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1. Introduction

Littlewood showed in 1924 (see [8]) that the Riemann Hypothesis (RH) implies a strong form of
the Lindelof Hypothesis, namely, on RH, for large real numbers t there is a constant C such that

1 logt
|l o +it )| <exp| C———— ). (1.1)
2 loglogt

Over the years no improvement has been made on the order of magnitude of the upper bound (1.1).
The advances have rather focused on reducing the value of the admissible constant C (see for instance
the works by Ramachandra and Sankaranarayanan [12] and Soundararajan [13]) and extending the re-
sults to general L-functions (see the work of Chandee [3]). A similar situation occurs when bounding
the argument function S(t) = %arg{(% + it), where the argument is defined by continuous variation
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along the line segments joining 2, 2 +it and % +it, taking the argument of ¢(s) at 2 to be zero. Under
RH, Littlewood showed that

logt

[s®] < loglogt’

(1.2)

and this bound has not been improved except for the size of the implied constant.

Recently, the idea of using the theory of extremal functions of exponential type was proved useful
in both contexts, resulting in improved constants (and best up-to-date) for the upper bounds (1.1)
and (1.2). The method of Goldston and Gonek [6] uses the explicit formula together with the classical
Beurling-Selberg majorants and minorants of characteristic functions of intervals, and leads to the
bound

logt
loglogt”

5] < (% +o<1>)

In [4], Chandee and Soundararajan recognized that the corresponding treatment for |§(% + it)|,
using the Hadamard’s factorization and the explicit formula, would require the extremal minorant for
the function log(4}:2"2), available in the framework of Carneiro and Vaaler [2]. This combination was

successful and led to the following bound [4, Theorem 1]

1 log2 logt logtlogloglogt
— it ex (0] . 13
‘§<2+ )‘« p( 2 loglogtJr ( (loglogt)? (13)

It was mentioned in that paper that a similar approach to bounding |¢(« + it)|, for o # 1/2, would
require the solution of the Beurling-Selberg extremal problem for the function

4+ x?
fO{ (X) = log<m>, (14)

which was not available at that particular time.

Very recently, Carneiro, Littmann and Vaaler in [1] developed a new approach to the Beurling—
Selberg extremal problem based on the solution for the Gaussian and tempered distribution argu-
ments. With this method, they were able to extend the solution of this problem to a wide class of
even functions, in particular, including the desired family (1.4).

The purpose of this paper should be clear at this point. Here we make use of the recently dis-
covered extremal majorants and minorants for fy(x) to find upper and lower bounds with explicit
constants for |¢(« + it)| on the critical strip. Observe that majorants for f,(x) exist when o #1/2
and this is what makes the lower bounds possible. For simplicity, we will focus on the off-critical-
line case (although the methods here plainly apply to the case o = 1/2 with slightly different Fourier
transform representations than those of [4]), assuming from now on that o = «(t) is a real-valued
function with 1/2 < o < 1. Since [¢(x + it)| = |¢(x¢ — it)| we might as well assume that ¢t > 0. Our
main results are the following.

Theorem 1 (Upper bound). Assume RH. For large real numbers t, we have

2-2a .
log(1+ (log)' ) ;i + 0 ((EL),  if (@ — 1/2) loglogt = 0.(1);

log|¢ (e +it)| < { log(loglogt) + O(1), if (1 —a)loglogt = 0(1);

1 201 - (logt)>—2* (logt)2—2¢ .
(z + a(‘f—o{))ilog[ogt +log(2loglogt) + 0(7(]_0()2(1%101%[)2 ), otherwise.
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Theorem 2 (Lower bound). Assume RH. For large real numbers t, we have

1-2 logt (logt)2—2
log(1 — (108)"™) 715108t ~ O (iogioge 2 (i—tiog =2 >

if ( —1/2)loglogt = 0 (1);
—log(loglogt) — 0(1), if(1 —a)loglogt= 0(1);

(1 20-1 \(ogH* 2 _ (logt)>—2 .
(3 + a(1=a)) Togloge — 108(2loglogt) — O (= Ficaognz):  Otherwise.

log|¢(a +it)| >

Observe that when o — 1/2 in Theorem 1 we recover the main term of the bound (1.3). Also
it is worth mentioning that the order of magnitude in the general upper bound in Theorem 1 is a
classical result in the theory of the Riemann zeta-function (see for instance [14, Theorem 14.5]), and
the novelty here is in fact the method with which we arrive at this upper bound and the explicit
computation of the implied constant.

With a refined calculation we can find the constant term when o =1 and obtain Littlewood’s
result [9,10] for bounds at Re(s) =1.

Corollary 3. Assume RH. For large real numbers t, we have

l¢(1+it)] < (2e” +0(1)) loglogt,

and

1 12eY
|{(1+it)|< 2 +o0(1) ) loglogt,

where y is the Euler constant.

