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Abstract

In this paper, we show that a special case of Lang’s conjecture on rational points on surfaces
of general type implies that there exist only finitely many elliptic curves, when the x-
coordinates of n rational points are specified with n>=8.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

There exists the following ‘folklore’ conjecture in the study of rational points on
elliptic curves (see [3], for example):

Conjecture 1.1. There exist elliptic curves defined over the rational field Q of
arbitrarily large rank.

As is seen in [5,6,8-10], the theory of twists, developed in [7], provides us with a
unified view point for the construction of elliptic curves of high Mordell-Weil rank.
In this paper we show that if we assume a version of Lang’s conjecture, then the
theory gives us a useful tool to find some constraints on the form of elliptic curves of
high Mordell-Weil rank. The version of the Lang’s conjecture we have in mind is the
following.
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Conjecture 1.2 ([4]). Let X be a smooth projective algebraic variety of general type,
defined over a number field k. Then there exists a proper Zariski-closed subset Z of X
such that for all number fields K containing k, X(K)\Z(K) is finite.

Paul Vojta proved in [4] that if Conjecture 1.2 holds in the case where X is a
surface, then the only rational points on a certain projective varicty are on lines
which are naturally contained in the variety.

Inspired by Vojta’s result, we show the following.

Theorem 1.3. Let K be a finitely generated field over Q. Let n=8 be an integer and let
o; (i=0,...,n) be fixed elements of K. Suppose Conjecture 1.2 holds for k a finitely
generated field over Q (cf. [2]). Then there are only finitely many elliptic curves of the
form y* = ax* + bx* + ¢ (a,b,ceK) which have o; as the x-coordinates of some
K-rational points. In particular the Mordell-Weil ranks of such elliptic curves are
bounded.

2. Universal family for elliptic curves with some rational points

In this section, we show that all elliptic curves with a certain form are obtained by
similar arguments to the ones used in [5,7,8,10].

First, we construct an elliptic curve with / rational points defined over the function
field of an algebraic variety. Let E be an elliptic curve over a number field k& defined
by the equation

E:y*=ax* +bx* + ¢, (1)
and let f(x) be the right-hand side of (1). Then the equation of E is
v=f(x) (i=1,...,7).

Let 1; be the involution on the it factor E of E/ defined by 1;((x;, ;) = (xi, —yi) (i =
1,....,/), and put V, = E’/{ (11, ...,17) ), so that the defining equation of V/ is

Y =f) () (=1,...,0-1).

Let Ey(y,) denote the twist of E by the quadratic extension k(E”)/k(V,). Then we see
by a similar argument to [1] that Ey, ) is defined by the equation

[0y =1 (%), (2)
and it has at least / rational points
(i, 1), (i piff () (=1, =1). (3)

Moreover, we can show the following.
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Theorem 2.1. Let E be a given elliptic curve defined by the equation
E:y? =ax* + bx* + ¢,

and let (o, B;) (i=1,....¢, By#0) be rational points on E. Let Ey(,, be the twist of
E by k(E")/k(V;). Then E with these rational points is obtained by specializing Ey(y,)
at the point

(xla s X2y V1 "-7)}/71) = (be ceay Oy ﬁlﬁZ? -"7ﬁ1ﬁ/) on V/-

Proof. Let x; =o; (i=1,...,/). Then the elliptic curve E,): f(x1)y* =f(x) is
isomorphic to y? = f(x) by the map Ey(,,)—E: (x,y)— (x, B,y). The / points on
Ey(y,y given in (3) are (a1, 1) (otiy1,fi01/B1) (i=1,...,/ = 1), and these points map
to (o, ;) (i=1,....¢). O

From now on, we focus our attention on the variety V. In order to investigate the

rational points on Vy, put x;.; =ao; (i =0, ...,/ — 1), and denote k(xg, o1, ...,0/_1)
by K. One of our ideas is that we regard V, as a subvariety of the projective space
Pfjl with coordinates a, b, ¢,y; (i=1, ...,/ — 1). From this view point we can show

V, is K-birational to an algebraic surface defined by equations of much simpler
form.

