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0. Introduction

For p > 3 odd prime, there is, up to twist equivalence, a unique irreducible cuspidal
representation m of GLa(F,) of dimension p — 1, which, when restricted to SLo(F,),
splits into a pair of irreducible representations 7%, 7~ of the same dimension. The group
SLy(F,) acts naturally on the space Sa(I'(p)) of cusp forms of weight 2 with respect
to the principal congruence subgroup I'(p). One might think that 7, 7= occur with
the same multiplicity in So(T'(p)). Indeed, this holds true when p = 1 mod 4. However,
as Hecke showed in [4], the two cuspidal irreducible representations 7%, 7~ of SLy(F,)
have different multiplicities when p = 3 mod 4. One could say that this was a precursor
to the modern theory of L-indistinguishability [6]. Furthermore, Hecke showed that in
this case, the difference in multiplicities m,+ — m -, is exactly h(—p), the class number
of Q(y/—p). Note that there is exactly one more, up to twist equivalence, irreducible
representation 7 of GLy(F,) that also splits into two irreducible representations 7+, 7~
of SLy(F,), upon restriction. In this case, 7 is in the principal series and m,+ = m, -
for all odd p.

The purpose of this work is to extend Hecke’s result to all fundamental discriminants
—D, D > 3 of imaginary quadratic fields K = Q(v/—D) and to provide an alternate geo-
metric proof even for the case when D is a prime p = 3 mod 4. We write the fundamental
discriminant —D of K as —Dgp; - - - p; with ¢t > 0 (the product p; - - - p; being 1 if t = 0),
Dy € {po,4,8} and pg,p1,- - ,pt distinct odd primes such that the typical fundamental
discriminant congruences are satisfied. We consider certain distinctive irreducible repre-
sentations of G = SLy(Z/DZ) described in Section 1; for the moment, it suffices to say
that these representations are (up to isomorphism) partitioned along tuples of the shape
(€0, ,€tle), where ¢; € {£} and e € {£1}. Note that these distinctive representations
agree with Hecke’s representations in the case D = p > 3. Let S3(I'(D)) be the space of
weight 2 cusp forms for the principal congruence subgroup I'(D). The natural action of
G on S3(T'(D)) gives a G-representation, which we denote by (p, S2(T'(D))). Let m, be
the multiplicity of a distinctive representation 7 in p and consider the alternating sum
of multiplicities over distinctive G-representations of type (eg, - - , €t]e)

AMie= > e DY ma (1)

(€0, ,et]e) 1=0  weE(eo,-- ,ecle)

t

Note that by H €;, we clearly mean the product of £1 when ¢; takes values in {£}. The
i=0

main result we prove is as follows:

Theorem. For D > 3, let G = SLy(Z/DZ), where —D is a fundamental discriminant
associated to the imaginary quadratic field Q(v/—D). We may write D as Dgp; - - - pe,
with Dy € {po,4,8}, t > 0. Consider the expression AM, . introduced in (1) above and
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let AMy = AM, 1. Then the following identity relating AM; and the class number h(—D)
of Q(v/—D) holds

0, if Do =4,t =0
sgp, ¢+ 2'[M(—=D) +h(=D/2)],  if Do =8,t=0
AM,; = ¢ sgup, , 2'h(=D), if Do = po; Do = 4,t > 1;

Dy=8,t>1,p1---ps =3 mod 4
Sghp, ¢ 2t [h(—D) + 2h(—D/2)]7 if Dg=8,t>1,p1---p; =1 mod 4,

where sgnp, , € {£1} is given by

17 ZfDOZpOat:07D0:4at:17
Dy =8,t € {0,1}
(pi—D(p;—1) 3
Sglp,.¢ = H (—1) 1 , if Do =po,t >1
0<i<j<t
(pi—D)(p;—1)
II v =", ifDyef48}t>1
1<i<j<t

Note that in the case when D > 3 is an odd prime p = 3 mod 4, we have AMy =
h(—p), so our result matches Hecke’s original theorem. Towards the end of our work,
we came to learn that this extension of Hecke’s result has already been proved up to
a sign for the case of odd discriminants D in a paper of McQuillan [7], though by a
different method. We hope our result is still of some interest for two reasons. First, the
even case is more subtle. Second, our method also makes explicit the sign sgnp, ,, which
was previously unknown even in the odd case.

We prove the main theorem by a geometric argument using the holomorphic Lefschetz
number. The structure of the paper is as follows. The first section sets the necessary nota-
tion in introducing the desired distinctive irreducible representations of G = SLy(Z/DZ)
we are considering for the alternating sum AM; of multiplicities of these representa-
tions into the space Sa(I'(D)). The general idea of the proof consists of computing the
characters Ax¢ e, Xs,(r(p)) and then comparing the resulting expression for AM; with
an analytic formula for the class number. In Section 2, we find the values of the vir-
tual character Axye. Since G acts on the modular curve X (D) = I'(D)\H*, we view
g : X(D) — X(D) as a map on a one-dimensional compact complex manifold for all
g € G. We compute the fixed points of g on X (D) in Section 3, which allows us to
compute the holomorphic Lefschetz number of the map g in Section 4. As the Lefschetz
numbers give us the characters xs,r(p))(g), we have all the ingredients to compute the
alternating sum AM;, which is done in the final two sections of the paper for both Dy
odd and even.
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We note that recently we have come to learn of various analogues of Hecke’s result in
different contexts; for instance, there is an extension for Maass cusp forms in an article
by J. Stopple [10].

1. Ingredients of the main theorem

Let G = SLy(Z/DZ), where —D is a fundamental discriminant associated to the
imaginary quadratic field K = Q(v/—D). We have the following possibilities for D:

t t
po | | pi, with po,p; distinct odd primes s.t. pg Hp,- =3mod4,t>0

=1 i=1
t

i=
D= 4Hpi, with p; distinct odd primes s.t. Hpi =1mod4,t>0
i=1 i=1

t
8 Hpi, with p; distinct odd primes, ¢ > 0.
i=1

t

Thus, we can let D = Dy I_Ipi7 where Dy € {po, 4,8}, t > 0 and the primes satisfy the
i=1

above congruences. The object of interest of the paper is an expression for AM; in terms

of the class number h(—D) of K. In the following, we first introduce the distinctive
G-representations of type (eg,--- ,€e) that appear in the alternating sum AM; ., as
seen in (1).

