6.4) and Proposition 4.2, we obtain

∑
0�=a<OF

aWNf (a)ψι
n,av(a)

N(a)k/2
V2, k2

(
N(a)y

N(Np2n+2n0)

)

�ε,pN(p)n( 1
2− 1

f(F,p) )
∑

0�=a<OF

N(a)θ+ε− 1
2V2, k2

(
N(a)y

N(Np2n+2n0)

)

=N(p)n( 1
2− 1

f(F,p) )
∑

m∈Z>0

∑
N(a)=m

mθ+ε− 1
2V2, k2

(
my

N(Np2n+2n0)

)

�εN(p)n( 1
2− 1

f(F,p) )
∑
m>0

mθ+ε− 1
2V2, k2

(
my

N(Np2n+2n0)

)
(6.5)
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where in the last inequality, we use the fact that 
∑

N(a)=m 1 ≤ d(m) �ε mε. We can 
split the last term of the above equation into two parts:

(6.5) = I + II, where I =
∑

m>N(Np2n+2n0 )
y

, II =
∑

0<m<N(Np2n+2n0 )
y

Using (3.10), for j ≥ 1, we have

I � N(p)n( 1
2− 1

f(F,p) )
∑

m>N(Np2n+2n0 )
y

mθ+ε− 1
2

(
my

N(Np2n+2n0)

)−j

� N(p)n( 1
2− 1

f(F,p) )N(Np2n+2n0)j

yj

∞∫
N(Np2n+2n0 )

y

xθ+ε− 1
2−jdx

�ε N(p)n( 1
2− 1

f(F,p) )N(Np2n+2n0)θ+ε+ 1
2

yθ+ε+ 1
2

� N(p)n(2θ+2ε+ 3
2− 1

f(F,p) )

yθ+ε+ 1
2

.

Similarly, we have

II � N(p)n( 1
2− 1

f(F,p) )
∑

0<m<N(Np2n+2n0 )
y

mθ+ε− 1
2

� N(p)n( 1
2− 1

f(F,p) )

N(Np2n+2n0 )
y∫

0

xθ+ε− 1
2 dx �ε

N(p)n(2θ+2ε+ 3
2− 1

f(F,p) )

yθ+ε+ 1
2

.

Hence we can conclude our proof. �
Let us assume that p is totally split prime of F lying above p. Then we have f(F, p) = 1, 

which implies that E = {1}. By Lemma (5.1), Lemma 5.3 and Lemma 5.4, we can rewrite 
(6.2) as

V1, k2

( 1
y

)
ΓF,k,m

(
k
2
) +

∑
b∈Δ

N(bn)>cFN(p)n/|Δ|

af (bn)
N(bn)k/2

V1, k2

(N(bn)
y

)
ΓF,k,m

(
k
2
) (6.6)

+
∑
b∈Δ

∑
α∈(1+p

n)∩C0
F

|N(α)|>cFN(p)n

af (bnα)ψn,av(bnα)
N(bnα)k/2

V1, k2

(N(bnα)
y

)
ΓF,k,m

(
k
2
) (6.7)

for some constant cF which depends only on F , where (6.6) and (6.7) turn out to be the 
main term and the error term of (6.2), respectively. An estimation of (6.7) for the case 
of f(F, p) = 1, can be obtained by following:
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Proposition 6.3. Assume that f(F, p) = 1. For ε > 0 and y > cFN(p)n, we have that

(6.7) �ε,p N(p)n(1+ 1
|Δ| )(θ+ε− 1

2 ) + y
1
2+θ+ε

N(p)n(1+ 1
|Δ| )

.

Proof. By the bound (6.4), (6.7) is bounded by

(6.7) �ε

∑
b∈Δ

∑
α∈(1+p

n)∩C0
F

|N(α)|>cFN(p)n

V1, k2

(N(bnα)
y

)
N(bnα) 1

2−θ−ε
.

Let us split the above sum by 
∑

b∈Δ(∗) +
∑

b∈Δ(∗∗) where

(∗) =
∑

α∈(1+p
n)∩C0

F
cFN(p)n<|N(α)|≤y/N(bn)

, (∗∗) =
∑

α∈(1+p
n)∩C0

F
|N(α)|>y/N(bn)

For x > 0 and α ∈ OF coprime to p, define uα,n(x) := #{β ∈ α(1 + pn) ∩C0
F : |N(β)| =

x}. Then Uα,n(x) =
∑

m≤x uα,n(m). By the estimate (3.10) and the Abel summation 
formula, (∗) is bounded by

(∗) = 1
N(bn) 1

2−θ−ε

∑
cFN(p)n<m≤y/N(bn)

u1,n(m)
m

1
2−θ−ε

�ε
1

N(bn) 1
2−θ−ε

(
U1,n(N(p)n)
N(p)n( 1

2−θ−ε) + U1,n(y/N(bn))
(y/N(bn)) 1

2−θ−ε
+

y/N(bn)∫
cFN(p)n

U1,n(x)
x

3
2−θ−ε

dx

)
.

