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We call a (q − 1)-th Kummer extension of a cyclotomic function
field a quasi-cyclotomic function field if it is Galois, but non-
abelian, over the rational function field with the constant field of
q elements. In this paper, we determine the structure of the Galois
groups of a kind of quasi-cyclotomic function fields over the base
field. We also give the genus formulae of them.
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1. Introduction

We call a (q − 1)-th Kummer extension of a cyclotomic function field a quasi-cyclotomic function
field if it is Galois, but non-abelian, over the rational function field k = Fq(T ). A large kind of such
fields were described explicitly in [4] following the works in [1] and [2]. In this paper, we describe
the Galois groups of this kind of quasi-cyclotomic function fields by generators and relations following
the method in [8] by using the results in [2] and [4]. We also give the genus formulae of them.

Now we recall the constructions of the quasi-cyclotomic function fields in [4].
Let k = Fq(T ) be the rational function field over the finite field Fq of q elements. In this paper we

always assume that the characteristic of k is an odd prime number p. Put A = Fq[T ]. Let Ω be the
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completion of the algebraic closure of Fq((1/T )) at the place 1/T . Let kac be the algebraic closure of
k in Ω . Let kab be the maximal abelian extension of k in kac .

Let π̄ ∈ Ω be the period of the Carlitz module, namely the lattice π̄A of rank one corresponds to
the Carlitz module. The Carlitz exponential function eC is defined by

eC (x) = x
∏

0 �=u∈π̄A

(
1 − x

u

)
, x ∈ Ω.

For A ∈ Fq((1/T )), let {A} be the representation in (Fq((1/T )) \A) ∪ {0} of A modulo A, we define

sin(A) = q−1
√−1 · eC

(
π̄{A}/sgn

({A})),
where sgn is a fixed sign function on Fq((1/T )). For the definition of sign function, see [3, Defini-
tion 7.2.1].

Let A be the free abelian group generated by the symbols [A], A ∈ k \ A. Define two homomor-
phisms

sin,e : A → kab∗

such that sin([A]) = sin(A) and e([A]) = eC (π̄ A) for A /∈ A, and sin([A]) = 1 and e([A]) = 1 other-
wise.

Fix a total order < in A. Write dA for the degree of A ∈A. Let M ∈ A be monic. Put

SM = {monic prime factors of M}.

Fix a generator γ of F∗
q . For P , Q ∈ SM with P < Q , let

aP Q =
∑

dA<dQ
A: monic

∑
dB<dP

B: monic

q−1∑
s=1

s

([
B Q + γ −s A

P Q

]
−

[
A P + γ −s B

P Q

])
.

Notice that there is a print mistake in [4], where s runs from 1 to q − 2 in the definition of aP Q . We
also want to indicate that the homomorphism e gives the same value in the aP Q here and in the aP Q

of [2].
We put

u P Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin aP Q , if 2|dP , 2|dQ ,√
P sin aP Q , if 2|dP , 2 �dQ ,√
Q sin aP Q , if 2 �dP , 2|dQ ,√
P Q sin aP Q , if 2 �dP , 2 �dQ .

Set K = k(eC ( π̄
M )), which is the cyclotomic function field of conductor M whose Galois group over

k is canonically isomorphic to (A/MA)∗ . Since u P Q ∈ K , put K̃ = K ( q−1
√

u P Q ). By [4, Theorem 3], K̃ is
a quasi-cyclotomic function field over k, which implies that [K̃ : k] = (q − 1)Φ(M), where Φ(M) is the
number of elements in (A/MA)∗ .
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2. The Galois groups

Let G = Gal(K/k) and G̃ = Gal(K̃/k) be the Galois groups of the extensions K/k and K̃/k respec-
tively. In this section, we determine G̃ by generators and relations.

In the sequel, we write w = q − 1 and u = u P Q for simplicity.
First, we want to indicate a basic fact without proof. We will use it several times without indica-

tion.

Lemma 2.1. There exists a ∈ F∗
q such that sin aP Q = ae(aP Q ).

Clearly Gal(K̃/K ) is isomorphic to Z/wZ. Recall that γ is a fixed generator of F∗
q . Let ε ∈ Gal(K̃/K )

be a generator such that

ε
(

w
√

u
) = γ w

√
u.