Since G = SLy(Z/DyZ) x SLy(Fp,) x -+ x SLy(Fp,), all complex irreducible repre-
sentations of G arise from the irreducible representations of SLy(Z/DyZ) and SLy(F,,),
i € [1,t] an integer. Thus an irreducible representation of G can be written as
T = ®Q;m; = (mo,m, - ,m), where mp is an irreducible of SLo(Z/DoZ) and ; is an

irreducible of SLy(F,,) for i € [1,t]. If we denote by x, the character of m, we have
t

Xr = X0 H Xi, where x; is the character of ;.

In orcfer1 to describe a distinctive G-representation m = (mg, 71, ,7), we need to
introduce the types of representations m; that compose it. We are interested in irreducible
representations of GLo(Z/DyZ), respectively GLo(IF,) for p odd prime, that split into two
irreducibles when restricted to SLa2(Z/DyZ), respectively SLo(F,). Let mg, respectively
m;, be one of the two irreducible representations of SLy(Z/DyZ), respectively SLo(Fy,)
that appear as constituents of this restriction from GLs to SLs. We then call such a
representation m = (mp, 71, - - - ) a distinctive representation of G. As we will see later,
there are 4 - 22! such distinctive representations if Dy € {pg,4} and 20 - 2% of them in
the case Dy = 8.

In view of the product representation of SLy(Z/DZ), it suffices to describe what
representations m; can occur in a distinctive G-representation for the two basic cases,
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namely SLj(F,), when p is an odd prime, and SLy(Z/DoZ), when Dy € {4,8}; we
accomplish this in the following subsections.

1.1. p odd prime case

The case of p odd is well known, see [8], Chapters 1,2, p. 1-48 or [2], Chap-
ter 5, Section 5.2, p. 67-73, for example. There are two types of representations
that appear, the ones induced from the Borel subgroup of upper triangular matrices

=q(6)

b
two characters of IF‘, then we can define a character of B by 7 g = 0(a)p(c). The
c

a,ceF ,be IFp} and the cuspidal ones. For the first type, if 6, ¢ are

induced representation to GLy(F,) 19,4 = IndgLZ(]FP ) 7 will be irreducible of dimension

p+1iff 6 # ¢; we have 19 4 = 74 g. Thus there are %(p — 1)(p — 2) such representations.

For o a character of IF)¢, we consider the characters of GLy(F,) given by the determi-
nant function, Xx.(g) = «(detg), which are trivial when restricted to SLo(F,). Since
To,6 @ Xa = Toa,pa, the induced representations above can be considered up to a twist
equivalence. There is, up to twist equivalence, a unique irreducible induced representa-
tion 7,1 that when restricted to SLo(F,) splits into two irreducibles 7%, 77 of the same
dimension; the representation 74 ; is given by the unique nontrivial quadratic character
of F . We refer to the pair of representations 7%, 7~ as irreducibles of SLy(F,) induced
from the Borel subgroup.

On the other hand, the cuspidal representations of GLy(F,) are those that do not
appear in a representation induced from the Borel subgroup. They are associated to
characters A\ of the cyclic group IFPXQ that do not come from characters of ]pr, that is
characters A for which there exists no character p of I such that A(x) = ,u(N]Fp2 JF, (7))
for all x € IFPXQ. For each such character A, there is a corresponding irreducible cuspi-
dal representation my such that 7 = my iff X' = X or X' = M. There are 3p(p — 1)
such irreducibles. Any character a of F;* can be extended to a character A, of IFPXQ by
Aa(@) = a(NF , /F,(z)). We then have mx @ Ao = T
dal representations 7y according to twist equivalence. The restriction of my to SLs(IF,)

.., S0 we may partition the cuspi-
depends only on the restriction of A to the cyclic subgroup of order p+ 1 containing ele-
ments in IF‘pX2 of norm 1. There is, up to twist equivalence, a unique irreducible cuspidal
representation my that when restricted to SLo(F,) splits into a pair of two irreducibles

Tt

, m~ of the same dimension; the representation my is given by the unique nontrivial
quadratic character \ of order p + 1. We refer to the pair of representations 7+, 7~ as
cuspidal irreducibles of SLa(F)).

We denote the above irreducible representations that can appear as components of a
distinctive G-representation m = (mg, 71, - - - m) by 7§, where § = +1 if the representation

is induced, 6 = —1 if it is cuspidal, e € {£}. The characters of these representations take
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Table 1
Characters of distinctive SLq(IF),)-representations.
SLs(F,) :I:(é ‘f) :t(é }) :t(é ’711’) at b
Xt Ap(ED(P—1)/2  Ap(ED(-14+Gp)/2 Ap(£1)(-1-Gp)/2 0 —Ap(0)™
X"1 Ap(ED(P—1)/2  Ap(ED(-1-Gp)/2  Ap(£D)(-14+Gp)/2 0 —Ap(D)™
xT Op(£1)(p+1)/2 Op(£1)(1 + Gp)/2 0p(£1)(1 = Gp)/2 0p(v)! 0
Xi1 Op(£D)(p+1)/2 Op(£1)(1 = Gp)/2 Op(£1)(1 + Gp)/2 0,(1)" 0
Table 2
Characters of distinctive SLy(Z/4Z)-representations.
1 6 3 6 8
smarm | (38)  +(b1) (31 =23 (23
X7 +1 +i +(-1) +i +(-1)
X1 +1 +(—1) +(-1) +(—1) +(-1)
X3 +3 +i +1 +(—1) 0
X3 +3 +(—i) +1 +i 0
1 =z . .
the value (6 +€Gp)/2 on ui, where u, = 0 1) 2sseen for example in [5], Section 7,
p. 30. Clearly, eG, = £G,, depending on whether € is + or — (Table 1).
v 0
Here 7, is a non-square mod p, a = 0 1| where v generates the multiplicative
v

group of Fp, b is an element of order p + 1 which is not diagonalizable over F, | €
[1,(p—3)/2], m € [1, (p—1)/2] integers. Also A, 0, are the unique nontrivial quadratic
characters of cyclic groups of order p + 1, respectively p — 1, and G, is the Gauss sum
given by Z 0,(7)&", where € = exp(2mi/p). It is well known that G, = \/6,(=1)p. In

z€F
terms of notation, if Dy = pg, mg will be of the type 7r8°50 above, while 7; will be of type

™', where €o, €; € {£}, 0o, d; € {1}, i € [1,] an integer.
1.2. Dy =4 case

Recall that for the case Dy even, we look at representations of GLo(Z/DyZ) that
split into two irreducibles of the same dimension when restricted to SLy(Z/DyZ). In
the case Dy = 4, there are 2 such representations of GL2(Z/DyZ). Therefore, there
are two pairs of representations that appear in a distinctive G-representation: a pair of
one-dimensional representations and another pair of representations of dimension 3. We
denote them by ’/TS%O, with eg € {£}, do € {1, 3}, their characters appearing in Table 2.

