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Let A be an abelian variety defined over a number field 
F ⊂ C and let GA be the Mumford–Tate group of A/C. 
After replacing F by a finite extension, we can assume that, 
for every prime number �, the action of ΓF = Gal(F̄ /F ) on 
H1

ét(A/F̄ , Q�) factors through a map ρ� : ΓF → GA(Q�).
Fix a valuation v of F and let p be the residue characteristic 
at v. For any prime number � �= p, the representation ρ� gives 
rise to a representation ′WFv

→ GA/Q�
of the Weil–Deligne 

group. In the case where A has semistable reduction at v it 
was shown in a previous paper that, with some restrictions, 
these representations form a compatible system of Q-rational 
representations with values in GA.
The p-adic representation ρp defines a representation of the 
Weil–Deligne group ′WFv

→ Gι
A/Fv,0

, where Fv,0 is the 
maximal unramified extension of Qp contained in Fv and 
Gι

A is an inner form of GA over Fv,0. It is proved, under 
the same conditions as in the previous theorem, that, as 
a representation with values in GA, this representation is 
Q-rational and that it is compatible with the above system of 
representations ′WFv

→ GA/Q�
.
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0. Introduction

This paper is dedicated to the comparison of the étale and the log-crystalline coho-
mologies of an abelian variety over a number field. More precisely, it treats the way in 
which the action of the Galois group of the base field on the étale cohomology is reflected 
in the crystalline theory. We start with a succinct overview of relevant conjectures and 
results, referring to the introduction of [Noo13] for a more detailed discussion concerning 
the system of representations afforded by the étale cohomology.

Let X be a proper and smooth variety over a finite extension Fv of Qp. For any 
prime number � and any i, the absolute Galois group ΓFv

= Gal(F̄v/Fv) acts on the 
étale cohomology group Hi

ét(X/F̄v
, Q�). If � �= p, the corresponding representation of 

ΓFv
gives rise to an �-adic representation of the Weil–Deligne group ′WFv

of Fv. For 
general X, it is conjectured that these representations are Q-rational and that, for fixed 
i and variable � �= p, they form a compatible system of representations of ′WFv

, see 
[Del73] and [Fon94b, 2.4]. In the case where X has good reduction, the étale cohomology 
of XF̄v

is isomorpic to the étale cohomology of the special fibre of a proper and smooth 
model of X over the valuation ring of Fv and hence the inertia subgroup of ΓFv

acts 
trivially. In this case, the conjecture comes down to the fact that the characteristic 
polynomial of the Frobenius element has rational coefficients and that it is independent 
of �. This is a consequence of the Weil conjectures proved by Deligne.

Now assume that X = A is an abelian variety, not necessarily with good reduction. 
As Hi

ét(A/F̄v
, Q�) ∼= ∧iH1

ét(A/F̄v
, Q�) for every i, it is harmless to assume that i = 1. In 

this case, it is well known that the above conjecture is true, cf. [Del73, Exemple 8.10]. 
There is a more precise result in the case where A can be defined over a number field 
F ⊂ Fv for which we also fix an embedding F ⊂ C. In this case, the Mumford–Tate group 
GA of A is defined. It is a linear algebraic group and GA/Q�

acts on H1
ét(A/F̄v

, Q�) for 
every �. Up to a finite extension of F , the representation of ΓFv

on H1
ét(A/F̄v

, Q�) factors 
through GA(Q�) for all �. For � �= p, it follows that the associated representation of ′WFv

factors through GA/Q�
. Under the hypothesis that A has semistable reduction and with 

a number of other restrictions, it is shown in [Noo13] that these representations of ′WFv

with values in GA/Q�
are Q-rational and that they are pairwise conjugate for the action of 

a group containing GA with finite index. The precise statement is recalled in Theorem 3.3. 
Note that the fact that A has semistable reduction at v implies that the inertia group 
IFv

⊂ WFv
⊂ ′WFv

acts trivially on H1
ét(A/F̄v

, Q�) so that the representation of ′WFv
is 

determined by the action of the monodromy operator N and the image the Frobenius 
element. The case of an abelian variety with good reduction, for which the monodromy N
is also trivial, had previously been treated in [Noo09]. A more general motivic conjecture 
is proposed by Serre [Ser94, §12].

The main Theorem 3.8 of this paper extends the compatibility result for the �-adic 
representations to the p-adic representation. In order to get an idea of the state-
ment, it is useful to return briefly to the general case of a variety X/Fv with good 
reduction. Contrary to the its action on the �-adic cohomology, the action of ΓFv

on the 
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Hi
ét(X/F̄v

, Qp) is ramified, so the compatibility statement for the �-adic representations 
can not extend to the p-adic representation as it stands. In order to include a p-adic 
component in the compatible system one may consider the crystalline cohomology. Katz 
and Messing [KM74] prove that Hi

cris(Xk/W (k)) ⊗ Fv,0, endowed with the Fv,0-linear 
Frobenius map, is compatible with the system of Hi

ét(X/F̄v
, Q�) for � �= p. Here k is the 

residue field of Fv and W (k) the ring of Witt vectors with coefficients in k. The field 
Fv,0 is the maximal unramified extension of Qp contained in Fv, it coincides with the 
fraction field of W (k). We write Xk/k for the special fibre of a smooth and proper model 
of X over the valuation ring of Fv. The Fv,0-linear Frobenius map is the fth power of 
the crystalline Frobenius, for f such that |k| = pf .

We again consider an abelian variety A over a number field F , with good reduction 
at a valuation v. As before, the Mumford–Tate group GA is assumed to be connected. 
An inner form Gι

A of the Mumford–Tate group GA acts on H1
cris(Ak/W (k)) ⊗ Fv,0 and 

the fth power of the crystalline Frobenius belongs to this group. Under some extra 
conditions, it is proved in [Noo09, §4] that the Fv,0-linear crystalline Frobenius completes 
the compatible system of Frobenius elements in the GA(Q�) provided by the �-adic 
étale cohomology groups for � �= p. As the crystalline cohomology and the p-adic étale 
cohomology are linked by Fontaine’s functor Dcris, this yields an equivalent statement 
for the action of Frobenius on Dcris(H1

ét(A/F̄v
, Qp)).

For any proper and smooth variety X/Fv, Fontaine [Fon94b] constructs a p-adic rep-
resentation of ′WFv

on the P0-module D̂pst(Hi
ét(X/F̄v

, Qp)). Here P0 is the fraction field 
of the Witt ring W (k̄). He conjectures that this representation fits in the compatible sys-
tem of �-adic representations of ′WFv

defined by the Hi
ét(X/F̄v

, Q�), see [Fon94b, 2.4.3], 
conjecture CWD. The conjecture is true if X is a curve or an abelian variety.

In this paper we will consider the case of an abelian variety A/F with semistable 
reduction at v and the Fv,0-vector space Dst(Hi

ét(A/F̄v
, Qp)). This space again carries 

a representation of the Weil–Deligne group ′WFv
. It is linked to the P0-vector space 

considered by Fontaine by

D̂pst(Hi
ét(X/F̄v

,Qp)) = Dst(Hi
ét(A/F̄v

,Qp)) ⊗Fv,0 P0.