The paper is divided in three sections plus an Appendix A. In Section 2 we prove the upper bounds
for ¢(s) contained in Theorem 1 and Corollary 3. In Section 3 we prove the corresponding lower
bounds for ¢(s) in Theorem 2 and Corollary 3. In these two sections we will state the necessary facts
concerning the extremal functions as supporting lemmas that will be ultimately proved in Section 4.
Appendix A in the end details some of the asymptotic calculations carried along the proofs.

2. Upper bound for £(s)
2.1. Proof of Theorem 1
Let

N

£(s) =s(1 —s)n—s/2r<2>;(s>

be the Riemann’s &-function. This function is an entire function of order 1 and satisfies the functional
equation

£() =801 —5s).

Hadamard’s factorization formula gives us

E(s) = eA+Bs H(l _ i)es/p’

P p
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where p = % +iy runs over the non-trivial zeros of ¢, and from the functional equation we can show
that B = —Zp Re(1/p). On RH, y is real.
By the functional equation and Hadamard'’s factorization formula, we obtain

fatit) | | E@+in | I ((oe—1/2)2+(t—)/)2>”2

§6/2—in| 53240~ L1 U a4 —y)?

Recall Stirling’s formula for the Gamma function [5, Chapter 10]

1 1
logI"'(z) = 3 log2m —z + (z - —) logz+ 0(|z|™"),

for large |z|. Using Stirling’s formula and the fact that |¢(5/2 —it)| < 1, we obtain

o

5 t 1
log|¢ (e +it)| = <Z — 5) logi -3 Zfa(t —y)+0(Q). (2.1)
%

The sum of f,(t — ) over the non-trivial zeros is hard to evaluate, so the key idea here is to
replace f, by its appropriate minorant (with a compactly supported Fourier transform) and then
apply the following explicit formula which connects the zeros of the zeta-function and prime powers.
The proof of the following lemma can be found in [7, Theorem 5.12].

Lemma 4 (Explicit formula). Let h(s) be analytic in the strip |Im(s)| < 1/2 + € for some € > 0, and such
that [h(s)| < (1 + |s)~ 1+ for some 5§ > 0 when |Re(s)| — oco. Let h(w) be real-valued for real w, and set
h(x) = [0, h(w)e=2"*W dw. Then

1 1 1. 17 /1 iu
;h()’)zh<i)+h<—i>—Eh(o)logﬂ—i-ﬂ/h(u)Re?<A—1+3>du
1 S A®M) [ (logn\ . —logn
a2 (5 8 ())

The properties of the minorant function that we are interested in are described in the next lemma,
that shall be proved in Section 4.

Lemma 5 (Extremal minorant). Let A denote a positive real number. There is a unique entire function g
which satisfies the following properties:

(i) For all real x we have

C
Tre S80S fa ), (2.2)

for some positive constant C. For any complex number x + iy we have

A? 27 A
X+i S—— M 23
lgax +iy)| < AR (23)
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(ii) The Fourier transform of g, namely

o0

ae) = / ga(0e 2T dx,

—0o0

is a continuous real-valued function supported on the interval [—A, A]. For 0 < |€] < A it is given by

5 — -1 k(_*1T " 6727T(IE\+I<A)(0671/2) _ef4ﬂ(|$\+kA)
Ba(®) §_( )(|s|+kA( )

__ k41 (e2m (€I~ (M) @=1/2) _ e4n(|s\f<k+zm>)>'
Ak +2) — €]

In particular, if ¢ =0, we have

R 5 2 | 1+e—(20{—1)7rA
O=27(2-a)-Zlog( —————).
£2(0) (2 “) A °g< 14 e-a7a )

(iii) The L!-distance between ga and fy equals to

/ {fa®) — ga0)}dx= %(log(l +e DT _log(1+e7HT4)).

From (2.1) and (i) of Lemma 5 we obtain, for any A > 0,

o

t 1
—) log > — 5 > aat—y)+0Q). (2.4)
14

. 5
log|¢ (a + it)| < (4_1 -3

To bound the sum of ga(t — ) we let h(z) = ga(t — z) and apply Lemma 4 to get (observe that the
growth condition |h(s)| <« (1 + |s])~*® for some § > 0 can be derived from (2.2), or alternatively,
directly from (4.5) and (4.6))

1 1 1,
St n=fea(i- 3 ) eas(er 3)] - s

1 i(t —
+—ng(x)Re—<Z+l(t2x)>dx

1 & Am) . [(logn itlo ;
o &7 ) (e—itlogn eztlogn ) 2.5
2m = ﬁgA< 2 >( + ) (2:5)

We now proceed to the asymptotic analysis of each of the elements on the right-hand side of the
expression (2.5).
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2.1.1. First term
From (i) of Lemma 5 we get

o2 +galt+ ! < A? er” (2.6)
Ealt=gi) Teat T3 1+ A '
2.1.2. Second term

From (ii) of Lemma 5 we get

0e T 1 4+ e—Qa—1mA
g lo< + >

TA 1+e-474 (27)

1. 5 1
—ga(0)logmr == —a )logm —
2 2

2.1.3. Third term
We will now show that

1 it —x) 5 t 1 14 e @a-Dra t
Re —( - dx=(2-a)logz — — log[ —————— ) log =
/gA(x) ¢ <4+ 2 ) X (2 a) %63 " 7a Og( Tyeatd ) %83