Denote by logγ the isomorphism

logγ : F∗
q → Z/wZ, γ i �→ ī.

Each element of G has w liftings in G̃ . Then we have a coarse description about G̃ .

Lemma 2.2. For any σ ∈ G, choosing vσ ∈ K ∗ such that σ(u) = v w
σ u, we can define a lifting σ̃ ∈ G̃ of

σ by σ̃ ( w
√

u ) = vσ
w
√

u. Then G̃ = {σ̃ ε j | σ ∈ G,0 � j � w − 1}, and the multiplication in G̃ is given by
σ̃ τ = σ̃ τ̃ εlogγ i(σ ,τ ) , where i(σ , τ ) = vστ

vσ σ (vτ )
∈ F∗

q . For any σ̃ ∈ G̃ , ε and (σ̃ )w belong to the center of G̃ .

Proof. By [4, Section 5.1.2], there exists such vσ ∈ K ∗ for any σ ∈ G . The rest of the proof is trivial,
we refer to the proof of [8, Lemma 1]. �

Let M = P r1
1 P r2

2 · · · P rn
n be the prime decomposition of M . We have the isomorphism:

G ∼= (A/MA)∗ ∼= (
A/P r1

1 A
)∗ × (

A/P r2
2 A

)∗ × · · · × (
A/P rn

n A
)∗

.

Different from the case of characteristic 0, now each (A/P ri
i A)∗ is not always cyclic. But we have

the decomposition (A/P ri
i A)∗ ∼= (A/P ri

i A)(1) × (A/PiA)∗ , where (A/P ri
i A)(1) is a p-group of order

|Pi |ri−1 and (A/PiA)∗ is a cyclic group of order |Pi | − 1, where |Pi| = qdPi , see [5, Proposition 1.6].
For 1 � i � n, since the inertia group of Pi in K is isomorphic to (A/P ri

i A)∗ , we choose a σPi ∈ G
with 〈σPi 〉 ∼= (A/PiA)∗ such that σPi is contained in the inertia group of Pi . Then we have

G = G(p) × G ′,

where G ′ = 〈σP1 〉 × · · · × 〈σPn 〉, and G(p) is the p-Sylow subgroup of G . In fact, G(p) ∼= (A/P r1
1 A)(1) ×

· · · × (A/P rn
n A)(1) .

Let G̃(p) and G̃ ′ be the subgroups of G̃ consisting of all liftings of the elements in G(p) and in
G ′ respectively. It is easy to see that both of them are normal subgroups of G̃ . Then we can get
a decomposition of G̃ .

Lemma 2.3. Let G̃(p) be the p-Sylow subgroup of G̃ . Then

G̃(p) ∼= G̃(p)/〈ε〉 ∼= G(p).

Furthermore, we have G̃ = G̃(p) × G̃ ′ , and G̃(p) is contained in the center of G̃ .
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Proof. Since |G̃| = w|G| = |G(p)| · |G̃ ′|, we have |G̃(p)| = |G(p)|. In addition, since the order of ε and p
are coprime, for each element of G(p) , there exists at most one lifting contained in G̃(p) . So for each
σ ∈ G(p) , there exists a unique lifting σ ′ of σ such that σ ′ ∈ G̃(p) . Then the map σ �→ σ ′ mod 〈ε〉
gives the isomorphism G(p) ∼= G̃(p)/〈ε〉 and the map σ �→ σ ′ gives the isomorphism G(p) ∼= G̃(p) .

Since G̃(p) = (G̃(p))w , by Lemma 2.2 we see that G̃(p) is contained in the center of G̃ . So G̃(p)

is a normal subgroup of G̃ . In addition, as |G̃| = |G̃(p)| · |G̃ ′| and gcd(|G̃(p)|, |G̃ ′|) = 1, we have G̃ =
G̃(p) × G̃ ′ . �

Next we need to investigate the subgroup G̃ ′ .
For each generator σPi ∈ G ′ (1 � i � n), according to Lemma 2.2 we fix a lifting σ̃Pi of σPi in G̃ as

follows.
If Pi �= P , Q , we define

σ̃Pi

(
w
√

u
) = w

√
u.