The hypothesis that A has semistable reduction at v implies that, as in the case of 
an �-adic representation, the inertia group IFv

⊂ ′WFv
acts trivially. As before, we may 

replace F by a finite extension such that the p-adic representation of ′WFv
factors through 

an inner form Gι
A/Fv,0

of the Mumford–Tate group GA so we obtain a representation 
′WFv

→ Gι
A/Fv,0

. Under some extra conditions, it is shown in Theorem 3.8 that this 
is a Q-rational representation of ′WFv

with values in Gι
A and that, together with the 

representations of ′WFv
→ GA/Q�

for � �= p, it gives rise to a compatible system of 
representations of ′WFv

with values in GA.
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1. Semistable reduction of abelian varieties with L-action

1.1 Abelian varieties over local fields. We place ourselves in the situation considered 
in [CI99, Part I, §2]. So let p be a prime number, F a finite extension of Qp and let 
F0 ⊂ F be the maximal unramified extension of Qp contained in F . Let σ be the 
automorphism of F0 inducing the absolute Frobenius map x �→ xp on the residue field 
k. Assume that A is an abelian variety over F with semistable reduction. We fix a 
number field L ⊂ End0(A) = End(A) ⊗Z Q. In this section, we will review the results 
of Coleman and Iovita from [CI99] comparing the p-adic étale cohomology of A and its 
p-adic de Rham cohomology, with F0-structure and endowed with the Frobenius and the 
monodromy operators. In particular, we discuss the compatibility of the isomorphism 
with the natural L-action on both sides.

As pointed out in [CI99], the p-adic uniformisation realises the rigid analytic group 
associated to A as a quotient G/Y , where Y is a F -group scheme which is étale locally 
isomorphic to Zr and G is a semiabelian variety over F with good reduction. The latter 
condition means that G is an extension

1 → T → G → B → 1,

where T is a torus and B an abelian variety, both admitting good reduction over F . We 
will write Bk for the special fibre of the smooth and proper model of B over the valuation 
ring of F . By functoriality, we have L ⊂ End0(Y ) and L ⊂ End0(G), whence also 
L ⊂ End0(T ) and L ⊂ End0(B), cf. [Noo13, 1.1]. The groups Y and Y � = Hom(T, Gm)
are free Z-modules of finite rank endowed with a continuous action of ΓF = Gal(F̄ /F ). 
Moreover, Y ⊗Z Q and Y �⊗Z Q are endowed with L-vector space structures, the actions 
of ΓF on both spaces being L-linear.

1.2 Remarks. As pointed out, without proof, in [Noo13, Remark 3.7.1], the action of 
ΓF on both Y and Y � is unramified. This can be seen as follows. For the action on 
Y �, it follows from the fact that the torus T splits over a finite unramified extension 
of F , cf. [DG70, Exposé X, Corollaire 4.5]. By [BL91, Theorem 1.2], the lattice Y is 
constant over the same extension. This also shows that Y and Y � become constant over 
a finite extension of F , which is of course a general fact for finite dimensional Q-linear 
representations of ΓF .

In the terminology of [Ray94, 4.2], in particular theorem 4.2.2 of that paper, the data 
considered in 1.1 give rise to a strict 1-motive M ′ = [Y → G] and a morphism of rigid 
1-motives

M ′
rig → [0 → A]rig

which is an isomorphism in the derived category Db
rig(fppf). In [Noo13, 3.8], the situation 

is discussed from this point of view, see also Remark 1.9 and [MP15].
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1.3 Formula (2.1) of [CI99, Part I] shows that the de Rham cohomology of A is the 
central term in the exact sequence

0 → Hom(Y, F ) → H1
dR(A) → H1

dR(G) → 0 (1.3.∗)

of F -vector spaces with L-action. In [CI99, subsection I.2.2], the log-crystalline cohomol-
ogy of A is calculated by introducing an F0-structure on H1

dR(A), under the assumption 
that Y and Y � are constant. When this condition holds, the putative F0-structure is 
obtained by splitting the exact sequence (1.3.∗) and defining F0-structures on the outer 
terms. We will briefly review the argument, and show that the construction is compatible 
with the L-action.

A class in H1
dR(A) corresponds to an invariant differential ω on the universal vector 

extension of G. In [CI99, Theorem I.2.1] it is shown that ω admits a unique primitive λω

which is a group homomorphism and whose restriction to T satisfies a supplementary 
condition. The map sending ω to λω |Y defines the splitting we are looking for. The 
uniqueness of λω implies that it is L-linear. The F0-structure on Hom(Y, F ) is given by 
Hom(Y, F0), this space inherits an L-action from Hom(Y, F ), given by the L-vector space 
structure on Y ⊗Z Q.

In order to define the F0-structure on H1
dR(G) one splits the exact sequence

0 → H1
dR(B) → H1

dR(G) → H1
dR(T ) → 0 (1.3.†)

and uses the natural F0-structures on the outer terms. Concretely these are given by 
Hcris(Bk/F0) ⊂ H1

dR(B) and Hom(Y �, F0) ⊂ Hom(Y �, F ) = H1
dR(T ). The splitting of 

(1.3.†) is defined by identifying H1
dR(T ) with the subspace of H1

dR(B) where the Frobenius 
operator acts as multiplication by p. As the Frobenius is L-linear, the sequence (1.3.†)
is L-linearly split and L acts compatibly on all F0-vector spaces we constructed. For the 
details, in particular the constructions of the splittings, see [CI99].

In general, dropping the assumption that Y and Y � are constant, we argue as follows. 
As pointed out in Remark 1.2, Y and Y � become constant over a finite unramified Galois 
extension F̃ of F . The maximal unramified extension F̃0 ⊂ F̃ of Qp is Galois over Qp so 
it is stable under Gal(F̃ /F ) and

F0 = F̃
Gal(F̃ /F )
0 .

Applying the above constructions to AF̃ , we obtain sequences corresponding to 
(1.3.∗) and (1.3.†) for the cohomology over F̃ , both admitting an L-equivariant split-
ting. All constructions are compatible with the L-action and commute with the 
Gal(F̃ /F )-action so the splittings descend to the sequences of Gal(F̃ /F )-invariants. 
Taking Gal(F̃ /F )-invariants in the F̃0-valued cohomology groups defined above, we ob-
tain the promised F0-structures. We write

Hom′(Y, F0) = Hom ˜ (Y, F̃0),
Gal(F/F )
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for the F0-structure on Hom(Y, F̃0). This is the F0-vector space of Gal(F̃ /F )-equivariant 
maps. Here the action of the Galois group on Y is deduced from the F̃ -isomorphism 
Y ∼= Zr and its action on F̃0 ⊂ F̃ is the restriction of the action on F̃ . Similarly, 
the F0-structure on H1

dR(T ) is obtained by taking Galois invariants in Y � ⊗Z F̃0. The 
L-actions on Hom′(Y, F0) and on H1

dR(T ) are induced by the ones on Y ⊗Z Q and on 
Y � ⊗Z Q. The F0-structure on H1

dR(B) is given by H1
cris(B/F0).

We will write H1
HK(A), resp. H1

HK(G) etc. for these F0-vector spaces. By construction, 
the split exact sequences (1.3.∗) and (1.3.†) have natural counterparts for the H1

HK( · ), 
where in (1.3.∗) one has to replace Hom(Y, F ) by Hom′(Y, F0) as defined above. Taking 
into account that Y⊗ZF

′ = (Y ⊗ZF0) ⊗F0F
′ and HomZ(Y �, F ′) = HomF0(Y � ⊗ ZF0, F

′)
for any extension F ′/F0, the following lemma, applied to X = Y ⊗Q F0 and to 
X = Y � ⊗Q F0 respectively, implies that Hom′(Y, F0) and H1

HK(T ) are free L ⊗Q F0-
modules and that the dimensions are given by dimF0 Hom′(Y, F0) = rkZY and 
dimF0 H1

HK(T ) = rkZY
� = dimT .