1.3. Dy = 8 case

The instance of Dy = 8 is presented in Table 3, where a = &g + €3, 3 = & — &3 with
&s = exp(2mi/8).
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Table 3
Characters of distinctive SLo(Z/8Z)-representations on the conjugacy classes of interest.

1 12 12 12 12 24 24 6 6
SLQ(Z/SZ) iuo iul iU3 iu5 iUJ iao ia4 :tUQ :tuﬁ
X7 1 +1 +i +(—i) i +(—i)  E(—i) E£(—i) £(=1) +(—1)
Xia 1 (=) i £(—i) i +i +i +(-1) +(-1)
X2+,1 2 a a - - 0 0 0 0
X2,1 2 —a —a a « 0 0 0 0
X7z +2  £8 +(-8) £(-B) =+B 0 0 0 0
X2.0 +2 +(-B) =B +8 +(-B) 0 0 0 0
X3 +3 +i +(—i) i +(—i) i +i +1 +1
X34 +3  d(—i) +(—4) i +(—i)  £(—i) *1 +1
X3 3 i —i i —i -1 1 —1+2i —1-2i
X3,2 3 —1 % —1 % -1 1 —1—-23 —14 27
X33 3 i —i i —i 1 -1 —1-2 —142i
X3,3 3 —1i % —1 % 1 —1 —1+2¢ —1—-23
X?t4 +3 +(-1) £(-1) £(-1) £(-1) £(—2) L2 +(142¢) (1 —20)
X3.4 +3 +(-1) £(-1) £(-1) £(-1) ¢ +(—3) £(1—2¢) £(1+29)
Xis +3 41 +1 +1 +1 +(—i) i +(1—-2i) (14 2i)
X35 +3 o+l +1 +1 +1 +i +(—i) £ +2i)  £(1—2i)
X6 1 6 B -8 -8 B 0 0 0 0
Xe,1 6 —p B B —p 0 0 0 0
X¢.2 +6 +a +a +(—a) £(—a) 0 0 0 0
X6.2 +6 +(—a) *(—a) Fa +a 0 0 0 0

In this case, there are 10 pairs of representations that appear in a distinctive
G-representation. There is a pair of dimension 1, 2 pairs of dimension 2, 5 of di-
mension 3 and 2 of dimension 6. We denote them by g’ with eg € {x}, do €
{(1,1),(2,1),(2,2),(3,1),(3,2),--- ,(3,5),(6,1),(6,2)}. As we shall see in Lemma 3 be-
low, we are only interested in the values of these characters on the conjugacy classes
that take different values on TI'S: 5, and my 5 As a result, the conjugacy classes that are of

1
interest are represented by +u, with 2 € {0,1,3,5,7,2,6}, where u, = (0 f) , and by

70 7 4
+a4. The characters of the representations appearing in a distinctive G-representation

0 1 0 1
+ ( and + ; we denoted the last 4 representatives by +ag, respectively

on these conjugacy classes are as in Table 3.

Going back to the general setting, let m be a distinctive G-representation given by
(To%s,s 7"+ + Ti's,); note that % can be either cuspidal or induced for i € [1,] an inte-
ger, while the possible candidates for 778050 are those whose characters are given in the

above tables. We call such a representation m = (7% , - ,m;'5,) of type (e, -, €).

1 0

Si the acti f —
ince the action o <O 1

> = —Id depends on x§(—Id) = (—=1)®P=9/2(p 4 §)/2,
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for 7§ either cuspidal or induced irreducible of SLo(F,), we get that —Id acts as
t

sgn(XO(fId))H(fl)(pi*‘si)mld. We say a distinctive representation of G is of type
i=1

(— 1)(1”_5@')/2 = e, where

':]ﬁ

(€0, ,etle) if it is of type (eg,- - ,€) and sgn(xo(—Id))

=1

e e {£1}.
As we saw in (1), we consider the following alternating sum over distinctive
G-representations of type (e, -+ , €t]e):
AMye= Hez > e
(€0, et]e) i= TE(€0, ,€t]e)
where m, is the multiplicity of the representation m of type (e, - ,€ele) in the

G-representation p on the space So(T'(D)) of weight 2 cusp forms for the principal con-
gruence subgroup I'(D). If we let xs,r(p)) to be the character of (p, So(I'(D))), we can
rewrite AM, . as

t
AM, . = Z HQ’ Z ||Zxﬂ 9)Xs, (D)) (9)

(€0, 1et|e) i=0  wE(eq, - ,ete) 9eC
~ 61 X el () 2
geG

where the alternating sum of characters Z Hei Z X~ was denoted by
(€0, seele) i=0  wE(eo, eile)
Axt,e~
After computing the values of Ax;. and xs,r(p)) on the conjugacy classes of G,
which will be done in Sections 2, 4 respectively, we get an analytic expression for AM;.
The goal is to rewrite this expression as a multiple involving h(—D), which will be done
by using the following modified version of the Dirichlet class number formula:

Lemma 1. Let D > 4 such that —D is the fundamental discriminant associated to the
imaginary quadratic field K = Q(v/—D). Then the class number of K is given by

D-1
1 > n (%) if Dy is odd
h(—=D) = -1
-2 Z n (%) ., if Dy is even
n:l,

=p1 + mod 4

where D is written as Dopy - - - p, with Do € {po,4,8}, t > 0 and pg, p; are distinct odd
primes, i € [1,t] an integer.
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Proof. By the Dirichlet class number formula (cf. [1], Chapter 6, p. 49-50)
w

where w is the number of roots of unity in Q(v/—D), and x is the quadratic character
of Q(v=D), x : Z+ = C*, x(m) = (=2). Since =D < —4,w = 2.