Given n + 1 distinct elements o;€e K (0<i<n), let W, be a subvariety of P"(K)
defined by the equations

We put W, = P*(K), by convention. By the jacobian criterion one can check that W,
is a nonsingular complete (2, 2, ...,2)-intersection surface.

Theorem 2.2. Suppose that f (o) #0. Then V,1 is K-birationally equivalent to W, for
any n=2.

Proof. The map ¢: V,.1 > W,
(aabacayla --~7yl1)'_>(f((x0)7y17 -”7yﬂ)
is birational. Because the inverse map of ¢ is

(P71 W= Vi,
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1 1 1 1 1 1
(Yo, ..., Y)) > | |3 o o3|, —|ad of of]
v v v v v v
%o %
af of o3|, YoYiD, ..., YoY,D |, (4)
Y Y v;
where
1 1 1
D=} o o} O
%o

Remark 2.3. There exist 2" lines on W, defined by
(Yo, Y1, ..., ¥V) = (st (= 1) (s + 1), ..., (= 1) (s + t22)),

where ¢; = 0 or 1. The defining equations of these are

2 2 2 2
oy — & oy — o
[ & *1 0 2 1
( l)lyl—(—l)zaz 062Y2+a2 2Y()
2 %0 27 %0
2 2 2
. o7 — O oy — o
=11t 2y+-1—1
% — % o — O
2 2 2 2
oy — o o, — o
— en 1 0 n 1
—(—l)naz_ 2Yn+ 2—0(2 Y07 (5)
n 0 n 0

where ¢; =0or 1 (i=1,...,n).
They have also a determinantal expression

1 1 1
o} or o? =0 (i=2,3,...,n),
Yo (=)"1 (=1)"Y;

where ¢; =0or 1 (i=1,...,n).
They will be called the trivial lines on W,.
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3. The connection to the result of Vojta

In [4], Vojta investigates the rational points on the variety X, defined by
x%f2xf+l+x%+2:2x(2) (i=1,...,n=2). (6)
Moreover, the 2" lines on X, defined by
Txi=d2x—x0=x3-2x0= - = xx,— (n—1)xg (7)

play an important role for his purpose. These lines is called trivial lines. In this
section, we show that the variety X,, (n>>2) is a special case of the variety X, defined
by the equations

1 1 1 1
Bo B B B
B B BB
Y2 Y} Y2 Y?

1

=0 (i=3,...n). (8)

Note that W, is obtained from X, by letting 8, = oc,?.
Lemma 3.1. Let m andn (m<n) be integers and ay, ..., a, be column vectors of size m.

Suppose that any m vectors of these are linearly independent. Then the following three
conditions are equivalent:

a a; -+ a,.| a
(1) rank( oA " n)zm,

X0 X1 o Xp—1 Xp
.. aQ ay - Ap—1 & .
(ii) =0 (i=mm+1,..,n),
X0 X1 o Xm—1 X
aQ A A o Aigp-d .
(iii) =0 (i=12,....n—m+1).
X0 Xi Xigr o Xigm—1

Proof. It is clear that (i) implies (ii) and (iii).

a;

Condition (i) means that each vector < ) (i=m, m+1,...,n) is expressed as

i

. o a a,,_
a linear combination of (xo ), s ( m-l > Therefore
0

Xm—1

aQ ar - Ay aQ a;y - A Ay
m = rank = rank .
X0 X1 o X1 X0 X1 o Xp—1 X

Hence (ii) implies (i).
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Next, from (ii1) with i = 1, we obtain

a0 Qa e Ay
rank =m.
xo xl e xm
. . a . . o
By (iii) with =2, (me ) is expressed as a linear combination
m+1
a9 a Ay
, ey . Thus
X0 X2 Xm
a0 ap o Ay
rank =m
X0 X1 ot Xmyd

Repeat this with i = 3 to n —m + 1, then (i) is obtained. [

Through this lemma, we can relate X, with X,

Theorem 3.2. X, is the variety which arises by putting , =0, p;=1/i, Yy

xo, Y; = x;/i (i=1,2,...,n) in the equation of X,,.

of

Remark 3.3. Similarly, by substituting f, =0, f;,=1/i, Yo=x0, Yi=x;/i (i=

1,...,n) into (5), (7) is obtained.

