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In this paper we study the problem of counting Salem numbers 
of fixed degree. Given a set of disjoint intervals I1, . . . , Ik ⊂
[0;π], 1 ≤ k ≤ m let Salm,k(Q, I1, . . . , Ik) denote the set 
of ordered (k + 1)-tuples (α0, . . . , αk) of conjugate algebraic 
integers, such that α0 is a Salem number of degree 2m + 2
satisfying α ≤ Q for some positive real number Q and argαi ∈
Ii. We derive the following asymptotic approximation

#Salm,k(Q, I1, . . . , Ik)

= ωm Qm+1
∫
I1

. . .

∫
Ik

ρm,k(θ)dθ + O (Qm) , Q → ∞,

providing explicit expressions for the constant ωm and the 
function ρm,k(θ). Moreover we derive a similar asymptotic 
formula for the set of all Salem numbers of fixed degree and 
absolute value bounded by Q as Q → ∞.
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1. Introduction

Problems concerning the distribution of algebraic numbers have a long history [10,
1,11,17,20,2]. Recall that an algebraic number α is a complex number such that there 
exists an irreducible polynomial P over Q with integer co-prime coefficients and positive 
leading coefficient such that P (α) = 0. This polynomial is called minimal polynomial of 
the algebraic number α and other roots of P are called Galois conjugates of α. Moreover 
if the leading coefficient of the minimal polynomial equals 1, α is called algebraic integer.

For the distribution of algebraic numbers we consider sets An of algebraic numbers 
with fixed degree n ∈ N. Usually this set will be countable and dense in R. Hence we shall 
restrict the counting problem to finite subsets of An depending on a real parameter Q > 1
and ask how the cardinality of this set changes as Q → ∞. As one of the many choices 
consider for example the set of algebraic numbers in An with absolute multiplicative 
Weil height bounded by Q [20,17], or the set of algebraic numbers in An with naïve 
height bounded by Q and lying in some fixed set D ⊂ C [9,13].

In this paper we will consider similar questions for a special subset of algebraic inte-
gers, namely the so-called Salem numbers. Let us start with some definitions. A Salem 
number is a real algebraic integer α > 1 such that all its Galois conjugates have absolute 
value less or equal to 1 and at least one of them has absolute value equal to 1. Let α′

denote a Galois conjugate of the Salem number α lying on the complex unit circle T , 
e.g. |α′| = 1. Since α′ and its complex conjugate α′ = (α′)−1 are Galois conjugates we 
conclude that the minimal polynomial Pα of a Salem number α is self-reciprocal. Recall 
that a polynomial P ∈ Z[t] of degree n is called self-reciprocal if

P (t) = tnP
(
t−1) .

Moreover the polynomial Pα is of even degree 2(m +1), otherwise Pα(−1) = −Pα(−1) = 0
which contradicts to the irreducibility of Pα. Thus, all Galois conjugates of Salem number 
α (except for α−1) have absolute value 1 and lie on the unit circle T in the complex 
plane. We will denote them by α1, ᾱ1, . . . , αm, ᾱm ∈ T . We shall use these two properties 
as a description of the set of Salem numbers.

Denote by Salm the set of all Salem numbers of degree 2(m + 1). Our aim is to 
describe the distribution of Salem numbers by considering some finite subsets of Salm
with given properties and investigating how the cardinality of those sets depend on the 
chosen parameters.

It should be mentioned that Salem numbers play an important role in many areas of 
mathematics, such as number theory, algebra and dynamical systems. For more details 
we refer to the papers [3,4,19,8]. In particular the smallest Salem number is closely 
related to Lehmer’s conjecture [15].
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1.1. Counting Salem numbers

Given some real Q > 1 and integer m ≥ 1 let us introduce the following finite subset

Salm(Q) := {α ∈ Salm : α ≤ Q} ,

which consists of all Salem numbers of degree 2(m +1) lying in the interval (1; Q]. In this 
subsection we introduce an asymptotic formula for the cardinality of the set Salm(Q) as 
Q → ∞.

Theorem 1.1. For any integer m ≥ 1 we have

#Salm(Q) = ωm Qm+1 + O (Qm) , Q → ∞,

where

ωm := 2m(m+1)

m + 1

m−1∏
k=0

k!2

(2k + 1)! . (1)

Remark 1.2. The absolute multiplicative Weil height H of an algebraic integer α1 of 
degree n with Galois conjugates α2, . . . , αn is defined as

H(α) =
(

n∏
i=1

max(1, |αi|)
)1/n

.

It is clear, that if α is a Salem number of degree 2(m + 1) then H(α)2(m+1) = α and, 
thus, Theorem 1.1 can be interpreted as counting result with respect to the absolute 
multiplicative Weil height.

The set of Salem numbers is a subset of a more general class of algebraic integers, 
namely Perron numbers. A Perron number is a real algebraic integer α > 1 such that all 
its Galois conjugates have absolute value less then α. The problem of counting Perron 
numbers has been studied by F. Calegari and Z. Huang [5]. Denote by Pern the set 
of all Perron numbers of degree n and for some real Q > 1 define the following finite 
subset

Pern(Q) := {α ∈ Pern : α ≤ Q} .

Then for any natural n the following asymptotic approximation holds

#Pern(Q) = dnQ
n(n+1)/2 + O(Qn(n−1)/2), Q → ∞,

where
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d2s = 1
2s + 1

s−1∏
k=0

(
k!222k+1

(2k + 1)!

)2

; d2s+1 = 22s+1s!2

(2s + 1)!
d2s.

The proof methods used in [5] do not apply to the case of Salem numbers, but we use 
some modification of those arguments to prove Theorem 1.1.

1.2. Salem numbers with given distribution of their Galois conjugates

In this subsection we consider a slightly more general problem.
Given some real Q > 1, integer m ≥ 1 and disjoint intervals I1, . . . , Ik ⊂ [0;π], 1 ≤ k ≤

m denote by Salm,k(Q, I1, . . . , Ik) the set of ordered (k+1)-tuples (α0, . . . , αk) ∈ R ×Tk

of conjugate algebraic integers, such that α0 ∈ Salm(Q) and argαi ∈ Ii for 1 ≤ i ≤ k. As 
in the previous subsection we try to determine the cardinality of this set. Theorem 1.3
below provides an asymptotic formula for #Salm,k(Q, I1, . . . , Ik) as Q tends to infinity.

Before we introduce our main result let us consider some additional notations and 
definitions. Let A = (ai,j)i,j=1,...,2n be a skew-symmetric 2n × 2n matrix, which means 
that A� = −A. The Pfaffian of A is defined by

Pf(A) = 1
2nn!