Alog(1 tA
0 (g(—+\/—)> (2.8)
Vit
From (i) of Lemma 5, for x £ 0, we get
<ga) < fa®) < 4
1+ x2 SN R Ja S 32
and hence
0] < min] L 2 (29)
£a X2 1+ Alx| '
Since Re ’%(}l +iu) <« log(Ju| + 2), we see that for sufficiently large t,
r I/l it—x T logx+2) . 1
i(t—x og(x + ogt
X)Re —|( - dx ——dx —. 2.10
/gA() F<4+ 5 ) <</ 2 <<JE (2.10)
4./t 4t
By similar arguments,
v '/l it—x I
! ift—x ogt
X)Re —|( - dx <« —. 211
gax) r(4+ > ) <<JE (2.11)
—00
Finally, we use that
r'(s)

_ -1
G =logs+ 0(|s|™")
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for large s, together with (2.9), part (iii) of Lemma 5, and the fact that ffooo fa(x)dx = 271(% — ), to
get
NG NG
/ (x)ReF/ 1+i(t—x) dx = / 9] R t~|—O ! dx
&a \2 ) = ga g 5 N
-4t -4t
T Alog(1 + tA)
t og(1++/t
ogZ/gA(x) x + ( 7 )
—00
5 oe 2 10ef 1 +e~Ca-DrA loe &
=2”<5 ‘“) %374 °g<w> %3
Alog(1 tA
+0 <0g(_+«f)> (2.12)
Jt

Combining (2.10), (2.11) and (2.12) we arrive at (2.8).

2.1.4. Fourth term (sum over prime powers)
This is the hardest term to analyze. We will have to make use of the explicit expression for Fourier

transform of g described in (ii) of Lemma 5 to get

L i MQA <10gn> (e—itlogn + eitlogn)
2

B A(Tl) i k+1 e—(ZOl—l)T[kA k+1 n()l—1/2
e un —\logn+2mkA  no-1/2 (27w Ak + 2) — logn) e@a—Dr (k+2)A
e » 4 =

) ) An
X(_l)k(efltlogn_i_eltlogn —2Re Z n5/2+1(t1)0gn +O(673T[A)

n<927TA
An) k+1 e~ Qa—ymka k+1 n®=1/2
<ZZA Z(logn +27kA  n*=12 Q2w A(k+2) —logn) e(za—l)”(k”m)
n<es™
. . 5
x (—1)k(e7itlogn 4 gitlogm) _ 5 ]og ;(5 + it)‘ +0(e73m4). (213)

From now on we let x =e?™2. Since ﬁﬁ is a non-increasing function for y > 1, we deduce

that for all integers k > 0 (recall that n < x),

1 1 1 1
- >0. (2.14)
k kyo— k k
logne® (IX)*~172 " (log £.7) (£ Tya-172

The following two lemmas will be used to bound the sum over prime powers above.
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Lemma 6. Forallk > 0 and n < x,

k+ 1)( 1 1 1 1 )
k (mxkye—1/2 2 xk+2 o
lognx* (nx*) log = (5-)«-1/2

>(k+z>< ! ! ! ! )

lognxk+1 (nxk+1ya=1/2 1 o3 X304 1/
g ( ) log = ()« 1/

Proof. The above inequality is equivalent to

k+1 1 n*=1/2
x(@—1/2)k na—]/Zlognxk x2a—1 log xk+2

n

L k42 1 n®—1/2
/X(ot—l/Z)(k+l) na—1/2]ognxk+1 x2a—1 lOngTH .

Since ﬁ <1, it suffices to show that

1 k+1 k+2
n®=1/2\ klogx+logn (k+ 1)logx + logn

ne—1/2 k+1 k+2
x22=1 \ (k+2)logx —logn (k+3)logx—logn )

=

The above is true since

k+1 k+2
klogx +1logn (k+ 1)logx+ logn

B logx — logn >0
" (klogx +logn)((k + 1) logx + logn) ~

while

k+1 k+2
(k+2)logx —logn  (k+3)logx —logn

_ logn — log x <0
" ((k+2)logx — logn)((k + 3)logx — logn)

Lemma 7. For all k > 1 and positive real numbers 2 < n < X,

1 1 < k+1 k+2
logx x2—12]ogx ~ klogx+logn x¢=1/2((k+ 1)logx + logn)’

and

1 1 < k+1 k+2
logx x¥—12logx =~ (k+2)logx —logn  x*—1/2((k + 3)logx — logn)
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Proof. We will only show the proof for one inequality. The proof of the other is quite similar. Let us
show that

1 1 k+1 k+2
logx x¥—1/2logx ~ klogx+logn x¥=1/2((k+1)logx + logn)’

This is equivalent to

1 k+2 1 < k+1 1
x¢=1/2\ (k+1)logx+logn logx) ~ klogx+logn logx

N 1 logx — logn logx — logn
x2=172\ ((k + 1)logx + logn)logx /] ~ \ (klogx + logn)logx )
The above inequality follows from the fact that )ﬁ < 1. This proves the lemma. O

