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1. Introduction

In 1978, McKay and Thompson observed [59] that the first few coefficients of the 
normalized elliptic modular invariant J(τ) = q−1+196884q+21493760q2+864299970q3+
O(q4), a central object in the theory of modular forms, can be written as sums involving 
the first few dimensions of irreducible representations of the monster group M, e.g.,

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 2 · 1 + 2 · 196883 + 21296876 + 842609326.

(1.1)

This coincidence inspired Thompson’s conjecture [58] that there is an infinite-dimensional 
M-module V =

⊕
n≥−1

Vn whose graded dimension is J(τ) and whose McKay–Thompson 

series

Tg(τ) :=
∑
n≥−1

tr(g|Vn)qn (1.2)

are distinguished functions on the upper half-plane. Conway and Norton [16] explicitly 
described the relevant McKay-Thompson series, and also christened this phenomenon 
“monstrous moonshine.” Their conjecture was proven by Borcherds [4] (building on work 
by Frenkel, Lepowsky and Meurman [28]) in 1992. In the few decades since the first 
observations of McKay and Thompson, it has become clear that monstrous moonshine 
is just the first of a series of similar phenomena encompassing several finite groups and 
their counterparts in the world of modular forms.

Generalized moonshine [9] (see also [41,16,45]), for example, relates various subquo-
tients of the Monster to other weight zero modular forms. Umbral moonshine [12,13] (see 
also [22,29] and [14]), on the other hand, relates the 23 umbral groups (each of which is 
a quotient of the automorphism group of one of the 23 Niemeier lattices) to weight 1

2
mock modular forms. Thompson moonshine, conjectured by Harvey and Rayhaun [33]
in 2015 and proven by Griffin and Mertens in [31], involves Thompson’s sporadic simple 
group Th, and certain weight 1

2 modular forms. (We remark here that the Thompson 
group, being a subgroup of the Monster, also appears in the generalized moonshine set-
ting mentioned above. For the purpose of this paper, “Thompson moonshine” refers to 
the Harvey and Rayhaun version.)

Recently, in [23,24], Duncan, Mertens, and Ono discovered the first instance of moon-
shine for the O’Nan group, one of the so-called pariah groups (i.e., a sporadic simple 
group which is not a subquotient of the monster group), where the functions involved 
are modular forms of weight 3

2 . Their work is not only a contribution to the theory of 
moonshine, it also serves another important purpose: In the same paper, they use their 
O’Nan-module to study properties of quadratic twists of certain elliptic curves and thus 
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use moonshine to provide insight into objects that are central to current research in 
number theory.

While number theory’s contribution to moonshine is ubiquitous and irrefutable, O’Nan 
moonshine is one of the first instances where we see moonshine’s direct contribution to 
number theory. Such a role-reversal is our primary motivation for this work.

We begin this work by proving the existence of a family of infinite-dimensional graded 
Th-modules whose McKay–Thompson series are weight 3

2 modular forms that satisfy 
certain properties (see Theorem 3.2). The techniques we use to prove this are similar to 
ones used in Griffin and Mertens’ work [31] to prove the Thompson moonshine conjecture 
[33]. (These techniques were first suggested by Thompson, and subsequently used by 
Atkin, Fong and Smith [26,53] to prove monstrous moonshine abstractly.) On the other 
hand, our McKay–Thompson series are weight 3

2 modular forms (in contrast to the 
weight 1

2 forms of [33]) and the role played by theta functions in their paper is taken 
up by weight 3

2 cusp forms in ours. The involvement of weight 3
2 cusp forms allows us 

to employ an approach similar to Duncan, Mertens, and Ono (in [23,24]): We exploit 
the existing relationship between these forms and elliptic curves to study geometric 
invariants of various elliptic curves. This is the content of Theorems 1.1 and 1.3.

Our result regarding the existence of a family of Thompson modules is, in fact, a 
classification result. We classify all infinite-dimensional graded modules W =

⊕
Wn

(see Theorem 3.2) for the Thompson group whose McKay–Thompson series take the 
form

Fg(τ) := 6q−5 +
∑
n>0

tr(g|Wn)qn (1.3)

and satisfy the following properties (cf. Proposition 3.1):

(1) For each g ∈ Th, the corresponding McKay–Thompson series Fg(τ) is a weight 
3
2 weakly holomorphic modular form of a specific level and multiplier system, and 
satisfies the Kohnen plus space condition.

(2) Each McKay–Thompson series Fg(τ) has integer coefficients and is uniquely deter-
mined — up to the addition of certain cusp forms — by its polar parts at the cusps, 
which are specified in a uniform way. (See Section 3 for details.)

We note here that properties (1) and (2) listed above ensure that the functions Fg(τ)
are, up to the addition of cusp forms, simply Rademacher sums projected to the Kohnen 
plus space (see Section 2 for background on Rademacher sums).

The connection between Rademacher sums and moonshine was first proposed in [21], 
where the McKay–Thompson series that appear in monstrous moonshine were charac-
terized completely in terms of Rademacher sums of weight 0. In particular, it was shown 
that the so-called genus-zero property of monstrous moonshine is equivalent to the fact 
that the McKay–Thompson series of the Monster module coincide (up to a constant) 
with corresponding Rademacher sums of weight 0. It was later argued in [11,12] that 
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the correct analogue of the genus zero property in the case of Umbral (and Mathieu) 
moonshine is that the corresponding McKay–Thompson series must coincide with the 
relevant Rademacher sums in each case (see also [14,20]). Here we take this perspec-
tive and hence consider it natural, from the point of view of moonshine, to ask for our 
McKay–Thompson series to satisfy the properties listed above.

To prove our classification result, we first construct spaces of weakly holomorphic mod-
ular forms of the appropriate level and multiplier for each g ∈ Th. We use Rademacher 
sums and eta-quotients to do this. Since we can explicitly compute the Fourier coeffi-
cients of these forms at various cusps, we can restrict our attention to the subspace of 
forms that satisfy properties (1) and (2). For a collection of these forms to be the McKay–
Thompson series of a virtual module (as in Theorem 3.2), they must satisfy congruences 
modulo certain powers of primes that divide the order of the Thompson group (see Sec-
tion 4). A complete description of these congruences can be obtained using Thompson’s 
reformulation ([53]) of Brauer’s characterization of generalized characters. We prove that 
our alleged McKay–Thompson series satisfy the congruences mentioned above in Sec-
tion 4. We note here that it would be interesting to consider the analogous classification 
for the O’Nan group, building on the work already done in [24].

Once we have proven the existence of the Thompson modules, we use their properties 
to help detect the non-triviality of Mordell–Weil, Selmer, and Tate–Shafarevich groups of 
quadratic twists of certain elliptic curves (see Theorems 1.1 and 1.3). To state our main 
results, we let E be an elliptic curve over Q, and for d < 0 a fundamental discriminant, 
we let Ed denote the dth quadratic twist of E. (We refer the reader to [40,50] and [55] for 
background on elliptic curves.) We further let E(Q) denote the set of Q-rational points 
on E, i.e., the set of points on E whose coordinates are rational numbers. Then, E(Q)
has the structure of a finitely generated abelian group (by the Mordell–Weil theorem 
[50]), i.e., E(Q) = Zr ⊕ E(Q)tor. Here r ∈ Z≥0 is called the (algebraic) rank of E, 
and E(Q)tor is a finite abelian group. Computing the rank of a general elliptic curve is 
considered a hard problem in number theory.

One way of approaching this problem is to study the L-function associated to E, 
defined for s ∈ C with Re(s) > 3

2 by

LE(s) =
∏

p prime

(
1 − app

−s + ε(p)p1−2s)−1
. (1.4)

Here, ap := p +1 −#E(Fp) where E(Fp) is the group of Fp-rational points on the mod p
reduction of E, and ε(p) ∈ {0, 1} (see [50] for a precise definition and further discussion 
on L-functions). The (weak) Birch and Swinnerton-Dyer Conjecture states that the order 
of vanishing of LE(s) at s = 1 is equal to the rank r of E. Thus, studying the behavior 
of LE(s) near s = 1 is one way of tackling the problem of computing the rank of E.

Note that a priori, the product in eq. (1.4) only converges for Re(s) > 3
2 , so part of 

the conjecture is that LE(s) can be analytically continued to a function that converges 
near s = 1. This part follows from the Modularity Theorem (proven in [6] by extending 
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the results of [62,56]), which states that corresponding to every elliptic curve over Q, 
there exists a weight 2 newform of level equal to the conductor of E, whose L-function 
coincides with LE(s). The L-function associated to a cusp form f =

∑∞
n=1 anq

n of weight 
k is defined on Re(s) > 1 + k

2 and extends analytically to a holomorphic function on C
[2]. Hence it is possible to talk about the behavior of LE(s) as s → 1, for example. The 
Birch and Swinnerton-Dyer Conjecture has been proven in special cases (see for example 
[3]). In particular, it is known that if LE(1) �= 0, then E(Q) is finite [32,38]. We will use 
this result to prove our first theorem about elliptic curves.

To state our results, we let

F(τ) = 6(q−5 + 85995q3 − 565760q4 + 52756480q7 − 190356480q8 + O(q11)) (1.5)

be the unique weakly holomorphic modular form of weight 3
2 and level 4 in the plus 

space whose Fourier expansion is of the form F(τ) = 6q−5 + O(q). (Note that F(τ) is 
relevant for us because for each of the graded Th-modules W =

⊕
n>0 Wn described 

in Theorem 3.2, the graded dimension of W is F(τ).) Let c(d) denote the |d|th Fourier 
coefficient in the expansion of F(τ). We denote by 

(
m
n

)
the usual Kronecker symbol [15], 

then we have the following theorem.

Theorem 1.1. Let d < 0 be a fundamental discriminant which satisfies 
(

d
19
)

= −1. Let 
E be an elliptic curve of conductor 19, and let Ed denote the dth quadratic twist of E. 
If c(d) �≡ 0 (mod 19), then the Mordell–Weil group Ed(Q) is finite.