∑
σ∈S2n

sgn(σ)
n∏

i=1
aσ(2i−1),σ(2i),

where S2n is the symmetric group of order (2n)! and sgn(σ) is the signature of σ. Recall 
the following useful formula connecting Pfaffian and determinant of the matrix A [6]

Pf(A)2 = det(A). (2)

Furthermore, let us introduce the family of classical orthogonal polynomials, called Ja-
cobi polynomials, via

J (a,b)
n (t) = Γ (a + n + 1)

n!Γ (a + b + n + 1)

n∑
j=0

(
n

j

)
Γ (a + b + n + j + 1)

Γ (a + j + 1)

(
t− 1

2

)j

. (3)

These polynomials are orthogonal to each other with respect to weight function (1 −
t)a(1 +t)b on the interval [−1; 1]. For more details we refer reader to [22] and Appendix B.

Theorem 1.3. For any integer m ≥ 1 and any disjoint intervals I1, . . . , Ik ⊂ [0;π], 1 ≤
k ≤ m we have

#Salm,k(Q, I1, . . . , Ik) = ωm Qm+1
∫
I1

. . .

∫
Ik

ρm,k(θ)dθ + O (Qm) , Q → ∞,

where ωm is defined by (1). Moreover, the function ρN,k(θ) can be written in the following 
form
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ρN,k(θ1, . . . , θk) =
k∏

l=1

sin θl Pf
[
KN (cos θi, cos θj)

]
i,j=1,...,k

,

where

KN (x, y) :=
(

IN (x, y) SN (y, x)
−SN (x, y) −DN (x, y)

)
(4)

and for c := (N mod 2) we write

SN (x, y) : =
(N−c)/2−1∑

j=0

1
rj

(
ψ′

2j+1(x)ψ2j(y) − ψ′
2j(x)ψ2j+1(y)

)

+ c(N + 1)
4 J

(1,1)
N−1(x), (5)

DN (x, y) : = −∂SN (x, y)
∂y

, (6)

IN (x, y) : = 1
2

1∫
−1

sign(x− ξ)SN (ξ, y)dξ − 1
2 sign(x− y) − c

2J
(0,0)
N (x), (7)

where

ψ2j(t) := 2
2j + 2 + c

(
J

(0,0)
2j+1+c(t) − c

)
, (8)

ψ2j+1(t) := (t2 − 1)J (1,1)
2j+c(t), (9)

rj := 8(2j + 1 + c)
(4j + 3 + 2c)(2j + 2 + c) . (10)

Remark 1.4. According to the definition of the Pfaffian and the kernel KN(x, y) it is easy 
to see that ρN,k(θ1, . . . , θk) is a polynomial in sin θi and cos θi, 1 ≤ i ≤ k. Moreover, it 
can be written as

ρN,k(θ1, . . . , θk) =
k∏

l=1

sin θl
∏

1≤i<j≤k

|cos θi − cos θj | gN (cos θ1, . . . , cos θk),

where gN (x1, . . . , xk) is a polynomial.

Remark 1.5. It should be also noted that the function KN (x, y) defined by (4)–(10)
coincides with the Kernel function of some random matrix ensemble, namely the Jacobi 
β-ensemble with β = 1 (see Appendices A and B).

In general, the formula for ρm,k(θ) seems quite complicated, but it may be simplified 
for k = 1 and k = m.
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Corollary 1.6. For any integers m we have

ρm,1(θ) = sin θ Sm(− cos θ,− cos θ),

and

ρm,m(θ1, . . . , θm) =
m∏
l=1

sin θl
∏

1≤i<j≤m

|cos θi − cos θj | .

Corollary 1.6 immediately follows from the proof of Theorem 1.3 and equation (2).

Example. As an example the following density functions may be written explicitly as

ρ2,1(θ) = 3
4 sin θ

(
cos2 θ + 1

)
,

ρ3,1(θ) = 3
8 sin θ

(
5 cos4 θ + 3

)
,

ρ4,1(θ) = 5
32 sin θ

(
35 cos6 θ − 21 cos4 θ + 9 cos2 θ + 9

)
,

with corresponding plots given in Fig. 1.

The structure of the paper is the following. In Section 2 we present the proof of 
Theorem 1.1 and Theorem 1.3. Section 3 is devoted to the proof of auxiliary lemmas. In 
Appendices A and B we collected some facts about the distribution of the eigenvalues of 
random matrix ensembles needed for the proof of Theorem 1.3.

2. Proof of Theorem 1.1 and Theorem 1.3

In this section we present the proofs of Theorem 1.1 and Theorem 1.3 simultaneously 
since they differ in some details only.

Denote by Pm(Q) the set of self-reciprocal monic polynomials P ∈ Z[t] of degree 
2(m + 1) having 2m roots lying on the unit circle T and two positive real roots α, 
α−1 bounded by Q. Moreover let PI

m(Q) denote the subclass of irreducible polynomials 
P ∈ Pm(Q) and let PR

m(Q) denote the subclass of reducible polynomials P ∈ Pm(Q). 
By definition PI

m(Q) is the set of minimal polynomials of Salem numbers α ∈ Salm(Q)
and thus

#Salm(Q) = #PI
m(Q). (11)

Given a polynomial P ∈ R[t] denote by μP a counting measure for the roots of P
lying on the unit circle

μP :=
∑

iθ

δθ, (12)

θ : P (e )=0
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Fig. 1. A plot of ρm,1(θ).

where δθ is the unit point mass in θ. Then, for any set of disjoint intervals I1, . . . , Ik ⊂
[0; π] and a polynomial P ∈ R[t] the following quantity

μP (I1, . . . , Ik) :=
k∏

i=1
μP (Ii) (13)

is the number of ordered k-tuples (θ1, . . . , θk) ∈ I1 × . . .× Ik such that

P (eiθ1) = . . . = P (eiθk) = 0.

Then, obviously,

#Salm,k(Q, I1, . . . , Ik) =
∞∑
l=0

l · #
{
P ∈ PI

m(Q) : μP (I1, . . . , Ik) = l
}

(14)

and our problem reduces to counting integral irreducible polynomials with a prescribed 
root distribution.

Our approach in this case will be to consider the set of polynomials with real instead 
of integer coefficients. Thus, identifying a polynomial of degree d with the vector of its 
coefficients as a point in Rd+1 we transform the algebraic problem to the geometric 
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problem of counting a number of integer points (points with integer coefficients) inside 
specific sets in Rd+1.