As H1
cris(B/F0) is a free L ⊗Q F0-module as well, cf. [Noo09, §4], the same is true for 

H1
HK(G) and H1

HK(A). We have dimF0 H1
HK(A) = 2 dimA.

1.4 Lemma. For L, F and F0 as above, let X be a free L ⊗Q F0-module of finite rank d, 
endowed with a continuous, unramified, L ⊗QF0-linear action of ΓF . This action factors 
through Gal(F̃ /F ) for some finite, unramified Galois extension F̃ of F . Let F̃0 be the 
maximal unramified extension of Qp contained in F̃ . Then

(
X ⊗F0 F̃0

)Gal(F̃ /F )

is a free L ⊗Q F0-module of rank d.

Proof. We sketch a proof of this classical fact. Write G = Gal(F̃ /F ) and identify G with 
Gal(F̃0/F0) via the restriction map Gal(F̃ /F ) → Gal(F̃0/F0).

First assume that L = Q so that d = dimF0 X. The normal base theorem implies 
that F̃0, considered as F0-linear representation of G, is isomorphic to the regular rep-
resentation of G. It follows that, as C-linear representations, each irreducible factor of 
X∨⊗F0 C occurs in F̃0 ⊗F0 C with multiplicity equal to its dimension. This implies that 
dimC((X ⊗F0 F̃0) ⊗F0 C)Gal(F̃ /F ) = dimX. The case L = Q of the lemma follows from 
this. One may also use an argument based on the vanishing of the Galois cohomology 
group H1(ΓF , GL(d, F̄ )).

In the general case, (X⊗F0 F̃0)G is clearly an L ⊗QF0-module. To see that it is free of 
rank d, write L ⊗QF0 = ⊕Li as a direct sum of finite extension fields of F0 and decompose 
X = ⊕Xi accordingly. Then (X ⊗F0 F̃0)G = ⊕(Xi ⊗F0 F̃0)G as L ⊗Q F0-modules and by 
the above argument

[Li : F0] dimLi
(Xi ⊗F0 F̃0)G = dimF0(Xi ⊗F0 F̃0)G = dimF0 Xi = d[Li : F0],

so each (Xi ⊗F0 F̃0)G has Li-dimension d, whence the conclusion. �
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1.5 The monodromy and Frobenius operators. The torus T and its character group Y �

being as above, the descriptions of the monodromy paring given in [Ray94, 4.3] and 
in [CI99, I.2.1] (where Y is denoted Γ) show that the parings on μ : Y × Y � → Z
defined in both references coincide. Giving μ is equivalent to giving either the map 
N : Y ⊗ Q → (Y � ⊗ Q)∨ from [Noo13, (1.4∗)] or its dual

N∨ : (Y � ⊗ Q) → (Y ⊗ Q)∨ = Hom(Y,Q). (1.5.∗)

By functoriality, the monodromy paring is both L- and ΓF -equivariant, hence the maps 
N and N∨ are L-linear and commute with the action of ΓF .

With F̃ as above, N∨ induces an L ⊗ F0-linear map

N∨
F0

: H1
HK(T ) =

(
Y � ⊗Z F̃0

)Gal(F̃ /F )
→ Hom′(Y, F0) = HomGal(F̃ /F )(Y, F̃0).

The monodromy operator NHK on H1
HK(A) is defined as the composite

H1
HK(A) −→ H1

HK(G) −→ H1
HK(T )

N∨
F0−→ Hom′(Y, F0) −→ H1

HK(A).

This is the construction of [CI99, 2.1] in case T is split over F . In the general 
case, N∨

F0
is obtained by constructing N∨

F̃0
after base change to F̃ and then taking 

Gal(F̃ /F )-invariants in the resulting F̃0-cohomology groups.
To define the σ-linear Frobenius operator ϕ : H1

HK(A) → H1
HK(A), one uses the 

split exact HK-versions of the exact sequences (1.3.∗) and (1.3.†) and the canoni-
cal σ-linear operators on Hom(Y, F0), and on the groups H1

HK(B) and H1
HK(T ). On 

H1
HK(B) = H1

cris(B/F0) this is the crystalline Frobenius ϕ of the abelian variety B. 
To define ϕ on Hom′(Y, F0), we first extend scalars to F̃ , making Y constant, and de-
fine ϕ : Hom(Y, F̃0) → Hom(Y, F̃0) by composition of homomorphisms Y → F̃0 with 
σ : F̃0 → F̃0. This map commutes with the action of Gal(F̃ /F ) and hence it defines a 
σ-linear map on Hom′(Y, F0). Finally, for H1

HK(T ) = (Y � ⊗Z F̃0)Gal(F̃ /F ), one defines 
ϕ = p ⊗ σ on Y � ⊗Z F̃0 and passes to the Gal(F̃ /F )-invariants. The maps give rise to 
σ-linear Frobenius maps, still denoted, ϕ on H1

HK(G) and on H1
HK(A). All these maps 

are L-linear. By construction, ϕ and NHK satisfy NHKϕ = pϕNHK.

1.6 Proposition. Let f = [F0 : Qp] = [k : Fp] and let Φ ∈ ΓF be an arithmetic Frobe-
nius element. It defines an L ⊗Q F0-linear endomorphism of (Y ⊗ Q)∨ ⊗Q F0 by its 
action on (Y ⊗Q)∨. On the other hand, ϕ−f defines a L ⊗Q F0-linear endomorphism of 
Hom′(Y, F0). There exists an L ⊗Q F0-linear isomorphism

(Y ⊗ Q)∨ ⊗Q F0 ∼= Hom′(Y, F0)

transforming Φ to ϕ−f . There is an L ⊗Q F0-linear isomorphism Y � ⊗ F0 ∼= H1
HK(T )

transforming the action of Φ on Y � ⊗ F0 deduced from that on Y � into ϕ−f . These 
isomorphisms can be chosen as to be compatible with N∨ and N∨

F .

0
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Proof. Let F̃ and G = Gal(F̃ /F ) = Gal(F̃0/F0) be as in the proof of Lemma 1.4. The 
action of ΓF factors through G so we consider Φ as an element of G. The effect of ϕ−f

on Hom(Y, F̃0) = (Y ⊗ Q)∨ ⊗ F̃0 is given by g �→ Φ−1 ◦ g. The restriction of this action 
to Hom′(Y, F0) coincides with the restriction of the endomorphism of (Y ⊗ Q)∨ ⊗ F̃0

defined by g ⊗ λ �→ (g ◦ Φ−1) ⊗ λ, that is to say the action of Φ on Y ⊗ Q.
Consider the inclusions

(Y ⊗ Q)∨ ⊂ Hom(Y, F̃0) ⊃ Hom′(Y, F0).

These have the property that the image of any L-free, respectively L ⊗F0-free, family in 
the outer spaces is L ⊗ F̃0-free in the middle space. It follows from the Lemma 1.4 that 
there exist L ⊗QF̃0-linear identifications of (Y⊗Q)∨⊗QF̃0 and of Hom′(Y, F0) ⊗F0 F̃0 with 
Hom(Y, F̃0). By the above, the action of Φ on (Y ⊗Q)∨ transforms to the action of ϕ−f

on Hom(Y, F̃0) and on Hom′(Y, F0). This proves the existence of the desired isomorphism 
after ⊗F0 F̃0. It follows that there already is an isomorphism with the desired properties 
on the level of the underlying L ⊗Q F0 modules.

