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THE LARGE SIEVE WITH SQUARE MODULI IN FUNCTION
FIELDS

STEPHAN BAIER, RAJNEESH KUMAR SINGH

Abstract. We prove a lower and an upper bound for the large sieve with
square moduli in function fields. These bounds correspond to bounds for the
classical large sieve with square moduli established in [3] and [6]. Our lower
bound in the function field setting contradicts an upper bound obtained in [4].
Indeed, in [5] we pointed out an error in [4].
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1. Introduction

In [4], we investigated the large sieve with restricted sets of moduli (in particu-
lar, power moduli) for function fields. Unfortunately, as pointed out in [5], there
is a serious error in this paper. Indeed, in section 3 of the present paper, we shall
derive a lower bound for the large sieve with square moduli which contradicts an
upper bound obtained in [4].

The plan for this paper is as follows. In the next section, we shall provide
general notations. A counterexample to [4, Corollary 5.2.] for the case of square
moduli will be given in section 3. This is the function field analog of a lower
bound for the classical large sieve with square moduli in [3]. From section 4
onward, we shall start a thorough investigation of the large sieve with square
moduli for function fields. Along the lines in [6], which deals with the classical
case, we shall obtain a corresponding result for the function field case.

2. Notations

This section is essentially copied from [4, section 2], but here we confine our-
selves to the one-dimensional case. We collect together notations and preliminar-
ies mostly drawn from [10].

Throughout this paper, we assume that q is an odd prime power and hence the
characteristic of Fq is not equal to 2. Let Fq be a fixed finite field with q elements
of characteristic p and let Tr : Fq → Fp be the trace map. Let Fq(t)∞ be the
completion of Fq(t) at ∞ (i.e. Fq(t)∞ = Fq((1/t))). The absolute value | · |∞ on
Fq(t)∞ is defined by |0|∞ := 0 and

∣
∣
∣
∣

n∑

i=−∞
ait

i

∣
∣
∣
∣
:= qn, if 0 �= an ∈ Fq.

We endow the torus T = Fq(t)∞/Fq[t] with a metric

‖f‖ := inf
f ′∼f

|f ′|∞, (1)

where f ′ ∼ f means that f ′ − f ∈ Fq[t]. Note that for all f ∈ T, we have
‖f‖ ≤ 1/q. We also define the fractional part by

{
n∑

i=−∞
ait

i

}

:=
−1∑

i=−∞
ait

i

and note that
‖f‖ = |{f}|∞

for all f ∈ Fq(t)∞.
The non-trivial additive character E : Fq → C

× is defined by

E(x) = exp

{
2πi

p
Tr(x)

}

,
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and the map e : Fq(t)∞ → C
× is defined by

e

( n∑

i=−∞
ait

i

)

= E(a−1).

This map e is a non-trivial additive character for Fq(t)∞.
Moreover, we denote the ball with center x and radius qN by B(x,N).

3. A counterexample

In this section we shall give an example which shows that [4, Corollary 5.2] is
not correct. Below the original statement.

Claim 1: (Corollary 5.2. in [4]) Let N,Q ∈ N and ag ∈ C, where g ∈ Fq[t].
Let S be a set of monic polynomials in F[t]. Then

∑

f∈S
deg f≤Q

∑

r mod f
(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r
f

)
∣
∣
∣
∣

2

≤
(

qN+1 + �S · qQ−1
)

·
∑

g∈Fq [t]
deg g≤N

|ag|2.

The following statement on square moduli is an immediate consequence of
Claim 1.

Claim 2: Let N,Q ∈ N and ag ∈ C, where g ∈ F[t]. Then

∑

f∈Fq [t]
deg f≤Q
f monic

∑

r mod f2

(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)
∣
∣
∣
∣

2

≤
(

qN+1 + q3Q−1
)

·
∑

g∈Fq [t]
deg g≤N

|ag|2.

We now prove the following Theorem which provides a counterexample to
Claim 2.

Theorem 3.1. For every ε > 0, there are infinitely many natural numbers Q
such that for suitable N ∈ N and sequences (ag)g∈Fq [t] of complex numbers, we
have

∑

f∈Fq [t]
deg f≤Q
f monic

∑

rmod f2

(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)
∣
∣
∣
∣

2

≥ qμQ

2

(

qN+1 + q3Q−1
)

·
∑

g∈Fq [t]
deg g≤N

|ag|2,

where

μ :=
logq 2

logq((1 + ε)Q)
.

Remark: In [4, Corollary 6.5], a large sieve inequality for k-th power moduli
was stated which is weaker than Claim 2. This was not derived directly from
Claim 1 but from a more general n-dimensional large sieve inequality. Therein,
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for the case k = 2 of square moduli, the term qN+1+ q3Q−1 in Claim 2 is replaced
by (q + 1)N + (q + 1)3Q. Theorem 3.1 does not provide a counterexample to this
weaker large sieve inequality for square moduli. Despite the flaw in [4] described
in section 1, this weaker bound may actually be correct (at least, we are not able
to come up with a counterexample to it).

