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1. Introduction

The purpose of this paper is to prove a Gauss–Kuzmin type problem for non-regular continued
fraction expansions introduced by Chan [5]. In order to solve the problem, we apply the random
systems with complete connections by Iosifescu [10]. First we outline the historical framework of this
problem. Then, in Section 1.2, we present the current framework. The main theorem will be shown in
Section 1.3. In this subsection we will also give a detailed outline of the paper.

1.1. Gauss’ Problem

One of the first and still one of the most important results in the metrical theory of continued
fractions is so-called Gauss–Kuzmin theorem. Write x ∈ [0,1) as a regular continued fraction
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x = 1

a1 + 1

a2 + 1

a3 + . . .

:= [a1,a2,a3, . . .],

where an ∈ N+ := {1,2,3, . . .}. The metrical theory of continued fractions started on 25th October
1800, with a note by Gauss in his mathematical diary. Gauss wrote that (in modern notation)

lim
n→∞λ

(
τn � x

) = log(1 + x)

log 2
, x ∈ I := [0,1].

Here λ is a Lebesgue measure and the map τ : [0,1) → [0,1), the so-called regular continued fraction
(or Gauss) transformation, is defined by

τ (x) := 1

x
−

⌊
1

x

⌋
, x �= 0; τ (0) := 0,

where �·� denotes the floor (or entire) function. Gauss’ proof (if any) has never been found. A little
more than 11 years later, in a letter dated 30 January 1812, Gauss asked Laplace to estimate the error

en(x) := λ
(
τ−n[0, x]) − log(1 + x)

log 2
, n � 1, x ∈ I.

This has been called Gauss’ Problem. It received a first solution more than a century later, when
R.O. Kuzmin (see [16]) showed in 1928 that en(x) =O(q

√
n) as n → ∞, uniformly in x with some (un-

specified) 0 < q < 1. One year later, using a different method, Paul Lévy (see [17]) improved Kuzmin’s
result by showing that |en(x)| � qn , n ∈ N+ , x ∈ I , with q = 3.5 − 2

√
2 = 0.67157 . . . . The Gauss–

Kuzmin–Lévy theorem is the first basic result in the rich metrical theory of continued fractions.

1.2. A non-regular continued fraction expansion

In this paper, we consider a generalization of the Gauss transformation and prove an analogous
result.

In [5], Chan shows that any x ∈ [0,1) can be written in the form

x = m−a1(x)

1 + (m − 1)m−a2(x)

1 + (m − 1)m−a3(x)

1 + . . .

:= [
a1(x),a2(x),a3(x), . . .

]
m, (1.1)

where m ∈N+ , m � 2 and an(x)s are non-negative integers.
For any m ∈ N+ with m � 2, define the transformation τm on I by

τm(x) =
⎧⎨
⎩ m

{ log x−1

log m }−1
m−1 , if x �= 0,

0, if x = 0,

(1.2)

where {·} stands for fractionary part. It is easy to see that τm maps the set Ω of irrationals in I into
itself. For any x ∈ (0,1) put
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an = an(x) = a1
(
τn−1

m (x)
)
, n ∈N+, (1.3)

with τ 0
m(x) = x and

a1 = a1(x) =
{ �log x−1/ log m�, if x �= 0,

∞, if x = 0.
(1.4)

Transformation τm which generates the continued fraction expansion (1.1) is ergodic with respect to
an invariant probability measure, γm , where

γm(A) = km

∫
A

dx

((m − 1)x + 1)((m − 1)x + m)
, A ∈ BI ,

with km = (m−1)2

log(m2/(2m−1))
and BI is the σ -algebra of Borel subsets of I (which, by definition, is the

smallest σ -algebra containing intervals).
The ergodicity of τm plays a key role in the study of the asymptotic growth rate of the random

Fibonacci type sequences { fn} defined by f−1 = 0, f0 = 1, c0 = 0 and

fn = mcn fn−1 + (m − 1)mcn−1 fn−2, (1.5)

where cn , n � 1, are the digits from (1.1). As is known, the Fibonacci sequence is defined using the
linear recurrence relation

Fn+1 = Fn + Fn−1, n ∈N+, with F0 = F1 = 1,

and Binet’s formula is

Fn = 1√
5

(
1 + √

5

2

)n+1

− 1√
5

(
1 − √

5

2

)n+1

, n ∈ N.

It is known that using Binet’s formula we can compute the asymptotic growth rate of the Fibonacci
sequence {Fn}, which is given by

lim
n→∞

1

n
log Fn = log

(
1 + √

5

2

)
= 0.4812 . . . .

In the case of random Fibonacci type sequences, defined by (with fixed f1 and f2)

fn = α(n) fn−1 + β(n) fn−2,

where α(n) and β(n) are random coefficients, the quest for the asymptotic growth rate is more diffi-
cult. Recently, Viswanath (see [25]) proved that the asymptotic growth rate of the random Fibonacci
sequences defined by f1 = f2 = 1 and

fn = ± fn−1 ± fn−2,

where the signs are chosen independently and with equal probabilities, is given by

lim
1

log fn = log(1.13198824 . . .) = 0.12397559 . . .

n→∞ n
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with probability 1. But Viswanath’s method is not the only way through. So, Chan proved in [5] that
for almost all x with respect to the Lebesgue measure, the asymptotic growth rate of { fn} from (1.5)
is given by

lim
n→∞

1

n
log fn = km

1∫
0

log(1/x)

((m − 1)x + 1)((m − 1)x + m)
dx

� km
3m − 1

2m(2m − 1)
. �

1.3. Main theorem

We show our main theorem in this subsection. For this purpose let μ be a non-atomic probability
measure on BI and define

Fn(x) = μ
(
τn

m < x
)
, x ∈ I, n ∈N,

F (x) = lim
n→∞ Fn(x), x ∈ I,

with F0(x) = μ([0, x)).
Then the following holds.

Theorem 1.1 (A Gauss–Kuzmin-type theorem). If μ has a Riemann-integrable density, then

F (x) = km

(m − 1)2
log

m((m − 1)x + 1)

(m − 1)x + m
, x ∈ I, (1.6)

where km = (m−1)2

log(m2/(2m−1))
.

If the density of μ is a Lipschitz function, then there exist two positive constants q < 1 and k such that for
all x ∈ I and n ∈ N+ we have

μ
(
τn

m < x
) = km

(m − 1)2

(
1 + θqn) log

m((m − 1)x + 1)

(m − 1)x + m
, (1.7)

where θ is a certain constant determined by μ,n, x such that |θ | � k.

The paper is organized as follows. In Section 2 we give the basic metric properties of the con-
tinued fraction expansion in (1.1). Hence, we give a Legendre-type result and the Brodén–Borel–Lévy
formula used to determine the probability structure of (an)n∈N+ under λ. In Section 2.4, we find the
invariant measure of τm . The proof of this result is given in a different manner from that described
by Chan in [5]. In Section 3 we consider the so-called natural extension τm (see [19]), define extended
incomplete quotients al , l ∈ Z, and we generalize some results presented in Section 2. In Section 4,
we derive the associated Perron–Frobenius operator under different probability measures on BI . We
study the Perron–Frobenius operator of τm under the invariant measure γm induced by the limit
distribution function, we derive the asymptotic behavior of this operator and we restrict the Perron–
Frobenius operator to the linear space of all complex-valued functions of bounded variation and to
the space of all bounded measurable complex-valued functions. Section 5 is divided into three parts.
The first subsection has as purpose defining the notion of random system with complete connections.
In the second subsection we set up the necessary machinery to prove the main theorem whose proof
is contained in the last subsection. To determine where μ(τn

m < x) tends as n → ∞ and give the rate
of this convergence, we use the ergodic behavior of the random system with complete connections
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associated with this expansion. For a more detailed study of the theory and applications of depen-
dence with complete connections to the metrical problems and other interesting aspects of number
theory we refer the reader to [10,12,13,22–24] and others.

2. Metric properties of the continued fraction expansions in (1.1)

Roughly speaking, the metrical theory of continued fraction expansions is about properties of the
sequence (an)n∈N and related sequences (see Section 3.2). The main purpose of this section is to
determine the probability structure of (an)n∈N+ under the Lebesgue measure λ. Before that, we shortly
present the metrical theory of these continued fraction expansions. Another important result is the
Legendre-type theorem (see, e.g., [3,11,15]) which is one of the main reasons for studying continued
fractions, because it tells us that good approximations of irrational numbers by rational numbers are
given by continued fraction convergents.