By [Noo13, Lemma 3.9] or [CI99, Proposition 4.5], N∨ is an isomorphism in this case 
so the statements concerning H1

HK(T ) and the possibility to choose the isomorphisms to 
be compatible with N∨ and N∨

F0
follow immediately. �

1.7 The L-vector space V . The aim of this subsection is to construct a graded L-vector 
space V = V 0 ⊕V 1 ⊕V 2 endowed with operators Φ and N such that V ⊗F0 ∼= H1

HK(A), 
compatibly with the L-action and carrying N, Φ to NHK, ϕ−f .

Let V 0 = (Y ⊗Z Q)∨ and V 2 = Y � ⊗Z Q, endowed with the action of L from 1.1. 
The action of the Frobenius Φ ∈ ΓF is defined by the action of ΓF on Y where V 0 is 
concerned and by q times its action on Y � for V 2. Here q = |k|. Let N∨ : V 2 → V 0 be 
as in (1.5.∗), it is L-linear and satisfies NΦ = qΦN .

To define the L-vector space V 1, consider H1
cris(Bk/F0), where B/F is as in 1.1. It 

is an abelian variety with good reduction and Bk the special fibre of a smooth model 
over the valuation ring of F . The field L naturally acts on H1

cris(Bk/F0), making it 
an L ⊗Q F0-module. Following [Noo06, Lemma 6.13] and [Noo09, Proposition 4.2], we 
describe its structure. It is well known, see [Wat69, Chapter 2] and [Mum70, §19, Theo-
rem 4], that for every endomorphism α of Bk the characteristic polynomial of α acting 
on H1

cris(Bk/F0) has coefficients in Q and is equal to the characteristic polynomial of α
acting on H1

ét(Bk̄, Q�), for any prime number � �= p.
Let π : Bk → Bk be the Frobenius endomorphism of the abelian variety Bk. As π

is semisimple and lies in the centre of End0(Bk), the subalgebra L(π) is a product of 
number fields Li = Q(αi) and applying the above remark to each αi, we conclude that 
there exists an L(π)-module V 1 such that

H1
cris(Bk/F0) ∼= V 1 ⊗Q F0 (1.7.∗)
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as L(π) ⊗Q F0-modules. Moreover H1
ét(Bk̄, Q�) ∼= V 1 ⊗Q Q� as L(π) ⊗Q Q�-modules, for 

every � �= p as above. We consider V 1 as an L-vector space and make Φ act as π−1. By 
[Noo09, §4], this map corresponds to the crystalline Frobenius under the isomorphism 
(1.7.∗).

We have now defined V = V 0 ⊕ V 1 ⊕ V 2 endowed with L-linear operators N and Φ. 
As (H1

HK(A), ϕ) is a direct sum by construction, this proves the first part of the Propo-
sition 1.8 below.

As for the second statement, we refer to [Noo13, §1], taking into account that that 
paper concerns the Tate modules which are dual to the H1

ét. For any prime number � �= p, 
giving the action on H1

ét(AF̄ , Q�) of the inertia subgroup of ΓF is equivalent to giving 
a nilpotent endomorphism N� of H1

ét(AF̄ , Q�), see [Noo13, 1.6]. The Frobenius element 
Φ ∈ ΓF acts on the étale cohomology so H1

ét(AF̄ , Q�) is endowed with operators N�

and Φ. The second statement of the proposition follows from [Noo13, 1.8] and the fact 
that N : V 2 → V 0 is an isomorphism.

1.8 Proposition. With the above notations and definitions, there exists an L ⊗QF0-linear 
isomorphism H1

HK(A) ∼= V ⊗Q F0 taking NHK to N ⊗ 1 and ϕ−f to Φ. For each prime 
number � �= p there is an L ⊗Q Q�-linear isomorphism H1

ét(AF̄ , Q�) ∼= V ⊗Q� taking N�

to N ⊗ 1 and compatible with Φ.

1.9 Remark. As an alternative to [CI99], one may use [MP15], especially 1.3 and Ap-
pendix A.1, to define the log-crystalline cohomology of A. The construction of Madapusi-
Pera works over a more general base than what is needed here. In the case considered 
in Proposition 1.8, his argument is closer to the approach of [Noo13]. It amounts to 
replacing A by the strict 1-motive M constructed by Raynaud, as in the second remark 
of 1.2, and by constructing the log-crystalline cohomology of M .

The comparison theorem of Coleman and Iovita relating the log-crystalline and p-adic 
étale cohomologies of A plays an essential role in the proof of Corollary 2.5. Madapusi-
Pera [MP15, Proposition 1.4.10] establishes a similar result, again in a more general 
setting.

2. Representations of the Weil–Deligne group

2.1 The action of the Weil–Deligne group. As before, F is a finite extension of Qp. We 
adopt the notations of [Noo13, 2.1], which in turn follow [Del73, §8] and [Fon94b]. So 
WF is the Weil group of F , i.e. the set of elements w ∈ ΓF inducing an integral, say 
α(w)th, power of the Frobenius automorphism of the residue field extension k̄/k. This 
defines a surjective morphism α : WF → Z. Note that it differs by a factor f from the 
morphism from [Fon94b], for f defined by q = pf = |k|, where k is the residue field of 
F . For the purpose of this paper, it is sufficient to describe the linear representations of 
′WF . If E is a field of characteristic 0 and H is a linear algebraic group over E, then 
a representation of ′WF with values in H is a pair (ρ′, N) where ρ′ : WF → H(E) is a 
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homomorphism, trivial on some open subgroup of the inertia group IF , and N ∈ Lie(H)
is a nilpotent element such that Ad(ρ′(w))N = qα(w)N for all w ∈ WF .

As in section 1, let A/F be an abelian variety with semistable reduction. The 
(ϕ, N)-module (H1

HK(A), ϕ, NHK) gives rise to an F0-linear representation (ρ′F0
, NHK)

of ′WF by setting ρ′F0
(w) = ϕ−fα(w), for w ∈ WF .

Similarly, the triple (V, Φ, N) constructed in 1.7 defines a Q-linear representation 
(ρ′Q, N) of ′WF by ρ′Q(w) = Φ−α(w), for w ∈ WF . This representation takes values 
in the group H = ResL/QGL/L(V ) of L-linear automorphisms of V . By the Proposi-
tion 1.8, there is an identification H1

HK(A) ∼= V ⊗F0, compatible with L action, describing 
(ρ′F0

, NHK) as the extension of scalars to F0 of (ρ′Q, N). In particular, the representation 
of ′WF associated to H1

HK(A) takes values in H/F0 .
By [Noo13, 2.2, 2.4], for each � �= p the Galois representation on H1

ét(AF̄ , Q�) gives 
rise to a representation (ρ′�, N�) of ′WF with values in H. These representations are also 
base extensions of (ρ′Q, NQ). This establishes the following corollary.

2.2 Corollary. The system of representations with values in H formed by (ρ′F0
, NHK)

and the (ρ′�, N�), for � �= p prime, is defined over Q and forms a compatible system of 
representations of ′WF with values in H.

