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1. Introduction

Berry [1] showed that the set of rational points in the plane with rational distances to 
three given vertices of the unit square is infinite. More precisely, he showed that the set 
of rational parametric solutions of the corresponding system of equations is infinite; this 
generalizes some earlier work of Leech. In a related work, he was able to show that for any 
given triangle ABC in which the length of at least one side is rational and the squares 
of the lengths of all sides are rational, then the set of points P with rational distances 
|PA|, |PB|, |PC| to the vertices of the triangle is dense in the plane of the triangle; 
see Berry [2]. However, it is a notorious and unsolved problem to determine whether 
there exists a rational point in the plane at rational distance from the four corners of 
the unit square (see Problem D19 in Guy’s book [7]). Such a point corresponds to a 
rational solution of a Diophantine system comprising four quadratics in six-dimensional 
projective space. An analogous system is that for the “rational cuboid” problem, of 
finding a rectangular cuboid with rational edges, face diagonals, and body diagonal. This 
again is a notorious and unsolved problem. A great deal of computing has produced no 
solution, and it is tempting to believe that no solution exists. However, another naturally 
arising Diophantine system of four quadratics in six-dimensional projective space is that 
of finding a three-by-three magic square of integers in which a certain seven of the entries 
are perfect squares. This system does have a solution (although only one solution up to 
symmetries is known); see Bremner [3]. Because of the difficulty of this problem one can 
ask a slightly different question, as to whether there exist rational points in the plane 
which lie at rational distance from the four vertices of the rectangle with vertices (0, 0), 
(0, 1), (a, 0), and (a, 1), for a ∈ Q. This problem is briefly alluded to in Section D19 
on p. 284 of Guy’s book. In Section 2 we reduce this problem to the investigation of 
the existence of rational points on members of a certain family of algebraic curves Ca,t
(depending on rational parameters a, t). We show that the set of a ∈ Q for which the set 
of rational points on Ca,t is infinite is dense in R (in the Euclidean topology).

Richard Guy has pointed out that there are immediate solutions to the four-distance 
unit square problem if the point is allowed to lie in three space Q3. Indeed, (1

2 , 
1
2 , 

1
4 ) lies 

at rational distance to the four vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0) of the square. 
This observation leads us to consider the more general problem, of points in Q3 which 
lie at rational distance from the four vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0) of the 
unit square. In Section 3 we show that such points are dense on the line x = 1

2 , y = 1
2 , 

and dense on the plane x = 1
2 . Further, there are infinitely many parameterizations of 

such points on the plane x = y. In Section 4 we consider the general problem of finding 
points (x, y, z) ∈ Q3 with rational distances to the vertices of a unit square lying in the 
plane z = 0 without any assumptions on x, y, z. Attempts to show such points are dense 
in R3 have been unsuccessful to date. However, we are able to show that the variety 
related to this problem is unirational over Q. In particular, this implies the existence of 
a parametric family of rational points with rational distances to the four vertices (0, 0, 0), 
(0, 1, 0), (1, 0, 0), (1, 1, 0) of the unit square. Whether there exist points in Q3 at rational 
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distance from the eight vertices of the unit cube is another seemingly intractable problem 
which we leave as open and certainly worthy of further investigation.

In Section 5 we consider the problem of finding points in Q3 at rational distance 
from the vertices of a general tetrahedron (with rational vertices) and prove that the 
corresponding algebraic variety is unirational over Q. This is related to Section D22 in 
Guy’s book. This result, together with the construction of a parameterized family of 
tetrahedra having rational edges, face areas, and volume (an independent investigation), 
leads to constructing a double infinity of sets of five points in Q3 with the ten distances 
between them all rational.

Finally, in the last section we collect some numerical results and prove that under a 
certain symmetry assumption it is possible to find a parametric family of points in Q3

with rational distances to six vertices of the unit cube. Without symmetry, we found 
just one point with five of the distances rational.

2. Points in QQQ2 with rational distances from the vertices of rectangles

Let a ∈ Q. Consider the rectangle Ra in the plane with vertices at P1 = (0, 0), 
P2 = (0, 1), P3 = (a, 0), and P4 = (a, 1).

Theorem 2.1. The set of a ∈ Q such that there are infinitely many rational points with 
rational distance to each of the corners P1, . . . , P4 of Ra is dense in R.

Proof. Let M = (x, y) be a rational point with rational distance to each vertex P1, . . . , P4
of R. This determines the following system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 + y2 = P 2 = |MP1|2,
x2 + (1 − y)2 = Q2 = |MP2|2,
(a− x)2 + y2 = R2 = |MP3|2,
(a− x)2 + (1 − y)2 = S2 = |MP4|2.

(1)

From the first and third equations, and the first and second equations, we deduce re-
spectively

x = 1
2a (a2 + P 2 −R2), y = 1

2(P 2 −Q2 + 1). (2)

Eliminating x, y from the system (1) we obtain

{
P 2 −Q2 = R2 − S2,

a2(R4 + a2 + 1) + Q4 + (1 + a2)S4 = 2Q2(a2 + S2) + 2a2R2(S2 + 1).
(3)

The first quadric may be parameterized by
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R = (P + Q)t2 + P −Q

2t , S = (P + Q)t2 − P + Q

2t . (4)

On homogenizing, by setting P = X/Z, Q = Y/Z, the second equation at (3) becomes:

(1 − 4t2 + 6t4 + 16a2t4 − 4t6 + t8)(X4 + Y 4) + 4(t2 − 1)3(t2 + 1)(X2 + Y 2)XY −

8a2t2(1 + t2)2(X2 + Y 2)Z2 + 16a2t2Z2((1 − t4)XY + (1 + a2)t2Z2) +

2(3 − 4t2 + 2t4 − 16a2t4 − 4t6 + 3t8)X2Y 2 = 0.

This equation defines a curve Ca,t of genus three over the field Q(a, t). It is well known 
that a curve of genus at least 2 defined over a function field has only finitely many points 
with coordinates in this field. Thus, in order to prove the theorem we must find some 
specialization a0, t0 of the rational parameters a, t, such that the corresponding curve 
Ca0,t0 , has genus at most 1. In particular, the curve Ca,t needs to have singular points. 
Denote the defining polynomial of Ca,t by F = F (X, Y, Z). Now Ca,t has singular points 
when the system of equations

F (X,Y, Z) = ∂XF (X,Y, Z) = ∂Y F (X,Y, Z) = ∂ZF (X,Y, Z) = 0 (5)

has rational solutions. In order to find solutions of this system, consider the ideal

Sing = < F, ∂XF, ∂Y F, ∂ZF >

and compute its Gröbner basis. The basis contains the polynomial −a2(1 +a2)t6(1 +2at −
t2)(−1 + 2at + t2)Z7, and to obtain something non-trivial, we require a = ±(1 − t2)/2t. 
We choose without loss of generality a = (1 − t2)/2t (the other sign corresponds to 
solutions in which x is replaced by −x). Now, F = G2, where

G(X,Y, Z) = (t2 − 1)((t2 + 1)X2 + 2(t2 − 1)XY + (t2 + 1)Y 2 − (t2 + 1)Z2)

and by abuse of notation we are working with the curve Ca,t : G(X, Y, Z) = 0 of degree 2 
defined over the rational function field Q(t). The genus of Ca,t is 0, and moreover, there 
is a Q(t)-rational point (0, 1, 1) lying on Ca,t. This point allows the parametrization of 
Ca,t in the following form:

X = 2u((1− t2)u+(t2 +1)v), Y = (t2 +1)(u2−v2), Z = (t2 +1)(u2 +v2)−2(t2−1)uv.

Recalling that P = X/Z, Q = Y/Z and using the expressions for R, S at (4), x, y at 
(2), we get that for a = (1 − t2)/2t there is the following parametric solution of the 
system (1):
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x =
4tu(v2 − u2)

(
(t2 − 1)u− (t2 + 1)v

)
((t2 + 1)u2 − 2(t2 − 1)uv + (1 + t2)v2)2

,

y =
2u ((t− 1)u− (t + 1)v) ((t + 1)u− (t− 1)v)

(
(t2 − 1)u− (t2 + 1)v

)
((t2 + 1)u2 − 2(t2 − 1)uv + (1 + t2)v2)2

.

To finish the proof, note that the rational map a : R � t �→ 1−t2

2t ∈ R is continuous and 
has the obvious property

lim
t→−∞

a(t) = +∞, lim
t→+∞

a(t) = −∞.

The density of Q in R together with the properties of a(t) immediately imply that the 
set a(Q) ∩ R+ is dense in R+ in the Euclidean topology. The theorem follows. �
Remark 2.2. Observe that the construction presented in the proof of Theorem 2.1 allows 
deduction of the following simple result.