We can state a stronger result for elliptic curves of conductor 14, one which depends 
on a local version of the strong form of Birch and Swinnerton-Dyer Conjecture. To do 
this, we first establish some notation.

For E an elliptic curve of rank r, let #E(Q)tor denote the order of the torsion subgroup 
of the Q-rational points of E and let #X(E) be the order of the Tate–Shafarevich group 
of E. Then the strong form of the Birch and Swinnerton-Dyer Conjecture states the 
following [63].

Conjecture 1.2 (The Birch and Swinnerton-Dyer Conjecture). The rank r of an elliptic 
curve E over Q equals the order of vanishing of LE(s) at s = 1. Moreover, we have

L
(r)
E (1)

r!Ω(E) = #X(E)
Reg(E)

∏
l cl(E)

(#E(Q)tor)2
, (1.6)

where L(r)
E (s) is the rth derivative of LE(s).

The left-hand side of Equation (1.6) ties together the rank of the elliptic curve and the 
value of the rth derivative of the L-function at s = 1. It has been proven to always be a 
rational number [1]. On the right-hand side, all quantities except #X(E) are effectively 
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computable invariants of an elliptic curve (see Section 5 for details). The Tate-Shafarevich 
group X(E), however, is not even known to be finite except for special cases.

So we instead turn to a relatively simple object. Given p a prime, we define X(E)[p]
to be the set consisting of elements of the Tate–Shafarevich group with order dividing 
p. Then, X(E)[p] is finite for all p. This follows from the finiteness of a related object: 
the p-Selmer group Selp (E) of E, which fits into a short exact sequence

1 → E(Q)/pE(Q) → Selp(E) → X(E)[p] → 1. (1.7)

The Selmer group of an elliptic curve over Q is known to be finite for every p (see [50]), 
so we have that X(E)[p] is finite for every p. Also by the short exact sequence, we get 
that if Selp(E) is trivial for any prime p then E(Q) is finite, i.e., E has rank 0.

In this work, we will use the family of Thompson modules whose existence is proven 
in Theorem 3.2 to develop a criterion to check whether the p-Selmer groups of quadratic 
twists of elliptic curves of conductor 14 are trivial. More precisely, we let E be an 
elliptic curve over Q, and for each d < 0 a fundamental discriminant, let Ed denote 
the dth quadratic twist of E. As we shall prove in Theorem 3.2, there exists an infinite-
dimensional graded Th-module W =

⊕
n>0 Wn whose McKay–Thompson series Fg(τ)

satisfy properties (1) and (2) as above. Then we have the following theorem.

Theorem 1.3. Let d < 0 be a fundamental discriminant for which 
(
d
7
)

= −1 and 
(
d
2
)

= 1. 
Let E be an elliptic curve of conductor 14, and let g denote an element of order 14 in Th. 
If tr(g|W|d|) �≡ 0 (mod 49), then the Mordell–Weil group Ed(Q) is finite and X(Ed)[7]
is trivial. If, on the other hand, tr(g|W|d|) ≡ 0 (mod 49) and tr(g|W4) �≡ 43 (mod 56), 
then Sel7(Ed) is non-trivial, and if LEd(1) is non-zero then so is X(Ed)[7].

This is akin to Theorem 1.4 of [24], and our proof will follow along similar lines. One 
notable difference is that there is no dependence on (generalized) class numbers in the 
corresponding congruences in our case. We can also write down an analogous statement 
for elliptic curves of conductor 19, but the techniques we use to prove Theorem 1.3 do 
not apply in this case (cf. Theorem 5.4), so it is conditional upon the (strong form of 
the) Birch and Swinnerton-Dyer Conjecture.

We now describe a sketch of the proof of Theorems 1.1 and 1.3. Let p ∈ {7, 19} be 
the relevant prime in either statement and fix W =

⊕
n>0 Wn to be a virtual Thompson 

module whose McKay–Thompson series Fg(τ) satisfies the properties listed in Theo-
rem 3.2. We then write each Fg(τ) for [g] ∈ {14A, 19A} as a sum of traces of singular 
moduli (cf. Section 5.1) and weight 3

2 cusp forms. This expression combined with the 
condition on d in the statement of Theorem 1.1 gives us that the congruence in the 
statement holds if and only if the relevant cusp form coefficient is divisible by p = 19. 
Thus, if the congruence in the statement of Theorem 1.1 does not hold, then the cusp 
form coefficient is not divisible by 19, and we can employ a corollary (cf. Lemma 5.3) 
of Kohnen’s work [37] to show that this means LEd(1) �= 0. Finally, Kolyvagin’s work 
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shows that Ed(Q) is finite. This completes the proof of Theorem 1.1. For Theorem 1.3, 
we first consider the case that tr(g14|W|d|) �≡ 0 (mod 49). The expression for Fg(τ) in 
terms of traces of singular moduli and cusp forms implies that the relevant cusp form 
coefficient is not divisible by p = 7. We can utilize Kohnen’s work again to conclude that 
ordp(

L
Ed (1)

Ω(Ed) ) > 0. At this point, we use work of Skinner and Urban (Theorem 5.4) which 

connects ordp(
L

Ed (1)
Ω(Ed) ) to the non-triviality of the p-Selmer and Tate-Shafarevich groups 

of Ed to prove the theorem. A similar argument applies if we assume that tr(g14|W|d|) ≡ 0
(mod 49) and tr(g14|W|4|) �≡ 43 (mod 49).

The rest of this paper is organized as follows. In Section 2 we set up notation and define 
the terms that appear in Proposition 3.1 and Theorem 3.2. In Section 3 we uniquely 
characterize the modular forms Fg(τ) that satisfy properties (1) and (2) above and 
prove Proposition 3.1. In Section 4 we prove Theorem 3.2. Finally, in Section 5 we prove 
Theorems 1.1 and 1.3.
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2. Background and notation

Throughout this paper, we use the notation e(x) = e2πix and q = e(τ) with τ in the 
upper half-plane, which we denote H. We also use 

(
m
n

)
to denote the Kronecker symbol 

[15, Algorithm 1.4.10]. We will use the ATLAS [17] notation for conjugacy classes of Th, 
and understand nAB to mean nA ∪ nB.

2.1. Rational characters

We define the rational conjugacy class of an element g ∈ Th, denoted by [g], to be the 
set of all elements that are conjugate to an nth power of g where n is relatively prime to 
the order of g. (In particular, this contains the conjugacy class of g as a subset.)

We recall that a rational character of a group G is a character afforded by a QG-
module. By [18, Lemma 39.4], if g and h are in the same rational conjugacy class, and 
φ : G → Q is a rational character, then φ(g) = φ(h). We note that if φ is a rational 
character of Th, then φ(g) is an algebraic integer lying in Q, so in fact φ(g) ∈ Z.

In this paper, we will consider the irreducible rational characters of Th. To describe 
these, we first define a few things. Let G be a finite group and V be a CG-module. 
For each field automorphism γ : C → C, there exists a unique (up to isomorphism) 
representation V γ with character χV γ(g) = γχV (g). We call V γ a Galois-conjugate of V . 
Then, we have the following proposition.
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Proposition 2.1. (See [18, Theorem 74.5], for example.) Let V1(= V ), V2 . . . , Vn be the 
distinct Galois-conjugates of an irreducible CG-module V . Then there exists a natural 
number mV such that mV (V1 ⊕ · · · ⊕ Vn) is the complexification of an irreducible QG-
module. Furthermore, each irreducible QG-module W arises in this way from a unique 
Galois-class of irreducible CG-modules, i.e.

W ⊗Q C 	 mV (V1 ⊕ · · · ⊕ Vn). (2.1)

The number mV is called the (rational) Schur index of V . By [25, Section 7], the 
Schur index is 1 for each irreducible representation of Th. Thus, we can read off the 39 
irreducible rational characters of Th directly from the character table. We denote these 
by χ1, χ2, . . . , χ39.

2.2. Mock modular forms

To prove the existence of the Thompson modules in Theorem 3.2, we first have to 
construct weakly holomorphic modular forms of weight 3

2 with the appropriate level and 
multiplier. Recall that a weakly holomorphic modular form is a function on the upper half-
plane that transforms like a modular form, is holomorphic on the upper half-plane and 
meromorphic at the cusps. One way of constructing spaces of weakly holomorphic forms 
is to use Rademacher sums, which are a priori mock modular forms, and then restrict 
to the subspace of forms with vanishing shadow. Here we recall the definitions and basic 
facts that we will need from the theory of mock modular forms and Rademacher sums 
to describe these functions. We refer the reader to [7,19,43] for more on mock modular 
forms.

Let k ∈ 1
2Z and Γ be a subgroup of SL2(R) containing ±I such that Γ is commen-

surable with SL2(Z). For γ =
(
a b
c d

)
, write γτ for aτ+b

cτ+d , and define j(γ, τ) = (cτ + d)−2. 
We call a function ψ : Γ → C a multiplier system for Γ of weight k if

ψ(γ1γ2)j(γ1γ2, τ) k
2 = ψ(γ1)j(γ1, γ2τ) k

2 ψ(γ2)j(γ2, τ) k
2 (2.2)

for each γ1, γ2 ∈ Γ, where we choose the principal branch of the logarithm to define the 
exponential x 
→ xs in case s is not an integer.

In this paper we will consider multiplier systems of the form

ψ4N,v,h (γ) := e

(
− vcd

4Nh

)
, (2.3)

where γ =
(
a b
c d

)
∈ Γ0(4N) and v, h are integers with h| gcd(N, 24).

Recall that Γ0(N) is the congruence subgroup

Γ0(N) :=
{
γ =

(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)
}

(2.4)
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of the full modular group SL2(Z). We can now define the (k, ψ)-action of γ ∈ Γ0(N) on 
a smooth function f : H → C by

(f |k,ψγ) (τ) :=
{
ψ(γ)j(γ, τ) k

2 f (γτ) if k ∈ Z(
c
d

)
ε2k
d ψ(γ)j(γ, τ)

k
2 f (γτ) if k ∈ 1

2 + Z,
(2.5)

where

εd :=
{

1 d ≡ 1 (mod 4),
i d ≡ 3 (mod 4).