Following this idea denote by Vm ⊂ Rm+1 a set of points a := (a1, . . . , am+1) such 
that the roots of polynomial

Pa(t) := t2m+2 + a1t
2m+1 + . . . + am+1t

m+1 + . . . + a1t + 1

have the following form

eiθ1 , e−iθ1 , . . . , eiθm , e−iθm ∈ T ,

y ∈ (1;Q], y−1, (15)

for some 0 ≤ θ1 ≤ . . . ≤ θm ≤ π. Moreover, denote by V l
m,k ⊂ V m the set of points 

a ∈ Vm such that the polynomial Pa(t) satisfies the additional condition

μPa
(I1, . . . , Ik) = l.

In order to simplify notation in the rest of the proof we will write Salm,k(Q) instead of 
Salm,k(Q, I1, . . . , Ik) and we set Vm = V 1

m,0.
Denote by vlm,k the volume of the set V l

m,k given by

vlm,k =
∫

Rm+1

1V l
m,k

(x)dx, (16)

where 1B(·) denotes the indicator function of a set B ⊂ Rm+1.
According to our convention every polynomial from Pm(Q) represents an integer point 

in Vm. Hence, the first step is to count the integer points in the set V l
m,k. We will show 

that for any integer 0 ≤ k ≤ m and l ≥ 1 this number is asymptotically equal to the 
volume vlm,k of V l

m,k as Q → ∞.
Approximating the number of integer points in a large set B ⊂ Rm+1 by the volume 

of this set is a classical approach. One of the earliest references we are aware of in this 
direction are due to Lipschitz [16] and Davenport [7]. In order to get a good estimate one 
needs to impose some regularity conditions on the boundary of B. In accordance with [24, 
Definition 2.2], we say that the boundary ∂B of a set B is of Lipschitz class (M, L) if 
there exist M maps φ1, . . . , φM : [0; 1]m → Rm+1 satisfying a Lipschitz condition

|φi(x) − φi(y)| ≤ L|x− y| for x, y ∈ [0; 1]m, i = 1, . . . ,M,

such that ∂B is covered by the images of the maps φi.

Lemma 2.1. For any integer 0 ≤ k ≤ m and l ≥ 1 the boundary of V l
m,k is of Lipschitz 

class (M, c Q) for some fixed M and c independent of Q. Moreover
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∣∣# (V l
m,k ∩ Zm+1)− vlm,k

∣∣ ≤ C1Q
m,

where C1 depends on m, l and k only.

For the proof see Subsection 3.1.
Note that Lemma 2.1 allows us to estimate the number of all integer polynomials in 

Pm(Q) satisfying the same conditions to the polynomials with real coefficients forming 
the set V l

m,k. But for our purpose we need to count the number of irreducible polynomials 
only. Thus, our next step is to show that the number of reducible polynomials in Pm(Q)
is relatively small and can be estimated by O(Qm). The following lemma gives the 
asymptotic behavior of #PR

m(Q) as Q → ∞.

Lemma 2.2. For some C2 > 0 depending on m only we have

#PR
m(Q) ≤ C2 Q

m.

The proof of this lemma is given in Subsection 3.2.
Finally, using Lemma 2.1 and Lemma 2.2 we get∣∣#{P ∈ PI

m(Q) : μP (I1, . . . , Ik) = l
}
− vlm,k

∣∣ ≤ C3 Q
m,

and from (11) and (14) with vm := v1
m,0 we conclude

#Salm(Q) = vm + O(Qm), (17)

#Salm,k(Q) =
mm∑
l=0

lvlm,k + O(Qm). (18)

The last step of the proof is devoted to evaluation of vm and 
∞∑
l=0

lvlm,k. Let us intro-

duce the following representation of the points a ∈ Vm in terms of the roots (15) of a 
polynomial Pa(t).

Lemma 2.3. Given a polynomial

Pa(t) := t2m+2 + a1t
2m+1 + . . . + am+1t

m+1 + . . . + a1t + 1

with roots (15) we have

a2i−1 = −
i−1∑
j=0

(
m− 2j
i− j − 1

) ∑
0≤k1<...<k2j+1≤m

2j+1∏
s=1

zks
, (19)

a2i =
i∑

j=0

(
m− 2j + 1

i− j

) ∑
0≤k1<...<k2j≤m

2j∏
s=1

zks
, (20)
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where 1 ≤ i ≤
[
m
2
]
+ 1, z0 := z0(y) = y + y−1 and zk := zk(θk) = 2 cos θk, 1 ≤ k ≤ m.

The proof of this lemma is given in Subsection 3.3.
Let us consider the following simplex

Lm := {x ∈ Rm : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xm ≤ π} . (21)

In Lemma 2.3 we defined a bijective map f : (1, Q] × Lm → Vm via (19) and (20) as

fi(y, θ1, . . . , θm) := ai.

Using this mapping we can rewrite (16) as follows

vm =
Q∫

1

∫
Lm

Jf (y, θ1, . . . , θm)dy dθ1 . . .dθm,

where

Jf (y, θ1, . . . , θm) =
∣∣∣∣∂ (f1, . . . , fm+1)
∂ (y, θ1, . . . , θm)

∣∣∣∣ (22)

is the Jacobian of the map f .

Lemma 2.4. Given the map f : (1, Q] × Lm → Vm defined by (19) and (20) we have

Jf (y, θ1, . . . , θm)

= 2
m(m+1)

2

(
1 − 1

y

) m∏
l=1

(
y + 1

y
− 2 cos θl

) m∏
l=1

sin θl
∏

1≤i<j≤m

|cos θi − cos θj | .

The evaluation of the Jacobian is postponed to Subsection 3.4.
Since Jf (y, θ1, . . . , θm) is invariant with respect to permutations of θ1, . . . , θm, we may 

write

vm = 1
m!

Q∫
1

π∫
0

. . .

π∫
0

Jf (y, θ1, . . . , θm)dy dθ1 . . .dθm.

Now using Lemma 2.4 together with the change of variables

x0 = y + y−1,

xi = − cos θi, 1 ≤ i ≤ m,
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vm = 2m(m+1)/2

m!

Q+Q−1∫
2

1∫
−1

. . .

1∫
−1

m∏
l=1

(x0 + 2xl)
∏

1≤i<j≤m

|xi − xj | dx0 dx1 . . .dxm

= ωm

(
Q + Q−1)m+1 + . . . + ω0

(
Q + Q−1)− m∑

i=0
2i+1ωi, (23)

where

ωl := 2m−lκm (l + 1)−1

×
1∫

−1

. . .