From (2.13), (2.14) and Lemma 6, we have

i iﬂéA loﬁ (efitlogn +eitlogn)
2w Jn 2w

n=2
<y AM i( . k+1 1 k+1 ne=1/2
h = Jn = klogx +logn (nxk)®=1/2  ((k + 2)logx — logn) (xk+2)a—1/2
5 ; —37A
—2log|¢ 5 Fit +0(e )- (2.15)

Rearranging the terms and using Lemma 7, we obtain that the sum over k is bounded above by

i(_l)k k+1 1 B k+1 ne-1/2
= klogx +logn (nxk)®=1/2  ((k+ 2)logx — logn) (xk+2)a—1/2

1 ne—1/2 00 ) 1 ne—1/2
S oo - a1 T Z(_l) k=172~ (yk+2ya—1/2
n®=1/2logn  (2logx — logn)x2® log x P (nxkya=1/ (xk+2ya=1/

1 n*-1/2 1 1 o172
= — — — . 2.16
n®=12logn (2logx —logn)x22=1  logx(x*—1/2 4+ 1) (n“—l/z x20—1 ) (2.16)

Recall that the prime number theorem on the Riemann Hypothesis is

ZA(n):x+ 0 (x'/?log? x). (217)

n<x

Therefore using partial summation, (2.16), and (2.17), we obtain that
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Z i k+1 1 k+1 n=1/2
n<x Jn klogx +logn (nx)@=1/2  ((k + 2)logx — logn) (xk+2)a—1/2
1
/ dt
t*logt  logx(x*—1/2 + 1)t
2

1 1 1
- - dt
x2a—1 /<t1—0‘(2 logx —logt) t1-*logx(x®—1/2 4 1))
2

+ 0 min]log? x L
& X 2w —1)2)

o . 2, logx
=A(X)— B(x)+ 0<mm{10g % x=1/2(q —1/2) D

where the asymptotics of A(x) and B(x) (calculated in Appendix A) are given by

loglogx + O(l) if(1—oa)logx= O(l)'
A(x)—[

X« X ) +loglogx + O(—2%-—-), otherwise,

= a)logx XA 1/2+1 (1— a)Zlog

and

x]—a xa—1/2 xl—a
B(x) = — 0 .
) = o logx (x"“”z +l> + <log2x)

Therefore the sum over prime powers is

ZA(n) i( " k+1 1 k+1 a=1/2
Jn = klogx +logn (nxk)®=1/2  ((k + 2)logx — logn) (xk+2)a—1/2

n<x
{loglogx—i— o), if(1—w)logx= O(l)'

_ 1-a o—1/2
az((f—;) )1(0@ x;*1/2+1) +loglogx + 0 (= -7

(2.18)

s a)21 p ), otherwise.

2.1.5. Final analysis
Combining all the results above (Eqs. (2.4)-(2.8) and (2.18)), and recalling that x = e272 we obtain

1 14 e~ (Ra-Dra t , em8 Alog(1++/tA)
1 it)| < 1 log—+o0(A o ———*Y—
og|¢ (e + D) 2T A °g< 14e47h > %65+ ( 1+At)+ ( NG >

[loan’A +01), iIf(d—-a)A=0();
+

20—1 e@-20)mA  LQa-mA
a(l-a) 2mA (e(za 1>m+])+log2nA+ 0(

e(2 20)T A

m) otherwise.

(2.19)

An optimal bound in (2.19) occurs when 7 A =loglogt. This upper bound depends on how far « is
from 1/2 and 1, and we examine three cases:
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Casel. o —1/2= O(]og}—ogt)'

20—1
' a(l—a)

For this case = O(log}—ogt), and the upper bound (2.19) becomes

2—-2ux
log|¢ (a +it)| < log(1+ (logt)_(zo‘_l))lo—gt 0 <M>

2loglogt (loglogt)2
which, as mentioned in the Introduction, recovers the main term in (1.3) when o — 1/2.

Case2.1—o = O(log}—og[).
The upper bound is

log|¢ (a + it)| < log(2loglogt) + O (1).
In Section 2.2, we will bound explicitly what the constant term is for |¢(1 + it)].

Case 3. Otherwise, we have

~

—(Za—l)nA) 1
- (log t)Zafl ’

log(1+e

and the upper bound (2.19) becomes

(log t)272a

200 — 1 ) (logt)2—2

1
1 i) < (=
0g|§(a i )| (2 + a(l1—oa)/ loglogt

+ log(2loglogt) + O <

This completes the proof of Theorem 1.
2.2. An upper bound for |¢ (1 + it)|

In this section we will bound ¢ (1 + it) and rederive Littlewood’s result [9], which is

lc(1+it)| < (2¢” +0(1)) loglogt,

where y is the Euler constant.

(1 —a)2(loglogt)?