(2.6)

And we assume 4|N if k /∈ Z.

Definition 2.2. A harmonic (weak) Maaß form of weight k ∈ 1
2Z, level N and multiplier 

system ψ, is a smooth function f : H → C on the upper half-plane that satisfies the 
following properties:

(1) It is invariant under the (k, ψ)-action by all γ ∈ Γ0(N) and τ = u + iv ∈ H.
(2) It is annihilated by the weight k hyperbolic Laplacian,

Δkf :=
[
−v2

(
∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)]
f ≡ 0. (2.7)

(3) There is a polynomial Pf (q−1) such that f(τ) −Pf (e−2πiτ ) = O(e−cv) for some c > 0
as v → ∞. Analogous growth conditions are required at all cusps of Γ0(N).

We denote the space of harmonic Maaß forms of weight k, level N , and multiplier ψ
by Hk(Γ0(N), ψ), and we omit the multiplier if it is trivial.

Bruinier and Funke first introduced harmonic Maaß forms in [8]. We are going to need 
the following two results from their paper.

Lemma 2.3. [8, equations (3.2a) and (3.2b)] Let f ∈ Hk(Γ0(N), ψ) be a harmonic Maaß 
form of weight k �= 1 such that ψ(

( 1 1
0 1

)
) = 1. Then there is a canonical splitting

f(τ) = f+(τ) + f−(τ), (2.8)

where for some m0 ∈ Z we have the holomorphic part,

f+(τ) :=
∞∑

n=m0

c+f (n)qn, (2.9)

and the non-holomorphic part,
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f−(τ) :=
∞∑

n=1
c−f (n)nk−1Γ(1 − k; 4πnv)q−n. (2.10)

Here Γ(α; x) denotes the upper incomplete Gamma function.

We call the holomorphic part of a harmonic Maaß form a mock modular form. Let 
M !

k(Γ0(N), ψ) denote the space of weakly holomorphic modular forms of weight k, level 
N , and multiplier system ψ. Then we have the following proposition.

Proposition 2.4. (See [8, Proposition 3.2].) The operator

ξk : Hk(Γ0(N), ψ) → M2−k

(
(Γ0(N), ψ

)
, f 
→ ξkf := 2ivk ∂f

∂τ
(2.11)

is well-defined and surjective with kernel M !
k(Γ0(N), ψ). Moreover, we have that

(ξkf)(τ) = −(4π)1−k
∞∑

n=1
c−f (n)qn (2.12)

and we call ξkf the shadow of (the holomorphic part of) f .

Thus, in particular, a mock modular form is a weakly holomorphic modular form if 
it has a vanishing shadow. We will construct the desired space of weakly holomorphic 
forms by first constructing mock modular forms of the appropriate level and weight and 
then showing that they have vanishing shadows.

2.3. Rademacher sums

To construct the relevant mock modular forms for the proof of Theorem 3.2, we need 
to recall some facts about Rademacher sums and Rademacher series. See [10,11,21] for 
more details.

Let Γ∞ :=
{
±
( 1 n

0 1

)
: n ∈ Z

}
denote the stabilizer of ∞ in Γ0(N). Then one can 

define the Rademacher sum of weight k ≥ 1, level N , multiplier system ψ and index μ, 
by

R
[μ]
k,N,ψ(τ) := lim

K→∞

∑
γ∈Γ∞\ΓK,K2 (N)

qμ|k,ψγ (2.13)

where

ΓK,K2(N) :=
{(

a b
c d

)
∈ Γ0(N) : |c| < K and |d| < K2} (2.14)

and μ ∈ Z + −i log
(
ψ
( 1 1 )).
2π 0 1
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When convergent, Rademacher sums define mock modular forms of level N , weight 
k, and multiplier system ψ. We will use the following important facts from the theory of 
Rademacher sums, which we condense in one lemma. We will use the following important 
facts from the theory of Rademacher sums, which we condense in one lemma.

Lemma 2.5. (See [24, Theorem 2.5], for example.) Let μ ≤ 0. Assuming locally uniform 
convergence, the Rademacher sum R[μ]

k,4N,ψ(τ) for k ≥ 1 defines a mock modular form of 
weight k ∈ Z + 1

2 , for Γ0(4N) and multiplier ψ whose shadow is given by a constant mul-
tiple of the Rademacher sum R[−μ]

2−k,4N,ψ
(τ). The completion of R[μ]

k,4N,ψ(τ) to a harmonic 
Maaß form has a pole of order μ at the cusp ∞ and vanishes at all other cusps.

In this paper, we will be looking at Rademacher sums of weight 3
2 for Γ0(4N) with 

multiplier ψ4N,v,h and index μ < 0. In this particular case, it has been proven in [10]
that the sums converge locally uniformly and define holomorphic functions on H.

2.4. Kohnen plus space condition

One of the properties that we want our candidate McKay–Thompson series to satisfy 
is to lie in Kohnen’s plus space. Let Sk(Γ0(N)) denote the space of weight k cusp forms for 
Γ0(N). Kohnen’s plus space was first introduced by Kohnen (see [35–37]) as the subspace 
of Sk+ 1

2
(Γ0(4N)) which consists of all forms whose Fourier coefficients are supported on 

exponents n with n ≡ 0, (−1)k (mod 4). We extend this idea to all modular forms and 
harmonic Maaß forms as follows: We say that a function f in Hk+ 1

2
(Γ0(4N)) (resp. in 

M !
k+ 1

2
(Γ0(4N))) satisfies the Kohnen plus space condition if the Fourier coefficients of f

are supported on exponents n with n ≡ 0, (−1)k (mod 4). We denote the space of such 
forms H+

k+ 1
2
(Γ0(4N)) (resp. M+,!

k+ 1
2
(Γ0(4N))).

For odd N , there is a natural projection operator | pr : Sk+ 1
2
(Γ0(4N)) →

S+
k+ 1

2
(Γ0(4N)) given in terms of slash operators which extends to spaces of weakly 

holomorphic modular forms and harmonic Maaß forms. Let f ∈ M !,+
k+ 1

2
(Γ0(4N)), where 

N is an odd integer. Then the projection operator acts on f in the following way [37]
(see also [31])

(f |pr)(τ) = (−1)�
k+1
2 � 1

3
√

2

2∑
v=−1

(
f |

(
4(1+Nv) 1

8Nv 4

))
(τ) + 1

3f(τ). (2.15)

The action of this projection operator on principal parts of harmonic Maaß forms is 
described in the following lemma (see [31, Lemma 2.9, 2.10] and [24, Lemma 2.6]).

Lemma 2.6. Let N be odd and f ∈ Hk+ 1
2
(Γ0(4N)) for some k ∈ N, such that

f+(τ) = q−m +
∞∑

anq
n (2.16)
n=0
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for some m > 0 with −m ≡ 0, (−1)k (mod 4), and suppose that f has a non-vanishing 
principal part only at the cusp ∞ and is bounded at the other cusps of Γ0(4N). Then 
the projection f | pr of f to the plus space has a pole of order m at ∞, a pole of order m4
either at the cusp 1

N if m ≡ 0 (mod 4) or at the cusp 1
2N if −m ≡ (−1)k (mod 4) and 

is bounded at all other cusps.

For even N , we have the following lemma for the Rademacher sums that we consider 
in this paper.

Lemma 2.7. For even N , the Rademacher sum R[−5]
3
2 ,4N,ψ

(τ) satisfies the Kohnen plus space 
condition.

Proof. This is an immediate consequence of Lemma 2.10 of [31]. �
For even N , we define the projection operator | pr to be the following sieving operator: 

Let f(τ) =
∑∞

n=n0
c(n)qn be modular of weight k+ 1

2 where k ∈ N, and level 4N , where 
N is even, then we define

f |pr =
∞∑

n=n0
n≡0,(−1)k (mod 4)

c(n)qn. (2.17)

By Lemma 2.7, we have R[−5]
3
2 ,4N,ψ

(τ)| pr = R
[−5]
3
2 ,4N,ψ

(τ) if N is even.

2.5. Eta-quotients

For the rational conjugacy classes [g] ∈ {21A, 30AB}, it is convenient to use eta-
quotients instead of Rademacher sums.

Recall that an eta-quotient is defined to be a function of the form

f(τ) =
∏
δ|N

η(δτ)rδ , (2.18)

where rδ ∈ Z and η(τ) := q
1
24

∏∞
n=1(1 − qn) is the Dedekind eta function. As a conse-

quence of the product definition for η(τ), any eta-quotient is non-vanishing on H. We 
will need the following lemma from [47] to construct eta-quotients which vanish only at 
a specific cusp.

Lemma 2.8. ([47, Lemma 14]) Let N ∈ N, then for each divisor d of N , there exist kd ∈ N

and a corresponding eta-quotient Ed,N (τ) ∈ Mkd
(Γ0(N)) such that Ed,N vanishes only 

at the cusp c .
d
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The proof of Lemma 2.8 is constructive, and MAGMA [5] code implementing it can be 
found at http://users .wfu .edu /rouseja /eta/. We write EN(τ) for the holomorphic eta-
quotient EN,N (τ) that is produced by this code. In Section 3.2 we will use the explicit 
construction of eta-quotients EN (τ) to construct weakly holomorphic modular forms 
fwh
g (τ) for [g] ∈ {21A, 30AB}.

For completeness, we recall here the modular transformation law of the Dedekind 
eta-function,

η

(
az + b

cz + d

)
= e

(
a + d

24c + s(−d, c)
2 + 3

8

)
(cz + d) 1

2 η(z). (2.19)

Here, γ =
(
a b
c d

)
∈ SL2(Z) and s(d, c) is the Dedekind sum,

s(d, c) =
c−1∑
r=1

r

c

(
dr

c
−

⌊
dr

c

⌋
− 1

2

)
. (2.20)

Using eq. (2.19), we can explicitly compute Fourier coefficients of (f |k,ψγ) (τ) whenever 
f is an eta-quotient, γ ∈ Γ0(N) and ψ is a multiplier system of weight k and level N .