2.1. Some elementary properties of the continued fraction expansion in (1.1)

Here, we want to prove the convergence of expansion of the type of (1.1). First, note that in the
rational case, the continued fraction expansion (1.1) is finite, unlike the irrational case, when we have
an infinite number of non-negative digits.

Define [a1,a2, . . . ,an]m the convergent of ω ∈ Ω by truncating the expansion on the right-hand
side of (1.1). We want to show

ω = lim
n→∞[a1,a2, . . . ,an]m, ω ∈ Ω. (2.1)

To this end, define integer-valued functions pn(ω) and qn(ω), for n ∈ N+ , by

pn(ω) = man pn−1(ω) + (m − 1)man−1 pn−2(ω), n � 2, (2.2)

qn(ω) = man qn−1(ω) + (m − 1)man−1qn−2(ω), n � 1, (2.3)

with p0(ω) = 0, q0(ω) = 1, p1(ω) = 1, q−1(ω) = 0 and a0 ≡ 0.
Now, it is easy to prove by induction that for any n ∈ N+ we have

pn(ω)qn−1(ω) − pn−1(ω)qn(ω) = (−1)n−1(m − 1)n−1ma1+···+an−1 , (2.4)

and

m−a1

1 + (m − 1)m−a2

1 + . . . + (m − 1)m−an

1 + (m − 1)t

= pn(ω) + (m − 1)tman pn−1(ω)

qn(ω) + (m − 1)tman qn−1(ω)
, (2.5)

with 0 � t � 1.
It follows from the definitions of τm and an that for any ω ∈ Ω we have

τn−1
m (ω) = m−an

n , n ∈N+, (2.6)

1 + (m − 1)τm(ω)
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hence

ω = m−a1

1 + (m − 1)m−a2

1 + . . . + (m − 1)m−an

1 + (m − 1)τn
m(ω)

, n ∈N+. (2.7)

By combining (2.7), (2.2) and (2.3) we have

ω = pn(ω) + (m − 1)τn
m(ω)man pn−1(ω)

qn(ω) + (m − 1)τn
m(ω)man qn−1(ω)

, ω ∈ Ω, n ∈ N+. (2.8)

Taking τn
m(ω) = 0 in (2.8) gives

[a1,a2, . . . ,an]m = pn(ω)

qn(ω)
. (2.9)

Now, using (2.4), (2.8) and (2.9), for any ω ∈ Ω we obtain

∣∣∣∣ω − pn(ω)

qn(ω)

∣∣∣∣ = (m − 1)nτn
m(ω)ma1+···+an

qn(ω)(qn(ω) + (m − 1)τn
m(ω)man qn−1(ω))

, n ∈N+. (2.10)

Note that this equation measures the difference between ω ∈ Ω and its convergent and is the key
ingredient of the following estimate.

Lemma 2.1. For any ω ∈ Ω we have

∣∣∣∣ω − pn(ω)

qn(ω)

∣∣∣∣ �
(

m − 1

m

)n

, n ∈N+. (2.11)

Proof. By applying τn
m(ω) � 1 to (2.10), we have

∣∣∣∣ω − pn(ω)

qn(ω)

∣∣∣∣ � (m − 1)nma1+···+an

qn(ω)(qn(ω) + (m − 1)man qn−1(ω))
, n ∈ N+. (2.12)

Let

tn := (m − 1)nma1+···+an

qn(ω)(qn(ω) + (m − 1)man qn−1(ω))
, n ∈N+. (2.13)

From (2.3), we have that qn(ω)+ (m − 1)man qn−1(ω) � m ·man qn−1(ω), i.e., qn(ω) � man qn−1(ω). Thus,
by (2.13) and since qn(ω) � qn−1(ω) + (m − 1)man−1 qn−2(ω), we have

tn � m − 1

m

(
(m − 1)n−1ma1+···+an−1

qn(ω)qn−1(ω)

)

� m − 1

m

(
(m − 1)n−1ma1+···+an−1

qn−1(ω)(qn−1(ω) + (m − 1)man−1 qn−2(ω))

)

= m − 1
tn−1. (2.14)
m



D. Lascu / Journal of Number Theory 133 (2013) 2153–2181 2159
Now, by direct computation, we have

t1 � m − 1

m
m−a1 � m − 1

m

and (2.14) shows that tn � (m−1
m )n , i.e., (2.11). �

Finally, (2.1) follows from (2.11), as m−1
m < 1.

2.2. Approximation result

Diophantine approximation (see, e.g., [15]) deals with the approximation of real numbers by ra-
tional numbers. Before we give the corresponding approximation result, we define the cylinder (or
fundamental interval) of rank n, Im(i(n)), and show that any Im(i(n)) is the set of irrationals from a
certain open interval with rational endpoints.

For any n ∈N+ and i(n) = (i1, . . . , in) ∈ N
n we will say that

Im
(
i(n)

) = {
ω ∈ Ω: ak(ω) = ik, 1 � k � n

}
(2.15)

is the fundamental interval of rank n and make the convention that Im(i(0)) = Ω .
For example, for any i ∈N we have

Im(i) = {
ω ∈ Ω: a1(ω) = i

} = Ω ∩ (
m−(i+1),m−i). (2.16)

We will write Im(a1, . . . ,an) = Im(a(n)), n ∈N+ . If n � 2 and in ∈ N, then we have

Im(a1, . . . ,an) = Im
(
i(n)

)
.

From the definition of τm and (2.8) we have

Im
(
a(n)

) = Ω ∩ (
u
(
a(n)

)
, v

(
a(n)

))
, (2.17)

where

u
(
a(n)

) =
⎧⎨
⎩

pn(ω)+(m−1)man pn−1(ω)

qn(ω)+(m−1)man qn−1(ω)
, if n is odd,

pn(ω)
qn(ω)

, if n is even,
(2.18)

and

v
(
a(n)

) =
⎧⎨
⎩

pn(ω)
qn(ω)

, if n is odd,

pn(ω)+(m−1)man pn−1(ω)

qn(ω)+(m−1)man qn−1(ω)
, if n is even.

(2.19)

Now, using (2.4), a direct computation shows that

λ
(

I
(
a(n)

)) = (m − 1)nma1+···+an

q (ω)(q (ω) + (m − 1)man q (ω))
(2.20)
n n n−1
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and from (2.10) and (2.11) we have that

λ
(

I
(
a(n)

))
�

(
m − 1

m

)n

. (2.21)

We now give a Legendre-type result for these continued fraction expansions. First we define the
approximation coefficient Θm := Θm(ω) by

Θm := q2
∣∣∣∣ω − pn

qn

∣∣∣∣, n ∈N+,

where pn
qn

is the nth continued fraction convergent of ω ∈ Ω . The approximation coefficient gives a
numerical indication of the quality of the approximation.

Proposition 2.2. For ω ∈ Ω and p/q being a rational number with p < q, q > 0 and g.c.d.(p,q) = 1, let

p

q
= [i1, . . . , in]m,

pn−1

qn−1
= [i1, . . . , in−1]m

with p0 = 0 and q0 = 1, where the length n = n(p/q) ∈ N+ of the continued fraction expansion of p/q is
chosen in such a way that it is even if p/q < ω and odd otherwise. Then

Θm <
(m − 1)nmi1+···+in q

q + (m − 1)min qn−1
if and only if

p

q
is a convergent of ω.

Proof. If p/q is a convergent of ω, then by (2.10) we have

Θm = q2
∣∣∣∣ω − p

q

∣∣∣∣ = (m − 1)nτn
m(ω)mi1+···+in q

q + (m − 1)τn
m(ω)min qn−1(ω)

� (m − 1)nmi1+···+in q

q + (m − 1)min qn−1
.

Conversely, if Θm <
(m−1)nmi1+···+in q
q+(m−1)min qn−1

, then

q

∣∣∣∣ω − p

q

∣∣∣∣ <
(m − 1)nmi1+···+in

q + (m − 1)min qn−1
.