373

The method used to bound |¢(1 + it)| is the same as the above except that we will bound

anx n/l‘ég)n with an error term o(1). From [9] and Merten’s formula [11], we have

An) 1
Z =loglogx+y + 0 — ).
nlogn logx

n<x

Moreover by the prime number theorem (2.17),

A(n) 1 1
< Amy=0(—).
Z x(2logx —logn) ~ xlogx ; ®) <logx)

n<x

To obtain a constant term of the upper bound for |¢(1 + it)|, we will exploit a refined upper bound

for (2.1). To be precise, we can show that
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5+it
¢ 2
5 « 1
(2= ol = 2.20
(3-3)eem+o(3) 220
using Stirling’s formula.

Therefore by (2.20) and the bounds for each terms in the explicit formula, we obtain that

5 t 1
log|¢ ( +it)| = (4_1 - %) logi -3 Zfa(t— y) + log
¥

1 1 —TA ¢
log|§(1 + il’)| <log2eVmw A + log +e log -
2w A D)

1+e—47rA
Alog(1+tA)  Ae™2 1 1
+0 g( vt )—i— + —+-).
ﬁ t TA t

The upper bound of |£(1 + it)| in Corollary 3 follows from choosing = A = loglogt.
3. Lower bound for ¢ (s)

3.1. Proof of Theorem 2

The method of computing a lower bound for ¢(« + it) is similar to the one for the upper bound
in Section 2, with the only difference being the use of a majorant function instead. The majorant
function that we are interested in satisfies the following properties (that shall be proved in the next
section).

Lemma 8 (Extremal majorant). Let A denote a positive real number. There is a unique entire function ma
which satisfies the following properties:

(i) For all real x we have

fax) <max) < Cl—i——xz’

for some positive constant C. For any complex number x + iy we have

2

- A 2rAly|
ma (X 1 —_—e .
|ma(x + Y)|<<1+A|x+iy|

(ii) The Fourier transform of ma, namely

o0

Ma(€) = / ma (x)e =27 dyx,

—o0

is a continuous real-valued function supported on the interval [— A, A]. For 0 < |&] < A, it is given by

o.¢]

. k+1 kA)(@—1/2) _ ,—4 kA
mA(S)ZZ(EH—kA(e Tk @=1/2) _ pam (£l +kA))
k=0
k+1

_ (eXr (81—t M) @=1/2) _ e4n<|sw—<k+2>A>)>.
Ak +2) — €]
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In particular, if ¢ =0, we have
5 2 1— e—(20{—1)7IA
ma®)=2n{=--a)—- —log| —————— ).
s =27 (3 —ar) - Fto8(* s )

(iii) The L'-distance between ma and f equals to
T 2
/ {ma) — fa)}dx= Z(log(l — e 42) —log(1 — e~ @*~D7TAY),
—00

From (2.1) and (i) of Lemma 8 we obtain, for any A > 0,

o

. 5 t

We then apply the explicit formula (Lemma 4) to the majorant function ma (z) to get
Y mat—y)={m (-1 +m t+l LIPS (0)log
e =M\t g a\PT i) T g matos
1 i(t—x)
— ma(x)Re — | = dx
+ / A(X) <4 + 5 )

1T < AMm) . [logn\, i ;
- Y 57 ) (pitlogn eltlogn . 32
21 o NG A( 2 >( + ) (32)

and the asymptotic analysis follows just as before.

3.1.1. First term
From (i) of Lemma 8 we have

malt— 2 ) +ma(t+ L )|« a2 et (33)
AT 2i AU T 2i 1+ At '
3.1.2. Second term
From (ii) of Lemma 8 we have
1. 5 log 1—e(a-DrA
EmA(O) logm = 3 —o | logm — A log R . (34)

3.1.3. Third term
Proceeding as in Section 2.1.3 we obtain

/m (x)Re l+i(t—x) dx = > lo ‘ ! lo 1-e7Crma Io :
a 47 2 “\27%) %7 7A B\ T e P

o (A log(1 + ﬁA))
— % )
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3.1.4. Fourth term (sum over prime powers)
By the same arguments that led to (2.15), using inequality (2.14), the sum over prime is bounded
below as follows (recall that x = e272)

L i Mﬁ’lA loﬂ (efitlogn + eitlogn)
27 Jn 21

N ZZA(n)Z k41 1 k41 a-1/2
- Jn klogx + logn (nxk)@=1/2  ((k +2)logx — logn) (xk+2)a—1/2

—2log

€<§ +n)‘ +0(e3mA), (36)

The sum over k in (3.6) is bounded above by

i k+1 1 k+1 a=1/2
— \klogx+logn (nxkye=1/2 ((k+2)logx — logn) (xk+2)e—1/2

s 1 1 ne—1/2
<3 o (i - )
= xkye=1/2\ n@=1/21ogn  (2logx — logn)(x2«—1)

Xot—l/2 1 na—l/Z
_ . (3.7)

T xe-12 -1\ pe-12 logn  (2logx — logn)(x2«¢—1)

Using partial summation, the prime number theorem (2.17), Eq. (3.7), and the integrals on Ap-
pendix A, we obtain that