3. McKay–Thompson series

To state our main theorem of this section, we associate to each rational conjugacy 
class [g] of the Thompson group Th, the following data:

(1) Integers vg and hg as specified in Table A.1. We use these to define the character 
ψg := ψ4|g|,vg,hg

(see Equation (2.3)), where |g| denotes the order of g in Th.
(2) The space of cusp forms Sg := S+

3
2

(Γ0(4|g|), ψg) of weight 3
2 in the plus-space which 

transform under Γ0 (4|g|) with character ψg. We define dg to be the dimension of this 
space and let fg be the dg-tuple fg := (f (1)

g , . . . , f (dg)
g ) where f (i)

g is the ith element 
of the echelonized basis of Sg. A list of f (i)

g ’s can be found in Table A.3.
(3) For each f (i)

g defined as above, we let n(i)
g and m(i)

g be the integers listed in Table A.4. 
We define ng to be the dg-tuple ng := (n(1)

g , . . . , n(dg)
g ), and define Mg to be the dg×dg

diagonal matrix with entries given by (m(1)
g , . . . , m(dg)

g ).
(4) Finally, to each rational conjugacy class [g] of Th, we associate integers ag(n) for 

each n > 0, where n ≡ 0, 3 (mod 4). For g /∈ {21A, 30AB}, the integers ag(n) are 
given by Equation (3.8). For m ∈ {21, 30}, we will prove in Lemma 3.4 that there 
exists a weakly holomorphic modular form in M+,!

3
2

(Γ0(4m), ψmA) which has a pole 

of order 5 at ∞, a pole of order 5
4 at the cusp 1

42 if m = 21, and vanishes at all 
other cusps. For g = 21A we let fwh

mA(τ) denote the unique such form whose Fourier 
expansion begins 6q−5 − 2q4 + 4q7 − 8q8 +O(q11), and we define a21A(n) by setting

http://users.wfu.edu/rouseja/eta/
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fwh
21A = 6q−5 +

∞∑
n>0

n≡0,3 (mod 4)

a21A(n)qn. (3.1)

Similarly, we define a30AB(n) to be the Fourier coefficients of fwh
30AB ∈ M+,!

3
2

(Γ0(120),
ψ30), which is the unique form satisfying all properties in Lemma 3.4 with the Fourier 
expansion 6q−5 + 3q3 + 3q8 − 3q11 + O(q12).

For each rational conjugacy class [g] we define Λg to be the set of all dg-tuples λg :=
(λ(1)

g , . . . , λ(dg)
g ) ∈ Zdg and obtain the following proposition.

Proposition 3.1. Fix a rational conjugacy class [g] in Th. Then for each λg ∈ Λg, the 
function

Fλ
g (τ) := 6q−5 +

∑
0<n

ag(n)qn + (λgMg + ng) · fg(τ) (3.2)

is a weakly holomorphic modular form that satisfies the following properties.

(a) It lies in M+,!
3
2

(Γ0(4|g|), ψg), i.e., Fλ
g (τ) has weight 3

2 , level 4|g| with character ψg, 
and satisfies the Kohnen plus space condition.

(b) It has a pole of order 5 at the cusp ∞, a pole of order 5
4 at the cusp 1

2|g| if |g| is odd, 
and vanishes at all other cusps.

(c) The Fourier coefficients of Fλ
g (τ) are integers.

Note that our multiplier system ψg is conjugate to the one used by [31] and [33]. This 
is necessary for Theorem 3.2 to be true, and is not unexpected since our functions are 
weight 3

2 as opposed to the weight 1
2 forms in [31] and [33].

We will prove Proposition 3.1 by constructing specific weakly holomorphic forms 
fwh
g (τ) = 6q−5 +

∑
0<n ag(n) ∈ M+,!

3
2

(Γ0(4|g|), ψg) using the theory of Rademacher 
sums and eta-quotients. We will see from the explicit construction that each fwh

g (τ)
already satisfies properties (a) − (c) listed in Proposition 3.1 even without the addition 
of any cusp forms. We need to add the cusp forms fg(τ) not for Proposition 3.1, but 
instead for the following theorem.

Theorem 3.2. Assume the above notation and let Λ be the set of functions {λ : g 
→ λg ∈
Λg}. Then, for each λ ∈ Λ, there exists an infinite-dimensional graded virtual Th-module

Wλ :=
⊕
n>0

n≡0,3 (mod 4)

Wλ
n (3.3)

such that for each rational conjugacy class [g] of Th, the corresponding McKay–
Thompson series,
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6q−5 +
∑
n>0

n≡0,3 (mod 4)

tr
(
g|Wλ

n

)
qn (3.4)

is the specific weakly holomorphic modular form Fλ
g (τ) ∈ M+,!

3
2

(Γ0(4|g|), ψg) described in 
Proposition 3.1. Furthermore, for every infinite-dimensional graded virtual Th-module 
W =

⊕
n>0 Wn for which the McKay–Thompson series,

Fg(τ) = 6q−5 +
∑
n>0

n≡0,3 (mod 4)

tr (g|Wn) qn (3.5)

satisfies the properties listed in Proposition 3.1, there exists a λ ∈ Λ for which W = Wλ

described as above.

We will now construct the relevant spaces of modular forms required for the proof of 
Proposition 3.1.

3.1. Using Rademacher sums

For each rational conjugacy class [g] /∈ {21A, 30AB}, consider the function

fwh
g (τ) = 6R[−5],+

3
2 ,4|g|,ψg

(τ) := 6
(
R

[−5]
3
2 ,4|g|,ψg

|pr
)

(τ) (3.6)

where | pr is the projection onto the Kohnen plus-space (see Section 2.4). Then by 
Lemma 2.5, Lemma 2.6 and Lemma 2.7, each fwh

g (τ) is a mock modular form in the 
plus-space of weight 3

2 , level |g|, and multiplier ψg, has a pole of order 5 at the cusp at 
infinity, a pole of order 5

4 at the cusp 1
2|g| if |g| is odd (forced by the projection to the 

plus-space, see Lemma 2.6), and vanishes at all other cusps. The only thing left to prove 
here is that each fwh

g (τ) is, in fact, weakly holomorphic (i.e., has vanishing shadow, see 
Proposition 2.4).

Lemma 3.3. For each rational conjugacy class [g] /∈ {21A, 30AB} of the Thompson group, 
the function fwh

g (τ) (defined in eq. (3.6)) is in fact a weakly holomorphic modular form, 
and has Fourier expansion given by

fwh
g (τ) = 6q−5 +

∞∑
n>0

n≡0,3 (mod 4)

ag(n)qn, (3.7)

where for N = |g|, we have

ag(n) := −3π
N

(
−n

5

) 1
4 ∞∑

c=1

1 + δodd(Nc)
c

K 3
2 ,ψ

(−5, n, 4Nc)I 1
2

(
π
√

5n
Nc

)
. (3.8)
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Here, I 1
2

is the modified Bessel function of the first kind of order 1
2 ,

δodd(k) :=
{

1 k odd,
0 k even,

(3.9)

and K 3
2 ,ψ

is the twisted Kloosterman sum

K 3
2 ,ψ

(m,n, c) :=
∑

d (mod c)

ψ
(( ∗ ∗

c d

)) ( c

d

)
ε3
de

(
md + nd

c

)
. (3.10)

The sum here runs over primitive residue classes modulo c, and d̄ denotes the multiplica-
tive inverse of d modulo c.

Proof. We have already established that each fwh
g (τ) is a mock modular form of weight 

3
2 for the group Γ0(4|g|, ψg). It suffices to show that fwh

g (τ) has vanishing shadow. By 
Proposition 2.4, the space of possible shadows is M 1

2
(Γ0(4|g|), ψg) ⊂ M 1

2
(Γ0(4|g|hg)). 

By the Serre-Stark basis theorem [49] (see also [42, Theorem 1.45]), the (a priori) larger 
space is generated by theta functions of the form θχ(kτ) =

∑
n∈Z χ(n)qkn2 , where χ is an 

even Dirichlet character and χ and k depend on N = |g|. We compute the Bruinier-Funke 
pairing [8] to deduce that

{f̂wh
g (τ), θχ(kτ)} �= 0 (3.11)

if and only if k = 5. Thus, the only way to get non-vanishing shadow would be if 
the shadow is a constant multiple of θχ(5τ) but by Lemma 2.5, the shadow is in fact 
a constant multiple of the Rademacher sum R[+5]

1
2 ,4N,ψg

(τ). Since they transform under 
Γ0(4|g|) with different characters, this is not possible.

Thus, each fwh
g (τ) has vanishing shadow and is in fact weakly holomorphic. Com-

puting the coefficients of Rademacher sums in terms of Kloosterman sums and Bessel 
functions is a standard computation, see for example [11] (or Proposition 2.7 in [24]). �
3.2. Using eta-quotients

For [g] ∈ {21A, 30AB}, we will use the eta-quotients E|g|(τ) in Lemma 2.8 to compute 
spaces of weakly holomorphic forms of the desired weight and level. The main result of 
this section is the following lemma.

Lemma 3.4. For m ∈ {21, 30}, there exists a weakly holomorphic modular form with 
integer Fourier coefficients in M !,+

3
2

(Γ0(4m, ψmA)) which has a pole of order 5 at ∞, a 

pole of order 5 at the cusp 1 if m = 21, and vanishes at all other cusps.
4 42
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Note that if Lemma 3.4 is true, such a form satisfies all properties of Proposition 3.1, 
and we can thus define fwh

21A(τ) (resp. fwh
30AB(τ)) to be the unique such form with Fourier 

expansion 6q−5 − 2q4 + 4q7 − 8q8 + O(q11) (resp. 6q−5 + 3q3 + 3q8 − 3q11 + O(q12)).

Remark. We could have written an analogous statement for each rational conjugacy 
class [g] in the Thompson group and forgone the discussion about Rademacher sums 
completely. This would not affect the proof of Theorem 3.2 at all. However, we need an ex-
pression for fwh

g (τ) for certain classes [g] /∈ {21A, 30B} in terms of Rademacher sums for 
the application to elliptic curves. In particular, such expressions for g ∈ {14A, 19A} play 
key roles in the proofs of Theorems 1.1 and 1.3. On the other hand, for g ∈ {21A, 30AB}, 
the analogue of the sum in Equation (3.8) converges very slowly, so it is more convenient 
to use eta-quotients instead of Rademacher sums in these cases.