In fact, by [2, Sections 3.3, 4.3 and 5.1], we have σPi (u) = u.
If Pi = P or Q , we define

σ̃Pi

(
w
√

u
) = vσPi

w
√

u,

where vσPi
∈ K is given by

vσP = ( w
√

(−1)dQ sin cσP

)−1
and vσQ = ( w

√
(−1)dP sin cσQ

)−1
,

here cσP and cσQ were defined in [2, Section 4.2.5]. By [4, Sections 3.4.2 and 3.4.3], we have u
σP (u)

=
(

w
√

(−1)dQ sin cσP )w with w
√

(−1)dQ sin cσP ∈ K ∗ .
Hence, we have

G̃ ′ = 〈σ̃P1 , . . . , σ̃Pn , ε〉.

Now we study the relations among these generators of G̃ ′ . First ε commutes with each generator.

For L, R ∈ SM , L < R , set αLR = σL (vσR )/vσR
σR (vσL )/vσL

. By Lemma 2.2, we have σ̃L σ̃R = σ̃R σ̃Lε
logγ αLR . By [2,

Section 3.5: The Log Wedge Formula, Section 3.6: The Auxiliary Formula and Section 5.1: The Main
Formula], we see that the generators σ̃Pi commute with each other except for the relation

σ̃P σ̃Q = σ̃Q σ̃P ε−1.

So in fact, G̃ ′ = 〈σ̃P1 , . . . , σ̃Pn 〉.
By definition, if Pi �= P , Q , then we have ord(σ̃Pi ) = ord(σPi ). Finally, we need to compute the

orders of σ̃P and σ̃Q .
Let L ∈ SM and let I L be the inertia group of L in K . It is known that I L ∼= (A/LrA)∗ ∼= (A/LrA)(1) ×

(A/LA)∗ , where r is the maximal power of L such that Lr |M . We fix an inertia group Ĩ L of L in K̃ . Let
L̃ be a prime ideal in K̃ above L such that the inertia group I (̃L/L) = Ĩ L . Let G̃ i be the i-th ramification
group of L̃|L, i � −1. Then by [7, III 8.6], G̃0 = Ĩ L , Ĩ L/G̃1 is cyclic of order relatively prime to p, and
G̃1 is the unique p-Sylow subgroup of Ĩ L which is contained in the center of Ĩ L by Lemma 2.2.

Put G L = 〈σL〉 ⊂ I L and G̃ L = G̃ L ∩ Ĩ L , where G̃ L is the subgroup of G̃ consisting of all liftings of
the elements of G L . Denote by eL the ramification index of any prime ideal of K̃ lying above L in the
extension K̃/K .
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Proposition 2.4. Ĩ L is an abelian group with Ĩ L = G̃1 × G̃ L , where G̃1 ∼= (A/LrA)(1) and G̃ L is a cyclic group
generated by a lifting of σL . Furthermore, all the liftings of σL have the same order eL · ord(σL).

Proof. Set H = 〈ε〉. The canonical homomorphism Ĩ L → I L , σ̃ �→ σ̃ |K , induces an isomorphism
Ĩ L/(̃I L ∩ H) ∼= I L . Since K̃ is abelian over K , Ĩ L ∩ H is the inertia group of L in the field exten-
sion K̃/K by [5, Proposition 9.8]. So the order of Ĩ L ∩ H is eL , and thus |̃I L | = eL |I L |. Noticing that
G̃ L ∩ H = Ĩ L ∩ H and the above homomorphism also induces an isomorphism G̃ L/(G̃ L ∩ H) ∼= G L , we
have |G̃ L | = eL |G L |.

Since G̃1 is contained in the center of Ĩ L and Ĩ L/G̃1 is cyclic, we see that Ĩ L is abelian. Noticing
that gcd(|G̃ L |, |G̃1|) = 1 and |̃I L | = |G̃1| · |G̃ L |, we have Ĩ L = G̃1 × G̃ L . So G̃ L ∼= Ĩ L/G̃1 is cyclic. Since
I L = Ĩ L |K = G̃1|K × G̃ L |K = G̃1|K × G L and G̃1|K ∼= G̃1/(G̃1 ∩ H) = G̃1, we have G̃1 ∼= (A/LrA)(1) .

