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1. Introduction

We call a (g — 1)-th Kummer extension of a cyclotomic function field a quasi-cyclotomic function
field if it is Galois, but non-abelian, over the rational function field k = Fq(T). A large kind of such
fields were described explicitly in [4] following the works in [1] and [2]. In this paper, we describe
the Galois groups of this kind of quasi-cyclotomic function fields by generators and relations following
the method in [8] by using the results in [2] and [4]. We also give the genus formulae of them.

Now we recall the constructions of the quasi-cyclotomic function fields in [4].

Let k =IF¢(T) be the rational function field over the finite field F; of g elements. In this paper we
always assume that the characteristic of k is an odd prime number p. Put A =[F¢[T]. Let £2 be the
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completion of the algebraic closure of Fq((1/T)) at the place 1/T. Let k“ be the algebraic closure of
k in £2. Let k% be the maximal abelian extension of k in k.

Let T € 2 be the period of the Carlitz module, namely the lattice 7 A of rank one corresponds to
the Carlitz module. The Carlitz exponential function ec is defined by

ec(x) =x l_[ (1——) Xxe2.
0#uem A

For A e Fq((1/T)), let {A} be the representation in (Fq((1/T))\ A) U {0} of A modulo A, we define

sin(A) = “V/~1-ec(7{A)/sgn({A})).

where sgn is a fixed sign function on Fq((1/T)). For the definition of sign function, see [3, Defini-
tion 7.2.1].

Let A be the free abelian group generated by the symbols [A], A € k \ A. Define two homomor-
phisms

sin, e : A — kab*

such that sin([A]) = sin(A) and e([A]) = ec(wTA) for A ¢ A, and sin([A]) =1 and e([A]) =1 other-
wise.
Fix a total order < in A. Write d4 for the degree of A € A. Let M € A be monic. Put

Sy = {monic prime factors of M}.
Fix a generator y of F;‘ For P, Q € Sy with P < Q, let

v T T S5

dA<dQ dB<dp s=1
A: monic B: monic

Notice that there is a print mistake in [4], where s runs from 1 to g — 2 in the definition of apg. We
also want to indicate that the homomorphism e gives the same value in the apg here and in the apg
of [2].

We put

sinapq, if2|dp, 2|dq,
ﬁsinapQ, if2|dp, 21’dQ,
\/ﬁsinapQ, ifodp, 2|dQ,
MSinapq, if24dp, 2tdq.

upQ =

Set K = k(ec(%)), which is the cyclotomic function field of conductor M whose Galois group over
k is canonically isomorphic to (A/MA)*. Since upq € K, put K=K( a-}/upq ). By [4, Theorem 3], K is
a quasi-cyclotomic function field over k, which implies that [if :k]=(q—1)@ (M), where & (M) is the
number of elements in (A/MA)*.
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2. The Galois groups

Let G = Gal(K/k) and G= Gal(E/Nk) be the Galois groups of the extensions K/k and I?/k respec-
tively. In this section, we determine G by generators and relations.

In the sequel, we write w =q — 1 and u =upq for simplicity.

First, we want to indicate a basic fact without proof. We will use it several times without indica-
tion.

Lemma 2.1. There exists a € IF‘;‘ such that sinapg = ae(apq).

Clearly Gal(i?/l() is isomorphic to Z/wZ. Recall that y is a fixed generator of Fy. Let € € Gal(R/K)
be a generator such that

e(Vu)=y Vu.
Denote by log,, the isomorphism
log, :Fy — Z/WZ, y'r>i.
Each element of G has w liftings in G. Then we have a coarse description about G.
Lemma 2.2. For any o € G, choosing v, € K* such that o (u) = vu, we can define a lifting & G of

o by o (Yu) =vy ¥u. Then C= (el |loeG o< j<w— 1} and the multiplication in G is given by

6T =67 @D wherei(o, 1) = v ‘;"(’V 5 € Fy. Forany 6 € G, € and (6)" belong to the center of G.

Proof. By [4, Section 5.1.2], there exists such v, € K* for any o € G. The rest of the proof is trivial,
we refer to the proof of [8, Lemma 1]. O

Let M = P}' P}?--- P;" be the prime decomposition of M. We have the isomorphism:
G = (A/MAY* = (A/PTA)" x (A/PZA)" x - x (A/PA)".