For a nonzero integer m, let m’ denote its odd part, that is m = 25m/ with
(m/,2%) = 1. By the quadratic reciprocity of the Kronecker symbol we then have

(%) = (—1)ML7_D_1) (%), where D’ is the odd part of D. Moreover,

D—1
L) = =575 2 mxm)
so if Dy is even we have
1= ('-1)(=D'-1) [N
H=D) = —5 X0 ()

1 (n=1)(=pypr—1) n n
= —— —1 fﬂ _—
Dn:l( ) <Do> (p1"'pt>

> (o) )

N=pi1---Pt

where the congruences are taken mod 4 and the summation is over integers n € [1, D—1].
On the other hand, for odd Dy we get

h(=D) = 1 Dz_:l(_l)wfng%umn (ﬁ)
D — D
1= n
:_BnA”(B> -

As a side remark, note that we are only interested in finding an expression for AM; =
AM,; as AM; _; always vanishes. As we shall see in the following section, this happens
because the weight of cusp forms is even and thus forces the action of —g on Sa(T'(D))
to be the same as that of g.
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2. A key virtual character

Consider the alternating sum over irreducibles of G of type (eg, - - - , €¢|€) as introduced
above:

t

AXt,e = Z H €; Z X

(€0, set]e) i=0  w€(eo, - setle)

¢

As seen in (2), the values Ax:. takes on the conjugacy classes of G appear in the
expression AM;. We obtain two results, see Lemmas 2, 3 below.

Lemma 2. Let g = (go,--- ,g+) represent a conjugacy class of G, where g; € SLa(F,),
for alli € [1,t] an integer and go € SLo(Z/DoZ). Then

t
iz .
2t-1 [AXO,e(QO) + AXO,—@(QO)} H <17) GT’H if g = (gO’ Ugyy 7U’7Jt)

1

7

Axte(g) =

-

Z; .
2t [AXO,e(go) - AXO,fe(gO)i| (;) Gpm ng = (g(Ja —Ugyy _Uzt)

(2

i=1
0, otherwise

fort > 1, where x; € {1,n,,} with 0y, a non-square mod p; for alli € [1,t] an integer.

Proof. We have

AXt,e(gOa T agt)

t

= Z Hfi Z Xr (90, 5 9t)

(€0, ,et|e) i=0  wE(eo, - ,et|e)

t—1
= Z H €;€¢ Z Z er(g()v te 7gt71)X:j6t (gt)
=0

(€0, ,et]|€) 1= 0t 7€ (eg, - ,er—1|e(—1)Pt=9t)/2)

=> > 1:[ € > X (905, ge-1) [XZ& (9¢) — X5, (9t)

B (cor e ale(=1)@i=00/2) i=0  me(cq,rereqrle(—1)Fe=00/2))

= Z AXt—l,e(—l)(?’t_‘St)/"-’ (907 e 7gt—1) |:X7j:5t (gt) - X;(St (gt):| )
ot

where X?éz denotes the character of the component 7r§’5t in the G-representation m =

(Tooss s Tr's,) of type (€o, -, etle).
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For odd p, we get

(%) Gy, if g = u, for z € {1,n}
X3 (g9) — X5 (9) = { (=1)(P=9)/2 (%) Gp, if g=—u, for z € {1,n}
0, otherwise
where 7 is a non-square mod p. Thus, we must have Ax; (g0, - ,g:) = 0 for all g; #

+u,., ¢ € [1,t] an integer. On the other hand,

AXt,e(QO; oy gt—1, :tuxf)
= AXy 1oy (9o, 5 Gi-1) X, (Fua,) = Xog, (Ftia,)]

[
= {Ath,e(go»"' L 9t—1) £ Axt—1,—e(g0, - ,gt71)} (%) Gp,, (3)
S0
AxXte(go, -+ s ge—1, Fta,) = £AXe,—e(g0, -+ ge—1, £z, ). (4)
We claim that if there exists i,j € {1,---,t} such that g; = u,, and g; = —uy,

then we must have Axye(go,---,g:) = 0 for t > 2. Clearly, if Axs.e(g90,---,9s) =0
for some s < ¢, then by (3) and (4), we get Axye(g90, - ,8s, - ,9:) = 0. Thus we
can assume WLOG that ¢ = t,j = ¢t — 1, the case ¢ = t — 1,5 = ¢ being exactly

the same. Since Axi—1.(g0,  ,gt—2, —Uz,_,) = —Axs—1,—e(g0, "+, Gt—2, —Ug,_,), We
get Axie(go, -, —Uz,_ 1, Uz,) = 0. As a result Ax¢e(go, - ,g¢) is zero outside the
conjugacy classes of type (go, Uz, , -+ s Uz, ) OF (o, —Ugys -+ 5 —Usg,)-

Then

Tt
AXt,e(gOauit17' o 7u$1,) - 2AXt—1,e(907Um1,' te aumt_l) <pt) pr,

and similarly,

AXte(g0, =ty -+ 5 —tha,) = 2" [Axo,e(90) — Axo,—e(90)] | |

t
"y
<J)Gpi. o
—1 \Pi

7

On the other hand, since

Axo,e(90) = Z €0 Z X (90),

(eole)  me(eole)

we can compute Axo.1(g0) £ Axo,—1(go) for the different values of Dy as follows:
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Do AXo 1(90 + Axo,-1(g0) Axo,1(g90) — Axo,-1(9g0)
2o { Gp,, if go = ug, for zg € {1,np,} {2 (;—;‘) Gp,, if go = —ug, for zo € {1,np,}
otherwise 0, otherwise
4 {454 , if go = ug, for o € {£1} {45:” if go = —uy, for o € {£1}
otherwise 0, otherwise

8E3" + 885", if go = ug, for zg € {£1,£3} 8¢3° + 885", if go = —ug, for zo € {£1,£3}
B +(—4&4), if go = *aop +4€4, if go = *aop

+4&4, if go = f£aq +(—4&4), if go = tay

0, otherwise 0, otherwise.

Note that we used the fact that —u; and u_; are in the same conjugacy class of
SLy(Z/AZ). Also, £p, = exp(2mi/Dy) for Dy € {4,8}.
Thus, we can state the following result:

Lemma 3. For all possible Dy, Ax:,. takes the following values on conjugacy classes

g = (gOa e agt)"
e If Do = po,
b
2! (%) GIDO <_l) GPi’ if g= (u$o’ T ’uwt)
=1 \Pi
Axtelg) = . g .
t e2! (p_g) Gpo H p_ Gp,, ifg= (=g, —Ug,)
i=1 v
0, otherwise
for allt > 0.
o If Dy =4,
oo
2t+1£ZO H <_l> Gpw ifg = (uafm' o 7u96¢)"r0 € {il}
A e = 4
Xt,e(9) 2t 1go H <x > vy 9= (U, —Ug,),T0 € {1}
0, otherwise
22650, if g = uyy, 0 € {£1}

for allt > 1. Also, Axo.1(g9) =0 and Axo,—1(g) =
0, otherwise.
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« IfDy=8,
i X
272(gke + &) [ ] < ) if 9= (Ugg, -+ s Ug,), To € {£1, £3}
2
i=1

:F2t+1£4 H (x’L) Di ng = (ia07 e ,'LL_»“)
i2t+1§4 < ) G ng = (ialla e au:m)

t
AXt,e(g) = { e2tt2 gwo + gaio H < > pis ng — (7ux0’ - ’7u:ct)’
=1

Tg € {il,i?)}
t

Z; .