Assuming that n is even, then ω >
p
q and we have ω − p

q <
(m−1)nmi1+···+in

q(q+(m−1)min qn−1)
. Thus,

p

q
< ω <

p

q
+ (m − 1)nmi1+···+in

q(q + (m − 1)min qn−1)
= p + (m − 1)min pn−1

q + (m − 1)min qn−1
.

Hence, ω ∈ Im(i(n)), i.e., p
q = [i1, . . . , in]m is a convergent of ω. The case when n is an odd is treated

similarly. �
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2.3. The probability structure of (an)n∈N+ under the λ

We start by deriving the so-called Brodén–Borel–Lévy formula (see, e.g., [10,11]) for these type of
expansions. First, define sn , n ∈N+ , by

sn = m−an
qn

qn−1
− 1, s1 = 0, (2.22)

where m � 2 and an , qn are defined in (1.3) and (2.3), respectively.
Next, (2.3) implies that

sn = (m − 1)m−an

1 + sn−1
, n � 2, (2.23)

hence

sn = (m − 1)m−an

1 + (m − 1)m−an−1

1 + . . . + (m − 1)m−a3

1 + (m − 1)m−a2

= (m − 1)[an,an−1, . . . ,a2,∞]m, (2.24)

for n � 2.

Proposition 2.3 (Brodén–Borel–Lévy formula type). For any n ∈N+ we have

λ
(
τn

m < x
∣∣ a1, . . . ,an

) = (sn + m)x

(sn + (m − 1)x + 1)
, x ∈ I, (2.25)

where sn is defined by (2.22) or (2.23).

Proof. As we know, for any n ∈N+ and x ∈ I , we have

λ
(
τn

m < x
∣∣ a1, . . . ,an

) = λ((τn
m < x) ∩ Im(a1, . . . ,an))

λ(Im(a1, . . . ,an))
.

From (2.8) and (2.17) we have

λ
((

τn
m < x

) ∩ I(a1, . . . ,an)
) =

∣∣∣∣ pn

qn
− pn + (m − 1)xman pn−1

qn + (m − 1)xman qn−1

∣∣∣∣
= (m − 1)nxma1+···+an

qn(qn + (m − 1)xman qn−1)
.

Hence, from (2.20) we have

λ
(
τn

m < x
∣∣ a1, . . . ,an

) = λ((τn
m < x) ∩ Im(a1, . . . ,an))

λ(Im(a1, . . . ,an))

= x(qn + (m − 1)man qn−1)

qn(qn + (m − 1)xman qn−1)

= (sn + m)x

sn + (m − 1)x + 1
,

for any n ∈N+ and x ∈ I . �
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The Brodén–Borel–Lévy formula allows us to determine the probability structure of (an)n∈N+ un-
der λ.

Proposition 2.4. For any i ∈N and n ∈ N+ we have

λ(a1 = i) = (m − 1)m−(i+1) (2.26)

and

λ(an+1 = i | a1, . . . ,an) = P i
m(sn), (2.27)

where

P i
m(x) = (m − 1)m−(i+1)(x + 1)(x + m)

(x + (m − 1)m−i + 1)(x + (m − 1)m−(i+1) + 1)
. (2.28)

Proof. As shown above, we have

{
ω ∈ Ω: a1(ω) = i

} = Ω ∩ (
m−(i+1),m−i).

Thus,

λ(a1 = i) = ∣∣m−(i+1) − m−i
∣∣ = (m − 1)m−(i+1).

From (2.6), we have that

τn
m(ω) = [an+1,an+2, . . .]m, n ∈N+, ω ∈ Ω,

and so we have

λ(an+1 = i | a1, . . . ,an) = λ
(
τn

m ∈ (
m−(i+1),m−i] ∣∣ a1, . . . ,an

)
= (sn + m)m−i

sn + (m − 1)m−i + 1
− (sn + m)m−(i+1)

sn + (m − 1)m−(i+1) + 1

= (m − 1)m−(i+1)(sn + 1)(sn + m)

(sn + (m − 1)m−i + 1)(sn + (m − 1)m−(i+1) + 1)

= P i
m(sn). �

Hence, the sequence (sn)n∈N+ with s1 = 0 is a homogeneous I-valued Markov chain on (I,BI , λ)

with the following transition mechanism: from state s ∈ I \ Ω , s � 1 the only possible one-step tran-
sitions are those to states m−i/(1 + (m − 1)s), i ∈ N, with corresponding probabilities P i

m(s), i ∈ N.
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2.4. The invariant measure of τm

In this subsection we will give the explicit form of the invariant probability measure γm of the
transformation τm , i.e., γm(A) = γm(τ−1

m (A)), A ∈ BI .
Let BI denote the σ -algebra of Borel subsets of I . The metric point of view in studying the se-

quence (an)n∈N+ is to consider that the an , n ∈ N+ , are non-negative integer-valued random variables
which are defined almost surely on (I,BI ) with respect to any probability measure on BI that assigns
probability 0 to the set I \ Ω of rationals in I . Such a measure is a Lebesgue measure λ.

Another measure on BI more important than Lebesgue measure, that assigns probability 0 to the
set of rationals in I , is the invariant probability measure γm of the transformation τm .

Proposition 2.5. The invariant probability density ρm of the transformation τm is given by

ρm(x) = 1

((m − 1)x + 1)((m − 1)x + m)
, x ∈ I, (2.29)

with the normalizing factor km = (m−1)2

log(m2/(2m−1))
.

Proof. See Appendix A. �
Hence

γm(A) = km

∫
A

dx

((m − 1)x + 1)((m − 1)x + m)
, A ∈ BI . (2.30)

The normalization constant km defined above is chosen so that γm([0,1]) = 1.

3. The natural extension of τm and extended random variables

By its very definition, the sequence (an)n∈N+ in (1.3) and (1.4) is strictly stationary under γm . As
such, there should exist a doubly infinite version of it, say al , l ∈ Z := {. . . ,−1,0,1, . . .}, defined on a
richer probability space. It appears that this doubly infinite version can be effectively constructed on
(I2,B2

I , γ m), where γ m is the so-called extended measure which expression is given below.

3.1. Definition and basic properties

For τm in (1.2), the natural extension τm of τm [19] is the transformation of [0,1) × I defined by

τm(x, y) =
(
τm(x),

m−a1(x)

(m − 1)y + 1

)
, (x, y) ∈ [0,1) × I. (3.1)

This is a one-to-one transformation of Ω2 with the inverse

τ−1
m (ω, θ) =

(
m−a1(θ)

(m − 1)ω + 1
, τm(θ)

)
, (ω, θ) ∈ Ω2. (3.2)

It is easy to check that for n � 2 we have

τn
m(ω, θ) =

(
τn

m(ω),

[
an(ω),an−1(ω), . . . ,a2(ω),a1(ω) + log(1 + (m − 1)θ)

log m

] )
, (3.3)
m
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and

τ−n
m (ω, θ) =

([
an(θ),an−1(θ), . . . ,a2(θ),a1(θ) + log(1 + (m − 1)ω)

log m

]
m
, τn

m(θ)

)
. (3.4)

Now, define the extended measure γ m on B2
I as

γ m(B) = km

∫ ∫
B

dx dy

((m − 1)(x + y) + 1)2
, B ∈ B2

I . (3.5)

A simple calculus shows us that

γ m(A × I) = γ m(I × A) = γm(A), A ∈ BI . (3.6)

The result below shows that γ m plays with respect to τm the part played by γm with respect to τm .

Proposition 3.1. The extended measure γ m is preserved by τm.

Proof. See Appendix A. �
3.2. Extended random variables

Define extended incomplete quotients al , l ∈ Z, on Ω2 by

al+1(ω, θ) = a1
(
τ l

m(ω, θ)
)
, l ∈ Z,

with

a1(ω, θ) = a1(ω), (ω, θ) ∈ Ω2.

By (3.3) and (3.4) we have

an(ω, θ) = an(ω), a0(ω, θ) = a1(θ), a−n(ω, θ) = an+1(θ), n ∈N+, (ω, θ) ∈ Ω2.

Remark 3.2. Since τm preserves γ m , the doubly infinite sequence (al)l∈Z is strictly stationary un-
der γ m .