Different from the case of characteristic 0, now each (A/ P{’A)* is not always cyclic. But we have
the decomposition (A/P{'A)* = (A/P;'A)D x (A/P;jA)*, where (A/PT’A)“) is a p-group of order
|P;|"i~1 and (A/P;A)* is a cyclic group of order |P;| — 1, where |P;| = q%i, see [5, Proposition 1.6].
For 1 <i < n, since the inertia group of P; in K is isomorphic to (A/P”A)* we choose a op, € G
with (op;) = (A/P;A)* such that op, is contained in the inertia group of P;. Then we have

G=G6P x ¢,

where G’ = (op,) x -+ x (0p,), and GP is the p-Sylow subgroup of G. In fact, GP) = (A/P}'A)D x
=X (A/PAYD.
Let G® and G be the subgroups of G consisting of all liftings of the elements in G® and in
G’ respectively. It is easy to see that both of them are normal subgroups of G. Then we can get
a decomposition of G.

Lemma 2.3. Let GP) be the p-Sylow subgroup of G. Then
CP =GP /() =GP,

Furthermore, we have G = G® x G’, and G is contained in the center of G.
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Proof. Since |G| = w|G|=|GP)|- |G|, we have |GP)| = |GP|. In addition, since the order of € and p
are coprime, for each element of GP), there exists at most one lifting contained in G, So for each
o € GP, there exists a unique lifting o’ of o such that o’ € GP. Then the map ¢ — ¢’ mod (€)
gives the isomorphism G» = G(?)/(¢) and the map o > o gives the isomorphism G = 5(1’)

Since G = (G, by Lemma 22 we see that G® is contained in the center of G. So G
is a normal subgroup of G. In addition, as |G| = |G®|-|G’| and ged(JGP|,|G']) = 1, we have G =
GCP xG. o

Next we need to investigate the subgroup G

For each generator op, € G’ (1 <i<n), according to Lemma 2.2 we fix a lifting 6p; of op, in G as
follows.

If P; # P, Q, we define

51’:‘(%): V.

In fact, by [2, Sections 3.3, 4.3 and 5.1], we have op,(u) =u.
If P =P or Q, we define

oy (Vid) = Vo, Vi,

where Vop, € K is given by

v(rp=(msincap)_] and V“QZ(MSinc"Q)_l’

here ¢5, and ¢;, were defined in [2, Section 4.2.5]. By [4, Sections 3.4.2 and 3.4.3], we have B —

op(u)
(V(=1)de siney, )™ with V/(—1)9e siney, € K*.

Hence, we have

~

G’:(&pl,...,é'pn,é).

Now we study the relations among these generators of G'. First € commutes with each generator.

For LR € Sy, L <R, set agg = %
L L

Section 3.5: The Log Wedge Formula, Section 3.6: The Auxiliary Formula and Section 5.1: The Main
Formula], we see that the generators 6p, commute with each other except for the relation

By Lemma 2.2, we have 6.6 = GrG1€'°% %R, By [2,

6’p6‘Q =6’Q6’p6_1.
So in fact, G = (Gpys...,0P,).

By definition, if P; # P, Q, then we have ord(6p;) = ord(op,). Finally, we need to compute the
orders of 6p and Gq.

Let L € Sy and let I; be the inertia group of L in K. It is known that Iy = (A/L"A)* = (A/L"A)™ x
(A/LA)*, where r is the maximal power of L such that L"|M. ‘We fix an inertia group T, of L in K. Let
Tbea prime ideal in K above L such that the inertia group I(L/L) =T,. Let G; be the i-th ramification
group of L|L i > —1. Then by [7, Ill 8. 6] Go =T, IL/61 is cyclic of order relatlvely prime to p, and
G is the unique p-Sylow subgroup of IL which is contained in the center of T; by Lemma 2.2.

Put Gy = (o) C I} and GL GL N IL, where GL is the subgroup of G consisting of all liftings of
the elements of G;. Denote by e; the ramification index of any prime ideal of K lying above L in the
extension R/K.
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Proposition 2.4.T; is an abelian group with T, = G1 x G, where G = (A/L"A)D and G| is a cyclic group
generated by a lifting of o;. Furthermore, all the liftings of o have the same order e; - ord(op).

Proof. Set H = (¢). The_canonical homomorphism T -1, 66— 0|k, induces an isomorphism
IL/(IL N H) = I;. Since K is abelian over K, IL ay H is the inertia group of L in the field exten-
sion K/K _by [5, Proposition 9.8]. So the order of T.NH is ef, and thus |IL| = er|I1|. Noticing that
GLN H= T, N H and the above homomorphism also induces an isomorphism GL/(GL N H) =G, we
have |G| =er|GLl.