Theorem 2.3. Let K be a number field and suppose that 
√

2 ∈ K. Then the set of 
K-rational points with K-rational distances to the vertices of the square R1 is infinite.

Proof. Let a = 1 and take t = 1 +
√

2. Then 1 +2at −t2 = 0 and using the parametrization 

constructed at the end of Theorem 2.1 (with v = 1) we get that for

x = u(u−
√

2 )(1 − u2)
(u2 −

√
2u + 1)2

,

y = (3 − 2
√

2 )u(
√

2(u− 1) − 2)(
√

2(u− 1) +
√

2 )((1 +
√

2 )u−
√

2 − 2)
2(u2 −

√
2u + 1)2

and any given u ∈ K such that 
√

2u2−2u +
√

2 	= 0, the distance of the point P = (x, y)
to the vertices P1, P2, P3, P4 of R1 is K-rational. �
Remark 2.4. The construction of a’s and the corresponding solutions x, y of the system 
(1) presented in the proof of Theorem 2.1 has one aesthetic disadvantage. In order that 
(x, y) lie inside the rectangle R, it is necessary that x, a − x, y, 1 − y, all be positive. 
However,

x (a− x)y(1 − y) = −4u2(u2 − v2)2 (((1 − t)u + (1 + t)v)((1 + t)u + (1 − t)v))2 ×(
((1 − t2)u + (1 + t2)v)((1 + 2t− t2)u + (1 + t2)v)((1 − 2t− t2)u + (1 + t2)v)

((1 + t2)u2 + 2(1 − t2)uv + (1 + t2)v2)4

)2

which is evidently negative. Thus the point (x, y) can never lie within the rectangle R. 
A natural question arises therefore as to whether it is possible to find a positive rational 
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number a such that the system (1) has rational solutions x, y with x, a − x, y, 1 − y, all 
positive? The answer is yes, on account of the family

a = 2t
t2 − 1 , x = t

t2 − 1 , y = 1
2

where x, a − x, y, 1 − y are all positive when t > 1; however, this family is rather 
uninteresting, in that correspondingly P = Q = R = S. An equivalent question was 
posed by Dodge in [6] with an answer given by Shute and Yocom. They proved that if 
pi, qi, ri are Pythagorean triples for i = 1, 2, and A = p1q2 + p2q1, B = p1p2 + q1q2, 
then the point M = (p1q2, q1q2) lies inside the rectangle with vertices (0, 0), (A, 0), 
(0, B), (A, B), and, moreover, the distances of M to the vertices of the rectangle are 
rational. Using their result one can prove that the set of those a ∈ Q, such that there 
are infinitely many rational points inside the rectangle Ra with rational distance to its 
vertices, is dense in R+. Indeed, note that the point

P =
(p1q2

B
,
q1q2
B

)

lies inside the rectangle Ra, with a = A/B. To finish the proof, it is enough to show that 
one can find infinitely many Pythagorean triples pi, qi, ri, i = 1, 2, such that a = A/B is 
constant. Put

p1 = 1 − U2, q1 = 2U, r1 = 1 + U2,

p2 = 1 − V 2, q2 = 2V, r2 = 1 + V 2

and then

A(U, V ) = 2(U + V )(1 − UV ), B(U, V ) = (1 + U − (1 − U)V )(1 − U + (1 + U)V ).

Since the rectangles Ra and R1/a are equivalent under rotation by ninety degrees and 

scaling, we consider only the case 0 < a < 1. Set a = a(t) = 2t
1−t2 , with 0 < t <

√
2 − 1

(the transformation between Ra and R1/a is now given by t ↔ 1−t
1+t ). Define Ct to be 

the curve A(U, V ) = a(t)B(U, V ):

Ct : (U + V )(1 − UV )(1 − t2) − t(1 + U − (1 − U)V )(1 − U + (1 + U)V ) = 0.

The triple (t, U, V ) corresponds to a point P with rational distances to the vertices of Ra

(with a = a(t)) precisely when

0 <
p1q2

<
A
, 0 <

q1q2
< 1, (6)
B B B
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that is, when

V (1 − U2)
Δ

> 0, U(1 − V 2)
Δ

> 0, UV

Δ
> 0, (1 − U2)(1 − V 2)

Δ
> 0, (7)

where

Δ = (1 + U − (1 − U)V )(1 − U + (1 + U)V ) = (1 − U2)(1 − V 2) + 4UV.

Our strategy is to show that the curve Ct contains infinitely many rational points in the 
unit square 0 < U < 1, 0 < V < 1, when the inequalities (7) clearly hold, so that the 
inequalities (6) will follow.

The equation for Ct defines the hyperelliptic quartic curve:

Ct : W 2 = ((t2 − 1)U2 − 4tU + 1 − t2)2 + 4(tU2 − (t2 − 1)U − t)2,

where W = 2(t − U)(1 + tU)V + ((t − 1)U − t − 1)((t + 1)U + t − 1). Now Ct contains 
the point R = (0, t2 + 1), and a cubic model Et for Ct is given by

Et : Y 2 = X(X + (t2 − 2t− 1)2)(X + (t2 + 2t− 1)2).

The curve Et contains the point H(X, Y ) = (−(1 + t2)2, 4t(1 − t4)), and it is readily 
checked that H is of infinite order in Et(Q(t)). We now apply theorems of Silverman [16, 
p. 368] and of Hurwitz [8] (see also Skolem [17, p. 78]). Silverman’s theorem states that if 
Et is an elliptic curve defined over Q(t) with positive rank, then for all but finitely many 
t0 ∈ Q, the curve Et0 obtained from the curve Et by the specialization t = t0 has positive 
rank. From this result it follows that for all but finitely many t0 ∈ Q the elliptic curve Et0
is of positive rank. (Indeed, a straightforward computation shows that the specialization 
of H at t = t0 is of infinite order in Et0(Q) for all t0 ∈ Q with t0 	= 0, ±1, that is, for all 
t0 giving a non-singular specialization.)

The theorem of Hurwitz states that if an elliptic curve E defined over Q has positive 
rank and one torsion point of order two (defined over the field R) then the set E(Q)
is dense in E(R). The same result holds if E has three torsion points (defined over the 
field R) of order two under the assumption that there is a rational point of infinite order 
on the bounded branch of the set E(R). Here, for 0 < t < 1, the point H satisfies this 
latter condition, since for 0 < t < 1 we have

−(−1 − 2t + t2)2 < −(1 + t2)2 < −(−1 + 2t + t2)2.

Applying the Hurwitz theorem we get that for all but finitely many t0 ∈ Q the set 
Et0(Q) is dense in the set Et0(R). This proves that the set Et0(Q) is dense in the set 
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Et0(R) in the Euclidean topology. As a consequence we get that the set Ct0(Q) is dense 
in the set Ct0(R). This immediately implies that the image of the map

Ct0(Q) � (U,W ) �→ U ∈ R

is dense in R for all but finitely many t0 ∈ Q (which is a consequence of the positivity 
of the polynomial defining the quartic Ct).

In order to finish the proof therefore we need to show that for given rational t ∈
(0, 

√
2−1) we can find infinitely many rational points (U, V ) ∈ Ct(Q) satisfying 0 < U < 1

and 0 < V < 1. Now

V = V (U) = (W (U) − ((t− 1)U − (t + 1))((t + 1)U + t− 1))/(2(t− U)(1 + tU)),

and we consider the connected component of the curve that passes through the point 
(U, V ) = (0, t), certainly a continuous function on the interval 0 < U < t. Using

dV

dU
= −1 + t2 − 2tU + 4tV + 2UV − 2t2UV + V 2 − t2V 2 + 2tUV 2

1 − t2 − 4tU − U2 + t2U2 + 2tV − 2UV + 2t2UV − 2tU2V

we compute that dVdU (0, t) = − (−1−2t+t2)(−1+2t+t2)
(1+t2) < 0. Taking dVdU in the form

dV

dU
= − (1 + U2)(t− V )V (1 + tV )

(1 + V 2)(t− U)U(1 + tU) ,

then the derivative can vanish for 0 < U < t only when V = −1/t (forcing U = 0), 
0 (with U = −1/t, t), t (with U = 0). Accordingly dVdU has constant sign (negative) for 
0 < U < t, so that V (U) is a decreasing function on the interval 0 ≤ U < t. Accordingly, 
0 ≤ U < t implies 0 < V ≤ t on this component of the curve. Thus the curve Ct contains 
infinitely many rational points in the square 0 < U < t, 0 < V < t. The situation is 
graphed in Fig. 1.