Proof of Lemma 3.4. By Lemma 2.8, for each N > 0 we can construct an eta-quotient 
EN (τ) that vanishes only at the cusp ∞. We use N = 21 and N = 30 to get eta-quotients:

E21(τ) = η(τ)η(21τ)21

η(3τ)3η(7τ)7 and E30(τ) = η(2τ)2η(3τ)3η(5τ)5η(30τ)30

η(τ)η(6τ)6η(10τ)10 η(15τ)15 (3.12)

of weight 6 and 4, respectively. Now, consider the cusp form space S 15
2

(Γ0(84), ψ21A), 
and suppose for now that we can compute a basis for this space explicitly. If so, we 
can divide each element of the basis by E21(4τ) to get a generating set B21 of forms 
in M !

3
2
(Γ0(84), ψ21A) whose only (possible) pole is at the cusp ∞. Then, we apply 

the projection operator to each element of B21 to get a generating set of forms in 
M !,+

3
2

(Γ0(84), ψ21A) that are holomorphic away from the cusps at ∞ and 1
42 . This gen-

erating set turns out to be non-empty.
We can now construct fwh

21A(τ) as a suitable linear combination of elements of this 
space determined completely by its Fourier expansion 6q−5 − 2q4 + 4q7 − 8q8 + O(q11). 
The same argument works for fwh

30AB(τ) if we start with S 11
2

(Γ0(120), ψ30AB) instead. 
Here again, the set of forms in M !,+

3
2

(Γ0(120), ψ30AB) which are holomorphic away from 
the cusp at ∞ turns out to be non-empty.

We now describe how to compute the bases for S 15
2

(Γ0(84), ψ21A) and S 11
2

(Γ0(120),
ψ30AB) in some detail. We will essentially follow the method described in Proposition 
3.1 of [31]. Let (m, k) ∈ {(21, 152 ), (30, 112 )}. Let f ∈ Sk(Γ0(4m)), ψmA) and let

ϑ(τ) :=
∑
n∈Z

qn
2 ∈ M+

1
2
(Γ0(4)). (3.13)

Then fϑ lies in Mk+ 1
2
(Γ0(4m), ψmA) ⊂ Mk+ 1

2
(Γ0(4mhg)). Using programs (available 

at http://users .wfu .edu /rouseja /eta/) written by Rouse and Webb one can verify that 
the space Mk+ 1

2
(Γ0(12m)) is generated by eta quotients (hg = 3, for both values 

of m). Since we can explicitly compute Fourier expansions of (g|kγ)(τ) for any eta-
quotient g(τ) and γ ∈ SL2(Z) (see Section 2.5), we can thus compute a basis for 

http://users.wfu.edu/rouseja/eta/
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Mk+ 1
2
(Γ0(4m), ψmA) and hence for Sk(Γ0(4m)), ψmA). Alternatively, we can also com-

pute a basis for Mk+ 1
2
(Γ0(4m), ψmA) using in-built functions in PARI/GP [44]. This 

concludes the proof of Lemma 3.4. �
We now have an explicit description of fwh

g (τ) for each rational conjugacy class [g]. 
The next steps in the proof are showing that each fwh

g (τ) (and thus each Fλ
g (τ)) satisfies 

all properties listed in Proposition 3.1 (we do this in Section 3.3), and that the only cusp 
forms we can add for Theorem 3.2 to be true are appropriate integer multiples of the 
elements of Sg for each g ∈ Th, respectively (cf. Proposition 3.1). The latter will follow 
from our work in Section 4.

3.3. Cusp forms

We begin by noting that the weakly holomorphic forms fwh
g (τ) described in Sec-

tions 3.1 and 3.2 satisfy the properties (a) − (c) listed in Proposition 3.1. Also, said 
properties uniquely determine a weakly holomorphic form up to cusp forms [24, Lemma 
2.4]. Thus to specify the functions Fλ

g (τ) completely we have to compute the cusp form 
spaces S+

3
2
(Γ0(4|g|), ψg) for each [g] in Th.

Lemma 3.5. For each rational conjugacy class [g] of Th, the corresponding cusp form 
space Sg is spanned by the cusp forms given in Table A.3.

Proof. We use the same method as in the proof of Lemma 3.4 to compute the cusp form 
spaces. Let f ∈ S+

3
2
(4|g|, ψg) be any cusp form. Then fϑ lies in M2(4|g|, ψg) ⊂ M2(4|g|hg), 

where the larger space is spanned by eta quotients for each [g]. This can be verified using
MAGMA code written by Rouse and Webb [47]. We can then use the modular properties 
of the eta-quotients and the projection onto the plus-space to determine a basis for 
M2(4|g|, ψg) and hence Sg = S+

3
2
(4|g|, ψg). The space Sg turns out to be trivial for every

[g] /∈ {12D, 14A, 18B, 19A, 20A, 21A, 24AB, 24CD, 28A, 30AB, 31AB, 39AB}. (3.14)

The Fourier coefficients given in Table A.3 are enough to determine each f (i)
g (τ) com-

pletely for all other rational conjugacy classes [g]. �
3.4. Integer coefficients

The last thing we need to check in order to prove Proposition 3.1 is that the functions

Fλ
g (τ) = fwh

g (τ) + (λgMg + ng) · fg(τ) (3.15)

constructed in the preceding section have integer coefficients. We will use Sturm’s 
theorem [54] for this. Note that each of these functions lies in M+,!

3 (Γ0(4|g|), ψg) ⊂

2
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M+,!
3
2

(Γ0(4|g|hg)), thus if ν(τ) = q5 + O(q8) is a cusp form with integer coefficients in 

S+
2k− 3

2
(Γ0(4|g|hg)), then, Fλ

g (τ)ν(τ) lies in M2k(Γ0(4|g|hg)), so we can apply Sturm’s 
theorem to it. Thus, Fλ

g (τ) has integer coefficients if the first k
6 [SL2(Z) : Γ0(4|g|hg)]

coefficients of Fλ
g (τ)ν(τ) are integers. The largest bound we have to check is less than 

1200. The author used PARI/GP [44] to do this computation.
This concludes the proof of Proposition 3.1.

4. Proof of Theorem 3.2: integer multiplicities

To prove Theorem 3.2, we have to show that the Fλ
g (τ)’s we described in Section 3

are indeed the McKay–Thompson series of a virtual module of the Thompson group.
This is equivalent to proving that there exist integers mλ

1 (n), ..., mλ
39(n) such that if 

Fλ
g (τ) = 6q−5 +

∑
n≥3 α

λ
g (n)qn, then for each n ≥ 3 the Fourier coefficient αλ

g (n) can be 
written in the form,

αλ
g (n) =

39∑
j=1

mλ
j (n)χj(g), (4.1)

where χ1, . . . , χ39 are the irreducible rational characters of Th (see Section 2.1 for a 
definition of rational character). We say that the function ωλ

n : Th → C, defined by 
g 
→ αλ

g (n), is a virtual rational character of Th if the above condition is satisfied. Thus, 
the goal of this section is to prove that ωλ

n is a virtual rational character of Th for every 
n ≥ 3 and choice of λ ∈ Λ.

As explained in [31], this is computationally infeasible to prove directly using only 
Sturm bounds [54]. However, it can be reduced to a finite computation using a variant 
of Thompson’s reformulation (see, for example, [53]) of Brauer’s characterization of gen-
eralized characters. (For another example of a similar computation, see [29].) To state 
the result, we first have to define a few things.

For the rest of this section, let G be a finite group and p a fixed prime dividing the 
order of G. Let CG denote the set of all rational conjugacy classes of G. We call [g] ∈ CG

p-regular if the order of g is coprime to p. Let Kp denote the set of all p-regular classes 
in G whose centralizer in G has order divisible by p. For a fixed [g] ∈ Kp, we will let 
α denote the highest power of p dividing the order of the centralizer of g in G. (This α
should not be confused with the αλ

g (n) of eq. (4.1).)
Let h ∈ G be any element in G and let |h| = n = pkm where k ≥ 0 and (p, m) = 1. 

Then we can write h as a product h = ab, where a and b commute and a has order m. 
(Both a and b can be expressed as powers of h.) We call a the p-regular part of h. We note 
here that if h′ ∈ G is in the same rational conjugacy class as h, then their corresponding 
p-regular parts a′ and a are also in the same rational conjugacy class, i.e. if h′ ∈ [h] then 
a′ ∈ [a]. This allows us to make the following definition.
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Definition 4.1. For a fixed p and [g] ∈ Kp as above, the p-regular section Rp,g of [g] is 
the set of rational conjugacy classes [h] ∈ CG such that the p-regular part of h lies in [g].

For G = Th, and for each prime p dividing |G|, Table A.2 lists the rational conjugacy 
classes [g] in Kp, along with their p-regular section Rp,g and the highest power α such 
that pα divides the order of the centralizer CG(g).

For a fixed group G, and prime p dividing |G|, fix a rational conjugacy class [g] ∈ Kp. 
Let Z(p) = {a

b : a, b ∈ Z, p � b} denote the localization of Z at the prime ideal (p), and 
let I := pαZ(p). We define m := |Rp,g|, and let Mp,g denote the set of all m-tuples 
(l1, l2, . . . , lm) ∈ Z⊕m

(p) such that

m∑
i=1

liχ ([h]i) ≡ 0 (mod Im) (4.2)

for all irreducible rational characters χ of G and all rational conjugacy classes [h]i in 
Rp,g.

We are now ready to state the following important lemma.

Lemma 4.2. Assuming the above notation, an integer-valued class function c : G → Z

of G is a virtual rational character of G if and only if for all primes p and rational 
conjugacy classes [g],

m∑
i=1

lic ([h]i) ≡ 0 (mod Im) (4.3)

for all (l1, l2, . . . , lm) ∈ Mp,g.