Set j ≥ 1. Then similarly, (∗∗) is bounded by

(∗∗) = yj

N(bn) 1
2−θ−ε+j

∑
m>y/N(bn)

u1,n(m)
m

1
2−θ−ε+j

�ε
yj

N(bn) 1
2−θ−ε+j

(
U1,n(y/N(bn))

(y/N(bn)) 1
2−θ−ε+j

+
∞∫

y/N(bn)

U1,n(x)
x

3
2−θ−ε+j

dx

)
.

By the Lemma 5.2 and Lemma 5.4 on the above equations, then we are done. �
By using the above propositions, we can give a proof of Theorem 6.1:

Proof. For y > 0, by the bound (6.4), the second term of (6.6) is bounded by

∑
b∈Δ

n/|Δ|

af (bn)
N(bn)k/2

V1, k2

(N(bn)
y

)
ΓF,k,m

(
k
2
) �ε,p N(p)n(θ+ε− 1

2 )/|Δ|
N(bn)>cFN(p)
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since the function V1, k2
is bounded on the positive real line.

Set y = yn = N(p)an for a > 1, then by the above equation, the main term (6.6), 
Proposition 6.2 and Proposition 6.3, we can prove the theorem. �
7. Non-vanishing of L-values

In this section, we use the algebraicity result of Hida [3] and Ramanujan-Petersson 
bound obtained by Blomer-Brumley [1] and Nakasuji [6] to show the non-vanishing result.

We have the non-vanishing of the special L-values as a corollary of Theorem 6.1:

Corollary 7.1. Let p be a totally split prime ideal of F lying above p and coprime to 
hF dFN. Let (−1)|Σ(R)|(k−2)C2

F,J,k = 1. For a newform f ∈ S(k,m),J(N, χ), we have

L
(k

2 , f ⊗ ϕ
)
�= 0

for almost all Hecke characters ϕ over F of p-power orders and p-power conductors.

Proof. To make the error terms of (6.1) converge to 0 when n goes to ∞, the numbers 
a and θ must satisfy the following inequalities:

θ <
1
2 , 1 < a, a

(
θ + 1

2

)
< 1 + 1

|Δ| , a
(
θ + 1

2

)
> 2θ + 1

2 .

As we have set θ ∈ [0, 12 ], those are clearly equivalent to,

0 ≤ θ <
1
2 ,

2θ + 1
2

θ + 1
2

< a <
1 + 1

|Δ|

θ + 1
2

.

Note that |Δ| ≥ 2, where the equality holds when p = 3 and hF = 1. So we can find a
satisfying the above inequalities if

θ <
1
4 + 1

2|Δ|

By Blomer-Brumley [1, Theorem 1] and Nakasuji [6, Corollary 1.2], one has θ = 7/64 <
1
4 + 1

2|Δ| , hence we can choose such a.
Let ϕ be a Hecke character of p-power order and conductor pn, or a ray class character 

of p-power order and conductor pn. Then by Theorem 6.1 and the estimation (3.10), we 
have

lim
n→∞

Lav(f ⊗ ϕ) = 1 (7.1)

Hence we have
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Lav(f ⊗ ϕ) = 1
[Kf (ϕ) : Kf ]

∑
σ∈Gal(Kf (ϕ)/Kf )

L
(k

2 , f ⊗ ϕσ
)
�= 0

for sufficiently large n. On the other hand, by the algebraicity result of Hida [3], we have

L
(k

2 , f ⊗ ϕ
)σ

= 0 if and only if L
(k

2 , f
σ ⊗ ϕσ

)
= 0 (7.2)

for any σ ∈ AutQ(C). Assume that L
(
k
2 , f ⊗ ϕ

)
= 0 for infinitely many Hecke character 

ϕ of p-power order and p-power conductor. Then by (7.2), we have Lav(f ⊗ ϕ) = 0 for 
infinitely many such ϕ. This contradicts to the equation (7.1). �
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