Summing up, for all but finitely many t ∈ (0, 
√

2 − 1) we can find infinitely many 
rational points satisfying the conditions (7) and the equation A(U, V ) = a(t)B(U, V ). 
This implies that for all but finitely rational numbers t ∈ (0, 

√
2− 1), the corresponding 

point P lies inside the rectangle Ra(t). Because of the continuity of the function a = a(t), 
we get that the set a(Q ∩ (0, 

√
2 − 1)) with a(t) having the required property, is dense 

in the set R+ ∩ (0, 1).
The earlier remark about the equivalence of the rectangles R1/a and Ra under rotation 

and scaling now gives the following theorem.

Theorem 2.5. The set of a ∈ Q such that there are infinitely many rational points lying 
inside the rectangle Ra with rational distance to each of the corners P1, . . . , P4 of Ra is 
dense in R+.
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Fig. 1. The graph of Ct when 0 < t <
√

2 − 1.

Table 1
Points in Q2 at rational distance to vertices of Ra.
a x y a x y a x y
13/12 88/399 55/133 12/11 24/77 32/77 19/12 35/204 7/17
9/8 120/169 50/169 17/15 15/14 11/56 13/6 273/500 34/125
9/8 15/56 5/14

Remark 2.6. It is interesting that the family {Et}t∈Q of elliptic curves arising in the 
proof of Theorem 2.5 is an example of a family parameterized by binary quadratic forms 
in the context of the paper [15, Example 5.14]. In the cited paper the computation 
of rank and generators of the Mordell–Weil group of an associated elliptic surface is 
presented.

Remark 2.7. It is interesting that all a’s we have found above are of the form (1 − t2)/2t
or 2t/(1 − t2). A question arises as to whether we can find a’s which are not of this 
form and such that there is a rational point with rational distances to the vertices of 
the rectangle Ra. A small numerical search for other such triples (a, x, y) ∈ Q3 was 
undertaken. We wrote (x, y) = (X/Z, Y/Z), X, Y, Z > 0, and restricted the search to 
height of a at most 20, and X+Y +Z ≤ 1000. The involutions (a, x, y) ↔ (1/a, y/a, x/a), 
(a, x, y) ↔ (a, x − a, y), and (a, x, y) ↔ (a, x, 1 − y) mean that we can restrict attention 
to solutions satisfying a > 1, x ≤ a/2, y ≤ 1/2. Of the solutions found in the range, 
fourteen have x = 0; seventeen have x = a/2; and forty-five have y = 1/2. These all 
imply some equalities between P , Q, R, S, and we list only those solutions found where 
P , Q, R, S are distinct. (See Table 1.)
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3. Special points in QQQ3 at rational distance to the vertices of the unit square

We normalize coordinates so that the unit square lies in the plane z = 0, with vertices 
A = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}.

Proposition 3.1. Let λ be the line in R3 given by λ : x = y = 1
2 . Then the set

Λ = {P ∈ λ(Q) : the distance |PQ| is rational for all Q ∈ A}

is dense in λ(R).

Proof. It is clear that P = (1
2 , 

1
2 , z) ∈ Λ if and only if

1
4 + z2 = T 2,

for some rational T . This equation represents a conic with rational point (z, T ) = (0, 12 ), 
and so is parameterizable, for example, by:

z = 1 − u2

4u , T = 1 + u2

4u .

To finish the proof, note that for the rational map z : R � u �→ 1−u2

4u ∈ R we have 
z(Q) = R. This implies that Λ = {(1

2 , 
1
2 , z(u)) : u ∈ Q \ {0}} is dense in λ(R). �

Theorem 3.2. Let π be the plane in R3 given by π : x = 1
2 . Then the set

Π = {M ∈ π(Q) : the distance |MR| is rational for all R ∈ A}

is dense in π(R).

Proof. Points (1
2 , y, z) which lie in Π are in one-to-one correspondence with rational 

points on the intersection of the following two quadric surfaces in R4:

1
4 + y2 + z2 = P 2,

1
4 + (1 − y)2 + z2 = Q2. (8)

Subtracting the second equation from the first gives y = 1
2 (P 2 −Q2 + 1). So, on elimi-

nating y, the problem of finding rational solutions of (8) is equivalent to finding rational 
points on the surface S given by the equation

S : 4z2 = −2 + 2P 2 − P 4 + 2(P 2 + 1)Q2 −Q4 =: H(P,Q). (9)

From a geometric point of view, the (homogenized version) of the surface S represents 
a del Pezzo surface of degree two which is just a blowup of seven points lying in general 
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position in P2. In particular, this implies that the surface is geometrically rational which 
means that it is rational over C. Note that this immediately implies the potential density 
of rational points on S, which means that there is a finite extension K of Q such that 
S(K) is dense in the Zariski topology. However, we are interested in the density of 
rational points in the Euclidean topology, and it seems that there is no way to use the 
mentioned property in order to address this. We thus provide alternative reasoning.

First, from (8) we have the inequalities |P | ≥ 1/2, |Q| ≥ 1/2, and because H(P, Q) =
H(±P, ±Q) we may suppose without loss of generality that P ≥ 1/2, Q ≥ 1/2. We have 
the point on S defined by (P0(u, v), Q0(u, v), z0(u, v)) =⎛

⎝u4 + 1 − 4u(u2−1)
u2+1 v + 2v2

4(u2 − 1)v ,
u4 + 1 + 4u(u2−1)

u2+1 v + 2v2

4(u2 − 1)v ,
u4 + 1 − 2v2

4(u2 + 1)v

⎞
⎠ ;

and in the domain D := {(u, v) ∈ R2 : u > 1, v > 0}, it is straightforward to verify that 
P0(u, v) has a single extremum at the point

(u0, v0) = (α + α2, (1 + α)(1 + α2)), α2 = 1 +
√

5
2 .

This point is a local minimum, with minimum value P0(u0, v0) = 1
2 . Since P0(u, v) is a 

continuous function in D and limu→1+ P0(u, v) = limv→0+ P0(u, v) = ∞, it follows that 
the set of values {P0(u, v) : u ∈ Q ∩ (1, ∞), v ∈ Q ∩ (0, ∞)} is dense in the real interval 
(1
2 , ∞). Next, consider the equation

C : 4Z2 = H(P0(u, v), Q),

which we regard as defining a curve C over Q(u, v). The curve possesses the point 
(Q, Z) = (Q0(u, v), z0(u, v)), and has cubic model

E : y2 = x3 −
(
(1 + u2)2(1 + u4)2 + 8u(1 − u8)v + 4(5 + 6u2 − 14u4 + 6u6 + 5u8)v2 +

16u(1 − u4)v3 + 4(1 + u2)2v4)x2 + 16(u4 − 1)2v2((1 + u2)(1 + u4) +

2(1 − u)(1 + u)3v + 2(1 + u2)v2)((1 + u2)(1 + u4) −
2(1 − u)3(1 + u)v + 2(1 + u2)v2)x.

It is easy to check that if u′, v′ ∈ Q, then the curve Eu′,v′ obtained from E by 
the specialization u = u′, v = v′ is singular only when u = 1 or v = 0. However, 
the sets {1} × Q, Q × {0} have empty intersection with D. Thus, for all (u′, v′) ∈
(Q × Q) ∩ D =: D′, the specialized curve Eu′,v′ is an elliptic curve. Furthermore, we 
note that for each u′, v′ ∈ Q, Eu′,v′ has three points of order 2 defined over R (this is a 
simple consequence of the positivity of the discriminant of the polynomial defining the 
curve E), with x-coordinates 0 < r1 < r2, so that (0, 0) lies on the bounded component 
of the curve.
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The image Ru,v on E of the point (−Q0(u, v), z0(u, v)) is of infinite order as element 
of the group E(Q(u, v)). For any given u′ ∈ Q ∩ (1, ∞) it is straightforward to compute 
the set of rational numbers v′ ∈ Q ∩ (0, ∞) such that the point Ru′,v′ is of finite order 
on Eu′,v′ ; this set is finite in consequence of Mazur’s theorem. Applying Silverman’s 
theorem, for given u′ ∈ Q ∩ (1, ∞) then for all but finitely many v′ ∈ Q the point Ru′,v′

is of infinite order on the curve Eu′,v′ .
Now choose sequences (un)n∈N, (vn)n∈N of rational numbers such that

un ∈ Q ∩ (1,∞), lim
n→+∞

un = α + α2, vn ∈ Q ∩ (0,∞), lim
n→+∞

vn = (1 + α)(1 + α2),

so that limn→+∞ P0(un, vn) = 1/2.
With Run,v′ of infinite order on Eun,v′ , then either Run,v′ or Run,v′ + (0, 0) lies on 

the bounded component of the curve, and we can apply the Hurwitz theorem as before 
to deduce that the set Eun,v′(Q) is dense in the set Eun,v′(R). This immediately implies 
that the set E(Q) is dense in the set E(R). Because E is birationally equivalent to C, 
we get that C(Q) is dense in C(R). Because