As G̃ L |K = G L , there exists a lifting σ ′
L of σL belonging to G̃ L . Since the order of ε is a factor of

the order of σL , all the liftings of σL have the same order. If the order of σ ′
L is less than |G̃ L |, then it

is easy to show that the order of each element is also less than |G̃ L |. But G̃ L is cyclic. Hence σ ′
L must

be a generator of G̃ L . �
Remark 2.5. The extension K̃/k gives us an example of a non-abelian function field extension with
abelian inertia groups.

If Pi �= P and Q , then ePi = 1. Now we need to calculate the ramification indices eP and eQ .
Let R be a monic irreducible polynomial in A and A ∈ A be coprime to R . Recall that the (q−1)-th

residue symbol ( A
R ) ∈ F∗

q is defined by

(
A

R

)
≡ A

|R|−1
q−1 mod R.

Let v P be the additive valuation in kab associated to P defined in [2, Section 6]. Notice that the
restriction of v P in k(eC ( π̄

P )) is the normalized valuation of k(eC ( π̄
P )) associated to P . By [2, Proposi-

tion 6.2], we have

v P
(
e(aP Q )

) ≡ logγ

(
Q

P

)
and v Q

(
e(aP Q )

) ≡ − logγ

(
P

Q

)
(mod w).

In addition, v P (P ) equals to the ramification index |P | − 1 of P in k(eC ( π̄
P ))/k. Thus v P (

√
P ) ≡

w
2 dP (mod w). Similarly, we have v Q (

√
Q ) ≡ w

2 dQ (mod w).

Furthermore, combining with the reciprocity law ( Q
P ) = (−1)dP dQ ( P

Q ), see [5, Theorem 3.5], we
have

v P (u) ≡ logγ

(
P

Q

)
and v Q (u) ≡ − logγ

(
Q

P

)
(mod w).

By [7, III 7.3], noticing that the valuations there are different from what we use here, we have
eP = w

gcd(w,v P (u))
and eQ = w

gcd(w,v Q (u))
. So

eP = w

gcd(w, logγ ( P
Q ))

and eQ = w

gcd(w, logγ ( Q
P ))

.

Finally we get the following theorem.



M. Sha, L. Yin / Journal of Number Theory 132 (2012) 2574–2581 2579
Theorem 2.6. We have G̃ = G̃(p) × G̃ ′ , where G̃(p) is the p-Sylow subgroup of G̃ which is contained in the
center of G̃ , and G̃ ′ = 〈σ̃P1 , . . . , σ̃Pn , ε〉. The generators σ̃Pi and ε commute with each other except for the
relation σ̃P σ̃Q = σ̃Q σ̃P ε−1 . In addition, for P i �= P , Q , we have ord(σ̃Pi ) = ord(σPi ), and for Pi = P or Q ,
we have

ord(σ̃P ) = w

gcd(w, logγ ( P
Q ))

· ord(σP ) and ord(σ̃Q ) = w

gcd(w, logγ ( Q
P ))

· ord(σQ ).

Notice that for each 1 � i � n, ord(σPi ) = Φ(Pi).

Corollary 2.7. K̃/k is a solvable extension.

Proof. Notice that the commutator subgroup of G̃ is 〈ε〉. �
Corollary 2.8. In the extension K̃/K , all ramified prime ideals of K are tamely ramified.

Corollary 2.9. For any prime ideal p of K not above P and Q , it is unramified in K̃/K .

Corollary 2.10. The prime ideals of K above P (resp. Q ) are unramified if and only if ( P
Q ) = 1 (resp. ( Q

P ) = 1).

In addition, all infinite primes of K are unramified in K̃/K , see Lemma 3.3.

Corollary 2.11. If 2|dP dQ , then we have eP = eQ .

Corollary 2.12. Suppose 2 �dP dQ . We have:

(1) If eP = 1, then eQ = 2.
(2) If eP = w, then eQ = w or w

2 . Moreover, eQ = w if and only if 4|w.

Proof. Notice that

logγ

(
P

Q

)
≡ logγ

(
Q

P

)
+ w

2
(mod w). �

If we exchange the positions of eP and eQ , the above corollary is also true.

Corollary 2.13. Let L be a monic irreducible polynomial in A, then L is ramified in K̃/k if and only if L|M.