:F€2t+1£4H (p_> Gpi? ng = (:Fa07 e 7_u£Et)
1= 1 v

€T .
i62t+1§ H (p_> i) ng = (:Fa47 T 7_u93t)
0, otherwise

22(&8° +&7°),  if g = tug,, 0 € {£1,£3}

for allt > 1. Also, Axo.1(9) =
0, otherwise

+22(65° +£7°),  if g = Fug,, xo € {£1,£3}

F22y, if g = =%ao
and Axo,—1(g9) = ) '

+2 €47 ng = ia/4

0, otherwise.

When not specified, x; above takes values in {1,m,,}, where n,, is a non-square
mod p; for i € [0,t] an integer. Also, {p, = exp(2wi/Dy) for Dy € {4,8}.

Using the above result in (2), the alternating sum AM; . can be rewritten as follows:

My, = |G|Z Xt.e(9)Xs,(r(D))(9)

geG

t

1 1
~ [SLy(Z/DoZ)] H (p? — Dps

=1

2
p; —1
X Z COH ‘ 9 AXt,e(QO?"' 7uxt)X52(F(D))(g()7"' 7u93t)

(90, 7uzt) i=1

2
pi —1
+ g COH 5 Axt,e(=90, s —Uz, ) XSy (r(D) (=G0, -+ 5 —Uaz,)

(=90, s—ug,) =1
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t
1
" |SLy(Z/DoZ)| Z/D0 HQ_i

X Z CO(l + G)AXt,e(gm T 7umf,)X$2(F(D))(907 T 7ua3f,)a

(g07"' )u(tt)

SO

t
1
AM,, = L
" |SLy(Z /Do) Z/Do 1;[ 2p;
X Z co(1+e)Axte(go, - s Uz, )X, (0 (D)) (90, s Uz, ), (5)
(90, \uay)

where ¢y is the size of the conjugacy class of gg. The last equality follows since
Axte(—g) = eAxte(g) by the result of Lemma 3. Clearly AM; _; = 0, as was pre-
viously mentioned.

3. Fixed points on the modular curve

Let M be the modular curve X (D) = T'(D)\H*. M is a one dimensional compact
complex manifold. G acts on M and g : M — M is a holomorphic endomorphism. If we
consider § to be a lift of g to SL2(Z), then the map g : M — M is given by gn(z) = 7(§2),
where 7 is the natural projection H* — M. We are in the situation where we look at
maps g : M — M whose fixed points, if they exist, are isolated and non-degenerate.
Using the holomorphic Lefschetz number, one can compute xs,r(p))(g) by knowing the
fixed points of g on M, as we shall see in the next section. In the following, we find
the fixed points of maps of the form g = (go, - - ,us,) for which Ax;1(g) # 0, where go
depends on Dy as seen in Lemma 3.

Lemma 4. For D > 3, the map g = (go, - - , Uz, ) has no fized points on Y (D) = T'(D)\'H;
all the possible fized points happen at the cusps of T'(D).

Proof. If w(z) is a fixed point on I'(D)\H*, z € H*, then there exists n € I'(D) such
that gz = nz, so we need to look at the fixed points of 71§ on H*. Since Tr(n~1g) =
Tr g mod D, we get Tr(n~1g) = 2 mod p; for i € [1,t] an integer, so if t > 1 and p; > 3
for some 4, we must have | Tr(n=1g)| > 2. As D > 3, we also have | Tr(n=1g)| > 2 for the
case Do = po. If Dy = 4, we get Tr(n~1§) = 2 mod 4, which gives us | Tr(np~1g)| > 2 as
well. If D =8, Tr(n~'§) = 2 mod 8. The last case to consider is D = 8 x 3. If gy = uy,,
zg € {£1,43} or go = Fay then Tr(n~1g) is either 2 or 4 mod 8. If (go, us, ) = (a0, u1),

a choice for § is the matrix g; 18 , while if (go,uy,) = (ag,u—1), we can choose
- -8 -7 o
a lift g = 9 _g . Thus Tr(n='§) = —16 mod 24; similarly, one gets the same
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result if go = —ag. Therefore, | Tr(n~'g)| > 2 holds for all possible values of D > 3, so
n~1g is either parabolic or hyperbolic and thus it has either one or two fixed points on
RU{}. O

For the following, assume D > 4. Recall that two cusps § and § of I'(D) with integers

a, b, c,d such that (a,b) = 1,(c,d) = 1 are I'(D)-equivalent iff Z =+ ccl mod D

([9], Chapter 1, Section 1.6, Lemma 1.42, p. 23). Now, if the cusp ¢ with a,b € Z, (a,b) =

a ~a

1 is a fixed point of g, then ¢ and g% are I'(D)-equivalent. Depending on the values of
Dy, we get the following cases:

o If Dy = po, then gy = uy, with zg € {1, n,,}, where n,, is a non-square mod py. We
have
a + br; = +a mod p;,
b = £b mod p;,

for all ¢ € [0,t] an integer. As (a,b) = 1, we must be in the case

a + br; = a mod p;,
b = b mod p;,
for all ¢ € [0,¢] an integer, so b = 0 mod D.
o If Dy =4, then go = uy,, with 29 € {£1}. Since D > 4, t > 1, so by the same rea-
t
soning as above we must have b = 0 mod H p; for all i € [1,¢] an integer. Moreover,
i=1
we must be in the case
a+ brg = a mod 4,

b = b mod 4,

so b= 0 mod 4 and thus b = 0 mod D.
o If Dy =8, first consider the case when go = uy,, with xg € {£1, £3}. If

a+ brg = —a mod 8,

b= —bmod 8§,

then b = 0 mod 4 and 2a + bxy = 0 mod 8, so a must be even, contradiction. Thus,
we must be in the case

Please cite this article in press as: C.B. Panda, A generalization of a theorem of Hecke for SLy(F,) to
fundamental discriminants, J. Number Theory (2019), https://doi.org/10.1016/j.jnt.2019.04.009




YJNTH:6282

16 C.B. Panda / Journal of Number Theory ess (sess) see—see

a + brg = a mod 8,

b= bmod 8,
so b = Omod 8. If t > 1, by the same reasoning as above, we must have b =
t
0 mod Hpi and thus b = 0 mod D.
i=1
If go = ap, then we have
b= +a mod 8,
—a = +bmod 8,

which forces both a, b to be even, so there are no fixed points in this case. Similarly,
there are no fixed points for the cases gy = —ag and go = £ay4.