⋃
n∈N

{P0(un, v
′) : v′ ∈ Q ∩ (0,∞)}

is dense in (1
2 , ∞), it follows that S(Q) ∩ {(P, Q, z) : P > 1/2} is dense in the Euclidean 

topology in the set S(R) ∩ {(P, Q, z) : P > 1/2}. Our theorem follows. �
In the following discussion we present an idea which can be used alternatively in the 

proof. However, we were unable to perform all necessary computations.
The proof could be simplified if we were able to demonstrate finiteness of the set of 

(u′, v′) ∈ D′ for which the point Ru′,v′ is of finite order in E(Q), for then the theorems 
of Silverman and Hurwitz could be applied directly without the necessity of selecting 
limiting sequences. However, this computation is difficult. By Mazur’s theorem the point 
Ru′,v′ on Eu′,v′ is of finite order provided mRu′,v′ = O for some m ∈ {2, . . . , 10, 12}. Let

mRu,v =
(
xm

d2
m

,
ym
d3
m

)
,

where xm, ym, dm ∈ Q[u, v] for m = 2, . . . , 10, 12. We consider the denominator of the 
x-coordinate of the point mRu′,v′ and define the curve Cm : dm(u, v) = 0. The set 
Cm(D′) of points in D′ lying on Cm parameterize those pairs (u′, v′) ∈ D′ which lead to 
Ru′,v′ of order (dividing) m. Consider the map

Φ : Cm(D′) � (u, v) �→ u ∈ Q.

and put
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B :=
12⋃

m=2
Φ(Cm(D′)),

where for m = 7, 11 we put Cm(D′) = ∅. Indeed, the case m = 7 is impossible due 
to the existence of the rational point (0, 0) of order 2 on Eu′,v′ and the fact that the 
torsion group of Eu′,v′ cannot be isomorphic to Z2×Z7 � Z14. From the definition of B, 
if u′ /∈ B then the point Ru′,v′ is of infinite order on Eu′,v′ for all rational v′ > 0. In 
theory at least it is possible to give a precise description of the set B. Indeed, for given 
m the polynomial dm may be factorized as dm = f1,m · . . . · fkm,m in Q[u, v], where 
fi,m is irreducible in Q[u, v]. Thus dm(u, v) = 0 if and only if fi,m(u, v) = 0 for some 
i ∈ {1, 2, . . . , km}. The equation fi,m(u, v) = 0 defines an irreducible curve, say Ci,m, 
and thus

B =
12⋃

m=2

km⋃
i=1

Φ(Ci,m(D′))

(where we define Ci,7(D′) = Ci,11(D′) = ∅). For example, we have d2(u, v) = (u2−1)(u4−
2v2 + 1)f4,2(u, v)f5,2(u, v). The curve C3,2 : u4 − 2v2 + 1 = 0 is of genus 1 and the only 
rational points on C3,2 satisfy |u| = |v| = 1. The genus of C4,2 is 3 and the genus of C5,2

is 19; thus by Faltings’s theorem these curves contain only finitely many rational points. 
However, we are unable to compute the corresponding sets. Matters are even worse for 
m ≥ 3. It is a non-trivial task to compute the factorization of dm and even when this has 
been done, it is still necessary to compute the genus of the corresponding curves. Indeed, 
although the factorization of multivariate polynomials with rational coefficients can be 
computed in polynomial time [12], sometimes, especially in the case of polynomials of 
high degree, this procedure is time and memory consuming.

When m = 3 we were able to compute that d3(u, v) = (u2 −1)(u4 −2v2 +1)f4,3(u, v), 
where f4,3 is irreducible of degree 72. A few hours of computation was needed in order 
to check that the genus of C4,3 is ≥ 65. To get this inequality we reduce the curve C4,3

modulo 5 and observe that f4,3 ∈ F5[u, v] is irreducible and degQ[u,v] f4,3 = degF5[u,v] f4,3. 
We thus get the inequality genusC(C4,3) ≥ genusF5

(C4,3) = 65, where the last equality 
was obtained via computation in Magma [13]. When m = 4 we have d4(u, v) = (u2 −
1)(u4 − 2v2 + 1)f4,4(u, v)f5,4(u, v), where deg f4,4 = 36 and deg f5,4 = 72. Using similar 
reasoning as for m = 3, the genus of C4,4 is ≥ 29 and the genus of C5,4 is ≥ 113
(in this case we performed calculations over F3). When m = 5 we have d5(u, v) =
(u2−1)(u4−2v2 +1)f4,5(u, v), where deg f4,5 = 216. We were unable to finish the genus 
calculations in this case: Magma was still running after three days. However, we expect 
that these computations can be performed and believe that in each case the genus of the 
corresponding curve is ≥ 2 which would imply (via the Faltings theorem) that the set 
B is finite. All computations were performed on a typical notebook with 8 GB of RAM 
and Intel i7 processor.
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Remark 3.3. The combination of the theorems of Hurwitz and Silverman which allows 
proof of the density results is a very useful tool and can be used in other situations too; 
see [2,4,18].

Remark 3.4. It is clear that the same result as in Proposition 3.2 can be obtained for 
the plane given by the equation y = 1

2 .

We are able to prove the following result (which falls short of being a density state-
ment) concerning the existence of rational points on the plane x = y with rational 
distances to elements of A.

Proposition 3.5. Let π be the plane in R3 given by π : x = y. Then the set

Π = {P ∈ π(Q) : the distance |PQ| is rational for all Q ∈ A}

contains images of infinitely many rational parametric curves.

Proof. We now have
⎧⎪⎪⎨
⎪⎪⎩

2x2 + z2 = P 2,

2x2 − 2x + 1 + z2 = Q2,

2(x− 1)2 + z2 = S2.

(10)

Thus

P 2 − 2Q2 + S2 = 0, x = 1/2 + (P 2 −Q2)/2, z2 = P 2 − 2x2.

The former is parametrized by

τ P = m2 + 2m− 1, τ Q = m2 + 1, τ S = m2 − 2m− 1,

giving

x = 1/2 − 2m(1 −m2)/τ2, (τ2z)2 = 1/2(τ2 − 8m2)(−τ2 + 2(1 −m2)2).

Regard the latter as an elliptic quartic over Q(m). Under the quadratic base change 
m = 4k/(2 + k2), the curve becomes, with τ = t/(2 + k2)2, Z = t2z,

C : Z2 = −1
2(t2 − 128k2(2 + k2)2)(t2 − 2(4 − 12k2 + k4)2),

which has a point at
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(t, Z) =
( 4(2 + k2)2(4 − 12k2 + k4)

(12 − 4k2 + 3k4) ,

4(4 − k4)(4 − 12k2 + k4)(16 − 352k2 − 104k4 − 88k6 + k8)
(12 − 4k2 + 3k4)2

)
.

A cubic model of the curve is

E : Y 2 = X(X − (4 − 16k − 12k2 − 8k3 + k4)2)(X − (4 + 16k − 12k2 + 8k3 + k4)2),

with point of infinite order Q = (X, Y ), where

X = (2 + k2)2(12 − 4k2 + 3k4)2

(−2 + k2)2 ,

Y = 8(2 + k2)(−16 + 20k2 + k6)(−4 − 5k4 + k6)(12 − 4k2 + 3k4)
(−2 + k2)3 .

We do not present explicitly the map ϕ : C → E because the formula is unwieldy. Note 
that the existence of Q of infinite order on E implies the Zariski density of rational points 
on the surface E (using the same reasoning as in the proof of the previous theorem). 
Computing ϕ−1(mQ) for m ∈ Z, and then the expressions for x, z, we get rational 
parametric solutions of the system (10). This observation finishes the proof. �
Remark 3.6. The simplest parametric solution of (10) that we find is

x = y = (4 + 2k − 2k2 + k3)(2 − 2k + k2 + k3)(4 − 16k − 12k2 − 8k3 + k4)
2(2 + k2)3(4 − 12k2 + k4) ,

z = (2 − k2)(16 − 352k2 − 104k4 − 88k6 + k8)
4(2 + k2)3(4 − 12k2 + k4) .

4. Points in QQQ3 at rational distance to the vertices of the unit square

We consider here the problem of finding points in Q3 that lie at rational distance to 
the vertices of the unit square, i.e. we do not assume any additional constraints on the 
coordinates of the points. From the previous section we know that there is an infinite set 
M of rational curves lying in the plane x = 1/2 (or in the plane x = y) with the property 
that each rational point on each curve C ∈ M has rational distance to the vertices of 
the unit square. A question arises whether in the more general situation considered here 
we can expect the existence of rational surfaces having the same property. Moreover, 
can any density result be obtained in this case? Unfortunately, we are unable to prove 
any density result. However, we show that there are many rational points in Q3 lying at 
rational distance to the vertices of the unit square.