Theorem 3.3. For any x ∈ I we have

γ m
([0, x] × I

∣∣ a0,a−1, . . .
) = ((m − 1)a + m)x

(m − 1)(x + a) + 1
γ m-a.s., (3.7)

where a = [a0,a−1, . . .]m.

Proof. Let Im,n denote the fundamental interval Im(a0,a−1, . . . ,a−n), n ∈ N. We have

γ m
([0, x] × I

∣∣ a0,a−1, . . .
) = lim

n→∞γ m
([0, x] × I

∣∣ a0, . . . ,a−n
)

γ m-a.s.

and
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γ m
([0, x] × I

∣∣ a0, . . . ,a−n
) = γ m([0, x] × Im,n)

γ m(I × Im,n)

=
km

∫
Im,n

dy
∫ x

0
du

((m−1)(u+y)+1)2

γm(Im,n)

= 1

γm(Im,n)
km

∫
Im,n

x

((m − 1)(x + y) + 1)((m − 1)y + 1)
dy

= 1

γm(Im,n)

∫
Im,n

x((m − 1)y + m)

(m − 1)(x + y) + 1
γm(dy)

= x((m − 1)yn + m)

(m − 1)(x + yn) + 1
,

for some yn ∈ Im,n . Since

lim
n→∞ yn = [a0,a−1, . . .]m = a, (3.8)

the proof is complete. �
The stochastic property of (al)l∈Z under γ m is given by the following corollary of Theorem 3.3.

Corollary 3.4. For any i ∈N we have

γ m(a1 = i | a0,a−1, . . .) = P i
m

(
(m − 1)a

)
γ m-a.s.,

where a = [a0,a−1, . . .]m.

Proof. Let us denote by Im,n the fundamental interval Im(a0,a−1, . . . ,a−n), n ∈ N. We have

(a1 = i) = (
m−(i+1),m−i] × [0,1)

and

γ m(a1 = i | a0,a−1, . . .) = lim
n→∞γ m(a1 = i | Im,n).

Now

γ m
((

m−(i+1),m−i) × [0,1)
∣∣ Im,n

) = γ m((m−(i+1),m−i) × Im,n)

γ m(I × Im,n)

= 1

γm(Im,n)

∫
In

P i
m

(
(m − 1)y

)
γm(dy)

= P i
m

(
(m − 1)yn

)
,

for some yn ∈ Im,n . From (3.8) the proof is complete. �
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Remark 3.5. The strict stationarity of (al)l∈Z , under γ m implies that

γ m(al+1 = i | al,al−1, . . .) = P i
m

(
(m − 1)a

)
γ m-a.s.

for any i ∈ N and l ∈ Z, where a = [al,al−1, . . .]m . The last equation emphasizes that (al)l∈Z is a chain
of infinite order in the theory of dependence with complete connections (see [10, Section 5.5]).

Motivated by Theorem 3.3 we shall consider the family of (conditional) probability measures (γ a
m)a

on BI defined by their distribution functions

γ a
m

([0, x]) = ((m − 1)a + m)x

(m − 1)(x + a) + 1
, x ∈ I, a � 0. (3.9)

Note that the limit case a = ∞ is γ ∞
m = λ.

For any a � 0 put sa
0 = a and

sa
n = (m − 1)m−an

1 + sa
n−1

, n ∈N+. (3.10)

For a � 0 we have

sa
1 = (m − 1)m−a1

1 + a

and

sa
n = (m − 1)

[
an, . . . ,a2,a1 + log(a + 1)

log m

]
m
, n � 2.

Then (sa
n)n∈N+ is an I ∪ {a}-valued Markov chain on (I,BI , γ

a
m) which starts from sa

0 = a � 0 and has
the following transition mechanism: from state s ∈ I ∪ {a} the possible transitions are to any state
m−i/((m − 1)s + 1) with the corresponding transition probability P i

m((m − 1)s), i ∈N.
Now, it is easy to check by induction that

sa
n = m−an

(m − 1)pn + (a + 1)qn

(m − 1)pn−1 + (a + 1)qn−1
− 1, (3.11)

for any n ∈ N+ and a � 0.
Thus, a simple calculation shows that for any n ∈N+ we have

γ a
m

(
τn

m < x
∣∣ a1, . . . ,an

) = γ a
m((τn

m < x) ∩ Im(a(n)))

γ a
m(Im(a(n)))

= x((m − 1)((m − 1)pn + (a + 1)qn) + man ((m − 1)pn−1 + (a + 1)qn−1))

(m − 1)((m − 1)pn + (a + 1)qn) + xman ((m − 1)pn−1 + (a + 1)qn−1)
.

By (3.11) for any n ∈N+ we have

γ a
m

(
τn

m < x
∣∣ a1, . . . ,an

) = ((m − 1)sa
n + m)x

(m − 1)(x + sa
n) + 1

, a � 0, x ∈ I. (3.12)

The last equation is the generalization of the Brodén–Borel–Lévy formula from Section 2.3.
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4. The Perron–Frobenius operator of τm under γm

In this section we derive and study the associated Perron–Frobenius operator of τm under the
invariant measure γm .

Let μ be a probability measure on (I,BI ) such that μ(τ−1
m (A)) = 0 whenever μ(A) = 0, A ∈ BI ,

where the transformation τm is defined in (1.2). In particular, this condition is satisfied if τm is μ-
preserving, that is, μτ−1

m = μ. It is known from previous section, that the Perron–Frobenius operator
Pμ of τm under μ is defined as the bounded linear operator on L1

μ = { f : I → C | ∫
I | f |dμ < ∞}

which takes f ∈ L1
μ into Pμ f ∈ L1

μ with

∫
A

Pμ f dμ =
∫

τ−1
m (A)

f dμ, A ∈ BI . (4.1)

In particular, the Perron–Frobenius operator Pλ of τm under the Lebesgue measure λ is (see [4, p. 86])

Pλ f (x) = d

dx

∫
τ−1

m ([0,x])

f dλ =
∑

t∈τ−1
m (x)

f (t)

|τ ′
m(t)| a.e. in I. (4.2)

The following results will be proved in Appendix A.
The following proposition gives the expression of the Perron–Frobenius operator of τm under the

invariant measure γm (4.3) and under a probability measure which is absolutely continuous with
respect to the Lebesgue measure (4.6). Also, we derive the asymptotic behavior of this operator (4.8).

Proposition 4.1.

(i) The Perron–Frobenius operator Um := Pγm of τm under γm is given a.e. in I by the equation

Um f (x) =
∑
i∈N

P i
m

(
(m − 1)x

)
f
(
ui

m(x)
)
, f ∈ L1

γm
, (4.3)

where P i
m is defined in (2.28) and ui

m(x) is given by the equation

ui
m(x) = m−i

(m − 1)x + 1
, x ∈ I. (4.4)

(ii) Let μ be a probability measure on BI . Assume that μ is absolutely continuous with respect to λ (and
denote μ 
 λ, i.e., if μ(A) = 0 for every set A with λ(A) = 0) and let h = dμ/dλ a.e. in I . Then:
(a) The Perron–Frobenius operator Pμ of τm under μ is given a.e. in I by the equation

Pμ f (x) = 1

h(x)

∑
i∈N

h(ui
m(x))

((m − 1)x + 1)2
(m − 1)m−i f

(
ui

m(x)
)

(4.5)

= Um g(x)

((m − 1)x + 1)((m − 1)x + m)h(x)
, f ∈ L1

μ, (4.6)

where g(x) = ((m − 1)x + 1)((m − 1)x + m) f (x)h(x), x ∈ I .
The powers of Pμ are given a.e. in I and for any f ∈ L1

μ and any n ∈N+ by the equation

Pn
μ f (x) = Un

m g(x)
. (4.7)
((m − 1)x + 1)((m − 1)x + m)h(x)
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(b) We have

μ
(
τ−n

m (A)
) =

∫
A

Un
m f (x)

((m − 1)x + 1)((m − 1)x + m)
dx, (4.8)

for any n ∈N and A ∈ BI , where f (x) = ((m − 1)x + 1)((m − 1)x + m)h(x), x ∈ I .