2.3 Some terminology. Let E be a field of characteristic 0 and E′ ⊃ E an extension. Fix 
a linear algebraic group H over E. A representation (ρ′, N) of ′WF with values in H/E′ is 
defined over E if, for every algebraically closed overfield Ω ⊃ E′ and every τ ∈ AutE(Ω), 
the representations (ρ′⊗E Ω, NΩ) and (τ(ρ′⊗E Ω), τ(NΩ)) are H(Ω)-conjugate. If Ei is a 
family of extensions of E and if, for each index i, we have a representation (ρ′i, Ni) of ′WF

with values in H/Ei
, then the system of (ρ′i, Ni) is a compatible system of representations 

of ′WF if for every pair (i, j) of indices and every algebraically closed field Ω ⊃ Ei, Ej , 
there is a h ∈ H(Ω) such that ρ′i⊗Ei

Ω = h(ρ′j⊗Ej
Ω)h−1 and Ni⊗Ei

1 = Ad(h)(Nj⊗Ej
1)

in Lie(H) ⊗ Ω.
As in [Noo13, 3.4], we also consider a more general situation where H� is a linear 

algebraic group over E, acting on H. In this case, we define the notions of a representation 
of ′WF with values in H defined over E modulo H� and of a compatible system of 
representations of ′Wv modulo H� by replacing H(Ω)-conjugacy by H�(Ω)-conjugacy in 
the above definitions.

2.4 The p-adic representation. Using the semistable comparison theorem, the statement 
of the corollary can be rephrased in terms of the p-adic étale cohomology of A as follows. 
Let Bst be Fontaine’s period ring, cf. [Fon94a, §3] and put

Dst(A) = Dst
(
H1

ét(AF̄ ,Qp)
)

=
(
H1

ét(AF̄ ,Qp) ⊗Qp
Bst

)ΓF
. (2.4.∗)

As H1
ét(AF̄ , Qp) is a semi-stable Galois representation, as Bst is endowed with operators 

ϕ and N commuting with the ΓF -action and as BΓF
st = F0, this is a (ϕ, N)-module of rank 
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2 dim(A) over F0, i.e. a F0-vector space of dimension 2 dim(A) endowed with operators ϕ
and N such that ϕ is σ-linear and N is F0-linear and satisfying Nϕ = pϕN . Since L acts 
Qp-linearly on H1

ét(AF̄ , Qp) and since this action commutes with the ΓF -action, Dst(A)
carries an L-action commuting with all these structures. By the procedure of 2.1, this 
gives rise to an F0-linear representation (ρ′F0

, Nst) of ′Wv on Dst(A), with values in H/F0 . 
Here we have identified H/F0 with the group of L ⊗QF0-linear automorphisms of Dst(A). 
As any two such identifications are conjugate under H/F0 , the following statement is 
independent of this choice.

2.5 Corollary. The above representation (ρ′F0
, Nst) and the (ρ′�, N�), for � running through 

the prime numbers � �= p, are defined over Q and form a compatible system, as repre-
sentations of ′WF with values in H.

Proof. In [CI99, Part II, Theorem 7.13] Coleman and Iovita establish an isomorphism 
Dst(A) ∼= H1

HK(A), compatible with the Frobenius and monodromy operators. Note that 
this is an isomorphism of F0-vector spaces, but that for our purposes the corresponding 
isomorphism over F , proved in theorem II.5.4 of [CI99], or even over F̄ would be sufficient. 
We need to show that this isomorphism is compatible with the L-action. Taking into 
account that the semistable representations H1

ét(AF̄ , Qp) and Vp(A) = TpA ⊗Zp
Qp are 

canonically dual, the above isomorphism is induced by the p-adic integration pairing

Vp(A) ⊗Zp
Qp × H1

dR(A) −→ B+
dR

defined by Colmez in [Col92], so it suffices to prove that this pairing is L-equivariant. 
This follows from the functoriality of the antiderivative used to define the integration 
pairing, see [Col92, Proposition 4.1(iii)]. �
2.6 Remark. As endomorphisms of the appropriate cohomology groups, the monodromy 
operators appearing in the Corollaries 2.2 and 2.5 are nilpotent of echelon 2.

2.7 Remark. This approach differs from the point of view adopted in [Fon94b] for treating 
potentially semistable representations. For any potentially semistable Qp-linear repre-
sentation Vp of ΓF , Fontaine considers

D̂pst(Vp) = lim
−→

(
Vp ⊗Qp

Bst
)H

,

where the limit is taken over the open subgroups H of the inertia group I ⊂ ΓF . The 
resulting space D̂pst(Vp) is a P0-vector space of dimension dimQp

Vp, where P0 is the 
fraction field of the Witt ring W (k̄). It is endowed with a σ-linear Frobenius map ϕ, a 
monodromy operator N and a semi-linear action of ΓF . The operators ϕ and N satisfy 
the usual condition Nϕ = pϕN . The action of ΓF is trivial on an open subgroup of 
the inertia group and hence defines an action of the Weil group WF on D̂pst(Vp). This 
operation commutes with the other structures.
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If Vp is semistable, and not just potentially semistable, then the F0 vector space 
Dst(Vp) defined as in (2.4.∗) is related to the above P0-vector space by
D̂pst(Vp) = Dst(Vp) ⊗F0 P0. The operators N and ϕ on D̂pst(Vp) correspond, on 
Dst(Vp) ⊗F0 P0, to the P0-linear extensions of the operator N considered in 2.4 and 
to the map defined by x ⊗ λ �→ ϕ(x) ⊗ σ(λ) respectively. The action of the Weil 
group WF on D̂pst(Vp) corresponds to its action on the second factor P0 of the ten-
sor product Dst(Vp) ⊗F0 P0. Note that the inertia group acts trivially on D̂pst(Vp) if Vp

is semistable.
According to [Fon94b, 1.3.5], this defines a P0-linear representation (ρ0, N) of the 

Weil–Deligne group ′WF on D̂pst(Vp) by setting ρ0(w) = wϕ−fα(w), for α as in 2.1. The 
above discussion shows that, under the above comparison isomorphism, this representa-
tion of ′WF corresponds to the P0-linear extension to Dst(Vp) ⊗F0P0 of the representation 
of ′WF on Dst(Vp) defined as in 2.4.

3. Representations with values in the Mumford–Tate group

3.1 Abelian varieties over number fields. Changing notation, we fix a number field F ⊂ C
and an abelian variety A/F . We write ΓF = Gal(F̄ /F ), where F̄ is the algebraic closure 
of F in C. Let GA be the Mumford–Tate group of A. To define GA, let 〈h1(A), Q(1)〉AH
be the tannakian category of absolute Hodge motives generated by the motive of A. 
Then GA is the automorphism group of the fibre functor on 〈h1(A), Q(1)〉AH defined 
by the Betti cohomology A �→ H1

B(A(C), Q). It is a linear algebraic group acting on 
H1

B(A(C), Q). We will assume that F is sufficiently large for GA to be connected or 
equivalently that all Hodge classes on all powers of A(C) are defined over F . This can 
always be achieved by replacing F by a finite extension.

For every prime number � there is a canonical isomorphism

H1
ét(AF̄ ,Q�) ∼= H1

B(A(C),Q) ⊗Q Q�

so GA/Q�
acts on H1

ét(AF̄ , Q�). The main theorem of [Del82] implies that the action of 
ΓF on H1

ét(AF̄ , Q�) factors through a representation ρ� : ΓF → GA(Q�). A less concise 
exposition of these matters can be found in [Noo09, 1.2].

Let v̄ be a valuation of F̄ , with residue characteristic p, and let v be its restriction to 
F . Write Fv for the completion of F at v and identify ΓFv

= Dv̄, where Dv̄ ⊂ ΓF is the 
decomposition group of v̄. As pointed out in 2.1, it follows from [Noo13, 2.2, 2.4] that, 
for � �= p, giving the restriction ρ�|Dv̄

is equivalent to giving a representation (ρ′�, N�) of 
the Weil–Deligne group ′Wv = ′WFv

with values in GA/Q�
. In particular N� ∈ gA ⊗ Q�, 

where gA = Lie(GA). The system of (ρ′�, N�) for � �= p was studied in [Noo13]. Before 
citing the result, we recall some terminology.