Z A(n) Z k+1 1 k+1 n@-1/2
= klogx + logn (nx)@=1/2 ~ ((k + 2) logx — logn) (xk+2)@—1/2

. xe—1/2 /X 1 1 1 d&
S oxa-1/2 t?logt x2¢—1t1-2(2logx — logt)
2

. 2 logx
+0 (mm{log X, mD}

{loglogx—i- o), if(1—aw)logx= O(l)’

X2y 20-1 X0 4 a0 l0gx 4 O(— 20 (38)

sy > )} otherwise.

a(l—a) Togx (1— a)zl og? x

3.1.5. Final analysis
Combining the bounds (3.1)-(3.8) above, and using the fact that x=e

1 1—e~(a-DrmA e A Alog(1++/tA)
1 it)| > 1 1 o[ Aa? o ——————
oafete+i0) > o tog( g Joa g + 04255 ) + o (FELEER)

{mgzzm +0(), if(1—a)A=0(1);

2mA we derive

eQRu-T)wA 2a—1 eQ@-2)7A

2=2a)TA
e
(e(2a HrA_q {()((1—0() 2T A

m)} otherwise.

+log2m A+ O(
(3.9)
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An optimal bound in (3.9) occurs when 7 A = loglogt. Similar to the upper bound, the lower bound
depends on the location of ¢, and again we examine three cases:

Casel.o—1/2= O(iog}ogt)'

For this case ) and the lower bound (3.9) becomes

20—1 1
' a(l—a) — O(loglogt

) _ logt (logt)>—2
1-2
log|¢ (e + it)| = log(1 — (logt) a)ZIOglogt -0 ((loglogt)2(1 “og™) )

Observe that when o — 1/2, the bound goes to —oo, which corresponds to the case when
¢(1/2+it) =0.

Case2.1— o= O(log}—ogt).
For this case, the lower bound (3.9) is

log|¢ (e +it)| > —log(2loglogt) — O (1).

In Section 3.2, we will bound explicitly what the constant term is for |¢(1 4 it)]|.

Case 3. Otherwise, log(1 — e~2¢~D7mA) < —W, and the lower bound (3.9) becomes
1 20— (logt)2—2 (logt)>—2
lo it —log(2loglogt) — O .
gle(@+in] > ( + a(l —oz)) loglogt g2loglogt) (1 —a)2(loglogt)?

This completes the proof of Theorem 2.
3.2. Alower bound for |¢ (1 +it)|

In this section we will bound 1/¢(1 4+ it) and rederive Littlewood’s result [10],

1 12eY
|§(1+it)|< 2 +o0(1) ) loglogt,

where y is the Euler constant.
To obtain this bound, we will use (2.20). The method exploited to derive the bound for 1/|¢(1+it)|
is the same as the one in Section 3.1 except that we will bound Re }_, % with the error term

o(1). The following identity from [10] is useful in bounding the sum over prime powers:

An) 1
Re Zn”“logn ——Relogﬂ( pl-Ht) O(ﬁ)

P<X
—Relogl_[ (1 + l) + O(L>
b<x p Vx

GeY
= —log| —5 logx | +o(1).
b4

Moreover by the prime number theorem, we have

A(n)
Zx(Zlogx—logn) xlogxz (=0 <—>
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By (2.20) and the same arguments contained in Section 3.1 we obtain

log|¢(1+it)| > —1o ueyﬂA + ! lo 1-er? log -
Bl Z 7% 2 A B\ 1—e—4ma ) %85

Alog(1 tA)  AeTA 1
40 g1+t ) | 1y
\/E t TA

If we pick w A =loglogt, we obtain the bound in Corollary 3.
4. Extremal functions

In this section we will discuss the extremal functions used in this paper, proving Lemmas 5 and 8.
This study relies substantially on the recent work of Carneiro, Littmann and Vaaler [1] that contains
the solution of the Beurling-Selberg extremal problem for the Gaussian and a general integration
technique on the free parameter, producing a variety of new examples. In particular, the logarithmic
family fy (x) considered in this paper falls in the range of the ideas in [1].

Throughout this section we let a = (o« — 1/2)A, and b =2A. We have the following identity

2 | 12 ® —maa® _ ,—mab?
x“+b 2 (e —e
log[ =—— )= e ™| —— )da. 41
g<x2+a2> /’ ( x ) D
0

Define Fa(x) to be the expression on the left-hand side of (4.1). It is clear that

fa(X) = FA(AX).