In the next proposition the domain of Um will be successively restricted to the following Banach
spaces: B V (I) is the linear space of all complex-valued functions of bounded variation and B(I) is
the collection of all bounded measurable functions f : I → C. The variation varA f over A ⊂ I of a
function f : I → C is defined as

sup
k−1∑
i=1

∣∣ f (ti) − f (ti−1)
∣∣,

the supremum being taken over t1 < · · · < tk , ti ∈ A, 1 � i � k, and k � 2. We write simply var f for
varI f .

Proposition 4.2.

(i) If f ∈ B V (I) is a real-valued function, then

var Um f � Km var f , (4.9)

where Km = (m−1)(3m2−3m+1)

(2m−1)(m2+m−1)
. The constant cannot be lowered.

(ii) The operator Um : B(I) → B(I) is the transition operator of the Markov chain (sa
n)n∈N+ on (I,BI , γ

a
m), for

any a ∈ I , where (sa
n)n∈N+ and γ a

m are give in (3.9) and (3.10), respectively.

5. Proof of the Gauss–Kuzmin-type theorem

In this section we prove our main theorem. The main tool of this section is the random system
with complete connections. We will first give a brief introduction to the theory of random systems
with complete connections and list some of the main applications and some important properties.
The general concepts presented here will be customized in the second subsection for the continued
fraction expansion presented in this paper. All these concepts will be applied in Section 5.3 to solve
our main theorem.

5.1. Random systems with complete connections

The purpose of this subsection is to recall the definition of random systems with complete con-
nections, and take this opportunity to inform nonspecialists a little about some applications of the
theory of random systems with complete connections.

The first explicit formal definition of the concept of dependence with complete connections was
given by Onicescu and Mihoc in the 1930s when studying so-called urn schemes (see, e.g., [21], or [12]
or the Introduction in [10]). The concept of random system with complete connections was defined
by Iosifescu [9]. There are many other areas where the theory of RSCC can be applied. Let us just
mention a few: mathematical modeling of learning processes (see, e.g., [20,12,14]), chains of infinite order
(see, e.g., [6,7]), partially observed random chains (see, e.g., [12]), image coding (see [2]), and continued
fraction expansion (see [10]). Nowadays RSCC are called iterated functions systems with place-dependent
probabilities or simply iterated functions systems (IFS). This terminology was introduced by Barnsley
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et al. in the middle of the 1980s in [1]. It only became fashionable in the framework of fractals and
chaos but, before that, it appeared as the simplest case of a random system with complete connections
and, in particular, as the Bush–Mosteller model for learning with experimenter-controlled-events [see,
e.g., [2,8]]. An application of IFS to continued fractions can be found in the paper [18].

5.1.1. Definitions and explanations
First, let (W ,W) and (X,X ) be two measurable spaces. A real valued function P defined on

W ×X is called a transition probability function from (W ,W) to (X,X ) if P (w, ·) is a probability on
X for any w ∈ W and P (·, A) is a W-measurable function for any A ∈X .

A quadruple {
(W ,W), (X,X ), u, P

}
(5.1)

is named a random system with complete connections (RSCC) if

(i) (W ,W) and (X,X ) are measurable spaces;
(ii) u : W × X → W is a (W ⊗X ,W)-measurable function;

(iii) P is a transition probability function from (W ,W) to (X,X ).

The definition of an RSCC can be extended to the non-homogeneous case in the sense that all the
entities constituting it are allowed to depend on t ∈ T , where T is either the set N of natural numbers
or the set Z of integers.

The set W is usually called the state space, the set X is often called the event space and the function
u is often called the response-function. We also call u(·, x) : W → W a response-function.

The interpretation of this structure is as follows. If X denotes the set of possible observations and
W the range of possible states of the system, then P induces for every state w ∈ W the distribution
P (w, ·) of the random observation following w . The function u represents the transition function of
the system, which transforms a given state w and an actual observation x into a new state u(w, x).

To every RSCC {(W ,W), (X,X ), u, P } and every w ∈ W (an arbitrary fixed element of W ) one can
generate two stochastic sequences {ξn}n∈N and {ζn}n∈N+ as follows: we set ξ0 = w , pick an element
ζ1 ∈ X using P (ξ0, ·), define ξ1 = u(ξ0, ζ1), pick ζ2 in X using P (ξ1, ·), define ξ2 = u(ξ1, ζ2), and gen-
erally we pick ζn in X using P (ξn−1, ·), and define ξn = u(ξn−1, ζn). Thus, the two stochastic sequences
can be described as follows:

ξ0 = w, ξn+1 = u(ξn, ζn+1), n � 1,

P (ζ1 ∈ A) = P (w, A), A ∈ X ,

P (ζn+1 ∈ A | ξn, ζn, . . . , ξ1, ζ1, ξ0) = P (ξn, A), A ∈ X .

We call the sequence {ξn}n∈N of W -valued random variables the state sequence and the sequence
{ζn}n∈N+ of X-valued random variables the event sequence. When we want to emphasize the initial
point w , we write

ξn = ξn(w) and ζn = ζn(w).

The central issue in the theory of dependence with complete connections is the sequence {ζn}n∈N+
which is a stochastic process that is no longer Markovian, but a chain with complete connections
(processes whose transition probabilities depend on the whole past history).

From the definition of ξn it is clear that the state sequence {ξn}n∈N is a Markov chain (the so-called
associated Markov chain) with transition probability function Q , where

Q (w, A) = P
(

w,
{

x ∈ X
∣∣ u(w, x) ∈ A

})
(5.2)

with A ∈W .
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The transition operator U : B(W ,W) → B(W ,W) is defined by

U f (w) =
∑
x∈X

P (w, x) f
(
u(w, x)

)
, f ∈ B(W ,W), (5.3)

where B(W ,W) is the Banach space of all bounded W-measurable complex-valued functions defined
on W .

5.1.2. Examples of RSCCs
In this section we shall give two examples of RSCCs which occur either in various chapters of

probability theory or as a result of modeling phenomena in various fields.

Example 5.1. The concept of a random system with complete connections may be regarded as a gen-
eralization and formalization of the notion of a stochastic learning model. Learning may be defined as
an adaptive modification of behavior in the course of repeated trials. By mathematical learning theory
we mean the body of research methods and results concerned with the conceptual representation of
learning phenomena, the mathematical formulation of hypotheses about learning, and the derivation
of testable theorems. The purpose of mathematical learning theory is to provide simple, quantitative
descriptions of processes which are basic to behavioral modifications.

All stochastic models for learning studied so far fit the following general theoretical scheme. The
behavior of the subject on trial n is determined by its state Sn (an indicator of the subject’s ten-
dencies) at the beginning of the trial. Here Sn is a random variable taking values in a measurable
space (S,S). On trial n an event En+1 occurs that results in a change of the state. Here En+1 is a
random variable taking values in the measurable space (E,E) and specifies those occurrences on trial
n that affect the subsequent behavior. To represent the fact that the occurrence of an event affects
a change of state it is necessary to consider a measurable map v from S × E into S and postu-
late that Sn+1 = v(Sn, En+1), n ∈ N. Finally assume that the probability distribution of En+1 given
Sn, En, . . . , S1, E1, S0 depends only on the state Sn and denote it by R(Sn, ·). By a general learning
model we mean the collection {(S,S), (E,E), v, R} which is trivially an RSCC. Notice that in fact we
only changed the notation. Various special learning models are obtained by simply particularizing S ,
E , v and R (see, e.g., [12,20]). �
Example 5.2. As we mentioned in Section 1.1, any irrational number y in the unit interval [0,1] has
an infinite continued fraction expansion of the form

y = 1

a1(y) + 1

a2(y) + 1

a3(y) + . . .

,

where the an(y), n ∈ N+ , are natural numbers. Define (sn)n∈N+ by

s1 = 1

a1
, sn+1 = 1

sn + an+1
, n ∈N+.

Let us consider the RSCC {(W ,W), (X,X ), u, P }, where

W = [0,1], W = B[0,1],

X = N+, X = PN+ ,
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u : W × X → W , u(w, x) = 1

w + x
,

P : W ×X → W , P (w, x) = w + 1

(w + x)(w + x + 1)
.

The sequences (an)n∈N+ and (sn)n∈N+ , s0 = 0, are equivalent to the chain with complete connections
(ζn)n∈N+ and the Markov chain (ξn)n∈N associated with the above RSCC. More precisely, defining the
one-to-one map θ from (N+)N+ into [0,1] by

θ(a1,a2,a3, . . .) = 1

a1 + 1

a2 + 1

a3 + . . .