3.2 Some definitions and notations. To state the main result we first recall that, if Ω is 
an algebraically closed field and g is a semisimple endomorphism of a finite dimensional 
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Ω-vector space V , then g is neat if the Zariski closure of the subgroup of GLV (Ω) gener-
ated by g is connected. The element g ∈ G(Ω) is weakly neat if 1 is the only root of unity 
among the quotients λμ−1 of eigenvalues λ and μ of g. As suggested by the terminology, 
any neat element is weakly neat.

Secondly, let the linear algebraic group G�ad
A be as in [Noo13, 3.3]. It is defined as 

follows. The derived group Gder
A/Q is the almost direct product of almost simple subgroups 

Gi ⊂ GA/Q, for i in some index set I. Let J ⊂ I be the set of indices i such that 
Gi

∼= SO(2ki)/Q for some ki ≥ 4. For each i ∈ J put G′
i = O(2ki) ⊃ Gi and define

G�ad
A =

∏
i∈J

G′ad
i ×

∏
i∈I\J

Gad
i ⊃ Gad

A/Q.

The adjoint actions of Gad
A/Q on GA/Q and on gA extend to actions of G�ad

A . The group 

Gad
A/Q acts trivially on the centres of GA/Q and of gA ⊗ Q. Applying the terminology 

of 2.3 to these groups, we will consider representations with values in GA defined over 
Q modulo G�ad

A , as well as compatible systems modulo G�ad
A of representations of ′Wv

with values in GA.
Let A/F and v be as above and let Φv ∈ Dv be an arithmetic Frobenius element. 

Assume that A has semistable reduction at v and that for some, hence any, prime number 
� �= p, the image ρ′�(Φv) is weakly neat.

3.3 Theorem ([Noo13, Theorem 3.6]). For each � �= p, the representation (ρ′�, N�) is 
defined over Q modulo the action G�ad

A . The set {(ρ′�, N�) | � �= p} is a compatible system 
of representations of ′Wv with values in GA modulo the action of G�ad

A .

3.4 The p-adic representation of ′Wv. Adapting the notations of 1.1, write Fv,0 ⊂ Fv

for the maximal unramified extension of Qp contained in Fv and let σ : Fv,0 → Fv,0 be 
the absolute Frobenius, that is the map inducing x �→ xp on the residue field kv. Let 
|kv| = pf .

Consider the representation ρp of Dv on H1
ét(AF̄ , Qp). In order to associate a p-adic 

representation of ′Wv, one proceeds as in 2.1 and 2.4, but noting that F is now a global 
field and that the completion Fv plays the role of the base field F from sections 1 and 2. 
So let Dst(A) be as in (2.4.∗), replacing the group ΓF from that formula by Dv = ΓFv

. 
As in 2.1 and 2.4, this gives rise to a Fv,0-linear representation (ρ′Fv,0

, Nst) of ′Wv on 
Dst(A).

3.5 Proposition. The functor defined by A �→ Dst(A) defines an Fv,0-linear fibre functor 
on the tannakian category 〈h1(A), Q(1)〉AH. The representation (ρ′Fv,0

, Nst) of ′Wv on 
Dst(A) takes values in the automorphism group GA,st of this fibre functor.

Proof. The functor A �→ H1
ét(AF̄ , Qp) defined by étale cohomology with coefficients in 

Qp defines a fibre functor on 〈h1(A), Q(1)〉AH. The group ΓF maps to the automorphism 
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group of this functor so we obtain a functor to the category of (continuous, finite dimen-
sional) Qp-linear representations of Dv = ΓFv

. By [CI99, Theorem 2.6(a)], H1
ét(AF̄ , Qp)

is a semistable representation of Dv and hence the same is true for the p-adic étale re-
alisation of any object of 〈h1(A), Q(1)〉AH. It thus follows from [Fon94c], in particular 
propositions 1.5.2 and 5.1.2, that ( · ⊗Qp

Bst)Dv defines a fibre functor on the image cat-
egory of 〈h1(A), Q(1)〉AH under the fibre functor defined by the p-adic étale cohomology. 
The functor considered in the proposition, as composite of these two fibre functors, is 
also a fibre functor.

For any Qp-linear representation Vp of Dv, a Dv-invariant in Vp defines a ϕ- and 
N -invariant element in (Vp ⊗Qp

Bst)Dv so ′Wv acts on the composite fibre functor. �
3.6 Fitting the p-adic representation into the system. It follows from the general theory 
of tannakian categories, in particular from [DM82, Theorem 3.2], that the fibre functor 
on 〈h1(A), Q(1)〉AH defined by Dst is F̄v-isomorphic to the one defined by H1

B, where F̄v

is an algebraic closure of Fv,0. We fix an F̄v-isomorphism ι between these fibre functors. 
Conjugating by ι, the representation (ρ′Fv,0

, Nst) of ′Wv gives rise to a representation 
(ρ′Fv,0

, Nst)ι of ′Wv with values in GA/F̄v
.

3.7 Remark. Replacing ι by another isomorphism ι′, possibly modifying F̄v as well, 
results in replacing (ρ′Fv,0

, Nst)ι by a conjugate under GA(F̄v). The Theorem 3.8 for 
(ρ′Fv,0

, Nst)ι
′ is therefore equivalent to the result for (ρ′Fv,0

, Nst)ι. Also note that the 
existence of ι implies that GA,st is an inner form of GA.

The automorphism group of the �-adic étale fibre functor is canonically identified with 
GA/Q�

because F ⊂ C and because F̄ is defined as the algebraic closure of F in C, see 
also the closing Remarks 4.4.

3.8 Theorem. Assume that A has semistable reduction at v, let Φv ∈ WFv
be an arithmetic 

Frobenius element and suppose that either ρ′Fv,0
(Φv) or one of the ρ′�(Φv), for � �= p is 

weakly neat. Then the representation (ρ′Fv,0
, Nst)ι is defined over Q modulo the action 

G�ad
A and, together with the representations {(ρ′�, N�) | � �= p}, it forms a compatible 

system of representations of ′Wv with values in GA modulo the action of G�ad
A .

3.9 Remarks. In the statement of the theorem, the hypothesis of weak neatness is required 
for one of the representations of the system. If it holds, then the conclusion of the theorem 
implies that it holds for all the representations of the system. This fact actually already 
follows from Corollary 2.5.

The main theorem 3.6 of [Noo13], states that the (ρ′�, N�) form a compatible system, 
with values in GA and defined over Q, modulo the action of G�ad

A . We thus only have to 
prove that (ρ′Fv,0

, Nst)ι is also defined over Q and compatible with any of the (ρ′�, N�), 
modulo the action of G�ad

A .
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4. The proof of Theorem 3.8

4.1 Tractable abelian varieties. Following the strategy of [Noo13], we first prove the 
theorem for tractable abelian varieties. The precise definition of this notion can be found 
in [Noo09, 2.3] and in [Noo13, 4.1]. Summarising, an abelian variety A/C is strictly 
tractable if it satisfies the following conditions and if these conditions do not hold for 
any proper abelian subvariety of A. Firstly, Gder

A is Q-simple, of the form ResK/QGs

for an almost simple group Gs of classical type over an totally real number field K. 
Secondly, the representation of Gder

A on V = H1
B(A(C), Q) is the restriction of scalars 

of a representation V s of Gs of a particular type, either a multiple of the standard 
representation (if Gs is of type An, Cn or Dn) or a multiple of a spin representation 
(if Gs is of type Bn or Dn). Note that if Gs is of type Dn, this allows two kinds of 
representations. In the case where Gs is of type Dn and V s is a spinorial representation 
it is required that in each character space for the action of the centre of GA/Q on V ⊗Q, 
both semi-spin representations of the corresponding factor of Gder

A/Q occur with the same 
multiplicity.