By Corollary 17 in [1], there is a unique extremal minorant Ga(x) and a unique extremal majorant
M (x) of exponential type 2 for Fa (x). We will let

ga(x) =GaA(AX) and ma(X) = Ma(AX). (4.2)
From [1], we also have
c (Z)_<cosyrz>2 i { Fa(n—1) N F’A(n—%)} (43)
AT\ L le-n+Hr @-n+ D) '

and

sinmz\2 < [ Fa(m)  Fi(n)
M“”:<rr>ngihvmﬂ+u—m} 44
4.1. Proof of Lemma 5

Part (iii) of Lemma 5 is contained in [1, Corollary 17, Example 3], and thus we will focus here in
proving parts (i) and (ii).
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4.1.1. Part (i)
Observe first that

o0 . _ 14\ 2 _1 _l
GA(Z)z Z (M) {fa<nA2>+( n+2)fa< AZ)} (45)

e\ T(z—n+3)

For any complex number & we have (sin(w&)/(w&))? « e2™!!mél /(1 + |£]2). Using the fact that

4 / 8|x|
W< ————— and fL(0)< 46
fu®) X+ (a— 12 and Ja R+ + (-0 (46)

we can split the sum (4.5) in two parts, where n < |z|/2 and n > |z|/2, to conclude that
A2
Galx+iy)| « —————e™VI,
| y | 14 x+iy|

and from (4.2) we arrive at (2.3).
For x real, we have fy(x) >0 and f/,(—x) = — f/,(x), and we can pair the termsn>1and 1-n <0
in the sum (4.5) to obtain

c (X)><cos7rx> Z f( —%){ 1 B 1 }
s “Ua Jle-n+d  x+n-5

= sin? n(x—n-i—z) 20—13) ,(n—1
= X fa< ~ ) 4.7)

n=1 m? (XZ %)2)

Using (4.6) and (4.7) we can show that there is a constant C such that

AZ

_CA2+ 2 S

<Galx),

and thus from (4.2) we arrive at (2.2), completing the proof of part (i).

4.1.2. Part (ii) .
It is sufficient to consider the Fourier transform of G (x) since ga(y) = %GA(%).

For |y| > 1, @A(y) = 0. Therefore, in what follows we will consider 6A(y) when |y| < 1. From
(4.1) and [1, Theorem 4], we know that

o0 [

@A(y)zf{(l —1yl) Z e~ TH+1/2)? 27y (n+1/2)

0 n=—oo

A > 1 2 :
_ " son ailn+ L Ye-mr+1/2)? p2miyn+1/2)
Sosen(y) D ( +2)

n=—00
e—nkaz _ e—n)»bz
. (f) da. (4.8)

It is easy to see that Ga(y) is an even function. Therefore it is sufficient to consider the case
0 <y < 1. We will evaluate the integrals of the first and second sums separately.



380 E. Carneiro, V. Chandee / Journal of Number Theory 131 (2011) 363-384

Integration of the first sum. By calculus, we can show that

% 00 A/ 2 1 e—ﬂAaz _e—nAbZ
[ p—— LSS
0

n=—o0

(n+1/2)2 +b*\ ,
7le Jiyn
—1|yl)e E log(—(n 1722 a2)e . (4.9)

—0o0

Let

(x+1/2)2+b2)

k(x) = log<m

To evaluate the sum over n, we will use Poisson summation formula,
> kme =3 "k(y +n).
nez nez
Therefore we need to compute k(w). For w # 0 we use integration by parts to get
x 2 p2
x+1/2)° + :
k(W) = / kg(%)emex dx

(x+1/2)2 4 a2

7mw 2X(b2 _ a2) 2miwx
dx. 410
~ 2riw / (x2 + bz)(x2+a2)e X (4.10)

For w =0 we will have

(122 en?
k(O)_[log<W>dx 2 (b —a).

The integrals above can be computed via contour integration.

Case 1. w > 0. The chosen contour is a rectangle with vertices —X, X, X +iY,—X +iY, where
X,Y >0, and X, Y — oo. Therefore

00
2 b2 _ a2 .
/ = f;z)(xza_i_)az) P2TIWX gy 27Ti(€_2nwa _ e—anb). (411)

—00

Case 2. w < 0. The contour is a rectangle with vertices X, —X, —X —iY, X —iY, where X,Y > 0, and
X,Y — oo. Therefore

2x(b® —a®) L. ,2 yxwh
/(xz 02 & az)e””’”‘dx:—Zm(e WA _ gD, (412)
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Combining Egs. (4.9)-(4.12) above, for y # 0, we obtain

x o0 1/ i 1 e—ﬂkaz _e—nxbz
Jire] 5o (2252
0

n=-o00
o =2 (y+n)a _ ,—2m(y+n)b 0 2n(y—n)a __ 2w (y—n)b
e e e e
=(1- |y|)i PGk =y = }
n=0 y+n n=1 y—n

For y =0, the integral is

1—}-6727“1
2n(b—a)— 210g<1+67_2nb>.

Integration of the second sum. For y = 0, the second integral is 0. So we will compute its value for
0 < y < 1. By calculus, we have

o0
_/i i 2mi n+1 efm\(n+1/2)zezmy(n+1/2) M @
2w 3 .
0

__.ﬂ s n+1/2) 3 n+1/2) 2iyn
R rz:Zo<,<('H‘1/2)2-i-a2 (n+1/2)2+b2>e - (413)
Let
oy = ¥+ 172 x+1/2)

T x+1/2)24+a2  (x+1/2)24b2°

Again we will compute the sum above by Poisson summation formula,

> h@e*™ =3 "h(y +n). (4.14)

nez nez

Since y +n # 0, we will compute h(w), where w # 0,

AR T R e M Y
h(w) = / ((x+1/2)2+c12 (x+1/2)2+b2>e dx
_ ,—Tiw L_ X 2wiwx
—=e /(x2+a2 x2+b2>e dx. (4.15)

We now use contour integration again.