, ai ∈ N+, i ∈N+,

we have ζn(σ ) = an(θ(σ )), ξn(σ ) = sn(θ(σ )), n ∈N+ , σ ∈ (N+)N+ . �
5.1.3. Properties of the associated operators

In this subsection we present the asymptotic and ergodic properties of the associated operators.
These properties are used to obtain the ergodicity of an RSCC by letting the associated Markov chain
satisfy some topological properties. To state these results we need some preliminary definitions.

Let Q n be the transition probability function defined by

Q n(w, A) = 1

n

n∑
k=1

Q k(w, A)

where Q k , k � 1, is the k-step transition probability function of the Markov chain associated with
RSCC (5.1). Let Un be the Markov operator associated with Q n .

Next, let us consider the norm ‖ · ‖L defined on L(W ) = the space of Lipschitz complex-valued
functions defined on W by

‖ f ‖L = sup
w∈W

∣∣ f (w)
∣∣ + sup

w ′ �=w ′′
| f (w ′) − f (w ′′)|

|w ′ − w ′′| , f ∈ L(W ).

As is well known, (L(W ),‖ · ‖L) is a Banach space.
The following can be found in [10].
If there exists a linear bounded operator U ∞ from L(W ) to L(W ) such that

lim
n→∞

∥∥Un f − U∞ f
∥∥

L = 0,

for any f ∈ L(W ) with ‖ f ‖L = 1, we say U is ordered.
If

lim
n→∞

∥∥Un f − U∞ f
∥∥

L = 0,

for any f ∈ L(W ) with ‖ f ‖L = 1, we say U is aperiodic, where Un is the nth iterate of U , n ∈ N, with
U 0 is the identity.

If U is ordered and U∞(L(W )) is one-dimensional space, it is named ergodic with respect to L(W ).
If U is ergodic and aperiodic, it is named regular with respect to L(W ) and the corresponding

Markov chain has the same name.
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The definition below is due to M.F. Norman [20] and isolates a class of RSCCs, called RSCCs with
contraction.

An RSCC {(W ,W), (X,X ), u, P } is said to be an RSCC with contraction if and only if there is a
distance d on W and the metric space (W ,d) is separable, r1 < ∞, R1 < ∞, and there exists a
natural integer k such that rk < 1, where

rk = sup
w ′ �=w ′′

∑
Xk

Pk
(

w, x(k)
)d(w ′x(k), w ′′x(k))

d(w ′, w ′′)
, k ∈N+,

and

Rk = sup
A∈X k

sup
w ′ �=w ′′

Pk(w ′, A) − Pk(w ′′, A)

d(w ′, w ′′)
.

The following result can be found in [10].

Theorem 5.3. Let W be a compact metric space with a distance d and {(W ,W), (X,X ), u, P } be an RSCC
with contraction.

(i) The Markov chain associated to the RSCC is regular if and only if there exists a point w0 ∈ W such that

lim
n→∞ d

(
σn(w), w0

) = 0,

for any w ∈ W , where σn(w) = supp Q n(w, ·) (suppμ denotes the support of the measure μ).
(ii) The supports of Q n(w, ·), n ∈ N+ , w ∈ W , can be iteratively computed as follows:

σm+n(w) =
⋃

w ′∈σm(w)

σn
(

w ′),
for any m, n ∈N+ , w ∈ W , where the overline means the topological closure.

An RSCC {(W ,W), (X,X ), u, P }, whose associated Markov chain is regular with respect to
B((W ,W)), is uniformly ergodic and limn→∞ εn = 0, where

εn := sup
w∈W ,r∈N+

A∈X r

∣∣Pn
r (w, A) − P∞

r (A)
∣∣,

while P∞
r is the probability on X r .

Theorem 5.4. Let W be a compact metric space with a distance d. If the RSCC {(W ,W), (X,X ), u, P } with
contraction has regular associated Markov chain, then it is uniformly ergodic.

5.2. The RSCC associated with expansion of the type of (1.1)

First, it is easy to check that P i
m from (2.28) defines a transition probability function from (I,BI )

to (N,P(N)), i.e.,
∑

i∈N P i
m(x) = 1, x ∈ I .

Let us consider the random system with complete connections

{
(I,BI ),

(
N+,P(N+)

)
, u, P

}
, (5.4)

where u : I ×N → I , u(x, i) = ui
m(x) is given in (4.4) and the function P (x, i) = P i

m(x) given in (2.28).
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We denote by Um the associated Markov operator of RSCC (5.4) with the transition probability
function

Q m(x, A) =
∑

{i∈N: ui
m(x)∈A}

P i
m(x), x ∈ I, A ∈ BI .

Then Q n
m(·, ·) will denote the n-step transition probability function of the same Markov chain.

The ergodic behavior of RSCC (5.4) allows us to find the limiting distribution function F and the
invariant measure Q∞

m induced by F .

Proposition 5.5. RSCC (5.4) is uniformly ergodic.

Proof. We apply Theorem 5.4. Putting �i = m−i − m−2i , i ∈ N, we get

P i
m(x) = (m − 1)

[
m−(i+1) + �i

x + (m − 1)m−i + 1
− �i+1

x + (m − 1)m−(i+1) + 1

]
.

We have

d

dx
u(x, i) = − (m − 1)m−i

((m − 1)x + 1)2
,

d

dx
P (x, i) = (m − 1)

[
�i+1

(x + (m − 1)m−(i+1) + 1)2
− �i

(x + (m − 1)m−i + 1)2

]
,

for all x ∈ I and i ∈ N, so that supx∈I | d
dx u(x, i)| = (m − 1)m−i and supx∈I | d

dx P (x, i)| < ∞. Hence the
requirements of definition of an RSCC with contraction are fulfilled. To prove the regularity of U with
respect to L(I) let us define recursively xn+1 = (xn + 2)−1, n ∈ N, with x0 = x.

A criterion of regularity is expressed in Theorem 5.3(i), in terms of supports σn(x) of the n-step
transition probability functions Q n

m(x, ·), n ∈ N+ . Clearly xn+1 ∈ σ1(xn) and therefore Theorem 5.3(ii)
and an induction argument lead us to the conclusion that xn ∈ σn(x), n ∈N+ . But, limn→∞ xn = √

2−1
for any x ∈ I . Hence

d
(
σn(x),

√
2 − 1

)
� |xn − √

2 + 1| → 0 as n → ∞,

where d(x, y) = |x − y|, for any x, y ∈ I . The regularity of Um with respect to L(I) follows from The-
orem 5.3. Moreover, Q n

m(·, ·) converges uniformly to a probability measure Q ∞
m and there exist two

positive constants q < 1 and k such that

∥∥Un
m f − U∞

m f
∥∥

L � kqn‖ f ‖L, n ∈N+, f ∈ L(I), (5.5)

where

Un
m f (·) =

∫
I

f (y)Q n
m(·,dy), (5.6)

U∞
m f =

∫
I

f (y)Q∞
m (dy), (5.7)

and Q∞
m is the invariant probability measure of the transformation τm , i.e., Q∞

m has the density ρm(x)
given in (2.29), x ∈ I . �
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Now we are able to find the limiting distribution function

F (x) = F∞(x) = lim
n→∞μ

(
τn

m < x
)

and obtain a convergence rate result.

5.3. Proof of Theorem 1.1

We prove Theorem 1.1 in this subsection.

Proof of Theorem 1.1. By (5.7) we have

U∞
m f0 =

∫
I

f0(y)Q∞
m (dx) = km, f0 ∈ L(I).

Taking into account (5.5), there exist two constants q < 1 and k such that

∥∥Un
m f0 − U∞

m f0
∥∥

L � kqn‖ f0‖L, n ∈N+.

Further, consider C(I) the metric space of real continuous functions defined on I with the supremum
norm ‖ f ‖ = supx∈I | f (x)|. Since L(I) is a dense subset of C(I) we have

lim
n→∞

∥∥(
Un

m − U∞
m

)
f0

∥∥ = 0, (5.8)

for all f0 ∈ C(I). Therefore, (5.8) is valid for a measurable function f0 which is Q∞
m -almost surely

continuous, that is, for a Riemann-integrable function f0. Thus, we have

F (x) = lim
n→∞μ

(
τn

m < x
) = lim

n→∞

x∫
0

Un
m f0(u)ρm(u)du

= km

x∫
0

ρm(u)du

= km

(m − 1)2
log

m((m − 1)x + 1)

(m − 1)x + m
.