Since G1 is contamed in the center of IL and IL/G1 is cycllc we see that IL 1s abelian. Noticing
that gcd(lGL| |G1\) =1 and |IL| = |G1| |GL| we have IL = G1 X G,_ So G,_ = IL/G1 is cyclic. Since
I = 1L|K =Gqlx x GLlg =Gilx x Gy and Gq|x = G1/(G1 NH) =G, we have Gq = (A/LTA)D.

As GLlK Gy, there exists a lifting o] of o belonging to GL Since the order of € is a factor of
the order of oy, all the liftings of o7 have the same order. If the order of o] is less than |GL|, then it
is easy to show that the order of each element is also less than |5L|. But G, is cyclic. Hence o] must
be a generator of EL. ]

Remark 2.5. The extension f/k gives us an example of a non-abelian function field extension with
abelian inertia groups.

If Pi# P and Q, then ep, = 1. Now we need to calculate the ramification indices ep and eq.
Let R be a monic irreducible polynomial in A and A € A be coprime to R. Recall that the (g—1)-th
residue symbol (%) € [y is defined by

A IRI=1
(—) =A99T modR.

Let vp be the additive valuation in k® associated to P defined in [2, Section 6]. Notice that the
restriction of vp in k(ec(%)) is the normalized valuation of k(ec(%)) associated to P. By [2, Proposi-
tion 6.2], we have

P
vp(e(apq)) =log, <%) and vq(e(apq)) =—log, (6) (mod w).

In addition, vp(P) equals to the ramification index |P| — 1 of P in k(ec(%))/k. Thus vp(v/P) =
¥dp (mod w). Similarly, we have vq (v/Q) = %dq (mod w).

Furthermore, combining with the reciprocity law (%) = (—])d”d‘l(%), see |5, Theorem 3.5], we
have

vP(u)Elog),(g) and VQ(U)E—lOgy<%> (mod w).

By [7, lll 7.3], noticing that the valuations there are different from what we use here, we have

ep= and eq = So

—_—w —_—_w
ged(w,vp (u)) ged(w,vq ()

w w
=—————5— and eq= o
ged(w, logy, () ged(w, logy, (5))

Finally we get the following theorem.
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Theorem 2.6. We have G =GC® x G, where G is the p-Sylow subgroup of G which is contained in the
center of G, and G’ = (Gp,, ..., Op,, €). The generators Gp;, and € commute with each other except for the
relation 6pGq = 5’Q6’p€_1. In addition, for P; # P, Q, we have ord(6p,) = ord(op,), and for P; =P or Q,
we have

w w

ord(6p) = ————— -ord(op) and ord(6g)=———+—
77 ged(w, log,, (£)) ! ©7 ged(w. log, (%)

-ord(oq).

Notice that for each 1<i<n, ord(op;) = @ (P)).
Corollary 2.7. K /k is a solvable extension.
Proof. Notice that the commutator subgroup of G is (e). O
Corollary 2.8. In the extension K /K, all ramified prime ideals of K are tamely ramified.
Corollary 2.9. For any prime ideal p of K not above P and Q, it is unramified in I?/K.

Corollary 2.10. The prime ideals of K above P (resp. Q ) are unramified if and only if(g) =1 (resp. (%) =1).

In addition, all infinite primes of K are unramified in R/K, see Lemma 3.3.
Corollary 2.11. If 2|dpdq, then we have ep =eq.
Corollary 2.12. Suppose 2tdpdq . We have:

(1) Ifep =1, theneq =2.
(2) Ifep = w, theneq = w or ¥. Moreover, eq = w if and only if 4|w.

Proof. Notice that

logy (g) = logy (%) + g (mod w). ]

If we exchange the positions of ep and eq, the above corollary is also true.
Corollary 2.13. Let L be a monic irreducible polynomial in A, then L is ramified in k/k if and only if L|M.
3. The genus formula

In this section we compute the genus of K. We calculate it by using Hasse’s genus formula on
Kummer extensions, which states that for an m-th Kummer extension E/F of algebraic function fields,
where m is relatively prime to the characteristic of F, we have

m 1 1
gE=1+m|:gF—1+§ Z(l—e—>degp],

pePr P

where gg and gr are the genus of E and F respectively, Fg and Fg are the constant fields of E and
F respectively, Pr is the set of primes of F, and e, is the ramification index of p in E/F, see [7,
1 7.3].