Before stating the principal result of this section, let us recall the notion of unira-
tionality of an (affine) algebraic variety V ⊂ km, where k is a field and m ∈ N≥2. We 
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say that V is unirational over k if there exists a rational map

ϕ : kn ��� V

defined over k such that V is the closure of the image of ϕ. More precisely, there is an 
open set U ⊂ kn such that ϕ(U) = V (in the Zariski topology). The map ϕ is called 
a rational parametrization of V . It can be shown that V is unirational over k if there 
exists an injection of k-algebras ψ : k[V ] ↪→ k(x1, x2, . . . , xn). A stronger notion is that 
of rationality. We say that V is rational over k if it admits a rational parametrization
ϕ : kn ��� V such that the induced field extension k(V ) ↪→ k(x1, . . . , xn) is an iso-
morphism. It is clear that each rational variety is unirational. We should note that in 
general it is a difficult problem to determine whether or not a given variety is unirational 
or rational. In the case of curves the notion of unirationality and rationality are the same 
(Lüroth’s theorem). The same is true in the case of surfaces defined over an algebraically 
closed field (Castelnouovo’s theorem). In the case of dimension at least 3 these notions 
are different and depend on k. For example, there are cubic hypersurfaces which are uni-
rational over Q, but not rational even over C; see [5]. In fact, for any field k, a smooth 
cubic hypersurface with k-rational point is k-unirational [10]. It is also known that no 
smooth quartic threefold is rational (and there do exist unirational quartic threefolds) 
[9]. The interested reader can find a good introduction to these and related topics in [11].

We are ready to prove the following:

Theorem 4.1. Put A = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} and consider the set

F := {P ∈ Q3 : the distance |PQ| is rational for all Q ∈ A}.

Then the algebraic variety parameterizing the set F is unirational over Q.

Proof. It is clear that points in F are in one-to-one correspondence with rational points 
on the intersection in R7 of the following four quadratic threefolds:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 + y2 + z2 = P 2,

(1 − x)2 + y2 + z2 = Q2,

x2 + (1 − y)2 + z2 = R2,

(1 − x)2 + (1 − y)2 + z2 = S2.

(11)

We immediately have

x = 1
2(P 2 −Q2 + 1), y = 1

2(P 2 −R2 + 1), (12)

and P 2 −R2 = Q2 − S2. All rational solutions of the latter are given by

P = uX + Y, Q = uX − Y, R = uY + X, S = uY −X,
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and then from (12),

x = 2uXY + 1
2 , y = 1

2(u2 − 1)(X2 − Y 2) + 1
2 .

Finding points on the system (11) now reduces to studying the algebraic variety

S : V 2 = G(u,X, Y ),

where V = 2z and the polynomial G is given by

G(u,X, Y ) = −2 + 2(u2 + 1)(X2 + Y 2) − (u2 − 1)2(X2 − Y 2)2 − 16u2X2Y 2.

The dimension of S is 3. However, we can view the variety S as a del Pezzo surface of 
degree two defined over the field Q(u). It is known then that the existence of a suffi-
ciently general Q(u)-rational point on S implies Q(u)-unirationality, and in consequence 
Q-unirationality, of S (see Manin [14, Theorem 29.4]). However, it seems that there is 
no general Q(u)-rational point on S. Thus it is natural to ask how one can construct a 
rational base change u = ϕ(t) such that the surface Sϕ : V 2 = G(ϕ(t), X, Y ) defined 
over the field Q(t), contains a Q(t)-rational point. We present the following approach 
to this problem. Suppose that Q0 = (u0, X0, Y0, V0) is a rational point with non-zero 
coordinates lying on S. We construct a parametric curve L lying on S as follows. Define 
L by equations

L : u = u0, X = T + X0, Y = pT + Y0, V = qT 2 + tT + V0,

where t is a rational parameter and p, q, T are to be determined. With u, X, Y , V so 
defined, V 2 −G(u, X, Y ) =

∑4
i=1 Ai(p, q)T i. The expression A1 is linear in p and takes 

the form A1 = pB1 + B0 + 2tV0, where B0, B1 depend only on the coordinates of the 
point Q. In particular, A1 is independent of q; so the equation A1 = 0 has a non-zero 
solution for p if and only if B1 	= 0. The expression for B1 is

B1 = 4Y0((−u4
0 + 10u2

0 − 1)X2
0 + (u2

0 − 1)2Y 2
0 − u2

0 − 1).

Next, observe that A2 = C2p
2 + C1p + C0 + 2qV0 + t2, where Ci depend only on the 

coordinates of the point Q0 for i = 0, 1, 2, and thus A2 = 0 can be solved for q precisely 
when V0 is non-zero. To sum up, the system A1 = A2 = 0 has a non-trivial solution for 
p, q as rational functions in Q(t) when B1V0 	= 0. With p, q computed in this way:

V 2 −G(u,X, Y ) = T 3(A3(p, q) + A4(p, q)T ).

If A3A4 	= 0 as a function in t then the expression for T that we seek is given by T =
−A3(p, q)/A4(p, q). Thus if the point Q0 = (u0, X0, Y0, V0) satisfies certain conditions, 
then there exists a rational curve on the surface Su0 : V 2 = G(u0, X, Y ). Moreover, the 
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curve constructed in this manner can be used to produce rational expressions for P , Q, 
R, S and in consequence rational expressions for x, y, z satisfying the system (11).

Let X = X ′(t), Y = Y ′(t) be parametric equations of the constructed curve. The 

polynomial G is invariant under the mapping (u, X, Y ) �→
(

X
Y , uY, Y

)
and thus we 

can define a non-constant base change u = ϕ(t) = X ′(t)/Y ′(t) such that the surface 
Sϕ : V 2 = G(ϕ(t), X, Y ) contains the Q(t)-rational point (X, Y ) = (u0Y

′(t), Y ′(t)). 
Using the cited result of Manin we get Q(t)-unirationality of Sϕ and in consequence 
Q-unirationality of S.

Thus in order to finish the proof it suffices to find a suitable point Q0 on the three-
fold S. It is straightforward to check that all the required conditions on Q0 are met on 
taking

(u0, X0, Y0, V0) =
(
2, 1

12 ,
19
36 ,

7
27

)
.

With this choice of Q0, the expressions for x, y, z arising from the constructed parametric 

curve are as follows:

x = 3(5 522 066 829 177 276 301 427 600− 258 403 606 687 492 419 505 600t

+ 24 350 105 869 790 104 153 088t2 − 930 272 613 423 360 964 576t3

+ 39 295 267 680 627 366 536t4 − 1 085 485 845 235 095 088t5

+ 24 133 448 660 417 792t6 − 401 146 604 231 320t7 + 3 899 504 263 625t8)/Δ2,

y = 30(3 992 136 439 221 148 602 640 − 6 939 554 120 499 388 567 712t

+ 117 488 065 643 083 258 096t2 − 13 393 876 262 858 078 048t3

+ 411 476 041 942 299 568t4 − 13 249 457 441 223 848t5

+ 681 815 047 971 100t6 − 7 562 115 944 888t7 + 337 499 289 355t8)/Δ2,

z = 714(3 779 374 597 422 498 556 400 + 529 318 935 972 209 201 600t

− 977 278 343 015 269 168t2 + 1 745 565 618 326 470 736t3

− 10 290 117 484 952 896t4 + 1 635 035 001 144 368t5

− 3 620 551 914 412t6 + 458 263 598 420t7 + 118 863 425t8)/Δ2,

where

Δ = 18(221 769 748 580− 3 052 768 504t+ 670 128 264t2 − 6 059 132t3 + 500 425t4). �
Remark 4.2. The point (x, y, z) satisfies 0 < x, y < 1 for values of t satisfying t <
−10.9337, or t > 28.2852.
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Table 2
Points in Q3 at rational distance to the vertices of the unit square.
x y z x y z
41/27 77/108 28/27 1/35 37/105 17/140
5/54 35/108 7/54 161/80 587/300 7/25
83/125 549/500 14/75 37/156 987/2704 119/676
1/189 283/756 31/189 232/189 493/756 59/189
113/190 2369/1900 287/2850 202/195 213/325 161/1300
383/348 5397/1682 2429/1682 571/476 2419/2975 94/425
203/594 119/1188 469/594 1589/594 985/1188 427/594
1/756 127/1512 307/756 1436/847 7967/3388 992/847
127/1029 341/1372 307/343 251/1029 401/1372 223/343
791/1210 5299/3630 2569/2420 1571/1210 7487/7260 509/1210
1906/2541 4019/3388 360/847 2185/2541 3819/3388 345/847
3059/2738 4487/5476 3059/8214

Notwithstanding the large coefficient size in the above parameterization, there seem 
to be many points in Q3 at rational distance to the vertices A of the unit square. 
A (non-exhaustive) search finds the following points (x, y, z) ∈ Q3 of height at most 104, 
x 	= 1

2 , x 	= y, having rational distances to the vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)
of the unit square, and which lie in the positive octant. We list only one point under the 
symmetries x ↔ 1 − x, y ↔ 1 − y, x ↔ y. (See Table 2.)