Hence (1.6) is proved. �
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Appendix A. Proofs of propositions

We prove Propositions 2.5, 3.1, 4.1 and 4.2 in this appendix.
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Proof of Proposition 2.5. We briefly give some general properties about the Perron–Frobenius opera-
tor (see, e.g., [4,11]) which will be useful both to demonstrate this proposition and in Section 4.

Let (X,X ,μ) be a probability space. A transformation τ of X is said to be μ-non-singular if and
only if μ(τ−1(A)) = 0 for all A ∈ X for which μ(A) = 0; it is said to be measure-preserving if and
only if μτ−1 = μ, i.e., μτ−1(A) = μ(A) for all A ∈ X . Clearly, any μ-preserving transformation is
μ-non-singular.

The Perron–Frobenius operator Pμ associated with a μ-non-singular transformation τ is defined
as the linear bounded operator on L1

μ = { f : I →C:
∫

I | f |dμ < ∞} which takes f ∈ L1
μ into Pμ f ∈ L1

μ
with ∫

A

Pμ f dμ =
∫

τ−1(A)

f dμ, A ∈ X ,

or, equivalently ∫
X

g Pμ f dμ =
∫
X

(g ◦ τ ) f dμ

for all f ∈ L1
μ and g ∈ L∞

μ .
In particular, the Perron–Frobenius operator Pλ of τ under the Lebesgue measure λ is (see [4,

p. 86])

Pλ f (x) = d

dx

∫
τ−1([0,x])

f dλ =
∑

t∈τ−1(x)

f (t)

|τ ′(t)| a.e. in I. (A.1)

The probabilistic interpretation of Pμ is immediate: if an X-valued random variable ξ on X has μ-
density h, that is, μ(ξ ∈ A) = ∫

A h dμ, A ∈ X , with h � 0 and
∫

X h dμ = 1, then τ ◦ ξ has μ-density
Pμh. The following properties hold:

(i) Pμ is positive, that is, Pμ f � 0 if f � 0;
(ii) Pμ preserves integrals, that is,

∫
X Pμ f dμ = ∫

X f dμ, f ∈ L1
μ;

(iii) ‖Pμ‖p,μ := sup(‖Pμ f ‖p,μ: f ∈ L p
μ, ‖ f ‖p,μ = 1) � 1 for any p � 1 and p = ∞;

(iv) for any n ∈ N+ the nth power Pn
μ of Pμ is the Perron–Frobenius operator associated with the

nth iterate τn of τ under μ;
(v) (Pμ f )∗ = Pμ f ∗ for any f ∈ L1

μ , where z∗ = complex conjugate of z ∈ C (= the set of complex
numbers);

(vi) Pμ((g ◦ τ ) f ) = g Pμ f for any f ∈ L1
μ and g ∈ L∞

μ ;
(vii) Pμ f = f if and only if τ is ν-preserving, where ν is defined by ν(A) = ∫

A f dμ, A ∈ X . In
particular, Pμ1 = 1 if and only if τ is μ-preserving.

Proof of Proposition 2.5 From above, it is sufficient to show that the function ρm defined in (2.29) is
an eigenfunction of the Perron–Frobenius operator of τm with the eigenvalue 1:

Pτmρm(x) =
∑

t∈τ−1
m (x)

ρm(t)

|τ ′
m(t)| . (A.2)

First, we note that

τ−1
m (x) =

{
m−i

1 + (m − 1)x
: i � 1, x ∈ I

}
. (A.3)
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Thus

Pτmρm(x) =
∞∑

i=0

(m − 1)m−i

(1 + (m − 1)x)2
ρm

(
m−i

1 + (m − 1)x

)

=
∞∑

i=0

(m − 1)m−(i+1) 1

((m − 1)x + (m − 1)m−(i+1) + 1)

1

((m − 1)x + (m − 1)m−i + 1)

= 1

m − 1

∞∑
i=0

(
1

(m − 1)x + (m − 1)m−(i+1) + 1
− 1

(m − 1)x + (m − 1)m−i + 1

)

= 1

m − 1

(
1

(m − 1)x + 1
− 1

(m − 1)x + m

)

= 1

((m − 1)x + 1)((m − 1)x + m)
= ρm(x). �

Proof of Proposition 3.1. We should show that γ m(τ−1
m (B)) = γ m(B) for any B ∈ B2

I or, equivalently,
since τm is invertible on Ω2, that

γ m
(
τm(B)

) = γ m(B), for any B ∈ B2
I . (A.4)

We start with B = (a,b) × (c,d), where

a = m−(i+1), b = m−i, i ∈N,

and c and d are the arbitrary numbers from (0,1). Then

τm(B) =
{(

τm(x),
m−a1(x)

(m − 1)y + 1

) ∣∣∣ x ∈ (a,b), y ∈ (c,d)

}
. (A.5)

Taking x = m−(i+θ) , 0 < θ < 1, we have

τm(x) = mθ − 1

m − 1
, a1(x) = i

such that

τm(B) =
(

(0,1),

(
m−i

(m − 1)d + 1
,

m−i

(m − 1)c + 1

))
. (A.6)

Let

I(m, i, c,d) ≡
(

m−i

(m − 1)d + 1
,

m−i

(m − 1)c + 1

)
.

A simple computation yields
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γ m
(
τm(B)

) = km

1∫
0

dx

∫
I(m,i,c,d)

dy

((m − 1)(x + y) + 1)2

= km

m−i∫
m−(i+1)

dx

d∫
c

dy

((m − 1)(x + y) + 1)2
= γ m(B)

that is, (A.4) holds.
Next, we consider the case

a = m−i

(m − 1)m− j + 1
, b = m−i

(m − 1)m−( j+1) + 1
, i, j ∈ N,

and (c,d) is an arbitrary interval. Now, with

x = m−i

(m − 1)m−( j+θ) + 1
,

we have

{
log x−1

logm

}
=

{
i + log(1 + (m − 1)m−( j+θ))

log m

}
= log(1 + (m − 1)m−( j+θ))

log m

and

a1(x) =
⌊

log x−1

log m

⌋
= i.

Thus,

(m − 1)τm(x) = m
log(1+(m−1)m−( j+θ))

log m − 1 = (m − 1)m−( j+θ).

Hence,

τm(B) = (
m−( j+1),m− j) ×

(
m−i

(m − 1)d + 1
,

m−i

(m − 1)c + 1

)
. (A.7)

A straightforward calculation shows us that

γ m
(
τm(B)

) = km

m− j∫
m−( j+1)

dx

∫
I(m,i,c,d)

dy

((m − 1)(x + y) + 1)2

= km

∫
I(m,i,m− j,m−( j+1))

dx

d∫
c

dy

((m − 1)(x + y) + 1)2
= γ m(B)

that is, (A.4) holds.
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Since any arbitrary interval (a,b) can be written as a reunion of fundamental intervals the proof
is complete. �
Proof of Proposition 4.1. (i) Let τm,i : Ii → I denote the restriction of τm to the interval Ii =
(m−(i+1),m−i], i ∈ N, that is,

τm,i(x) = 1

m − 1

(
m−i

x
− 1

)
, x ∈ Ii . (A.8)

For any f ∈ L1
γm

and any A ∈ BI , we have

∫
τ−1

m (A)

f dγm =
∑
i∈N

∫
τ−1

m (A∩Ii)

f dγm =
∑
i∈N

∫
τ−1

m,i (A)

f dγm. (A.9)

For any i ∈N, by the change of variable

x = τ−1
m,i (y) = m−i

(m − 1)y + 1
, (A.10)

we successively obtain

∫
τ−1

m,i (A)

f dγm = km

∫
τ−1

m,i (A)

f (x)

((m − 1)x + 1)((m − 1)x + m)
dx

= km

∫
A

f (ui
m(y))

((m − 1)ui
m(y) + 1)((m − 1)ui

m(y) + m)