Notice that Axy1(g) = 0 when D = 4. Therefore, we can state the following result:

Lemma 5. Let D > 3 and g = (9o, - , us,) an element of G such that Ax,1(g) # 0 and
go depending on Dy as seen in Lemma 3. Then the fized points of g on M are as follows:

o If Dy € {po,4}, go = s, and g has fived points & with (I,D) =1, 1 € [1,D/2] an
integer.

e If Dy = 8 and gy = us,, then g has fized points % with (I,D) =1,1€ [1,D/2] an
integer and there are no fived points when go € {+ag, tas}.

In the above, we have x; € {1,n,,}, with n,, a non-square mod p; for all i € [1,t] an
integer and

c {1, Mpe }, with np, a non-square mod pg,  if Do = po
(Z/DOZ)Xa ZfD() S {4,8}

4. The holomorphic Lefschetz number

For GG acting on the one-dimensional compact complex manifold M, we identify any
g € G with a map g : M — M. Suppose the fixed points of g are isolated and non-
degenerate. The holomorphic Lefschetz number of the map g relative to the holomorphic
line bundle defined by the structure sheaf O is given by (cf. [3], Chapter 3, Section 4,
p. 422-426)

L(g,0) = (~1)* Tx(g"|Hg" (M)).

q
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Let dg,; : To.(M) — T,.(M) be the differential induced by the map g on the holomorphic
tangent space at the fixed point x. By the holomorphic Lefschetz fixed-point formula we
have

1
g(k)=kK

where, by abuse of notation, by dg, we mean the above differential evaluated at the fixed
point. The goal of this section is to compute the characters xs,(p))(g) which appear
in the expression of AM; in (2). We compute the Lefschetz numbers by using the fixed
points in Lemma 5, which in turn give us the characters xs,r(p))-

We have H%’Q(M) & HY(M,O). It is well-known that H4(M, ©O) vanishes for ¢ > 1 and
HO(M,0) = C. Let Q' define the sheaf of holomorphic differentials of degree i on M; we
have Q° = O. By Hodge theory H'(M, ) = HO(M,Q'), where the space H°(M, Q') is
exactly the space Sa(I'(D)) of weight 2 cusp forms for the principal congruence subgroup
(D).

As a result,

L(g,0) = Tr(g"|C) — Tr(g"|S2(T'(D))).

But Tr(g*|C) = 1, since the action of g* on H(M, Q) is trivial and Tr(g*|S2(T'(D))) =
X8 (r(py)(g). Thus

Xs,(r(py)(9) =1 — L(g,0). (6)

Moreover, if g has no fixed points, the Lefschetz number is zero and we get
Xs(r(py(9) = 1.

Next step is to compute the differentials dg,.. As seen in Lemma 5, we are interested
in the cases when g = (go,- - , Uy, ), with go of the form u,,. The fixed points of ¢ are
given by %, with (I, D) =1, 1 € [1, D/2] an integer. Note that the cusp % is equivalent
to infinity.

Lemma 6. Let D > 3 and g = (go, -+ ,uz,) an element of G having fized points on M
such that Ax:1(g) # 0. We must have go = ug, with the values of xo depending on Dy
as seen in Lemma 5. The differential dg% at the cusp % with (I, D) = 1,1 € [1,D/2] an
integer, is given by

—2
dgi = e,

where £ = exp(2wi/D), X\ € Z such that A = xg mod Dy, A = x; mod p;, for alli € [1,1]
an integer.
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Proof. The idea is to translate the cusp % to oo and compute the differential there. Say
the fixed points of g are at the cusps k, so the complex structure on M is given locally
by homeomorphisms into open sets of C through the map

7(2) = exp(2mip(z)/ D),

where 7 : H* — M is the natural projection, p € SLa2(R) such that p(k) = co.
For the cusp 4, let 3y € SLy(Z) such that (%) = oo. There exists an induced
differential d~; : T% (M) — T (M) such that the map dg% translated to oo is given by

dygy;t: Too(M) — Too (M),

where the map vlg'yfl on M is given by 7(z) — W(q/lg'yflz), with g a lift of g to SLo(Z).
For the cusp % with (I, D) = 1, 5; will be given by the matrix bD C;) , where a,b € Z

such that aD + bl = 1.

As
b a 1 =z Il —a _ [ 1+ Dbxg b%xo mod D
D 1/\o 1 D b )\ —-D2x, 1- Db 0
2 2.
we get that 'ylgvfl = ((1) b f()) mod Dy. Similarly, ylgfyfl = (é b f’) mod p; for

all i € [1,¢] an integer. If A = Ay, ... 4, € Z such that A = zg mod Dy and A = z; mod p;
for all 4 € [1,¢] an integer, the action of ngvl_l on M will be a translation by b?\. Thus,
if exp(2miz/D) is the local coordinate for co on M, then exp(27i(z + b?\)/D) will be
the local coordinate for v,g7; *(c0). So

_ dexp(2mi(z + b*)\)/D)
1 _
gy = dexp(2miz/D)

and thus dg; = €M’ Since aD + bl = 1, we have b2 = "2 mod D. O

Under the setting of Lemma 6, we get

LD/2] 1 1 b=
L(g.0)= > 1_en—2 — § Z 812
=1, I=1,
(1,D)=1 1,D)=1

—on(y) Y 1_;81 =2n(Dy) Y : _151

1€[(Z/DoZ)*1?, 1eX[(Z/DoZ)%)?,
— =1 # = p%_
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1
_ ot
= 2'n(Dy) E g
lewol(Z/DoZ)* 12,