1∫
−1

σm−l (x1, . . . , xm)
∏

1≤i<j≤m

|xi − xj | dx1 . . .dxm, (24)

and σk denotes the k-th elementary symmetric polynomial.
It is easy to see that the integrals in (24) are Selberg’s type integrals. In particular, 

taking yi = xi+1
2 for l = m we obtain

ωm = 2m(m+1)/2

(m + 1)!

1∫
−1

. . .

1∫
−1

∏
1≤i<j≤m

|xi − xj | dx1 . . .dxm

= 2m(m+1)

(m + 1)!

1∫
0

. . .

1∫
0

∏
1≤i<j≤m

|yi − yj |dy1 . . .dym,

which is a special case of Selberg’s integral formula [21]

Sn (α, β, γ) : =
1∫

0

. . .

1∫
0

n∏
i=1

tα−1
i (1 − ti)β−1

∏
1≤i<j≤n

|ti − tj |2γ dt1 . . .dtn

=
n−1∏
j=0

Γ (α + jγ) Γ (β + jγ) Γ (1 + (j + 1)γ)
Γ (α + β + (n + j − 1)γ) Γ (1 + γ) ,

for α = β = 1 and γ = 1
2 . Thus, we conclude

ωm = 2m(m+1)

(m + 1)!

m−1∏
j=0

Γ
(
1 + 1

2j
)2 Γ
( 3

2 + 1
2j
)

Γ
(
1 + 1

2(m + 1 + j)
)
Γ
(3

2
) = 2m(m+1)

m + 1

m−1∏
k=0

k!2

(2k + 1)! .

Substituting this into (23) leads to

vm = ωm Qm+1 + O(Qm), (25)

which together with (17) finishes the proof of Theorem 1.1.
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The evaluation of

W :=
∞∑
l=0

lvlm,k

is a bit more involved. Since it does not seem possible to derive compact representations 
for every vlm,k separately, we shall look for representation of the whole sum W instead.

First of all, using (16) and the definition of the sets V l
m,k we conclude

W =
∞∑
l=0

l ·
∫

Rm+1

1V l
m,k

(x)dx =
∫

Rm+1

∞∑
l=0

l · 1V l
m,k

(x)dx

=
∫

Rm+1

μPx
(I1, . . . , Ik)1Vm

(x)dx.

Applying Lemma 2.3 and using the representation of μPx
(I1, . . . , Ik) via (12) and (13)

we get

W =
Q∫

1

∫
Lm

Jf (y, θ1, . . . , θm)
k∏

i=1

m∑
j=1

δθj (Ii)dy dθ1 . . .dθm,

and since our integrand is invariant with respect to permutations of θ1, . . . , θm we write

W = 1
m!

Q∫
1

π∫
0

. . .

π∫
0

Jf (y, θ1, . . . , θm)
k∏

i=1

m∑
j=1

δθj (Ii)dy dθ1 . . .dθm.

From the identity

δθi(Ij) = 1Ij (θi)

and the fact that intervals I1, . . . , Ik are disjoint it follows

W = 1
m!

Q∫
1

π∫
0

. . .

π∫
0

Jf (y, θ1, . . . , θm)
k∏

i=1

m∑
j=1

1Ii(θj)dy dθ1 . . .dθm

= 1
m!

∑
1≤j1 �=... �=jk≤m

Q∫
1

π∫
0

. . .

π∫
0

Jf (y, θ1, . . . , θm)
k∏

i=1
1Ii(θji)dy dθ1 . . .dθm.

Using again the invariance with respect to permutations of θ1, . . . , θm we conclude
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W = 1
(m− k)!

Q∫
1

π∫
0

. . .

π∫
0

Jf (y, θ1, . . . , θm)
k∏

i=1
1Ii(θi)dy dθ1 . . .dθm.

Applying Lemma 2.4 we finally obtain

W = κm Qm+1 + O(Qm), (26)

where

κm : = 2m(m+1)/2

(m + 1)(m− k)!

π∫
0

. . .

π∫
0

∏
1≤i<j≤m

|θi − θj |
m∏
l=1

sin θl

k∏
1

1Ii(θi)dθ1 . . .dθm

= 2m(m+1)/2

(m + 1)(m− k)!

∫
I1

. . .

∫
Ik

π∫
0

. . .

π∫
0

∏
1≤i<j≤m

|θi − θj |
m∏
l=1

sin θldθ1 . . .dθm

= ωm

∫
I1

. . .

∫
Ik

ρm,k(θ1, . . . , θk)dθ1 . . .dθk, (27)

with

ρm,k(θ1, . . . , θk)

:= Z−1
m

m!
(m− k)!

π∫
0

. . .

π∫
0

m∏
l=1

sin θl
∏

1≤i<j≤m

|θi − θj | dθk+1 . . .dθm, (28)

and

Zm = 2m(m+1)/2Sm (1, 1, 1/2) .

Lemma 2.5. For any integer m and 1 ≤ k ≤ m we have

ρm,k(θ1, . . . , θk) =
k∏

l=1

sin θl Pf
[
Km(cos θi, cos θj)

]
i,j=1,...,k

,

where Km(x, y) is defined by (4)–(10).

The proof is given in Subsection 3.5.
Combining Lemma 2.5 with equations (26), (27) and (18) we finish the proof of The-

orem 1.3.
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3. Proofs of lemmas

3.1. Proof of Lemma 2.1

Recall that Vm denotes the set of points a ∈ Rm+1 such that the roots of Pa(t) may 
be written as (15). Furthermore, recall that V l

m,k ⊂ V m denotes the subset of points 
a ∈ V m such that there are exactly l tuples (eiθ1 , . . . , eiθk) such that

θj ∈ Ij := [s2j−1; s2j ],

and eiθj , 1 ≤ j ≤ k are the roots of Pa(t). It is clear that for fixed k and m all sets V l
m,k

are disjoint, only finite number, say L, of them are non-empty and, moreover,

Vm =
L⋃

l=0

V l
m,k.

Thus, the boundary of the set V l
m,k can be covered by ∂Vm and a set

H :=
{
a ∈ Rm+1 : Pa

(
eisj
)

= 0 for at least one 1 ≤ j ≤ 2k
}
.