(m − 1)m−i

((m − 1)y + 1)2
dy

= km

∫
A

f
(
ui

m(y)
)
(m − 1)m−(i+1) 1

((m − 1)y + (m − 1)m−i + 1)

× 1

((m − 1)y + (m − 1)m−(i+1) + 1)
dy

=
∫
A

P i
m

(
(m − 1)y

)
f
(
ui

m(y)
)
γm(dy). (A.11)

Now, (4.3) follows from (A.9) and (A.11). �
(ii)(a) From (A.8) and (A.10), for any f ∈ L1

γm
and any A ∈ BI , we have∫

τ−1
m (A)

f dμ =
∑
i∈N

∫
τ−1

m (A∩Ii)

f dμ =
∑
i∈N

∫
τ−1

m,i (A)

f dμ

=
∑
i∈N

∫
τ−1

m,i (A)

f (x)h(x)dx =
∑
i∈N

∫
A

f (ui
m(y))h(ui

m(y))(m − 1)m−i

((m − 1)y + 1)2
dy

=
∫ ∑

i∈N

h(ui
m(x))

((m − 1)x + 1)2
(m − 1)m−i f

(
ui

m(x)
)

dx. (A.12)
A
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Since dμ = h dλ, (4.5) follows from (A.12). Now, since g(x) = ((m − 1)x + 1)((m − 1)x + m) f (x)h(x),
from (4.3) we have

Um g(x) = ((m − 1)x + m)

(m − 1)x + 1
(m − 1)

∑
i∈N

m−ih
(
ui

m(x)
)

f
(
ui

m(x)
)
. (A.13)

Now, (4.6) follows immediately from (4.5) and (A.13). �
(b) We will use mathematical induction. For n = 0, Eq. (4.8) reduces to

μ(A) =
∫
A

h(x)dx, A ∈ BI ,

which is obviously true. Assume that (4.8) holds for some n ∈ N. Then

μ
(
τ

−(n+1)
m (A)

) = μ
(
τ−n

m

(
τ−1

m (A)
))

=
∫

τ−1
m (A)

Un
m f (x)

((m − 1)x + 1)((m − 1)x + m)
dx

= 1

km

∫
τ−1

m (A)

Un
m f (x)dγm(x).

By the very definition of the Perron–Frobenius operator Um = Pγm we have

∫
τ−1

m (A)

Un
m f dγm =

∫
A

Un+1
m f dγm.

Therefore,

μ
(
τ

−(n+1)
m (A)

) = 1

km

∫
A

Un+1
m f dγm

=
∫
A

Un+1
m f (x)

((m − 1)x + 1)((m − 1)x + m)
dx

which ends the proof. �
Proof of Proposition 4.2. (i) For x, y ∈ I we have

Um f (x) − Um f (y) =
∑
i∈N

(
P i

m

(
(m − 1)x

)
f
(
ui

m(x)
) − P i

m

(
(m − 1)y

)
f
(
ui

m(y)
))

=
∑
i∈N

(
P i

m

(
(m − 1)x

) − P i
m

(
(m − 1)y

))(
f
(
ui

m(x)
) − f

(
u0

m(x)
))

+
∑

P i
m

(
(m − 1)y

)(
f
(
ui

m(x)
) − f

(
ui

m(y)
))
i∈N
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=
∑

i∈N+

(
P i

m

(
(m − 1)x

) − P i
m

(
(m − 1)y

))(
f
(
ui

m(x)
) − f

(
u0

m(x)
))

+
∑
i∈N

P i
m

(
(m − 1)y

)(
f
(
ui

m(x)
) − f

(
ui

m(y)
))

.

Note that the function P 0
m is increasing, while the functions P i

m , i ∈ N+ , are all decreasing. Let x < y,
with x, y ∈ I . It follows from the above equation that

∣∣Um f (x) − Um f (y)
∣∣ �

( ∑
i∈N+

(
P i

m

(
(m − 1)x

) − P i
m

(
(m − 1)y

)))
var f

+ sup
y∈I,i∈N

P i
m

(
(m − 1)y

)∑
i∈N

var[x,y] f ◦ ui(x)

= (
1 − P 0

m

(
(m − 1)x

) − 1 + P 0
m

(
(m − 1)y

))
var f

+ P 0
m(m − 1)

∑
i∈N

var[x,y] f ◦ ui(x).

Hence

var Um f �
(
2P 0

m(m − 1) − P 0
m(0)

)
var f =

(
2m(m − 1)

m2 + m − 1
− m − 1

2m − 1

)
var f

= (m − 1)(3m2 − 3m + 1)

(2m − 1)(m2 + m − 1)
var f .

Define f by f (x) = 0, 0 � x � 1
m , and f (x) = 1, 1

m < x � 1. Then we have Um f (x) = P 0
m(x), 0 � x < 1

and Um f (1) = 0. Since var Um f = (m−1)(3m2−3m+1)

(2m−1)(m2+m−1)
and var f = 1, it follows that the constant Km

cannot be lowered. �
(ii) The transition operator of (sa

n)n∈N+ takes f ∈ B(I) to the function defined by

Ea
(

f
(
sa

n+1

) ∣∣ sa
n = s

) =
∑
i∈N

P i
m

(
(m − 1)s

)
f
(
ui

m(s)
)

= Um f (s), s ∈ I, (A.14)

where Ea stands for the mean value operator with respect to the probability measure γ a
m . �

References

[1] M. Barnsley, S. Demko, J. Elton, J. Gerinomo, Invariant measures for Markov processes arising from iterated function systems
with place-dependent probabilities, Ann. Inst. H. Poincaré Probab. Statist. 24 (3) (1988) 367–394.

[2] M. Barnsley, J. Elton, A new class of Markov processes for image encoding, Adv. in Appl. Probab. 20 (1988) 14–32.
[3] W. Bosma, C. Kraaikamp, Metrical theory for optimal continued fractions, J. Number Theory 34 (1990) 251–270.
[4] A. Boyarsky, P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Birkhäuser, Boston,

1997.
[5] H.-C. Chan, The asymptotic growth rate of random Fibonacci type sequences. II, Fibonacci Quart. 44 (2006) 73–84.
[6] W. Doeblin, R. Fortet, Sur des chaînes à liaisons complètes, Bull. Soc. Math. France 65 (1937) 132–148.
[7] T.E. Harris, On chains of infinite order, Pacific J. Math. 5 (1955) 707–724.
[8] U. Herkenrath, M. Iosifescu, A. Rudolph, Random systems with complete connections and iterated function systems, Math.

Rep. 5 (55) (2003) 127–140.
[9] M. Iosifescu, Random systems with complete connections with an arbitrary set of states, Rev. Roumaine Math. Pures Appl. 8

(1963) 611–645.



D. Lascu / Journal of Number Theory 133 (2013) 2153–2181 2181
[10] M. Iosifescu, S. Grigorescu, Dependence with Complete Connections and Its Applications, Cambridge Tracts in Math., vol. 96,
Cambridge Univ. Press, Cambridge, 1990; second printing slightly corrected, 2009.

[11] M. Iosifescu, C. Kraaikamp, Metrical Theory of Continued Fractions, Kluwer Academic Publisher, Dordrecht, 2002.
[12] M. Iosifescu, R. Theodorescu, Random Processes and Learning, Springer-Verlag, Berlin, 1969.
[13] S. Kalpazidou, On a problem of Gauss–Kuzmin type for continued fraction with odd partial quotients, Pacific J.

Math. 123 (1) (1986) 103–114.
[14] S. Karlin, Some random walks arising in learning models. I, Pacific J. Math. 3 (4) (1953) 725–756.
[15] A.Ya. Khinchin, Continued Fractions, Univ. Chicago Press, Chicago, 1964 (translation of the 3rd Russian edition, 1961).
[16] R.O. Kuzmin, On a problem of Gauss, Dokl. Akad. Nauk SSSR Ser. A (1928) 375–380 (in Russian); French version in: Atti

Congr. Internaz. Mat., vol. VI, Bologna, 1928, Zanichelli, Bologna, 1932, pp. 83–89.
[17] P. Lévy, Sur les lois de probabilité dont dépendent les quotients complets et incomplets d’une fraction continue, Bull. Soc.

Math. France 57 (1929) 178–194.
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