Proof. Let A be a matrix

1 1 1 1 1 TR |
| B BB By B B
B B B B B - B
D G CHID CHID FRIETS £

By Lemma 3.1, (8) is equivalent to
rank (A) = 3.

Let o =0, B, =1/i, Yo=x0, Yi=x;/i (i=1,...,n), then

1 1 1 1 PP
P 0 1 1/2 1/3 1/4 - 1/n
o 2 o2 oy 14 1

X3 (/17 (0/2)? (0/3)° (/47 - (xa/n)’
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Multiply the i" column by (i — 1)2 (i=2,...,n+ 1), and exchange the first row with
the third row. Then 4 becomes

0 1 1 1 1 1
o 1 2 3 4 - n
1 12 22 32 42 ...
S-S S Y BN

Let us denote this matrix by B. By Lemma 3.1,
rank(B) =3
is equivalent to

1 1 1
i i+l Q42
12 (@+1)7 (i+2)7

2 2 b
X0 X Xit Xivo

=0 (i=1,2,..,n-2).

By expanding this determinant along the 4th row, we obtain (6). [

4. Curves on W, of genus 0 or 1

In this section, we show that for n>8, the curves on W, of genus 0 or 1 are only
the trivial lines by extending a part of results in [4] to the case of W,.

We recall W,=P?. The rational maps P P! defined by
(Yo, Y1,....Y))— (Yo, Y1, ..., Y1) (i=3,4,...,n) define morphisms
it Wi-> Wiy (i=3,4,...,n) which form a chain

Pl =W, & Wy & W,

The morphism #; is finite, is of degree 2, and is ramified along the curve C;
on W; defined by Y; = 0. The Ciis nonsingular and the image of C,in W, = P?is the
curve

1 1 1 1 1 1 1 1 1
2 2 2 y2 2 02 2lv2_ |2 2 2ly2
ay oy o, | Y7 —og oo o, Yy =l oy o | Yy,
4 4 4 4 4 4 4 4 4
%y % %y %y o %y X % %
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i.e.

1 1 1 1

2 2 2 2

oy oy o5 o _0
4 4 4 4| TV
% Oy Uy %,

2 2 2

Y2 v: v? oo

The map y : W, — X3, defined by
(Yo, Y1, Y2) = (= (a3 — 07) Yo, (03 — o) Y1, (o] — o3) Y2),

gives an isomorphism. We obtain the following @, by pulling back w, in [4, (2.5)]
along Y

@y = (03 — 42)* Y1 Y, dY, ®dY,
+ (@ )’ = (@ — %)’ Y~ (af — %)’ V3) dY1®@dYs
+ (2 = )Y, Y2 dY, ®dY,.
Then the next lemma holds.

Lemma 4.1. The only @,-integral curves on W, are

(1) the coordinate axes Yy =0, Y, =0, Y, =0,

N 2 — o2 2 — ol
(i1) the four trivial lines +Y, = + ; g Y, — g é Yo,
% =% o = %
(iii) the smooth conics
1 1 1 1

=0, 56C\{0(3, otf, oc%}.

Proof. These are obtained by transforming the equations in [4, Lemma 2.7] by .
The relation of ¢ in [4] with ¢ in this Lemma is given by

2 2\ (A o2
C:(fxl o) (€ — o3) 0

(03 —o)(E—a5)

Hence by the argument in [4] we obtain the following theorem.

Theorem 4.2. Let n>=8 be an integer. Then the only curves on W, of genus 0 or 1 are
the trivial lines.
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5. The rational points on I¥, and elliptic curves

303

In this section, we show that the K-rational points on the trivial lines of W), are
exceptional points for our construction of elliptic curves. Thereafter we prove our

main theorem.