The variety A is tractable if it is isogenous to a product 
∏m

i=1 Ai of strictly tractable 
abelian varieties Ai and if Gder

A
∼=

∏m
i=1 G

der
Ai

. If F ⊂ C is a subfield, an abelian variety 
A/F is (strictly) tractable if A/C is and if GA is connected.

For a tractable abelian variety A, let L ⊂ End(A) ⊗ Q be the algebra defined in 
the proof of théorème 2.4 of [Noo09], see also [Noo13, 4.3]. It is characterised by the 

fact that it decomposes L ⊗ Q = Qd, where d is the number of isotypic components 
of the representation of GA/Q on V ⊗ Q and with each factor Q acting by scalar mul-
tiplication on exactly on of these components. Lemma 4.4 of [Noo13] states that, if 
A is strictly tractable, then either L is a number field or L = L′ × L′ for a number 
field L′. It follows that, for A tractable, L is a product of number fields. By construc-
tion, the action of L on V commutes with the action of GA, so L ⊂ End(A) ⊗ Q as 
stated.

Finally, let H ⊂ GL(V ) be the linear algebraic group of L-linear automorphisms 
of V as in 2.1. Endomorphisms of A define absolute Hodge classes on A × A, so 
GA ⊂ H.

4.2 Proposition. Let A be a tractable abelian variety defined over a number field F and 
let v be a valuation of F with residue characteristic p. There exists a finite extension F ′

of F such that the Theorem 3.8 holds for A/F ′ .

Proof. Let F̄v and ι be as in 3.6, let Ω ⊃ F̄v be an algebraically closed field and let 
(ρ′1, N1) be the base extension to Ω of the representation (ρ′Fv,0

, Nst)ι. Assume that 
(ρ′2, N2) is a second representations of ′Wv with values in GA/Ω, either a conjugate 
τ(ρ1, N1) of (ρ1, N1) for some τ ∈ Aut(Ω), or the base extension to Ω of a (ρ′�, N�) for 
some prime number � �= p such that Q� ⊂ Ω. We need to show that (ρ′1, N1) and (ρ′2, N2)
are conjugate under G�ad

A (Ω).
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First assume that A is strictly tractable. Put V = H1
B(A(C), Q), let L ⊂ End(A) ⊗Q

and H ⊂ GL(V ) be as in 4.1. Explicitly, H ∼= ResL/QGLd′/L if L is a field and
H ∼=

(
ResL′/QGLd′/L′

)2 if L = L′ ×L′ for a number field L′. Here d′ = rkLV . It follows 
from Corollary 2.5 that (ρ′1, N1) and (ρ′2, N2), considered as representations of ′Wv with 
values in H/Ω, are conjugate by an element of H(Ω).

The arguments of [Noo13], sections 5 and 6, show that (ρ′1, N1) and (ρ′2, N2) are 
G�ad

A (Ω)-conjugate, as representations of ′Wv with values in GA/Ω. The verification car-
ried out in [Noo13] is a rather tedious case-by-case argument using the classification of 
classical linear algebraic groups and their representations. It depends on the facts that 
the monodromy is nilpotent of echelon 2, that the eigenvalues of Frobenius have complex 
absolute values 1, q−1/2 and q−1 and that the monodromy operator defines an isomor-
phism between the 1 and q−1 weight spaces of Frobenius. Here q is the cardinality of 
the residue field of F at v. These facts are also valid for the p-adic representations and 
it follows that (ρ′1, N1) and (ρ′2, N2) are G�ad

A (Ω)-conjugate. This establishes the propo-
sition for strictly tractable abelian varieties. Note that no extension of the base field is 
needed in this case.

If A is only tractable then, proceeding as in the proof of [Noo13, Proposition 7.1], 
we can find a finite extension F ′/F and an isogeny A/F ′ ∼

∏m
i=1 Ai, where the Ai/F

′

are strictly tractable and such that Gder
A

∼=
∏m

i=1 G
der
Ai

. As moreover gss
A
∼= ⊕m

i=1g
ss
Ai

and 
G�

A
∼=

∏m
i=1 G

�
Ai

, the general case of the proposition, over F ′, follows from the strictly 
tractable case. �
4.3 Reduction to the tractable case. We use the method of [Noo13], section 7. Except 
for the neatness condition, we place ourselves in the situation of Theorem 3.8, so F is a 
number field, v is a valuation of F , restriction of the valuation v̄ on F̄ and A/F is an 
abelian variety. The Mumford–Tate group GA is assumed to be connected.

It follows from [Noo06], especially section 2 and corollary 3.2, there exists a 
tractable abelian variety B/F̄ such that B/C is a weak Mumford–Tate lift of A/C. 
By [Noo09, §3] there is an abelian variety of CM-type C/F̄ such that h1(A/F̄ ) be-
longs to 〈h1(B/F̄ ), h1(C/F̄ ), Q(1)〉AH. Replacing F by a finite extension F ′, we can 
assume that B and C admit models B/F ′ and C/F ′ over F ′ and that h1(A/F ′)
belongs to 〈h1(B), h1(C), Q(1)〉AH. The restriction of v̄ gives rise to a well deter-
mined valuation v′ on F ′. As in Proposition 3.5, let (ρ′A,Fv,0

, NA,st) be the repre-
sentation of ′Wv′ with values GA,st attached to A/F ′ . It is the restriction of the 
representation over the original field F . We similarly consider the representations 
(ρ′B,Fv,0

, NB,st) and (ρ′C,Fv,0
, NC,st) associated to B/F ′ and CF ′ , with values in GB,st

and in GC,st respectively. Composing the fibre functor defined by the p-adic étale coho-
mology with Dst, we obtain an Fv,0-valued fibre functor on the appropriate categories 
of absolute Hodge motives. This fibre functor induces functors to the categories of 
Fv,0-linear representations of the groups GA,st, GB,st and GC,st. This gives rise to the 
variant
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′Wv′ = ′WF ′
v′

((ρ′
B,Fv,0 ,NB,st),(ρ′

C,Fv,0 ,NC,st))

(ρ′
B×C,Fv,0 ,NB×C,st)

(ρ′
A,Fv,0 ,NA,st)

GB,st ×GC,st

GB×C,st

GA,st

(4.3.∗)

of the commutative diagram (7.2∗) from [Noo13].
As in 3.6, let F̄v be an algebraic closure of Fv and hence of Fv,0 and let ι be an 

F̄v-isomorphism between the fibre functors on 〈h1(B), h1(C), Q(1)〉AH defined by Dst

and by H1
B. Via ι, identify the groups G�,st/F̄v

with the corresponding Mumford–Tate 
groups G�/F̄v

. Consider an algebraically closed field Ω ⊃ F̄v and let the representa-
tions (ρ′1, N1) and (ρ′2, N2) of ′Wv′ with values in GA/Ω be as in the beginning of the 
proof of Proposition 4.2. To avoid confusion, we will henceforth denote these represen-
tations by (ρ′A,i, NA,i) for i = 1, 2. In order to prove the Theorem 3.8 over the extension 
F ′ ⊃ F , the task at hand is to show that these representations are conjugate under 
G�ad

A (Ω). In the course of the following arguments we will allow further finite extensions 
of F ′, which amounts to restricting the representations to subgroups of ′Wv of finite 
index.