First of all recall that according to Lemma 2.3 there exists a bijective map f : (1, Q] ×
Lm → Vm defined by (19) and (20), where the simplex Lm is defined by (21). This 
map defines a homeomorphism of manifolds with boundary, which means that ∂Vm =
f (∂ ((1, Q] × Lm)), where

∂ ((1, Q] × Lm) ⊂ J+
1 ∪ J−

1 ∪ J+
2 ∪ J−

2 ∪ J3,

and

J+
1 : =

{
x ∈ Rm+1 : x0 = Q

}
, J−

1 :=
{
x ∈ Rm+1 : x0 = 1

}
,

J+
2 : =

{
x ∈ Rm+1 : xm = π

}
, J−

2 :=
{
x ∈ Rm+1 : x1 = 0

}
,

J3 : =
{
x ∈ Rm+1 : xi = xi+1 for at least one 1 ≤ i ≤ m

}
.

Moreover, according to the definition for any a ∈ H at least one of the equalities

am+1 = −2 cos ((m + 1)sj) − 2
m∑
i=1

am+1−i cos (isj) , 1 ≤ j ≤ 2k,

hold.
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Let us construct maps φ1, . . . , φ3+m+2k : [0; 1]m → Rm+1 as follows

φ1(t1, . . . , tm) : = f (Q, π t1, . . . , π tm) ,

φ2(t1, . . . , tm) : = f (1, π t1, . . . , π tm) ,

φ3(t1, . . . , tm) : = f (Qt1 + 1, 0, π t2, . . . , π tm) ,

φ4(t1, . . . , tm) : = f (Qt1 + 1, π t2, . . . , π tm, π) ,

φ3+j(t1, . . . , tm) : = f (Qt1 + 1, π t2, . . . , π tj , π tj , . . . , π tm) , 2 ≤ j ≤ m,

and for 1 ≤ j ≤ 2k

φ3+m+j,i(t1, . . . , tm) : = wti, 1 ≤ i ≤ m,

φ3+m+j,m+1(t1, . . . , tm) : = −2 cos ((m + 1)sj) − 2w
m∑
i=1

tm+1−i cos (isj) ,

w : = max
a∈Vm

max
1≤i≤m+1

|ai|.

It is easy to see that all maps φi are Lipschitz continuous since they are continuously 
differentiable in a compact set. Moreover, from the arguments above it follows that

∂V l
m,k ⊂

m+3+2k⋃
j=1

φj ([0; 1]m) .

Due to the definition of mapping f : (1, Q] × Lm → Vm we have w ≤ c̃ Q for some 
constant c̃ depending on m only and, thus, for the Lipschitz constant Lj of the maps φj

we conclude

Lj := sup
x∈[0;1]m

max
1≤i≤m

m+1∑
q=1

∂φj,q

∂ti
(x) ≤ cQ,

for some constant c depending on m only.
Finally we use a lattice point counting result by Widmer [23].

Theorem 3.1. Let Λ be a lattice in Rd with successive minima λ1, . . . , λd. Let B ⊂ Rd

be a bounded set with boundary of Lipschitz class (M, L). Then B is measurable, and, 
moreover,

∣∣∣∣#(Λ ∩B) − Vol(B)
detΛ

∣∣∣∣ ≤ c(d)M max
0≤i<d

Li

λ1 · · ·λi
.

For i = 0 the expression in the maximum is to be understood as 1.
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Taking Λ = Zm+1, B = V l
m,k, L = c Q, and M = m + 3 + 2k, and applying the 

theorem above we get

∣∣#(Zm+1 ∩ V l
m,k) − vlm,k

∣∣ ≤ c(m)cmm(m + 3 + 2k)((m + 1)!)−1Qm =: C1Q
m,

which finishes the proof.

3.2. Proof of Lemma 2.2

Consider a reducible polynomial P ∈ Pm(Q) and assume that it can be written as 
a product of polynomials P1, P2 ∈ Z[t], such that degP1 = 2m1, degP2 = 2m2 and 
m1 + m2 = m + 1. By definition of Pm(Q) the polynomial P is monic and has roots 
described by (15). Hence the polynomials P1 and P2 are monic as well, and all roots of 
one of them (say, P1) are lying on the unit circle T and the one (say, P2) belongs to the 
set Pm2−1(Q). Moreover, by Kronecker’s theorem [14] we conclude that the polynomial 
P1 has to be a product of cyclotomic polynomials.

From the arguments above it follows that #PR
m(Q) does not exceed the number of 

pairs (P1, P2) ∈ Z[t] × Z[t] of monic polynomials with integer coefficients such that P1, 
degP1 = 2m1 is a product of cyclotomic polynomials, P2 ∈ Pm2−1(Q) and m1 + m2 =
m +1. It is easy to see that the number of polynomials P1 does not exceed some constant 
c1(m1), and from Lemma 2.1 and (25) it immediately follows that

#Pm(Q) = 2m(m+1)

m + 1

m−1∏
k=0

k!2

(2k + 1)! Q
m+1 + O(Qm) < c2(m)Qm+1.

Hence, we conclude

#PR
m(Q) ≤

m∑
k=1

c1(k) #Pm−k(Q) ≤
m∑

k=1

c1(k)c2(m− k)Qm+1−k ≤ C2Q
m,

where the constant C2 depends on m only.

3.3. Proof of Lemma 2.3

Let us consider a polynomial Pa(t) with roots (15). Then

Pa(t) = (t− y)
(
t− y−1) (t− eiθ1

) (
t− e−iθ1

)
· · ·
(
t− eiθm

) (
t− e−iθm

)
=
(
t2 − (y + y−1)t + 1

) (
t2 − 2t cos θ1 + 1

)
· · ·
(
t2 − 2t cos θm + 1

)
=
(
t2 − z0t + 1

) (
t2 − z1t + 1

)
· · ·
(
t2 − zmt + 1

)
= t2m+2 + a1t

2m+1 + . . . + am+1t
m+1 + . . . + a1t + 1.
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All possible summands in the final expression consist of products of one of the summands 
of t2, 1 or −zkt from every parentheses.

Consider the summand a2it
2i. The power t2i appears in the following combinations 

only

t2, . . . , t2︸ ︷︷ ︸
i − j times

,−zk1t, . . . ,−zk2j t, 1, . . . , 1︸ ︷︷ ︸
m + 1 − i − j times

,

where 0 ≤ j ≤ i and 0 ≤ k1 < . . . < k2j ≤ m. Hence it follows that a2i is the sum of the 
following terms

(
m + 1 − 2j

i− j

) ∑
0≤k1<...<k2j≤m

2j∏
s=1

zks
,

which leads to the formula (20).
In the same manner consider the summand a2i−1t

2i−1 and note that the power t2i−1

appears in the following combinations only

t2, . . . , t2︸ ︷︷ ︸
i − j − 1 times

,−zk1t, . . . ,−zk2j+1t, 1, . . . , 1︸ ︷︷ ︸
m + 1 − i − j times

,

where 0 ≤ j ≤ i − 1 and 0 ≤ k1 < . . . < k2j+1 ≤ m. Thus, a2i−1 is the sum of the 
following terms

−
(

m− 2j
i− j − 1

) ∑
0≤k1<...<k2j+1≤m

2j+1∏
s=1

zks
,

which leads to the formula (19).