We are motivated to make the following conjecture.

Conjecture 4.3. Put A = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} and consider the set

F := {P ∈ Q3 : the distance |PQ| is rational for all Q ∈ A}.

Then F is dense in R3 in the Euclidean topology.

5. Points with rational distances from the vertices of a tetrahedron

Let P0, P1, P2, P3 be given points in Q3, not all lying on a plane. Without loss of 
generality we may assume that P0 = (0, 0, 0). Put Pi = (ai1, ai2, ai3) for i = 1, 2, 3, and 
define dij = |PiPj | for 0 ≤ i < j ≤ 3, i.e. dij is the distance between the points Pi, Pj . 
The constraint on the points Pi implies that the points define the vertices of a genuine 
tetrahedron with non-zero volume, so that the determinant of the matrix [aij]1≤i,j≤3 is 
non-zero. Let P = (x, y, z) be a point in Q3 with rational distance to each of the points 
P0, P1, P2, P3. The corresponding system of Diophantine equations is thus

{
x2 + y2 + z2 = Q2

0

(x− ai1)2 + (y − ai2)2 + (z − ai3)2 = Q2
i , for i = 1, 2, 3,

or equivalently, on replacing the second, third, and fourth equations by their differences 
with the first equation,
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{
x2 + y2 + z2 = Q2

0

ai1x + ai2y + ai3z = 1
2(Q2

0 −Q2
i + d2

0i), for i = 1, 2, 3.
(13)

Since the determinant of the matrix A = [aij ]1≤i,j≤3 is non-zero, the (linear) system 
consisting of the last three equations from (13) can be solved with respect to x, y, z. 
The solution takes the following form:

x = detA1

detA , y = detA2

detA , z = detA3

detA (14)

where Ai, for i = 1, 2, 3, is obtained from the matrix A by replacing the i-th column 
by the column comprising the right-hand sides of the last three equations from (13). In 
particular, x, y, z are (inhomogeneous) quadratic forms in four variables Q0, Q1, Q2, Q3, 
with coefficients in K := Q({aij : i, j ∈ {1, 2, 3}}). Putting these computed values of 
x, y, z into the first equation, there results one inhomogeneous equation of degree four in 
four variables. We homogenize this equation by introducing new variables Qi = Ri/R4

for i = 0, 1, 2, 3, and work with the quartic threefold, say X , defined by an equation of 
the form F(R) = 0, where for ease of notation we put R = (R0, R1, R2, R3, R4). Using 
Mathematica, the set Sing(X ) of singular points of the variety X is computed to be

Sing(X ) = {(0,±d01,±d02,±d03, 1), (±d01, 0,±d12,±d13, 1),

(±d02,±d12, 0,±d23, 1), (±d03,±d12,±d23, 0, 1), (1,±1,±1,±1, 0)}.

Thus for generic choice of P1, P2, P3, the variety X contains 40 isolated singular points.
We now prove that for generic choice of P1, P2, P3, there is a solution depending on 

three (homogeneous) parameters of the equation defining the variety X . We thus regard 
aij as independent variables and work with X as a quartic threefold defined over the 
rational function field K. In order to find a parameterization we will use the rational 
double point P = (1, 1, 1, 1, 0) lying on X and the idea used in the proof of Theorem 4.1. 
Put

R0 = T + 1, Ri = (pi + 1)T + 1, for i = 1, 2, 3, and R4 = p4T,

where pi and T are to be determined. On substituting these expressions into the equa-
tion F(R) = 0, there results T 2(C2 + C3T + C4T

2) = 0, where Ci is a homogeneous
form of degree i in the four variables p1, . . . , p4. Certainly under the assumption on the 
points Pi, i = 0, 1, 2, 3 (namely, detA 	= 0), the form C2 is non-zero as an element of 
K[p1, p2, p3, p4]. Indeed, we have C2(0, 0, 0, p4) = −(detA)2p2

4. We also checked that for 
a generic choice of the points P1, P2, P3, the polynomial C2 is genuinely dependent upon 
the variables p1, . . . , p4, in that there are no linear forms Lj(p1, ..., p4), j = 1, 2, 3, such 
that C2(L1, L2, L3) is a form in three or fewer variables.

Consider now the quadric Y : C2(p1, p2, p3, p4) = 0, regarded as a quadric defined 
over K. There are K-rational points on Y, namely Yj = (a1j , a2j , a3j , 1), j = 1, 2, 3, 



124 A. Bremner, M. Ulas / Journal of Number Theory 158 (2016) 104–133
and so in particular, Y can be rationally parameterized with parametrization of the 
form pi = Xi(q1, q2, q3), for homogeneous quadratic forms Xi, i = 1, 2, 3, 4. Thus, after 
the substitution pi → Xi there results an equation T 3(C ′

3 + C ′
4T ) = 0, where C ′

i =
Ci(X1, X2, X3, X4) and C ′

i 	= 0 as an element of K[q1, q2, q3] for i = 3, 4. This equation has 
a non-zero K-rational root T = ϕ(q1, q2, q3) = −C ′

3/C
′
4 and accordingly we get a rational 

parametric solution in three (homogeneous) parameters of the equation defining X , in 
the form

Q0 = 1
X4(q)

(
1 + 1

ϕ(q)

)
, Qi = 1

X4(q)

(
1 + Xi(q) + 1

ϕ(q)

)
, i = 1, 2, 3,

where we put q = (q1, q2, q3). It is straightforward to check that the image of the map 
Φ : P(K)2 � (q1, q2, q3) �→ (Q0, Q1, Q2, Q3) ∈ X (K) is not contained in a curve lying 
on the variety X . Using now the expressions for Q0, Q1, Q2, Q3, we can recover the 
corresponding expressions for x, y, z given by (14).

It is possible to write down from the Jacobian matrix of R(q1, q2, q3) all the conditions 
on {aij}, i, j ∈ {1, 2, 3}, which guarantee that the parameterization is genuinely depen-
dent on three (homogeneous) parameters. However, we refrain from doing so, because 
the computation is massively memory intensive, and the resulting equations complicated 
and unenlightening. If we choose particular values of aij, then this independence of q1, 
q2, q3 is readily checked (as happens, for example, when P1 = (1, 0, 0), P2 = (0, 1, 0), 
P3 = (0, 0, 1)). In general, there results an explicit rational parameterization in three in-
dependent parameters. There may, however, be some choices of vertices Pi for which this 
approach (with the particular rational double point chosen in the construction) results 
in the image of the map Φ being a curve lying on X .

To sum up, we have the following result.

Theorem 5.1. Let P0 = (0, 0, 0) and let Pi = (ai1, ai2, ai3) be generic points in Q3 for 
i = 1, 2, 3. Then the variety parameterizing the points P ∈ Q3 with rational distances 
to Pi, i = 0, 1, 2, 3 is a quartic threefold X ; and the set of rational parametric solutions 
of the equation defining X is non-empty.

We believe that much more is true.

Conjecture 5.2. Let P0 = (0, 0, 0) and P1, P2, P3 be generic rational points such that 
no three lie on a line and the points do not all lie on a plane. Then the variety, say X , 
parameterizing those P ∈ Q3 with rational distances to Pi, i = 0, 1, 2, 3, is unirational 
over Q.

One can also state the following natural question.

Question 5.3. Let X be defined as in Conjecture 5.2. Is the set X (Q) dense in the Eu-
clidean topology in the set X (R)?
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We expect that the answer is yes.

Remark 5.4. The construction above finds a double infinity of points in Q3 at rational 
distance from the four vertices of the tetrahedron. If we suppose that the initial tetra-
hedron has rational edges, then we thus deduce infinitely many sets of five points in Q3

where the ten mutual distances are rational. We take as example the tetrahedron with 
vertices

P1 = (0, 0, 0), P2 = (1, 0, 0), P3 =
(

11
200 ,

117
800 , 0

)
, P4 =

(
7
25 ,

63
325 ,

21
260

)
.

This is chosen as an example of a tetrahedron, discovered by Rathbun, where the edges, 
face areas, and volume, are all rational. It corresponds to the first example in the list in 
Section D22 of Guy [7]. The explicit parametrization as computed above takes several 
computer screens to display, so we do not present it. However, on computing specializa-
tions, the point with smallest coordinates (minimizing the least common multiple of the 
denominators of x, y, z) that we could find is

(
617
4900 ,

2553
63 700 ,

3
25 480

)
,

which in fact lies within the tetrahedron.