Proof. This is a direct application of [53, Theorem 1.1]. �
Lemma 4.2 reduces the problem of checking whether the multiplicities are integral to 

a p-local computation. We illustrate this with an example.

Example 1. Let p = 19. Then, K19 = {1A} and R19,1A = {1A, 19A}. We have α = 1, 
and M19,1A is the set of ordered pairs (x, y) ∈ Z⊕2

(19) such that

xχ(1A) + yχ(19A) ≡ 0 (mod 19) (4.4)

for each irreducible rational character χ of the Thompson group. Plugging in values for 
χ(1A) and χ(19A), we find that M19,1A = {(x, y) ∈ Z⊕2

(19) | x + y ≡ 0 (mod 19)}. So 

in order to prove that ωλ
n : Th → C is a virtual rational character for each λ ∈ Λ and 

n ∈ Z, we need to check that for each (x, y) ∈ M19,1A,

xαλ
1A(n) + yαλ

19A(n) ≡ 0 (mod 19) (4.5)



294 M. Khaqan / Journal of Number Theory 224 (2021) 274–306
where Fλ
g (τ) = 6q−5 +

∑
n≥3 α

λ
g (n) (cf. eq. (4.1)). Thus, we have to show that the 

following congruence is satisfied for every n ∈ N and λ ∈ Λ

αλ
1A(n) − αλ

19A(n) ≡ 0 (mod 19). (4.6)

This is a doubly infinite set of congruences (for each fixed λ ∈ Λ, we have a congruence 
for every integer n), but we can get rid of the dependence on λ as follows: Note that 
αλ

1A(n) is independent of λ since the cusp form space S1A is empty so we can write 
a1A(n) for αλ

1A(n) (see Proposition 3.1 for notation). Also by Proposition 3.1, αλ
19A(n) =

a19A(n) + (m19Aλ19A + n19A)b19A(n) where b19A(n) is the nth coefficient of f19A(τ) ∈
S19A. From Table A.4, m19A = 18 and n19A = 19, so checking eq. (4.6) reduces to 
checking that

a1A(n) = a19A(n) + 18b19A(n) (mod 19) (4.7)

for all n ∈ N .

We can do the same thing for every pair (p, [g]) where [g] ∈ Kp, and get a list of 
congruences that we need to check in order to show that the function ωλ

n is a virtual 
rational character in every case. An inspection of Table A.4 and Table A.3 confirms 
that we can always get rid of the dependence on λ. This still isn’t a finite computation 
because at the moment, we need to check each congruence for all positive integers n. 
However, that can be easily resolved in the following way: Let υ(τ) be the unique cusp 
form in S+

37
2

(Γ0(4)) whose Fourier expansion is of the form q5 − 56q8 + O(q9). Then for 
each [g] and λ, Fλ

g (τ)υ(τ) is a holomorphic modular form of weight 20 and level |g|hg

so Sturm’s theorem [54] applies. Thus, it suffices to check that the congruences hold for 
the first M Fourier coefficients of the holomorphic modular form where M is the Sturm 
bound which in the worst case is just shy of 4000. As before, we used [44] to check 
these.

We conclude this section with another example of this procedure, for clarity.

Example 2. Let p = 3, then K3 = {1A, 2A, 4A, 4B, 5A, 7A, 8A, 8B, 10A, 13A}. Pick [g] =
1A. Then, α = 10, Rp,g = {1A, 3A, 3B, 3C, 9A, 9B, 9C, 27A, 27BC} and M3,1A is the set 
of 9-tuples (y1, y2, . . . , y9) in Z⊕9

(3) such that

y1χ(1A) + y2χ(3A) + · · · + y9χ(27BC) ≡ 0 (mod 310)

for each irreducible rational character χ of the Thompson group. As before, in order to 
prove that ωλ

n : Th → C is a virtual rational character for each λ ∈ Λ and n ∈ Z, we 
need to check that for each (y1, . . . , y9) ∈ M3,1A we have,

y1α
λ
1A + y2α

λ
3A + · · · + y9α

λ
27BC ≡ 0 (mod 310). (4.8)
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This is easier to manage as a matrix computation. We let X denote the 39 × 9 matrix

X = [χi(h)]0<i≤39,h∈Rp,g
,

and let a := (a1A, a3A, a3B , . . . , a27BC). For each (y1, . . . , y9) ∈ M3,1A, we denote by y
the corresponding column vector whose entries are y1, y2, . . . , y9.

Note that for all rational conjugacy classes [g] in R3,1A the corresponding cusp form 
space Sg is empty, so we can in fact reduce to checking that a · y ≡ 0 (mod 310) for all 
y such that Xy ≡ 0 (mod 310). In order to check this, we first compute a basis for the 
Z(3)-span of the row vectors of X. We can use the GAP [30] command BaseIntMat to do 
this computation. It turns out that the Z(3)-span of the row vectors of X is the same as 
that of the row vectors of the following 9 × 9 matrix:

M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 9 1944 72 0 45 24 0 15
0 0 2187 0 0 27 0 3 3
0 0 0 81 0 27 0 0 0
0 0 0 0 27 27 0 3 3
0 0 0 0 0 81 9 6 15
0 0 0 0 0 0 27 0 18
0 0 0 0 0 0 0 9 9
0 0 0 0 0 0 0 0 27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.9)

We can solve My ≡ 0 (mod 310) for y and then compute a.y modulo 310 to see that 
the congruences we need to check are:

a1A − a3A ≡ 0 (mod 32)

a1A − a9A ≡ 0 (mod 33)

7a1A − 8a3A + a3C ≡ 0 (mod 34)

215a1A − 216a3A + a3B ≡ 0 (mod 37)

a1A + 27a3A − a3B − 27a3C − 81a9A + 81a9B ≡ 0 (mod 38)

1214a1A − 1971a3A + a3B + 27a3C + 81a9A − 81a9B + 729a9C ≡ 0 (mod 39)

2591a1A − 594a3A + a3B − 54a3C + 81a9A + 162a9B − 2187a27A ≡ 0 (mod 39)

1214a1A + 216a3A + a3B + 27a3C + 81a9A − 81a9B − 1458a9C + . . .

−2187a27A + 2187a27BC ≡ 0 (mod 310).
(4.10)

(Alternatively, we can use GAP to check that any given vector a is in the aforemen-
tioned span, by using the following code: IsContainedInSpan(MutableBasis(Integers,
M),a mod 310).)

As in Example 1, we can use PARI [44] to check these congruences up to the Sturm 
bound, which in this case comes out to be less than 1100.
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We can continue in this manner and check that all multiplicities are integral and 
hence for each Fλ

g (τ) as described in Proposition 3.1, there exists a virtual Th-module 
Wλ such that for each [g] in Th,

Fλ
g (τ) = 6q−5 +

∑
n>0

n≡0,3 (mod 4)

tr
(
g|Wλ

n

)
qn (4.11)

This proves Theorem 3.2.

5. Elliptic curves

The family of Th-modules that we get from Theorem 3.2 encodes arithmetic infor-
mation about quadratic twists of elliptic curves with conductors 14 and 19. This is the 
content of Theorems 1.1 and 1.3. We will prove these theorems in this section, but first, 
we have to develop some background. We recall here some basic notation and facts 
about traces of singular moduli, which were studied by Zagier in [64] and have since 
been examined extensively.

5.1. Traces of singular moduli

Let Q(N)
D be the set of positive definite quadratic forms Q = [a, b, c] := ax2 +bxy+cy2

of discriminant −D = b2−4ac < 0 such that N |a. Then, Γ0(N) acts on QN
D with finitely 

many orbits. For Q = [a, b, c] ∈ Q
(N)
D , we denote by τQ := −b+i

√
D

2a the unique root of 
Q(x, 1) in the upper half-plane H. Let f : H → C be a function invariant under the 
action of Γ0(N), and n ≡ 0, 3 (mod 4) be a positive integer. Then we can define,

Tr(N)
D (f ;n) :=

∑
Q∈Q

(N)
nD /Γ0(N)

χD(Q) f(τQ)
ω(N)(Q)

, (5.1)

where ω(N)(Q) is the order of the stabilizer of Q in Γ0(N)/{±1} and χD(Q) is the genus 
character for positive definite binary quadratic forms whose discriminants are multiples 
of D, defined as follows (see for example [39]):

χD([a, b, c]) =
{

0 if (a, b, c,D) > 1(
D
r

)
if (a, b, c,D) = 1 and Q represents r with (r,D) = 1.

(5.2)

For N ∈ {14, 19}, let J (N,+) be the normalized Hauptmodul for the group Γ+
0 (N). (We 

know this exists because the corresponding modular curve X(+)
0 (N) has genus 0. See 

[27], or [24, Table 5.2].)
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Proposition 5.1. Let N ∈ {14, 19} and let J (N,+) as above. Then,

R
[−5],+
3
2 ,4N

(τ) = q−5 + −2
3
√

5

∑
n>0

n≡0,3 (mod 4)

Tr(N)
5 (J (N,+);n)qn (5.3)

Proof. This is a direct application of Corollary 1.3 of [39]. �
In particular, this means that fwh

g (τ) for o(g) = N ∈ {14, 19} is given by

fwh
g (τ) = 6q−5 +

∑
0<n

ag(n)qn = 6q−5 − 4√
5

∑
n>0

n≡0,3 (mod 4)

Tr(N)
5 (J (N,+);n)qn. (5.4)

Writing fwh
g (τ) in the above form turns out to be essential for the proofs of Theorems 1.1

and 1.3. We give here another key lemma which we will use in both proofs.

Lemma 5.2. Let N ∈ {14, 19} and let d < 0 be a fundamental discriminant that satisfies 
the respective conditions of Theorems 1.1 and 1.3; then

Tr(N)
5 (f, |d|) = 0 (5.5)

for any Γ0(N) invariant function f , and hence, in particular, for f = J (N,+)(τ).