3.4. Proof of Lemma 2.4

By definition the Jacobian Jf (y, θ1, . . . , θm) is the absolute value of the determinant 
of the following matrix

A :=

⎛
⎜⎜⎜⎜⎝

∂a1
∂z0

∂z0
∂y

∂a1
∂z1

∂z1
∂θ1

. . . ∂a1
∂zm

∂zm
∂θm

∂a2
∂z0

∂z0
∂y

∂a2
∂z1

∂z1
∂θ1

. . . ∂a2
∂zm

∂zm
∂θm

...
...

. . .
...

∂am

∂z0
∂z0
∂y

∂am

∂z1
∂z1
∂θ1

. . . ∂am

∂zm
∂zm
∂θm

⎞
⎟⎟⎟⎟⎠ .

Hence,

|det(A)| =

∣∣∣∣∣∂z0

∂y

m∏ ∂zl
∂θl

∣∣∣∣∣ ∣∣det(Ã)
∣∣ = 2m

∣∣1 − y−2∣∣ m∏
|sin θl| · Δ, (29)
l=1 l=1
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where

Δ = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1∑
k1 �=0

zk1 . . .
∑

k1 �=m−1
zk1

...
. . .

...
i−1∑
j=0

(
m−2j
i−j−1

) ∑
k1,...,k2j �=0

2j∏
s=1

zks
. . .

i−1∑
j=0

(
m−2j
i−j−1

) ∑
k1,...,k2j �=m

2j∏
s=1

zks

i∑
j=1

(
m+1−2j

i−j

) ∑
k1,...,k2j−1 �=0

2j−1∏
s=1

zks
. . .

i∑
j=1

(
m+1−2j

i−j

) ∑
k1,...,k2j−1 �=m

2j−1∏
s=1

zks

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We would like to show that

Δ = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1∑
k1 �=0

zk1 . . .
∑

k1 �=m

zk1∑
k1,k2 �=0

zk1zk2 . . .
∑

k1,k2 �=m

zk1zk2

...
. . .

...∏
s �=0

zs . . .
∏

s �=m

zs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

We shall prove this formula by induction. First off all notice that the first and the second 
rows already have the required form, hence we may take them as base of the induction. 
Assume all rows up to (p − 1)-th row are of the form in (30). Consider the p-th row, 
which has the form (ap,0, . . . , ap,m), where

ap,l =
p−2∑
j=0

cj,p
∑

k1,...,kj �=l

j∏
s=1

zks
+

∑
k1,...,kp−1 �=l

p−1∏
s=1

zks
,

with the constants cj,p ≥ 0 depending on j, p, and m only. Multiplying the i-th row by 
ci−1,p and subtracting it from the p-th row for all 1 ≤ i ≤ p − 1 we have

ãp,l =
∑

k1,...,kp−1 �=l

p−1∏
s=1

zks
,

and, since these transformations do not change the determinant of the matrix (30) holds 
for the p-th row as well.

On the other hand completing the sums in the rows and applying successive row 
operations leaving the determinant Δ invariant we finally arrive at

Δ = det

⎛
⎜⎜⎝

1 . . . 1
z0 . . . zm
...

. . .
...

m m

⎞
⎟⎟⎠ .
z0 . . . zm
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The last determinant is the well-known Vandermonde determinant and, thus, we have

Δ = 2m(m−1)/2
m∏
l=1

∣∣y + y−1 − 2 cos θi
∣∣ ∏
1≤i<j≤m

|cos θi − cos θj | .

Substituting this into (29) and taking into account that y > 1 yields Lemma 2.4.

3.5. Proof of Lemma 2.5

Consider the expression

U :=
∫
I1

. . .

∫
Ik

ρm,k(θ1, . . . , θk)dθ1 . . .dθk. (31)

Using change of variables xi = − cos θi, 1 ≤ i ≤ m and the definition (28) of the 
function ρm,k(θ1, . . . , θk) we write

U = Z−1
m

m!
(m− k)!

∫
T1

. . .

∫
Tk

1∫
−1

. . .

1∫
−1

∏
1≤i<j≤m

|xi − xj | dx1 . . .dxm,

where

Ti := {− cos θ : θ ∈ Ii} ⊂ [−1; 1], 1 ≤ i ≤ k.

Define the following function

pm(x1, . . . , xm) :=
∏

1≤i<j≤m

|xi − xj | .

According to [18, Chapter 19] this function corresponds to the joint probability density 
function of the eigenvalues of the Jacobi random matrix ensemble with β = 1 and weight 
function w(x) = 1, −1 ≤ x ≤ 1 (see Appendix A for the more details).

Then

Rk(x1, . . . , xk) := Z−1
m

m!
(m− k)!

1∫
−1

. . .

1∫
−1

pm(x1, . . . , xm)dxk+1 . . .dxm

defines a k-point correlation function (see (A.1)), which in this case can be written in 
the following form

Rk(x1, . . . , xk) = Pf[KN (xi, xj)]i,j=1,...,k

with the Kernel function KN (x, y) is defined by (4)–(10) (see Appendix B).
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Finally we write

U =
∫
T1

. . .

∫
Tk

Rk(x1, . . . , xk)dx1 . . .dxk

=
∫
T1

. . .

∫
Tk

Pf[KN (xi, xj)]i,j=1,...,kdx1 . . .dxk

=
∫
I1

. . .

∫
Ik

k∏
l=1

sin θl Pf
[
KN (− cos θi,− cos θj)

]
i,j=1,...,k

dθ1 . . .dθk,

and combining this with (31) we finish the proof.
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Appendix A. Random matrices: general theory

In this appendix we collect some basic facts about random matrices and the distri-
bution of their eigenvalues. In view of the rather extensive literature on this subject we 
shall restrict ourselves to a very short review of results we need.

One way of defining a random matrix ensemble is to specify the joint probability 
density functions for its eigenvalues in the following form

pβN (x1, . . . , xN ) =
N∏
i=1

w(xi)
∏

1≤i<j≤N

|xi − xj |β ,

where β is an in general complex parameter and the so called weight function w(x) can 
be chosen to suit the needs. The most well-studied cases are β = 1 (real ensembles), 
β = 2 (complex ensembles) and β = 4 (quaternion ensembles).