Remark 5.5. The fact in the above proof that the matrix A = [aij ]1≤i,j≤3 is non-singular 
follows from the assumption that the points P0, P1, P2, P3 define a genuine tetrahedron. 
A question arises as to what can be said in the situation when detA = 0? We need to 
consider two cases: where the rank rk(A) is 2 or 1, corresponding respectively to the 
four points being coplanar, and the four points being collinear. Consider first the case 
of rk(A) = 2. Note that we encounter this situation in Section 4. The vectors P1, P2, 
P3 are linearly dependent, and without loss of generality we can assume that P1, P2 are 
linearly independent, so that P3 = pP1 +QP2 for some p, q ∈ Q. It follows that the linear 
forms in x, y, z from the system (13) are linearly dependent. Let Aij be the 2 ×2 matrix 
obtained from A by deleting the i-th row and the j-th column. Then at least one of A31, 
A32, A33 has non-zero determinant. Without loss of generality, suppose detA31 	= 0. 
Solving the first two equations at (13) with respect to y, z:

y = −detA32

detA31
x− 1

2 detA31
(a23d

2
01 − a13d

2
02 + (a23 − a13)Q2

0 − a23Q
2
1 + a13Q

2
2),

z = −detA33

detA31
x− 1

2 detA31
(a22d

2
01 − a12d

2
02 + (a22 − a12)Q2

0 − a22Q
2
1 + a12Q

2
2).

Moreover, Q0, Q1, Q2, Q3 need to satisfy the equation

Q : (p + q − 1)Q2
0 − pQ2

1 − qQ2
2 + Q2

3 = d2
03 − pd2

01 − qd2
02. (15)
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The quadric Q may be viewed as a quadric defined over the function field K := Q({aij :
i = 1, 2, j = 1, 2, 3}). The quadric Q contains the point at infinity (Q0 : Q1 : Q2 :
Q3 : T ) = (1 : 1 : 1 : 1 : 0) and thus Q can be parameterized by rational functions, say 
Qi = fi(R) ∈ K(R), where R = (R0, R1, R2) are (non-homogeneous) coordinates.

Moreover, the numerator of fi is of degree ≤ 2 for i = 0, 1, 2; and the same is true 
for the common denominator of fi, i = 0, 1, 2. Using this parametrization we compute 
the expressions for y, z. Next, substitute the computed values of y, z and Q0 into the 
equation x2 + y2 + z2 = Q2

0. This equation is a quadratic equation in x of the form

C2x
2 + C1x + C0 = 0,

where Ci ∈ K(R) for i = 0, 1, 2. We arrive at the problem of finding rational points on 
the threefold

X : V 2 = C2
1 − 4C0C2 =: F (R)

defined over the field K. The polynomial F is of degree 6. However, one can check that 
with respect to each Ri, i = 0, 1, 2, the degree of F is 4, and thus X can be viewed 
as a hyperelliptic quartic (of genus ≤ 1) defined over the field K(R′), where R′ is a 
vector comprising exactly two variables from R0, R1, R2. We thus expect that for most 
rational points P1, P2, P3 with P3 = pP1 + qP2, there is a specialization of R0, R1 (say), 
to rational numbers such that XR0,R1 represents a curve of genus one with infinitely 
many rational points. Tracing back the reasoning in this case we will get infinitely many 
rational points with rational distances to the points P0, P1, P2, P3.

What can be done in the case when rk(A) = 1 (which corresponds to the points P0, 
P1, P2, P3 being collinear)? In order to simplify the notation, put P1 = (a, b, c) and 
d01 = d. Without loss of generality we can assume that P2 = pP1, P3 = qP1 for some 
p, q ∈ Q \{0}. Then the system (13) comprises just one linear form in x, y, z which needs 
to be represented by three non-homogeneous quadratic forms. More precisely,

ax + by + cz = 1
2(Q2

0 −Q2
1 + d2) = 1

2p (Q2
0 −Q2

2 + p2d2) = 1
2q (Q2

0 −Q2
3 + q2d2). (16)

Let V be the variety defined by the last two equations. After homogenization by Qi �→
Qi/T and simple manipulation, we get

V :
{

Q2
2 = (1 − p)Q2

0 + pQ2
1 + p(p− 1)d2T 2,

Q2
3 = (1 − q)Q2

0 + qQ2
1 + q(q − 1)d2T 2.

The point (Q0 : Q1 : Q2 : Q3 : T ) = (1 : 1 : 1 : 1 : 0) lies on V and can be used 
to find parametric solutions of the system defining V. However, observe that any point 
which lies on V with T 	= 0 allows us to compute the value of z from equation (16). This 
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expression for z depends on x, y, and substituting into the first equation at (13), namely 
x2 + y2 + z2 = Q2

0, we are left with one equation of the form

W : C0x
2 + C1xy + C2y

2 + C3x + C4y + C5 = 0,

where Ci depends on p, q, a, b, c and the solution of the system defining the variety V. 
In general, W is a conic and thus has genus 0. Thus, provided that we can find a rational 
point on W, we can find infinitely many rational points (in fact a parameterized curve) 
with rational distances to the four collinear points P0, P1, P2, P3. As example here, 
assume that d =

√
a2 + b2 + c2 is a rational number. Then the variety V contains the 

rational line

(Q0 : Q1 : Q2 : Q3 : T ) = (u− d/2 : u + d/2 : u− (1/2 − p)d : u− (1/2 − q)d : 1).

In this case (16) reduces to the one equation ax + by + cz = d(d − 2u)/2. Solving for z, 
and performing the necessary computations, the equation for the quadric W takes the 
following form:

V 2 = b2 + c2 − d2 + 4adX − 4(a2 + b2 + c2)X2 = −a2 + 4adX − 4d2X2 = −(a− 2dX)2,

where V = (2(b2 + c2)y − b(d2 − 2du − 2ax))/(c(d − 2u)) and X = x/(d − 2u), the last 
identity following from the equality a2+b2+c2 = d2. From the assumption on rationality 
of d, we can find x, y, z in the following form:

x = a(d− 2u)
2d , y = b(d− 2u)

2d , z = c(d− 2u)
2d ,

with

Q0 = d− 2u
2 , Q1 = d + 2u

2 , Q2 = dp− d− 2u
2 , Q3 = dq − d− 2u

2 ,

giving rational solutions of the original system.

Remark 5.6. Guy [7] gives one parameterized family of tetrahedra which have rational 
edges, face areas, and volume. He also lists nine examples due to John Leech of such 
tetrahedra comprised of four congruent acute-angled Heron triangles appropriately fitted 
together. The six edges of the tetrahedron thus fall into three equal pairs. We discover 
that it is straightforward to write down an infinite family of such tetrahedra as follows.

If the Heron triangle has sides p, q, r, then the area and volume conditions for the 
tetrahedron become

(p + q + r)(−p + q + r)(p− q + r)(p + q − r) = � ,

2(−p2 + q2 + r2)(p2 − q2 + r2)(p2 + q2 − r2) = � .
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Using the Brahmagupta parameterization of Heron triangles, we set

(p, q, r) = ((v + w)(u2 − vw), v(u2 + w2), w(u2 + v2)),

reducing the two conditions above to the single demand

−(u2 − v2)(u2 − w2)(u2 − u(v + w) − vw)(u2 + u(v + w) − vw) = � .

Setting W = w/u, this is equivalent to

−(1 −W 2)
(
u + v

u− v
−W

)(
u− v

u + v
+ W

)
= � .

This elliptic quartic has cubic form

Y 2 = X(X + v2(u2 − v2))(X − u2(u2 − v2)).

Demanding a point with X = 2uv2(u + v) gives

2(3u− v)(−u + 2v) = � ,

parameterized by

(u, v, w) = (m2 + 4, 3m2 + 2), with w = (2m2 + 3)(m2 + 4)
4m2 + 1 .

This in turn leads to the tetrahedron with vertices

P1 = (0, 0, 0),

P2 = (10(m4 − 1)(m4 + 3m2 + 1), 0, 0),

P3 =
(2(m2 − 1)(m2 + 4)(3m2 + 2)2

5 ,
(m2 + 4)(2m2 + 3)(3m2 + 2)(4m2 + 1)

5 , 0
)
,

P4 =
(2(m2 − 1)(2m2 + 3)2(4m2 + 1)

5 ,

− (2m2 + 3)(2m2 − 5m− 2)(2m2 + 5m− 2)(3m2 + 2)
5 ,

4(m2 − 1)m(2m2 + 3)(3m2 + 2)
)
;

edge lengths (p, q, r) given by

p = 10(m4 − 1)(m4 + 3m2 + 1),

q = (m2 + 4)(3m2 + 2)(2m4 + 2m2 + 1),

r = (2m2 + 3)(4m2 + 1)(m4 + 2m2 + 2);
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face areas given by

(m4 − 1)(m2 + 4)(4m2 + 1)(2m2 + 3)(3m2 + 2)(1 + 3m2 + m4);

and volume equal to

1
62 208m(m2 − 1)(m4 − 1)(m2 + 4)(4m2 + 1)(2m2 + 3)2(3m2 + 2)2(1 + 3m2 + m4).