=(Zi

L
Py Pq

1, if Dy € {p0,4}
2, if Dy = 8

where n(Dg) = { and the summation is over [ € [1, D—1] an integer,

(I,D)=1
Under the same conditions, from (6) we get

1

Xs,(r(py)(9) = 1 = 2'n(Dy) > ¢
l€xo((Z/DoZ)*)?,
)=t
Thus the expression in (5) gives us
1 .
AMy = ———= || — 2c0A Ce Uy s, U,
= snama o, (92 ottt e )
L
— 2¢0 A Uy
|SL2 Z/DO H2 ; Z coAxt,1(go,  Ug, )
=1 (90, yua,)
1 .
R — ) 2¢0A oo ug ) L((go, -+ - ug, ),
|SL2(Z/DOZ)|_1j[12p‘ Z coAxt,1(90s "+ 5 ua, ) L((g0 Uz, ), 0)
i= (g0, yua,)
200
= A(D
T |SL2(Z/DoZ)| Hzpz( 2 : (Do, 20)
Ugq s Uy

1

XH(;:>G2t RO D

lexo[(Z/DoZ) ],

(-(2)
L

- Uay)

1

A(Dy, z0) ]1( ) > o

l€x0[(Z/DoZ)*]?,

(2)=(3%)

- 2n DO Co
~|SL2(Z/DoZ)| ) o H

SO

_ 2n(Dy)cqo : Gy, : !
AMy = —rer oz Ll 2 ADow) 3 <p1~'pt)1£“

=1 Pi 5 l€xo[(Z/DoZ)*]?

(7)
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pi—1
2 1, if Dy € {p0,4}

with ¢g = ¢ 6, if Dy =4 n(Dy) =
0 0 (o) 2, if Dy = 8

12, if Dy =8,
2t ( ) Gy, if Do = po, 0 € {1,1p,}
and A(Do, zg) = 20170, if Do =4,z¢ € (Z/AZ)*
22(&8° + €5°),  if Do = 8,20 € (Z/8Z)%,
where 7, is a non-square in F,¢ and the summation is over I € [1,D — 1] an integer.

Note that the above result works for D > 4 and if D = 4 we have AMy = 0. So for the
rest of the paper we work with D > 4, unless mentioned otherwise.

, if Do = po {

5. Some useful lemmas

The following results provide key steps in bringing the expression for AM; in (7) in
the form of the analytical formula for h(—D) appearing in Lemma 1.

Lemma 7. If D € Z~1, £ = exp(2ni/D), then

1 D—1
_ Z —l(n+1)
- ’I'Lg 9
D n=0

for alll € [1,D — 1] an integer.

D—1 D-1
Proof. Let p be the polynomial 0p(z) = Z " = H (x —&™). Then
n=0 n=1
D-1 D-1
Op(x) = an" b= (x—&),
n=0 n=1 j#n
D-1 . ‘
so evaluating at & we get Z nel=1) = H({l - &) = cip=2) H(l — &7, Thus
n=0 A G
D-1
Z netn=1 — ¢=2 H (1 —-¢"), and as a result
n=0 n#D—1

1_z Dﬂlff"— Zgl(nJrl -

n#l

Lemma 8. Let D € Z~1, D = D.py ---p¢, with p; distinct odd primes, (D,p;) = 1 for
all i € [1,t] an integer, x € Z. Then
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) e 5 G 2o (25) 2 G e
piop) 1=¢& D \pr- —~ ) =\ b "

. 25t ift=0 -
where & = exp(2mi/D), n = the summation is over | € [1,D — 1]
0, otherwise,

an integer and the congruences are modD,.

=z

l

Proof. If we denote Z (

1
) — by E, then from Lemma 7, we have
=z mod D, p1- 5

1 l D-1
E=> 3 ( ) 3 ng

I=2 mod D, \P17"Pt/) 275

_1 Dz:_l Z (#) g—l(n-&-l)
- D " p1 D

n=0 [=z mod D,

1 -1\ [ n+1 “ln+ 1)\ iy
_5(p1'~-pt>zn<p1---pt> 2 <p1---pt)€

n=0 l=x mod D.

l
—(D -1
D( )lmng*<p1“'pt)

! n —In “in
l(n_1)<p1~-pt>z (pl"'pt)f o

I=x mod D,

1 1 D—1 n l
-7 — — l
_D(p1~~pt> 1(" 1)(p1...pt> > <p1...pt>§ +n. O

n= l=—nx mod D,

Lemma 9. Let p; be distinct odd primes, i € [1,t] an integer, t > 1. Then

p1-~~pt1( I ) t
2 : l I |
= €t G .
.. P1 Pt Pi>
P1---Pt =0

=1

(pi—1)(p; —1)
I[I o, it>1

where &p,...p, = exp(2mi/p1 -+ py), €r = § 1<i<j<t
1, ift=1.

p—1
l
Proof. For an odd prime p we know Z (5) 5117 = G,, where &, = exp(2mi/p). If p,q
1=1

distinct odd primes,

Please cite this article in press as: C.B. Panda, A generalization of a theorem of Hecke for SLy(F,) to
fundamental discriminants, J. Number Theory (2019), https://doi.org/10.1016/j.jnt.2019.04.009




22

YJINTH:6282
C.B. Panda / Journal of Number Theory ess (sess) see—see
p—1 i qg—1 j ;
Z i J J — iq+jp
2 (e ()e-() ()

D0
B (e

and the result follows by induction. O
Lemma 10. Let D = Dyp; ---p;, with Dy € Z~1 and p; distinct odd primes such that
(Do, pi) =1 for all integers i € [1,t]. Let S C Z finite set, n,c € Z. Then

D-1
CcI
Z 5Do

()= )
z€S =1, p1-pe
I=—nwz(p1--pe)*

e H G,, Z gx(c np1- Pt)7
zeS
mod Do
where & = exp(2mi/ D), £p, = exp(2mi/Dy)
(pi—1)(pj—1)
II v =, it>1
e =  1<i<j<t
L

ift € {0,1}.
Proof. There is nothing to prove if t = 0. For ¢ > 1, by Lemma 9, we have

p1-pr—1

. t
Z J ) g H
—_— veep, — €t Gp, .
e P1-Pt i
=1 (pl Dt =1

Then

(Seerm) 'S (2]

p1-
j=1
prpe—1 j ' ,
-y ) (—) et
oy =1 P1---Pt
'Pt_l .
— < ) ZE ( .]DO )ngOna:(plmpt)2
Jupp = P1---DPt

(25

D—-1 l
) ()¢ s
z€S =1, Pr---Pt

l:7nx(p1“.pt)2 mod Dg
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6. Proof of the main theorem

We prove the main result in both the odd and even cases, by using the key lemmas
from the previous section in the expression (7) for AM;.