Proof. For N ∈ {14, 19}, the conditions of the theorems ensure that 5d is not a square 
mod 4N , which means that there are no quadratic forms [a, b, c] of discriminant b2−4ac =
5d such that N |a. Thus Q(N)

|5d| is empty for all such d and thus

Tr(N)
5 (f ; |d|) =

∑
Q∈Q

(N)
|5d|/Γ0(N)

χ5(Q) f(τQ)
ω(N)(Q)

= 0 (5.6)

for any function f that is Γ0(N) invariant. �
We now recall facts about elliptic curves that we will use in order to prove Theo-

rems 1.1 and 1.3.

5.2. Elliptic curves

To prove our main results, we let E be an elliptic curve over Q. For d < 0 a funda-
mental discriminant, we let Ed denote the dth quadratic twist of E. We let N denote 
the conductor, Ω(E) denote the real period and Reg(E) denote the regulator of E. We 
refer the reader to standard texts on elliptic curves, e.g. [50] for the definitions of these 
invariants.
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We let LE(s) denote the L-function associated to E. Then, by the modularity theorem 
[6] (see also [62,56]), there exists a unique weight 2 newform GE =

∑∞
n=1 aE(n)qn of level 

equal to the conductor of E such that

LE(s) =
∞∑

n=1
aE(n)n−s, (5.7)

where the right-hand side extends to a holomorphic function on C [2]. We let gE(τ) =∑∞
n=3 bE(n)qn ∈ S+

3
2
(Γ0(4N)) be the weight 3

2 cusp form associated to GE under the 

Shintani lift (see [34] for an overview of the Shintani lift). For N ∈ {14, 19} the dimension 
of S+

3
2
(Γ0(4N)) is 1, so for an elliptic curve of conductor N , the weight 3

2 cusp forms 
gE(τ) defined as above are the same as the cusp form fg(τ) associated to g ∈ {14A, 19A}
in Section 3. This is the key fact that we employ in order to prove Theorems 1.1 and 1.3.

Let E/Q be an elliptic curve with square-free conductor N , and for each �|N , let ω


denote the eigenvalue of the newform GE ∈ S2(Γ0(N)) associated to E and the Atkin–
Lehner involution W
.

Then we have the following lemma of Duncan, Mertens, and Ono, [24] (based on 
results due to Agashe [1] and Kohnen [37], and the generalization of Kohnen’s work by 
Ueda and Yamana [60,61]) which connects the p-divisibility of the cusp form coefficient 
to LEd(1).

Lemma 5.3. (See [24, Lemma 6.5].) Assume the notation above, and let p ≥ 3 be a prime. 
Let d < 0 be a fundamental discriminant satisfying 

(
d



)
= ω
 for each �. Denote by d0

the smallest such discriminant. Then we have that

ordp

(
LEd(1)
Ω(Ed)

)
= ordp

(
LEd0 (1)
Ω(Ed0)

)
+ ordp

(
bE(|d|)2

)
, (5.8)

where Ed denotes the dth quadratic twist of E.

Both our proofs of Theorems 1.1 and 1.3 depend on the above lemma. We are now 
ready to prove Theorem 1.1.

5.3. Proof of Theorem 1.1

Fix W = Wλ to be an infinite-dimensional graded Th-module that satisfies all the 
properties listed Theorem 3.2. Then, for g an element of order 19 in Th, we can combine 
Proposition 3.1 and Proposition 5.1 to get the following expression for the coefficients of 
F19A(τ):

tr(g|Wn) ≡ −4√ Tr(19)5 (J (19,+);n) + (n19A + λ19Am19A)b19A(n), (5.9)

5
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where b19A(n) denotes the nth coefficient of the weight 3
2 cusp form f19A ∈ S19A. Since 

W is a virtual module for the Thompson group, we know the following congruence holds 
for each p|#Th (and in particular for p = 19) and for all n > 0

dim(Wn) ≡ tr(gp|Wn) (mod p), (5.10)

where gp denotes an element of order p. Plugging in the values of ng and mg from 
Table A.4, we get,

dim(Wn) ≡ −4√
5

Tr(19)5 (J (19,+);n) + 18b19A(n) (mod 19). (5.11)

Thus for n = |d| where d is a fundamental discriminant that satisfies the properties of 
Theorem 1.1, we use Lemma 5.2 to get:

dim(W|d|) ≡ tr(g19|W|d|) ≡ 18b19A(|d|) (mod 19). (5.12)

This shows that the congruence in the statement of our theorem holds if and only if 
19|b19A(|d|), or by Lemma 5.3, if and only if

ord19

(
LEd(1)
Ω(Ed)

)
> ord19

(
LEd0 (1)
Ω(Ed0)

)
. (5.13)

A quick MAGMA computation for d0 = −4 shows that the right-hand side is 0. Thus, if 
dim(W|d|) �≡ 0 (mod 19), then LEd(1) �≡ 0 (mod 19), and in particular, LEd(1) �= 0. 
By Kolyvagin’s work [38], this means that Ed(Q) is finite. This completes the proof of 
Theorem 1.1.

5.4. Theorem 1.3

We need to develop some more background before proving Theorem 1.3. For � prime, 
we let c
(E) denote the Tamagawa number of E at �, defined as the finite index

c
 = [E(Q
) : E0(Q
)], (5.14)

where E0(Q
) is the subgroup of points which have good reduction at �. If E has good 
reduction at �, then E(Q
) = E0(Q
) and c
 = 1. In particular for a general elliptic curve 
defined over Q, we have that c
 = 1 for all but finitely many primes �. The following 
result of C. Skinner (see also [52]) gives a local version of the Birch and Swinnerton-Dyer 
Conjecture for certain elliptic curves.

Theorem 5.4 ([51], Theorem C). Let E/Q be an elliptic curve and p ≥ 3 a prime of good 
ordinary or multiplicative reduction. Assume that the Gal(Q/Q)-representation E[p] is 



300 M. Khaqan / Journal of Number Theory 224 (2021) 274–306
irreducible and that there exists a prime p′ �= p at which E has multiplicative reduction 
and E[p] ramifies. If LE(1) �= 0, then we have that

ordp

(
LE(1)
ΩE

)
= ordp

(
#X(E)

∏



c
(E)
)
. (5.15)

If LE(1) = 0, then we have Selp(E) �= {0}.

In order to use Theorem 5.4 in our proof of Theorem 1.3, we first show that each 
elliptic curve E of conductor 14 satisfies the hypotheses of Theorem 5.4 in the following 
lemma.

Lemma 5.5. Let d < 0 be a fundamental discriminant for which 
(
d
7
)

= −1 and 
(
d
2
)

= 1; 
then for each elliptic curve E of conductor 14 the following are true:

(a) The dth quadratic twist of E has multiplicative reduction at p ∈ {2, 7};
(b) The Gal(Q/Q)-representation Ed[7] is irreducible; and
(c) Ed[7] ramifies at 2.

Proof. Let E/Q be an elliptic curve given by a minimal Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (5.16)

and define the discriminant of E by the equation

Δ(E) := −b22b8 − 8b34 − 27b26 + 9b2b4b6, (5.17)

where b2 := a2
1 + 4a4, b4 := 2a4 + a1a3, b6 := a2

3 + 4a6 and b8 := a2
1a6 + 4a2a6 −

a1a3a4 + a2a
2
3 − a2

4. Then E has multiplicative reduction at p if and only if p divides 
the discriminant of E but not the quantity c4(E) := (a2

1 + 4a4)2 − 24(2a4 + a1a3). 
For each elliptic curve of conductor 14, we have that a1 = a3 = 1, a2 = 0 and a3 ∈
{−2731, −171, −36, −11, −1, 4} (see [57, Elliptic Curve 14.a]). Thus, for each elliptic 
curve E of conductor 14, E has multiplicative reduction at p ∈ {2, 7}. Since twisting by 
a fundamental discriminant d only changes Δ(E) and c4(E) up to a power of d, and d
is coprime to 14, this proves part (a).

Part (b) follows from a lemma of Serre [48] which shows that the Galois representation 
Ed[7] is surjective and hence irreducible. Finally, part (c) follows from part (b) and (the 
contrapositive of) Theorem 1.1 of [46]. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Fix W = Wλ to be an infinite-dimensional graded Th-module 
that satisfies all the properties listed Theorem 3.2. Let g denote an element of order 
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14 in Th. As before, we can combine Proposition 3.1 and Proposition 5.1 to get the 
following expression for the trace of g on W :

tr(g|Wn) = −4√
5

Tr(14)5 (J (14,+);n) + (n14A + λ
(1)
14Am14A)b14A(n). (5.18)

Here, b14A(n) denotes the nth coefficient of the weight 3
2 cusp form f14A ∈ S14A. By 

Lemma 5.2, we get that for n = |d| where d is a fundamental discriminant that satisfies 
the properties of Theorem 1.3, the first term on the right-hand side of the above equation 
is 0. Plugging in values of n(1)

g and m(1)
g from Table A.4, we get the following congruence

tr(g|W|d|) =
(
42 + 56λ(1)

14A

)
b14A(|d|) (mod 49). (5.19)

Suppose first that tr(g|W|d|) �≡ 0 (mod 49). Then, b14A(|d|) �≡ 0 (mod 7). By Lemma 5.3, 
this means that

ord7

(
LEd(1)
Ω(Ed)

)
= ord7

(
LEd0 (1)
Ω(Ed0)

)
. (5.20)

As before we can use MAGMA to check that the right-hand side of the above equation is 
0 for each E of conductor 14. Thus, if tr(g|W|d|) �≡ 0 (mod 49) then ord7

(
L

Ed (1)
Ω(Ed)

)
= 0

and in particular, LEd(1) �= 0. By Lemma 5.5 and Theorem 5.4, we have that

ord7

(
#X(Ed)

∏



c
(Ed)
)

= 0. (5.21)

Thus, X(Ed)[7] is trivial. Furthermore, the Mordell–Weil group Ed(Q) is finite [38].
We now consider the case that tr(g|W|d|) ≡ 0 (mod 49) and assume that tr(g|W4) �≡

43 (mod 49). We can once again use Proposition 3.1 and Proposition 5.1 to write

tr(g|W4) = −4√
5

Tr(14)5 (J (14,+); 4)+
(
42 + 56λ(1)

14A

)
b14A(4) = −6+(42+56λ(1)

14A). (5.22)

Our assumption on tr(g|W4) gives us the congruence (42 + 56λ(1)
14A) �≡ 0 (mod 49) and 

hence by Equation (5.19) we get that 7 | b14A(|d|). By Lemma 5.3 we get

ord7

(
LEd(1)
Ω(Ed)

)
> 0. (5.23)

First suppose that LEd(1) = 0, then Selp(E) �= 0 by Theorem 5.4. So we can reduce to 
the case where LEd(1) �= 0. In that case, again by Theorem 5.4, we get,

ord7

(
#X(Ed)

∏
c
(Ed)

)
> 0. (5.24)
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Thus the only thing left to check is that 7 does not divide any of the Tamagawa numbers 
c
(Ed) for any choice of E and d. By Theorem VII.6.1 in Silverman I [50], c
(Ed) ≤ 4
for most of these cases. The only other possibility is when Ed has split multiplicative 
reduction at �, in which case, c
(Ed) = ord
(Δ(Ed)) = ord
(|d|6Δ(E))). The conditions 
on d in the theorem imply that |d| is square-free and coprime to Δ(E) for all E of 
conductor 14. Thus, if 7 | c
(Ed), for some � then � lies in {2, 7} and 7 divides ord
(Δ(E))
which is independent of d. A quick check reveals that this is never the case for an elliptic 
curve of conductor 14. �

Appendix A. Tables

Table A.1
Multipliers for each rational conjugacy class.