Lemma 5.1. Let P= (Y, Y1, ...

, Y,) be a point on W,,. Suppose Yy#0. The elliptic

curve given by P is K-isomorphic to the elliptic curve Ef'(X1) defined by the equation

I 1 1
By o i a3y’
o of o3
1 1 | 1 1 1 oc% oc% oc%
=} o Bx*—|ad o G| o b
Y2 Y2 Y2 Y2 Y ¥ Y2 YR Y2
which is obtained by expanding
1 1 1 1
R R
af of od X
2 2 2 2
Yo Yy Y5 vy
along the fourth column.
Proof. By the map ¢! in (4), a K-rational point (Yo, Y1, ..., ¥,) on W, goes to
111 11 1 o o3
(a,b,c) = w2 ol o3|, —|og of | oy of o eP?.
Y§ Yt Y3 i yp vi| |Y§ Y? Y3
Therefore, the elliptic curve Ey(,) which corresponds to the point is
11 1 11 1 2 o} o3
o oi o Y|y ol el \via|ag oo ]y
B v g vt v vBor v
1 1 1 1 1 1 2 o o3
= oc% oc% oc% X — oc‘o‘ oc‘l1 oc‘z‘ x? + ocg OC? oc‘z‘
2 Y v Y2 Y2 ¥ Y2 Y Y2
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by (2). Since oy = xp, the coefficient of y? in (9) is

1 1 I 1 1 1 1 0
2 2 2 2 2 2 2

g of oy oy o5 oy 05 0
T - B R
Y Y Y? 0 Y} Y? Y; -v;
I 1 1
=0} o o YOZ.
%ol o

A

Therefore, by the isomorphism Ej(,)— Efy,): (X,7) (X, Y0), Ef,) is K-iso-
morphic to Ey,,). O

In view of Theorem 4.2, the following lemma is crucial.

Lemma 5.2. The K-rational points on the trivial lines of W, are exceptional for
constructing elliptic curves with n + 1 rational points, namely they do not correspond to
any elliptic curves.

Proof. Every  rational point  (Yy, Y1, ..., Y,) = (s + 103, (= 1) (s + ta3), ...,
(=1)"(s+1ta2)), =0 or 1 (i=1,...,n) on the trivial lines in Remark 2.3
corresponds to the curve defined by

1 1 1 1
o o o3 x?
0 1 2 _0
4 4 4 4| =
ol oy ol X

(s + locﬁ)2 (s + toc%)2 (s + loc%)2 32

by Lemma 5.1. Add (the first row) x (—s?) + (the second row) x (—2st) +
(the third row) x (—#*) to the 4th row. Then we obtain

1 1 1 1
0 o} o3 x?
=0
4 4 4 4 =Y
og o o5 X

0 0 0 12— (s+x2)?

Since
1 1 1
AR

% X %
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we have y? — (s + txz)2 = 0. This is product of two quadratics, therefore our lemma
is proved. [

Proof of Theorem 1.3. By Theorems 2.1 and 2.2, all elliptic curves which are
stated in this theorem corresponds to K-rational points on W,. But any
K-rational points on trivial lines do not give any elliptic curves by Lemma 5.2.
Therefore if Conjecture 1.2 for k a finitely generated field over Q holds for W,
then there are only finite K-rational points on W, which correspond to elliptic
curve. [

Remark 5.3. All elliptic curves with nontrivial two-torsion point are obtained by
using the method of construction in Section 2. For each elliptic curve of this type is
expressed as follows without loss of generality:

Ep: y* = x>+ gx* + hx  where (0,0) gives a two-torsion point.

Moreover, E| is birationally equivalent to the elliptic curve E, defined by the
equation

E>: y2 =x*- 2gx2 + 92 —4h,

by the birational map E; — E>: (x0,0) > (yo/X0, 20 + g — ¥3/X3).
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