6.1. The odd case Dy = pg

From (7) we have

2n(Dy)co LG, l 1
M- 2D TGn S Apy Y |
ISL2(Z/Do) i P e,y teaol(Z/Dozy<2 PP/ 18
¢ D-1
Qt%HGm ( )
p ie1 Pi =1 ]-_fl

t

We have D = pg Hpi, with —D = 1 mod 4 and let’s first assume ¢t > 1. We need to
i=1
D—

1

l 1

compute (5> 1—fl7 which we denote by A,,. From Lemma 8 for D, =1 we get
1=1

o)

-1

> (5)e-5(3) Z( -0 (%) D (1)

and using the results of Lemmas 9 and 1 we have

(pi—D)(pj—1) 1 —1 ¢
APO = H (_1) * E <3> Gpo HGZh

0<i<j<t

1=1 n=1 n=1
t D—1
(pi—D(p;—1) ] —1 n
[T o™ 5 (5) enIlen X (p)
0<i<y<t i=1 n=1
t
(pi—1)(p;—1) —
— I 0" (5) Gnllennt-n)
0<i<j<t i=1

Thus for ¢ > 1 we have

t D

Ie. 1
_ _ ot Ypi
AM, = 2" [] =2 H( )1_51

i—o Pi
GQ

11 ()T tH = (3) h(=D)

0<i<j<t =0 Pi
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(p;—1)(pj—1)
= II u™ = 2h(=D),

0<i<j<t

since G = \/(=1)"3'p = 1/(%)1).

The case t = 0 works similarly and we get AMy = h(—p), when p = 3 mod 4, which
is Hecke’s initial result.

6.2. The even case Dy € {4,8}

From (7) we get

_ 2n(Do)co
|SL2(Z/DoZ)|

LG, ! 1
L S Y e

=1 Pi z0€(Z/DoZ)* l€x0[(Z/DoZ)*]?

t
_ _2t71 I | sz: AD
. 07

=1 v

AM; =

where

IoE(Z/D()Z)X = l:1,d D
=X Mo
Ap, = 0 o

w3 ! ! if Dy = 4
Z 5DO P11 Pt 17§l’ ! 0=
D

Ioe(Z/D()Z)X =1,

Note that for Dy € {4,8}, we have (p1---p;)> = 1 mod Dy. Thus, using Lemma 8 for
D, = Dy and Lemma 10 for S = (Z/DyZ)*, the expression

D—-1 I 1
e 2 L )

20€(Z/DoZ)* =1,
l=x0 mod Dg

where ¢ = 1 when Dy =4 and ¢ € {1,2} when Dy = 8, can be rewritten as

E= > & l% (pl._.l.pt>§(n_1) (pl -1-1-1%)

x0€(Z/DoZ)*

! l
P e L

l=—nxzo mod Dy
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5 () B T 5 ) B )

20E(Z/DoZ)* n=1 I=—nzo mod Dy
1 ( > = n l
- (n—1) (> D < ) ¢l
D n=1 p1be 20€(Z/DoZ)* I=—nxzo mod Dg P1---Pt

5 ) G2l S (25)

n=1
900(" np1--Pt)
X E &b )

x0€(Z/DoZ)*
Dpj—1)

11 (DT s 1

where e; = < 1<i<j<t
1, ift € {0,1}.
An easy computation gives us the following:

Z gwo (1=np1-pt)
20€(Z/DoZ)*
i% ifn=p1---pt,—p1---p: mod Dy, when Dy =4
= :I:%, ifn=p1---pg, —3p1---pr mod Dy, when Dy = 8
0

otherwise

and
Z €I0(2 npi---pt)
20€(Z/DoZ)*
B {:I:%, if n=2py---ps, —2p1---pr mod Dy, when Dy =8

0, otherwise.

As a result, we get

t
1 —-1 Dy Dy
A —— € |IG —A7 ’
Do D<p1-~pt) <p1--~pt) ti:O Do

where

n n . -
SR AR

n=pi---p:+ mod 4 n=—pi---pt+ mod 4

A*DO: n n
n(—" ) - n(—2 ), ifDy=8.
> o) Y o) an

n=p1---p+ mod 8, n=—3py---p; mod 8,
n=2pi---pr mod 8 n=—2pi---p+ mod 8
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For Dy = 8, we have

PR (S R T

n=1, n=1,
n=2pi---p¢ mod 8 n=-—2pi-py mod §
2 * . —1 _
2 (55 ) At (55) =1
0, otherwise;

we denote this difference by 3.
A trivial check gives us

n n .
:(2) X o(5) () tpe—aez

* n=pi---ptr mod 4

Ab, = e n n .
(Pl"'Pt) Z n(D_O) (pl"'pt)+58’ if Do =8

n=pi---p+ mod 4

where the summations are over n € [1, D — 1] an integer.
Using the result of Lemma 1, we have

- (%) 2 T Gpuh(-D), i Dy =4, > 1
—e2 [h(—D) H(—D/2)] if Dy =8,t=0
Ap, = (m pt)‘iﬂHG [ D) + 2h(~ D/2)}, if Dy =8,t>1,
pr---pe =1 mod 4
- (pipt) et?ﬁGmh(—D), if Do =8,¢> 1,
i1

p1---pr = 3 mod 4,

so we get
e 2th(—D), if Dy =4,t>1
N e2'[h(=D) + h(—D/2)], if Dy=28,t=0
") &2 [M(=D) + 2h(~D/2)], if Do =8,t>1,p1--p; =1 mod 4

ei2th(—D), if Dg =8,t>1,p1---p; = 3 mod 4,

which is what we want for the case D > 4 even. This concludes the proof of the main

theorem for all cases Dy € {po, 4, 8}.
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Remark. Note that when Dy = 8, there is a multiple of h(—D/2) appearing in the
expression for AM;. Morally, this term comes from the distinctive G-representations
whose SL2(Z/8Z) part can be factored through SLy(Z/4Z). There are two such pairs
of irreducibles of SLy(Z/8Z) that can appear in a distinctive G-representation, that is
ﬂfl,wi 1, respectively 71';: 1,731~ Interchanging 7+ and 7~ for some of the irreducibles
appearing in the SLo(Z/8Z) part and discarding those above that factor through
SLy(Z/AZ) will give us AM; = sgnp ,2'h(—D) for all cases Dy = 8,t > 1; here
sgnp, : is as given in the statement of the main theorem. For example, in order to get
such a result, one can interchange 7 and 7~ for 733 and 73 4 in the SLy(Z/8Z) part
of a distinctive G-representation.
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