For � = B, C or B × C we have corresponding representations (ρ′�,i, N�,i) with val-
ues in G�/Ω. For i = 1, 2 we obtain commutative diagrams by replacing the G�,st by 
the G�/Ω and the (ρ′�,Fv,0

, N�,st) by the (ρ′�,i, N�,i) in the diagram (4.3.∗). The abelian 
variety C is of CM-type so it has potentially good reduction and after replacing F ′ by 
a finite extension we may assume that it has good reduction. Its Mumford–Tate group 
is commutative and the monodromy is trivial so (ρ′C,1, NC,2) and (ρ′C,2, NC,2) coincide 
by [Noo09, Corollaires 2.2, 4.4]. Where the tractable abelian variety B is concerned, 
the Proposition 4.2 implies that, again after a finite extension of F ′, the represen-
tations (ρ′B,1, NB,2) and (ρ′B,2, NB,2) are conjugate under G�ad

B (Ω) = G�ad
B×C(Ω). This 

proves the Theorem 3.8 over a finite extension of F , cf. also [Noo13, §7], proof of theo-
rem 3.6.

It remains to establish the theorem over the original field F . By their definition 
in 2.1, the representations ρ′A,i are trivial on the inertia subgroup so they are de-
termined by the image of the Frobenius element Φ ∈ WFv

. As the theorem holds 
over F ′, there exist e ∈ N and g ∈ G�ad

A (Ω) such that NA,2 = Ad(g)(NA,1) and 
ρ′A,2(Φe) = gρ′A,1(Φe)g−1. On the other hand, the Corollary 2.5, with L = Q, 
implies that ρ′A,2(Φ) and gρ′A,1(Φ)g−1 have the same characteristic polynomial. It 
now follows from [Noo13, Lemma 7.4], that gρ′A,1(Φ)g−1 = ρ′A,2(Φ), so that the 
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(ρ′A,i, NA,i) are conjugate under G�ad
A . This concludes the proof of the main Theo-

rem 3.8.

4.4 Closing remarks. In the arguments above, and even to state the results, a number of 
choices where made. We briefly comment on their influence.

Firstly, in the sections 3 and 4 concerning abelian varieties over number fields, the base 
field is assumed to be a subfield of C. The embedding determines the Betti cohomology 
H1

B(X(C), Q) and hence the corresponding fibre functor on the category of absolute 
Hodge motives over F . The Mumford–Tate group GA of A is defined as the automorphism 
group of this fibre functor. Another choice of embedding F ↪→ C defines another fibre 
functor, which is Q-isomorphic to the previous one. As F̄ is the algebraic closure of F
in C, this also modifies the embedding F ⊂ F̄ so it affects the étale cohomology as well. 
The automorphism group G̃A of the new fibre functor is an inner form of GA and the 
representations ΓF → GA(Q�) and ΓF → G̃A(Q�) are conjugate under GA(Q�). The 
main Theorem 3.8 for the system of Galois representations with values in G̃A associated 
to A is equivalent to the statement for the system of representations with values in GA.

In the second place, the construction of the p-adic representation of the Weil–Deligne 
group Fv is based on the application the functor Dst to the p-adic étale cohomology 
of A. The main theorem can thus be interpreted as a version of Fontaine’s conjecture 
CWD, faible for absolute Hodge motives. The representation of ′Wv considered here is 
constructed using the fibre functor on the category of absolute Hodge motives defined 
by Dst ◦ H1

ét(· F̄ , Qp). One may also construct a fibre functor using the log-crystalline 
or ‘Hyodo–Kato’ cohomology groups H1

HK(· Fv
) introduced in section 1, show that this 

functor defines a representation of the Weil–Deligne group and prove the theorem for 
that representation. Note that by means of Corollary 2.5, the proof of Theorem 3.8
makes essential use of the isomorphism H1

HK(AFv
) ∼= Dst(H1

ét(AF̄v̄
, Qp)) of Coleman 

and Iovita but that it depends only on the compatibility of this isomorphism with the 
endomorphisms of A. We neither use the fact H1

HK(·) defines a fibre functor nor the fact 
that the comparison isomorphism is an isomorphism of fibre functors on the category of 
abelian absolute Hodge motives.

Let us indicate why H1
HK(· Fv

) indeed defines a fibre functor and why ′Wv acts on it by 
automorphisms. Let TB(A(C), Q) some Tate twisted tensor construction in H1

B(A(C), Q)
and let γB ∈ TB(A(C), Q) be a Hodge class, by [Del82] it is an absolute Hodge class. We 
need to show that it defines an element of the corresponding twisted tensor construc-
tion THK(AFv

) in H1
HK(AFv

) and that this element is invariant under NHK and ϕ. By 
construction, we have an isomorphism H1

HK(AFv
) ⊗Fv,0 Fv

∼= H1
dR(A/F ) ⊗F Fv. Via the 

comparison the isomorphism H1
dR(A/F ) ⊗F C ∼= H1

B(A(C), Q) ⊗QC, the class γB defines 
an element of TdR(A/F ) ⊗F C. The fact that γB is an absolute Hodge class implies that 
this element is of the form γdR ⊗ 1 for some γdR ∈ TdR(A/F ).

To show that γdR ⊗ 1 ∈ TdR(A/F ) ⊗F Fv belongs to THK(AFv
), consider

γp ∈ Tét(AF̄ , Qp), the image of γB under the isomorphism induced by
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H1
ét(AF̄ ,Qp) = H1

ét(AC,Qp) ∼= H1
B(A(C),Q) ⊗ Qp.

By [Bla94, Theorem 0.3], the classes γdR ⊗ 1 and γp ⊗ 1 correspond under

H1
dR(A/F ) ⊗F BdR ∼= H1

ét(AF̄v̄
,Qp) ⊗Qp

BdR. (4.4.∗)

It follows from [CI99, Part II, Theorem 7.13] that the isomorphism (4.4.∗) identifies the 
subspace H1

dR(A/F ) ⊗F Bst ⊂ H1
dR(A/F ) ⊗F BdR with the subspace

H1
ét(AF̄v̄

,Qp) ⊗Qp
Bst ⊂ H1

ét(AF̄v̄
,Qp) ⊗Qp

BdR

and that H1
HK(AFv

) is the space of ΓFv
-invariants. As the class γp ∈ Tét(AF̄ , Qp)

is ΓFv
-invariant, it follows that γdR ⊗ 1 ∈ THK(AFv

) as claimed. This implies 
that H1

HK(· Fv
) defines a fibre functor on the category 〈h1(A), Q(1)〉AH. Moreover,

γp ⊗ 1 ∈ Tét(AF̄v̄
, Qp) ⊗Qp

Bst is ϕ- and N -invariant, for the operators ϕ and N defined 
by ϕ and Nst on Bst, so γdR ⊗ 1 is invariant under ϕ and NHK and hence ′Wv acts on 
the fibre functor defined by H1

HK(· Fv
).

These arguments also show that γdR and γp correspond under the comparison iso-
morphism, so the isomorphism H1

HK(· Fv
) ∼= Dst ◦H1

ét(· F̄ , Qp) is an isomorphism of fibre 
functors. It follows that the main theorem also holds for the representation of ′Wv on 
H1

HK(AFv
). Alternatively, the rest of the proof of the main theorem, for the representa-

tion of the Weil–Deligne group defined by this functor, carries through exactly as the 
proof for the functor Dst ◦ H1

ét(· F̄ , Qp).
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