6. The unit cube

Finding an infinity of points in Q3, if indeed such exist, that lie at rational distance 
from the eight vertices (i, j, k), i, j, k = 0, 1, of the unit cube seems to be an intractable 
problem. If we restrict attention to the plane x = y, we are aware of the following two 
points (equivalent under the symmetry x ↔ 1 − x) where distances to the vertices of 
the unit square are rational, and distances to the two cube vertices (1, 0, 1), (0, 1, 1) are 
rational:

(x, y, z) =
(

31
108 ,

31
108 ,

1519
1080

)
,

(
77
108 ,

77
108 ,

1519
1080

)
. (17)

The defining system of equations for this situation is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2x2 + z2 = P 2,

2x2 − 2x + 1 + z2 = Q2,

2(x− 1)2 + z2 = S2,

(1 − x)2 + x2 + (1 − z)2 = T 2.

Then 1 + Q2 − 2z = T 2, so we obtain

z2 = 1/2(1 − 8m2/t2)(−1 + 2(1 −m2)2/t2), 1 + (1 + m2)2/t2 − 2z = T 2.

Equivalently,

2(t2 − 8m2)(−t2 + 2(1 −m2)2) = (t2 + (1 + m2)2 − U2)2,

where U = Tt, Z = t2z. A search over this surface up to a height of 5000 resulted in 
discovering only the point (m, t, U) = (−24, 360, 313) and symmetries, leading to the 
points at (17).
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A point on the plane x = 1/2 at rational distance from the vertices of the cube results 
in four pairs of equal distance, with defining equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/4 + y2 + z2 = P 2,

1/4 + (1 − y)2 + z2 = Q2,

1/4 + y2 + (1 − z)2 = R2,

1/4 + (1 − y)2 + (1 − z)2 = S2,

(18)

and we found no solution. However, if we ask only for three pairs of distances to the cube 
vertices be rational, rather than four, e.g. consider the system of equations defined by 
the first three equations from (18), then we are able to prove the following result.

Theorem 6.1. Let A be the set of rational curves lying on the plane x = 1/2 with the 
property that each rational point on A ∈ A has rational distances to six vertices of the 
unit cube. Then A is infinite.

Proof. We consider only the system of equations defined by the first three equations from 
the system (18) above (other cases are treated in the same manner). The six distances 
now fall into three equal pairs, requiring

y = (P 2 −Q2 + 1)/2, z = (P 2 −R2 + 1)/2,

together with the equation which can be written in homogeneous coordinates in the 
following form:

V : (P 2 −R2)2 + (P 2 −Q2)2 − 2(Q2 + R2)T 2 + 3T 4 = 0.

We prove that the set of rational curves lying on V is infinite. Consider the intersection 
of V with the family of planes La : T = a(P −R). Remarkably, the intersection V ∩ La

defines a singular curve, say C, in the projective plane P2(Q(a)), with singular points 
[P : Q : R] = [1 : ±1 : 1]. In fact, the curve C is of genus 1. By homogeneity we can 
assume that R = 1. Making a change of variables

(P,Q) = (p + 1, pq + 1) with inverse (p, q) =
(
P − 1, Q− 1

P − 1

)

the (inhomogeneous) equation of C takes the form p2H(p, q) = 0, where

H(p, q) = (2+3a4−2(a2 +1)q2 +q4)p2 +4(2− (1+a2)q−q2 +q3)p+4(q2−2q−a2 +2)).

In other words, the curve C is the set-theoretic sum of the (double) line p = 0 and the 
curve of degree 6, given by the equation C′ : H(p, q) = 0. The equation for C′ can be 
rewritten as
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C′ : W 2 = (a2 − 1)q4 − 2(a2 − 1)q3 − (2a2 − 1)2q2 + 2a2(3a2 − 2)q + a2(3a4 − 6a2 + 2),

where we put W = 1
2 (q4 − 2(a2 + 1)q2 + 3a4 + 2)p + q3 − q2 − (a2 + 1)q + 2. In order to 

guarantee the existence of rational points on C′ (and hence on C) we consider a quadratic 
base change a = (t2 +1)/2t. Then a2 − 1 = ((t2 − 1)/2t)2 and thus the curve C′ contains 
a Q(t)-rational point at infinity. The birational model E ′ of the curve C′ is given by the 
equation in short Weierstrass form E ′ : Y 2 = X3 + AX + B, where

A = −108(13t16 − 20t12 + 78t8 − 20t4 + 13),

B = 864(23t24 − 132t20 + 129t16 − 296t12 + 129t8 − 132t4 + 23).

The curve E ′ contains the point of infinite order

Z = (12(2t8 + 3t6 − 2t4 + 3t2 + 2), 108t(t2 + 1)(t8 − 1)).

The point 2Z leads to a non-trivial curve lying on V (the equations for this curve are 
too unwieldy to present explicitly here), and correspond to the following y, z satisfying 
the first three equations of our system:

y = (t48 − 8t47 + 20t46 + 8t45 − 24t44 − 1528t43 + 6684t42 − 4872t41 − 69 302t40

+ 96 040t39 + 771 532t38 − 2 467 368t37 − 4 047 800t36 + 22 047 704t35

+ 12 635 044t34 − 107 433 944t33 − 23 948 593t32 + 342 788 016t31 + 24 622 088t30

− 780 080 048t29 − 638 000t28 + 1 324 015 696t27 − 37 969 832t26 − 1 716 035 152t25

+ 57 538 508t24 + 1 716 035 152t23 − 37 969 832t22 − 1 324 015 696t21 − 638 000t20

+ 780 080 048t19 + 24 622 088t18 − 342 788 016t17 − 23 948 593t16 + 107 433 944t15

+ 12 635 044t14 − 22 047 704t13 − 4 047 800t12 + 2 467 368t11 + 771 532t10 − 96 040t9

− 69 302t8 + 4872t7 + 6684t6 + 1528t5 − 24t4 − 8t3 + 20t2 + 8t + 1)/(2tΔ),

z = (3t48 − 16t47 + 56t46 − 32t45 + 1096t44 − 5696t43 + 15 928t42 + 11 472t41

+ 51 710t40 − 551 056t39 + 1 282 392t38 + 3 181 248t37 − 11 188 440t36 − 701 152t35

+ 39 387 992t34 − 55 013 168t33 − 75 669 523t32 + 272 885 472t31 + 75 471 984t30

− 744 371 648t29 + 210 064t28 + 1 377 115 648t27 − 116 092 816t26 − 1 850 031 968t25

+ 173 321 252t24 + 1 850 031 968t23 − 116 092 816t22 − 1 377 115 648t21 + 210 064t20

+ 744 371 648t19 + 75 471 984t18 − 272 885 472t17 − 75 669 523t16 + 55 013 168t15

+ 39 387 992t14 + 701 152t13 − 11 188 440t12 − 3 181 248t11 + 1 282 392t10

+ 551 056t9 + 51 710t8 − 11 472t7 + 15 928t6 + 5696t5 + 1096t4 + 32t3 + 56t2

+ 16t + 3)/((t2 − 1)Δ),
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Table 3
Points in Q3 with five rational distances to vertices of the unit cube.

x y z d1 d2 d3 d4 d5

77/108 41/27 −28/27 71/36 67/36 49/36 43/36 95/36
83/125 −49/500 −14/75 389/300 349/300 209/300 119/300 409/300

where

Δ = 4(t− 1)(t + 1)(t2 + 1)2(t8 − 4t7 + 10t6 + 12t5 − 14t4 − 12t3 + 10t2 + 4t + 1) ×
(t16 − 4t14 + 168t12 − 492t10 + 718t8 − 492t6 + 168t4 − 4t2 + 1) × (t16 + 4t14

− 32t13 + 232t12 + 160t11 − 756t10 − 320t9 + 1102t8 + 320t7 − 756t6 − 160t5

+ 232t4 + 32t3 + 4t2 + 1).

Computing the points mZ for m = 3, 4, . . . and the corresponding points on C, we get 
infinitely many rational curves lying on V; and the result follows. �

We know (up to symmetry) precisely two points (x, y, z) ∈ Q3, with x 	= 1
2 , x 	= y, 

where the distances to the vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0) of the unit square 
are rational, and where there is also rational distance to a fifth vertex (0, 0, 1) of the unit 
cube. (See Table 3.)
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