Case 1. w > 0. The contour is a rectangle with vertices —X, X, X +iY, —X +iY, where X,Y > 0, and
X,Y — oo. Therefore
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, X ' . ‘
h(w) = 2ie ™™™ ( resy_iq ——— - 27X _ res,_i . p2miwx
X2 +a? x=ib 2 p2
= ie T (7N — 72TNY), (4.16)

Case 2. w < 0. The contour is a rectangle with vertices X, —X, —X —iY, X —iY, where X,Y > 0, and
X,Y — oo. Therefore

. X . X .
h(w) = —2mie "™ resy__ijqg ——— - 2T WX _ e,y ——— . @2TIWX
X: 1a X2 + (12 X: 1 X2 + b2
— _nie—mw(eana _ eZﬂwb). (4.17)

Finally, combining (4.13)-(4.17) we obtain

o0
_/i i 2mi n+l e—nx(n+1/2)2e2niy(n+1/2) M 0
2 = ) -

0

— i(_l)n(e—2n(y+n)a _ e—2n(y+n)b) _ i(_])n(ezmy—n)a _ ezn(y—n)b),
n=0 n=1

and this ultimately leads to part (ii) of Lemma 5.
4.2. Proof of Lemma 8

The proof of part (i) of Lemma 8 is very similar to the analogous part (i) of Lemma 5, proved in
Section 4.1. Part (iii) of Lemma 8 is contained in [1, Corollary 17, Example 3], and thus we will only
focus here on part (ii).

4.2.1. Part (ii) .
Since M (y) is an even function, it suffices to consider Ma (y) for 0 < y < 1. We know from (4.1)
and [1, Theorem 4] that

oo 00 o
. N ‘
MA(Y)z/:(l —lyl) Y e Zosen(y) Y Znine‘”“zez”'w}
0 n=-00 2 n=—o00
e—TAa? _ o=
(f) a (418)

Integration of the first sum. By the same arguments used for G (y), we have

® © y e~ Tha? _ p—mib?
o] 3 emmmnl (T
0 n

=—00

o0

n® + b2 :
=(1-1yl) Z log(n2+a2>e2myn

n=—oo

0 e~ 2m(y+ma _ 6727r(y+n)b oo e2m(y—ma _ eZn(yfn)b
, (419)

=(1—I;vl)[Z -

n=0 y+n n=1 y—n
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for y #0. For y =0 we have the value
1— e—27ra
Integration of the second sum. By the same arguments used for G (y), the second term is equal to

® ) —waa® _ ,—mAb?
_/%[ > 27Tine“"2e2”"y"]<#> ax
0

n=—oo
o0 o0
— Z(e—Zﬂ(y+n)a _ e—2n(y+n)b) _ Z(eZH(y—n)a _ ler(y—n)b). (4.20)
n=0 n=1
Combining (4.18), (4.19) and (4.20) we complete the proof of part (ii).
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Appendix A

Here we show the following asymptotics:

/" 1 [loglogx+ 0(1), if(1—o)logx=0(1); "
[ = Xl_a Xl—o( . .
J t* logt ayiogx T loglogx + O(m), otherwise,
X 1 ‘l o o
X X
/ dt = — +0 . (A2)
t1=*(2logx — logt) o logx log? x
2
Proof of (A.1). The left-hand side of (A.1) can be written as
X (1—) logx
/ U 4t — loglogx — loglog2 + @14 (A3)
logt glog glog v y. .
(1—a)log2

If (1 —a)logx= 0(1), then eyT” <eY=0Q) for (1 —a)log2 <y < (1 —a)logx. Therefore the
integral on the right-hand side of (A.3) is O (1).
Otherwise, the integral on the right-hand side of (A.3) is O(1) plus

1-a)l
ey 1 (1—a) logx (1-a) ngey_y_l
y 0 y
0
(1—a)logx

S S / Yl oq
T (1—a)logx y2 Y ’
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Since limy_, ¢ ey—y321—1 =1
(1—a)logx y %ﬂ y (1—a)logx y
ey —y—-1 el —y—1 ey —y—-1
/ 7}2}dy: / —}Z)dy+ / +dy+0(1)
y y y
0 2 (1-)logx
2
(1—a)logx
1 2
<- / (¥ —y—1)dy
4
2
(1—a) logx
4

_— eY—y—1)dy+0(1)
(1 —a)2log?x ( y=1)dy (
(l—otz)logx

leot
o)
(1 —a)?log”x

Proof of (A.2). Let y =x?/t. The integral (A.2) becomes
x2/2 N - x2/2
1 1 x X 1 1
O S o TR
yl+logy alogx « yl+a og? y logx
X X
Expression (A.2) follows from the fact that

x2/2 x2/2

dy « f dy « .
yl+e Jog? y y logZx J y'+@ Y x log? x
X
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