One of the main objectives of Random Matrix Theory is to investigate the distribu-
tion of eigenvalues of different random matrix ensembles and particularly their limiting 
distribution when N → ∞. For this purpose one needs to calculate k-point correlation 
functions of eigenvalues [18, eq. (5.7.1)] defined by

Rβ
k (x1, . . . , xk) := Z−1

N,β

N !
(N − k)!

∫
pβN (x1, . . . , xN )dxk+1 . . .dxN , (A.1)

where the normalization constant ZN,β is given by
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ZN,β =
∫

pβN (x1, . . . , xN )dx1 . . .dxN .

The eigenvalues of random matrix ensemble form a point process (see [12] for a defini-
tion and theory of point processes) and for two special types of point processes, namely 
the Determinantal point processes and the Pfaffian point processes the functions (A.1)
will have a compact representation.

1. In case of Determinantal point processes all k-point correlation functions have the 
form

Rβ
k (x1, . . . , xk) = det [KN (xi, xj)]i,j=1,...,k ;

2. In case of Pfaffian point processes all k-point correlation functions have the form

Rβ
k (x1, . . . , xk) = Pf [KN (xi, xj)]i,j=1,...,k ,

where KN (x, y) is some special function satisfying the conditions described by [18, eq. 
(5.1.21), (5.1.22)]. The function KN (x, y) is called a Kernel function.

It is known from random matrix theory that the case β = 2 corresponds to Determi-
nantal point processes and the case β = 1, β = 4 correspond to Pfaffian point processes. 
Formulas for the kernel function may be derived using systems of orthogonal (β = 2) 
and skew-orthogonal (β = 1, β = 4) polynomials with the particular choice depending 
on the weight function w(x). We skip the details referring the reader to [18, Chapter 5].

Appendix B. Jacobi ensemble with β = 1

This appendix is devoted to the particular random matrix ensemble used in the proof 
of Theorem 1.3, namely the Jacobi β-ensemble [18, Chapter 19] with β = 1.

Consider the random matrix ensemble with the following joint probability density 
function for eigenvalues

pN (x1, . . . , xN ) =
∏

1≤i<j≤N

|xi − xj | , xi ∈ [−1; 1],

with the weight function

w(x) =
{

1, −1 ≤ x ≤ 1,
0, otherwise.

(B.1)

This is a special case of more general class of weight functions

w(x) := w(a, b;x) =
{

(1 − x)a(1 + x)b, −1 ≤ x ≤ 1,
0, otherwise,

a, b > −1,
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which gives an ensemble corresponding to the Jacobi orthogonal polynomials J (a,b)
j (t)

defined by (3). The orthogonality property means

1∫
−1

w(a, b;x)J (a,b)
j (x)J (a,b)

i (x)dx = h
(a,b)
j δi,j ,

where

h
(a,b)
j = 2a+b+1

(2j + a + b + 1)
Γ(j + a + 1)Γ(j + b + 1)
Γ(j + 1)Γ(j + a + b + 1) .

The Jacobi polynomials have been known for a long time and their properties are well 
studied [22].

As it was mentioned in Appendix A for β = 1 one needs to construct the set Rj(t) of 
skew-orthogonal polynomials corresponding to the weight function (B.1). Skew orthog-
onality means that

1∫
−1

R2j(x)R2i+1(x)dx = rjδi,j ,

1∫
−1

R2j(x)R2i(x)dx =
1∫

−1

R2j+1(x)R2i+1(x)dx = 0.

Thus, following the procedure described in [18, Chapter 19.2] and using the identities 
for Jacobi polynomials

d
d t

J
(a,b)
j (t) = Γ(a + b + j + 2)

2Γ(a + b + j + 1)J
(a+1,b+1)
j−1 (t),

J
(a,b)
j (−z) = (−1)jJ (a,b)

j (z),

we get for N = 2s

R2j(t) = J
(1,1)
2j (t),

R2j+1(t) = d
d t

(
(t2 − 1)J (1,1)

2j (t)
)
,

rj = 8(2j + 1)
(4j + 3)(2j + 2) , (B.2)

and for N = 2s + 1
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R2j(t) = J
(1,1)
2j+1(t),

R2j+1(t) = d
d t

(
(t2 − 1)J (1,1)

2j+1(t)
)
,

R2s(t) = s + 1
2 J

(1,1)
2 s (t),

rj = 8(2j + 2)
(4j + 5)(2j + 3) . (B.3)

Define the function

ψj(t) := 1
2

1∫
−1

sign(t− x)Rj(x)dx.

Thus for N = 2s we have

ψ2j(t) = 1
j + 1J

(0,0)
2j+1(t), (B.4)

ψ2j+1(t) = (t2 − 1)J (1,1)
2j (t), (B.5)

and for N = 2s + 1 we get

ψ2j(t) = 2
2j + 3

(
J

(0,0)
2j+2(t) − 1

)
, (B.6)

ψ2j+1(t) = (t2 − 1)J (1,1)
2j+1(t). (B.7)

Finally the Kernel function KN (x, y) for the Jacobi ensemble with β = 1 is defined via 
equations (19.2.22)–(19.2.28) in [18].

Note that in deriving (5)–(7) we have combined the equations (19.2.23)–(19.2.26) with 
(19.2.27) and (19.2.28). Moreover using the notation c := (N mod 2) and equations 
(B.2)–(B.7) we arrive at (8)–(10). Furthermore, note that the representation of KN(x, y)
in (19.2.22) is given in quaternion form. In order to get a representation for Pfaffian 
point processes we have to use [18, Theorem 5.1.2].

References

[1] F. Barroero, Counting algebraic integers of fixed degree and bounded height, Monatshefte Math. 
175 (1) (2014) 25–41, https://doi .org /10 .1007 /s00605 -013 -0599 -6.

[2] V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith. 
(ISSN 0065-1036) 90 (2) (1999) 97–112, https://doi .org /10 .4064 /aa -90 -2 -97 -112.

[3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.-P. Schreiber, 
Pisot and Salem Numbers, Birkhäuser Verlag, Basel, 1992.

[4] D.W. Boyd, Speculations concerning the range of Mahler’s measure, Can. Math. Bull. 24 (4) (1981) 
453–469, https://doi .org /10 .4153 /CMB -1981 -069 -5.