3. The genus formula

In this section we compute the genus of K̃ . We calculate it by using Hasse’s genus formula on
Kummer extensions, which states that for an m-th Kummer extension E/F of algebraic function fields,
where m is relatively prime to the characteristic of F , we have

gE = 1 + m

[FE : FF ]
[

gF − 1 + 1

2

∑
p∈PF

(
1 − 1

ep

)
degp

]
,

where gE and gF are the genus of E and F respectively, FE and FF are the constant fields of E and
F respectively, PF is the set of primes of F , and ep is the ramification index of p in E/F , see [7,
III 7.3].

Recall that M has the prime decomposition M = P r1
1 P r2

2 · · · P rn
n . For the genus of K , we quote

a formula from [6, Theorem 12.7.2].
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Theorem 3.1. We have

gK =
[

q − 2

2(q − 1)
− 1

]
Φ(M) + 1

2

n∑
i=1

sidiΦ
(
M/P ri

i

) + 1,

where di = dPi , si = riΦ(P ri
i ) − qdi(ri−1) and Φ(M) = |(A/M)∗|.

Lemma 3.2. The constant field of K̃ is Fq.

Proof. Since the constant field of K is Fq , it suffices to show that u /∈ Fq .
Suppose that u ∈ Fq . Then for any σ ∈ G , σ(u) = u. We can get a lifting σ̃ of σ defined by

σ̃ ( w
√

u ) = w
√

u. Hence G̃ is an abelian group. This leads to a contradiction. �
In Section 2 we have computed the ramification indices in K̃/K of all finite primes of K . To

calculate the genus of K̃ , we need to compute those of the infinite primes.

Lemma 3.3. The infinite primes of K are unramified in K̃/K .

Proof. Let k∞ ⊂ Ω be the completion of k at the place 1/T . Let K + = K ∩ k∞ be the maximal real
subfield of K . By [2, Section 4.3], we know sin aP Q ∈ k∞ . It is known that for any monic square-free
polynomial f (T ) in Fq[T ] with even degree, we have

√
f (T ) ∈ k∞ . So u ∈ k∞ . Thus u ∈ K + .

Let E = K +( w
√

u ). Then K̃ = E K and [E : K +] = w . Let ∞ be an arbitrary infinite prime of K + ,
∞1 an infinite prime of K above ∞, ∞2 an infinite prime of E above ∞, and ∞̃ an infinite prime
of K̃ above ∞1. By [5, Theorem 12.14], the ramification index e(∞1/∞) = w . Then by Abhyankar’s
Lemma, see [7, III 8.9], the ramification index e(∞̃/∞) = w . Since e(∞̃/∞) = e(∞̃/∞1) · e(∞1/∞),
we have e(∞̃/∞1) = 1. Thus ∞1 is unramified in K̃/K . Since K̃ is Galois over K , all infinite primes
of K are unramified in K̃/K . �

Now we can get the genus formula of K̃ .

Theorem 3.4. We have

gK̃ = 1 + w

[
gK − 1 + 1

2

(
1 − 1

eP

)
dP Φ

(
M/P rP

) + 1

2

(
1 − 1

eQ

)
dQ Φ

(
M/Q rQ

)]
,

where rP and rQ are the maximal powers of P and Q such that P rP |M and Q rQ |M respectively, eP =
w

gcd(w,logγ ( P
Q ))

and eQ = w
gcd(w,logγ ( Q

P ))
.

Proof. By Hasse’s formula, we have

gK̃ = 1 + w

[
gK − 1 + 1

2

∑
prime p in K
p|P or p|Q

(
1 − 1

ep

)
degp

]
,

where the sum is over all the inequivalent primes above P or Q , ep is the ramification index of p in
K̃/K , and for p|P , degp= f (p/P )dP , f (p/P ) is the residue class degree, similarly for p|Q .

We assume that there are gP and gQ different prime ideals in K above P and Q respectively.
Then

gK̃ = 1 + w

[
gK − 1 + 1

2

(
1 − 1

e

)
gP f P dP + 1

2

(
1 − 1

e

)
gQ f Q dQ

]
,

P Q
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where f P and f Q are the residue class degrees of P and Q in K/k respectively. Since gP f P =
Φ(M/P rP ) and gQ f Q = Φ(M/Q rQ ), we get the formula. �
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