[g] 1A 2A 3A 3B 3C 4A 4B 5A 6A 6B
v, h 0,1 0,1 1,3 0,1 2,3 0,1 1,2 0,1 1,3 2,3

[g] 6C 7A 8A 8B 9A 9B 9C 10A 12AB 12 C
v, h 0,1 0,1 1,2 1,4 0,1 0,1 1,3 0,1 1,3 0,1

[g] 12D 13A 14A 15AB 18A 18B 19A 20A 21A 24AB
v, h 1,6 0,1 0,1 1,3 0,1 2,3 0,1 1,2 1,3 1,6

[g] 24CD 27A 27BC 28A 30AB 31AB 36A 36BC 39AB
v, h 1,12 1,3 1,3 0,1 2,3 0,1 0,1 0,1 1,3

Table A.2
p-regular sections.

p 2 2 2 2 2 2 2 2 2 3
Kg 1A 3A 3B 3C 5A 7A 9A 9C 15AB 1A
α 15 6 3 4 3 3 4 3 3 10

Rp,g 1A,2A 3A 3B,3C 6C 5A 7A 9A,18A 9C 15AB 1A,3A, 3B
4A,4B 6B 12C 6A 10A 14A 36A, 36BC 18B 30AB 3C, 9A, 9B
8A,8B 12AB 24CD 12D 20A 28A 9C,27A,27BC

p 3 3 3 3 3 3 3 3 3 5 5
Kg 2A 4A 4B 5A 7A 8A 8B 10A 13A 1A 2A
α 4 3 1 1 1 1 1 1 1 3 1

Rp,g 2A,6A 4A 4B 5A 7A 8A 8B 10A 13A 1A 2A
6B, 6C 12AB 12D 15AB 21A 24AB 24CD 30AB 39AB 5A 10A

18A,18B 12C

p 5 5 5 7 7 7 7 13 13 19 31
Kg 3C 4B 6A 1A 2A 3A 4A 1A 3A 1A 1A
α 1 1 1 2 1 1 1 1 1 1 1

Rp,g 3C 4B 6A 1A 2A 3A 4A 1A 3A 1A 1A
15AB 20A 30AB 7A 14A 21A 28A 13A 39AB 19A 31AB
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Table A.3
List of non-zero cusp forms in Sg for each rational conjugacy class [g] of Th.

f12D(q) = q4 −2q8 +2q20 −2q40 −2q52 +4q56 −2q68 +4q88 −q100 −6q116 +2q136 +4q148 +O(q150)
f14A(q) = q4−q7−q8+2q15−q16+q28+q32−q36−2q39+q56−2q60+q63+q64−2q71+3q72+2q79−

2q84−2q88+2q95−q100−q112+2q119+2q120−4q127−q128−4q135+q144+4q148+O(q151)
f18B(q) = q4 + q7 − q16 − q28 − 3q31 + q40 − 2q52 + q55 + q64 + 2q79 + q88 + 2q100 + 2q103 + q112 +

3q124 − q127 − 4q136 − 2q148 + O(q150)
f19A(q) = q4 − q7 − q11 + q19 + q20 − 2q24 + q28 + q35 − q36 + 2q39 − q43 − q44 + q47 − q55 + q63 −

2q64 − q68 + q76 − q95 + 3q99 + 2q100 − 2q111 + 2q112 − 2q115 − q119 + 2q120 − 2q123 +
q131 − 3q139 + q140 + O(q151)

f
(1)
20A(q) = q4 − q20 − 2q24 − q36 + 2q40 + 2q56 + 2q84 − q100 − 2q120 − 4q136 + O(q151)

f
(2)
20A(q) = q7 − q15 − q23 + q47 + q63 − 2q87 + 2q95 + q103 − 3q127 − 2q143 + O(q151)

f
(1)
21A(q) = q4 − q11 − q16 + q23 − q28 − q32 + q35 + q44 + q56 + q64 + 2q67 − q71 − 2q79 − 2q91 −

q92 + q100 − q107 + q112 − q116 − q119 + 2q127 − 2q148 + O(q150)

f
(2)
21A(q) = q7 + q8 − q11 − 2q16 − q23 + q32 + 2q43 + q56 − q71 − 2q88 − 2q91 − 2q92 + 2q95 +

4q100 + q107 − 2q116 − 4q127 + q128 − 2q140 + O(q150)
f24AB(q) = q4 − q8 − q20 + 2q40 − 2q52 + 2q56 + q68 − 4q88 − q100 + 3q116 − 2q136 + 4q148 +O(q150)

f
(1)
24CD(q) = q4 − q100 + O(q150)

f
(2)
24CD(q) = q7 − 2q15 − q31 + 4q39 − 2q63 − 3q79 + 2q87 + q103 + q127 − 2q135 + O(q150)

f
(3)
24CD(q) = q16 + q20 − 2q32 − q52 + q68 + 2q80 − 3q116 + 2q148 + O(q150)

f
(1)
28A(q) = q4 − q8 − q16 + q28 + q32 − q36 + q56 − 2q60 + q64 + 3q72 − 2q84 − 2q88 − q100 − q112 +

2q120 − q128 + q144 + 4q148 + 2q156 − 2q168 − 4q184 + q196 − q200 + O(q201)

f
(2)
28A(q) = q7 − 2q15 + 2q39 − q63 + 2q71 − 2q79 − 2q95 − 2q119 + 4q127 + 4q135 + O(q151)

f
(1)
30AB(q) = q4 + 2q15 − q16 + 2q24 − 2q36 − 4q39 − q40 + 2q55 − 2q60 + q64 − 4q79 + 4q84 − 2q96 −

q100 + 4q111 − 4q120 + 2q135 + 2q136 + 2q144 + O(q150)

f
(2)
30AB(q) = q7 + q8 + q20 − q28 − q32 − q40 − 2q47 + q52 − q55 − 2q68 − q80 + q88 + 2q95 − q103 +

q112 − q127 + q128 + 2q143 + q148 + O(q150)

f
(3)
30AB(q) = q11−q15+q16−q19−q20−q24+q35+q36+2q39+q44−q55−q56−3q59+q60−q76+2q79−q80−

2q84+q91+q96+3q104−2q111+2q115+2q120−q131−q135−3q136+q140−q144+O(q150)

f
(1)
31AB(q) = q4 −q8 −q20 −q28 +q32 +2q35 +q36 −2q39 +q40 −2q51 +q56 −2q59 +2q63 −q64 +2q67 +

2q71−q72−q76+2q87−2q95−2q103−2q107+q124+2q128−2q132+q140−2q144+O(q151)

f
(2)
31AB(q) = q7 − q8 − q16 + q19 − q31 + q35 + 2q36 − q40 − 2q51 + q56 − q59 − q63 − q64 + q71 + q72 +

2q76 + q80 − q95 + q103 − q107 − 2q111 − q112 + q128 + q144 + O(q151)

f
(1)
39AB(q) = q7 − q19 + q20 − q31 − q32 − q44 − q59 + q67 + q71 + q80 + q83 + q91 + q104 − q119 −

2q124 + 2q136 − q143 + 2q148 + O(q150)

f
(2)
39AB(q) = q8 + q15 − q19 − q24 − q28 + q31 − q39 − q44 − q47 + q52 + q72 + q76 − q80 + q83 + 2q84 −

q96 − q99 + q112 + 2q115 + q119 + q123 − q124 − q135 − q136 + O(q150)

f
(3)
39AB(q) = q11−q15−q19 +q24−q28 +q31−q32 +q39 +q44 +q52−q59−q71−q72 +q76−q80−2q84 +

q96 + q99 + q104 + q112 + 2q115 − q119 − q123 − q124 + q128 + q135 − q136 + q143 +O(q150)

Table A.4
Integers n(i)

g and m(i)
g associated to each cusp form f(i)

g (τ).

f(i)
g n(i)

g m(i)
g f(i)

g n(i)
g m(i)

g f(i)
g n(i)

g m(i)
g f(i)

g n(i)
g m(i)

g

f12D 12 24 f14A 42 56 f18B 0 18 f19A 18 19
f

(1)
20A 0 20 f

(2)
20A 0 20 f

(1)
21A 9 21 f

(2)
21A 17 21

f
(1)
24AB 0 48 f

(1)
24CD 0 12 f

(2)
24CD 0 12 f

(3)
24CD 0 12

f
(1)
28A 0 14 f

(2)
28A 0 28 f

(1)
30AB 3 30 f

(2)
30AB 15 30

f
(3)
30AB 21 30 f

(1)
31A 2 31 f

(2)
31A 19 31 f

(1)
39AB 21 39

f
(2)
39AB 6 39 f

(3)
39AB 6 39
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