[5] F. Calegari, Z. Huan, Counting Perron numbers by absolute value, J. Lond. Math. Soc. 96 (1) (2017) 
181–200, https://doi .org /10 .1112 /jlms .12061.

https://doi.org/10.1007/s00605-013-0599-6
https://doi.org/10.4064/aa-90-2-97-112
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibAB15878530782D03C89F24430175AACBs1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibAB15878530782D03C89F24430175AACBs1
https://doi.org/10.4153/CMB-1981-069-5
https://doi.org/10.1112/jlms.12061


JID:YJNTH AID:6498 /FLA [m1L; v1.284; Prn:19/03/2020; 7:56] P.24 (1-24)
24 F. Götze, A. Gusakova / Journal of Number Theory ••• (••••) •••–•••
[6] A. Cayley, Sur les déterminants gauches. (Suite du Mémoire T. XXXII. p. 119), J. Reine Angew. 
Math. 38 (1849) 93–96, https://doi .org /10 .1515 /crll .1855 .50 .299.

[7] H. Davenport, On a principle of Lipschitz, J. Lond. Math. Soc. 26 (3) (1951) 179–183, https://
doi .org /10 .1112 /jlms /s1 -26 .3 .179.

[8] G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Universitext, 
Springer-Verlag, London, 1999.

[9] F. Götze, D. Kaliada, D. Zaporozhets, Distribution of complex algebraic numbers, Proc. Am. Math. 
Soc. (ISSN 0002-9939) 145 (1) (2017) 61–71, https://doi .org /10 .1090 /proc /13208.

[10] F. Götze, D. Kaliada, D. Zaporozhets, Joint distribution of conjugate algebraic numbers: a random 
polynomial approach, Adv. Math. 357 (2020) 106849, https://doi .org /10 .1016 /j .aim .2019 .106849.

[11] R. Grizzard, J. Gunther, Slicing the stars: counting algebraic numbers, integers, and units by degree 
and height, Algebra Number Theory 11 (6) (2017) 1385–1436, https://doi .org /10 .2140 /ant .2017 .11 .
1385.

[12] J.B. Hough, M. Krishnapurr, Y. Peres, B. Virág, Zeros of Gaussian Analytic Functions and De-
terminantal Point Processes, University Lecture Series, vol. 51, American Mathematical Society, 
Providence (RI), 2009.

[13] D. Koleda, On the density function of the distribution of real algebraic numbers, J. Théor. Nr. 
Bordx. (ISSN 1246-7405) 29 (1) (2017) 179–200, https://doi .org /10 .5802 /jtnb .975.

[14] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. 
Math. (53) (1857) 173–175, https://doi .org /10 .1515 /crll .1857 .53 .173.

[15] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. Math. 34 (3) (1933) 461–469, 
https://doi .org /10 .2307 /1968172.

[16] R. Lipschitz, Über die asymptotischen Gesetze von gewissen Gattungen zahlentheoretischer Funk-
tionen, Monatsber. der Berliner Akademie (1865) 174–185.

[17] D. Masser, J.D. Vaaler, Counting algebraic numbers with large height. I, in: Diophantine Approxi-
mation, in: Dev. Math., vol. 16, SpringerWienNewYork, Vienna, 2008, pp. 237–243.

[18] M.L. Mehta, Random Matrices, 3rd edition, Pure and Applied Mathematics, vol. 142, Elsevier, 
2004.

[19] R. Salem, Algebraic Numbers and Fourier Analysis, Heath Mathematical Monographs, Heath, 1963.
[20] W.M. Schmidt, Northcott’s theorem on heights I. A general estimate, Monatshefte Math. 115 (1993) 

169–181, https://doi .org /10 .1007 /BF01311215.
[21] A. Selberg, Remarks on a multiple integral, Norsk Mat. Tidsskr. 26 (1944) 71–78.
[22] G. Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications., 

vol. 23, American Mathematical Society, 1939.
[23] M. Widmer, Counting primitive points of bounded height, Trans. Am. Math. Soc. 362 (9) (2010) 

4793–4829, https://doi .org /10 .1090 /S0002 -9947 -10 -05173 -1.
[24] M. Widmer, Lipschitz class, narrow class, and counting lattice points, Proc. Am. Math. Soc. 140 (2) 

(2012) 677–689, https://doi .org /10 .1090 /S0002 -9939 -2011 -10926 -2.

https://doi.org/10.1515/crll.1855.50.299
https://doi.org/10.1112/jlms/s1-26.3.179
https://doi.org/10.1112/jlms/s1-26.3.179
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib47E56904491580DBF8B81FE2DFD11698s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib47E56904491580DBF8B81FE2DFD11698s1
https://doi.org/10.1090/proc/13208
https://doi.org/10.1016/j.aim.2019.106849
https://doi.org/10.2140/ant.2017.11.1385
https://doi.org/10.2140/ant.2017.11.1385
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibDB9A735E9923DD54E69BE20753C37976s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibDB9A735E9923DD54E69BE20753C37976s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibDB9A735E9923DD54E69BE20753C37976s1
https://doi.org/10.5802/jtnb.975
https://doi.org/10.1515/crll.1857.53.173
https://doi.org/10.2307/1968172
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib1A77F3BDDD46D146DD7AE7668AE802BFs1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib1A77F3BDDD46D146DD7AE7668AE802BFs1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib4C5A361768F18952A04B5DF53212A3F7s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib4C5A361768F18952A04B5DF53212A3F7s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib40FBDEFFDC36A34B8B00BB668E203E2As1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib40FBDEFFDC36A34B8B00BB668E203E2As1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib7776502537B34EF33F45EB669DF7B802s1
https://doi.org/10.1007/BF01311215
http://refhub.elsevier.com/S0022-314X(20)30071-8/bib60F13D4E44DB8188CE88A49223113248s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibB1DBA88A447DF189D095E42AA9AFAA91s1
http://refhub.elsevier.com/S0022-314X(20)30071-8/bibB1DBA88A447DF189D095E42AA9AFAA91s1
https://doi.org/10.1090/S0002-9947-10-05173-1
https://doi.org/10.1090/S0002-9939-2011-10926-2

	On the distribution of Salem numbers
	1 Introduction
	1.1 Counting Salem numbers
	1.2 Salem numbers with given distribution of their Galois conjugates

	2 Proof of Theorem 1.1 and Theorem 1.3
	3 Proofs of lemmas
	3.1 Proof of Lemma 2.1
	3.2 Proof of Lemma 2.2
	3.3 Proof of Lemma 2.3
	3.4 Proof of Lemma 2.4
	3.5 Proof of Lemma 2.5

	Acknowledgments
	Appendix A Random matrices: general theory
	Appendix B Jacobi ensemble with β=1
	References