Recall that M has the prime decomposition M = PT P;z ... P*. For the genus of K, we quote
a formula from [6, Theorem 12.7.2].
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Theorem 3.1. We have

_a-2 1n A Ti
gK_[z(q_]) 1]¢(M)+2Zs,d,q§(M/P,.)+l

i=1
where di =dp,, s; = ri®(P}") — %"=V and & (M) = |(A/M)*|.
Lemma 3.2. The constant field of Kis Fq.

Proof. Since the constant field of K is [Fg, it suffices to show that u ¢ Fg.
Suppose that u € Fg. Then for any o € G, o(u) = u. We can get a lifting 6 of o defined by
G (¥u)= %/u. Hence G is an abelian group. This leads to a contradiction. O

In Section 2 we have computed the ramification indices in K /K of all finite primes of K. To
calculate the genus of K, we need to compute those of the infinite primes.

Lemma 3.3. The infinite primes of K are unramified in E/K.

Proof. Let ko, C $2 be the completion of k at the place 1/T. Let K* = K Nkoo be the maximal real
subfield of K. By [2, Section 4.3], we know sinapg € ku. It is known that for any monic square-free
polynomial f(T) in Fg[T] with even degree, we have |/ f(T) € koo. SO U € koo. Thus u € K.

Let E = KT (%/u). Then K = EK and [E : K*]= w. Let oo be an arbitrary infinite prime of K,
oo1 an infinite prime of K above oo, ooz an infinite prime of E above oo, and & an infinite prime
of K above 001. By [5, Theorem 12.14], the ramification index e(coq/00) = w. Then by Abhyankar’s
Lemma, see [7, III 8.9], the ramification index e(&0/00) = w. Since e(0/00) = e(30/001) - e(001/00),
we have e(50/001) = 1.~Thus 001 is unramified in 75/1(. Since K is Galois over K, all infinite primes
of K are unramified in K/K. O

Now we can get the genus formula of K.

Theorem 3.4. We have

1 1 . 1 1 .
g% :1+w[g,< -1+ E(l - ;)dp(b(M/P P)+5(1 - a)dch(I\/I/Q Q)},

where rp and rq are the maximal powers of P and Q such that P'™"|M and Q' |M respectively, ep =

andeq =

__w _w
ged(w,log,, (§)) ged(w.log, (%))

Proof. By Hasse’s formula, we have

1 1
~ =1 -1+ = E 1——)d
8% +W|:g1< + 5 ( €p> egp],

prime p in K
pIP or p|Q

where the sum is over all the inequivalent primes above P or Q, ey is the ramification index of p in
K/K and for p|P, degp = f(p/P)dp, f(p/P) is the residue class degree, similarly for p|Q.

We assume that there are gp and gq different prime ideals in K above P and Q respectively.
Then

1 1 1 1
gg=1+w|gk—1+5(1——)grfrdp+5(1——)8gqfadq |
2 ep 2 €Q
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where fp and fo are the residue class degrees of P and Q in K/k respectively. Since gpfp =
®(M/P™) and gq fq = P(M/Q"2), we get the formula. O

Acknowledgment

We are very grateful to the referee for his careful reading and many valuable suggestions. Espe-
cially, we thank him for telling us the genus formula of the cyclotomic function field in [6].

References

[1] S. Bae, E.-U. Gekeler, P. Kang, L. Yin, Anderson’s double complex and gamma monomials for rational function fields, Trans.
Amer. Math. Soc. 355 (2003) 3463-3474.

[2] S. Bae, L. Yin, Carlitz-Hayes plus Anderson’s epsilon, J. Reine Angew. Math. 571 (2004) 19-37.

[3] D. Goss, Basic Structures of Function Field Arithmetic, Springer-Verlag, 1996.

[4] C. Liu, L. Yin, Double coverings for quadratic extensions and function fields, ]. Number Theory 130 (2010) 469-477.

[5] M. Rosen, Number Theory in Function Fields, Grad. Texts in Math., vol. 210, Springer-Verlag, 2002.

[6] G.D.V. Salvador, Topics in the Theory of Algebraic Function Fields, Birkhduser, 2006.

[7] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, 1993.

[8] L. Yin, C. Zhang, Arithmetic of quasi-cyclotomic fields, ]. Number Theory 128 (2008) 1717-1730.



	Galois groups and genera of a kind of quasi-cyclotomic function ﬁelds
	1 Introduction
	2 The Galois groups
	3 The genus formula
	Acknowledgment
	References