In the following, let ad be the number of monic irreducible polynomials of
degree d and let G be their product. Then Q := degG = dad. We will denote
G by GQ. First, we establish the following lower bound for the number of Farey
fractions with square denominators near certain elements of Fq(t).

Lemma 3.2. Let ε ≥ 0 and let GQ be as above. Define

S(Q) :=
{

(r, f) ∈ Fq[t]
2 : deg f = Q, f monic, deg r < 2Q, (2)

gcd(r, f) = 1,
∣
∣
∣
r

f 2
− 1

GQ

∣
∣
∣
∞

≤ 1

q3Q

}

. (3)

Then

#S(Q) ≥ qQ(logq 2)/ logq((1+ε)Q). (4)

In Lemma 3.2 above, we write gcd(r, f) instead of the short notation (r, f)
because (r, f) is also used to denote a pair in Fq[t]

2. Throughout the sequel, if
no confusions are possible, we will use the notation (r, f) to denote the greatest
common divisor of r and f (which is unique up to units).

We note that the expected number of Farey fractions of the form r/f 2 with
deg f = Q, f monic, deg r ≤ Q2, (r, f) = 1 in an interval of length Δ is, heuris-
tically, of order of magnitude q3QΔ. So the above Lemma 3.2 shows that under
certain circumstances, the true number can exceed the expectation significantly.

Proof of Lemma 3.2. Using the Chinese Remainder Theorem, the number of
solution to the congruence

f 2 ≡ 1 mod GQ

with deg f = Q is 2ad . If f solves the above congruence, then

f 2 = 1 + rGQ

for some r with deg r ≤ 2Q and (r, f) = 1, and it follows that
∣
∣
∣
r

f 2
− 1

GQ

∣
∣
∣
∞
≤ 1

q3Q
.

Hence
#S(Q) ≥ 2ad . (5)

Moreover, using the prime number theorem for polynomials, for any given ε > 0,

ad ≥
qd

(1 + ε)d
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if d large enough. Therefore,

Q = dad ≥
qd

(1 + ε)
,

which gives us d ≤ logq((1 + ε)Q) and hence

ad =
Q

d
≥ Q

logq((1 + ε)Q)
. (6)

Now the desired inequality (4) follows from (5) and (6). �

Having proved Lemma 3.2, we are ready to prove Theorem 3.1. Take GQ as in
Lemma 3.2. Further, set

N := 3Q− 2, ag := e
(

− g

GQ

)

.

Then

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)

=
∑

g∈Fq [t]
deg g≤N

e(αg)

with

αg := g
( r

f 2
− 1

GQ

)

.

If

∣
∣
∣
r

f 2
− 1

GQ

∣
∣
∣
∞
≤ 1

q3Q
,

then |αg|∞ ≤ q−2 if g ≤ N and hence

∣
∣
∣

∑

g∈Fq [t]
deg g≤N

e(αg)
∣
∣
∣= #{g ∈ Fq[t] : deg g ≤ N} (7)



6 STEPHAN BAIER, RAJNEESH KUMAR SINGH

by definition of e(x). Now for S(Q) as defined in (2), it follows that

∑

f∈Fq [t]
deg f≤Q
f monic

∑

rmod f2

(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)
∣
∣
∣
∣

2

≥
∑

(r,f)∈S(Q)

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)
∣
∣
∣
∣

2

= #S(Q) ·#{g ∈ Fq[t] : deg g ≤ N}2

= #S(Q) ·#{g ∈ Fq[t] : deg g ≤ N}
∑

g∈Fq [t]
deg g≤N

|ag|2

= #S(Q) · qN+1
∑

g∈Fq [t]
deg g≤N

|ag|2

=
1

2
·#S(Q)

(

qN+1 + q3Q−1
) ∑

g∈Fq [t]
deg g≤N

|ag|2.

4. Main result

In the rest of this paper, we establish our main result, the following corrected
version of [4, Corollary 6.5.] for the case k = 2 and char(Fq) > 2.

Theorem 4.1. Let N,Q ∈ N and ag ∈ C, where g ∈ F[t]. Assume that 2Q ≤
N ≤ 4Q. Then

∑

f∈Fq [t]
deg f≤Q

∑

r mod f2

(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)
∣
∣
∣
∣

2

(8)

�q2
Q+N

(

q3Q +min
{

q2Q+N/2, qQ/2+N
})

·
∑

g∈Fq [t]
deg g≤N

|ag|2. (9)

This corresponds to the result for the classical case in [6] which asserts that

∑

q≤Q

∑

a mod q2

(a,q)=1

∣
∣
∣
∣
∣

∑

n≤N

an · e
(
na

q2

)
∣
∣
∣
∣
∣

2

�(QN)ε
(

Q3 +min{Q2
√
N,

√

QN}
) ∑

n≤N

|an|2.

(10)
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Remark: We note that the term 2Q+N on the right-hand side of (8) satisfies

2Q+N ≤ qε(Q+N)

as q is large enough. In this sense, this term corresponds to the term (QN)ε on
the right-hand side of (10). We further note that the N -range 2Q ≤ N ≤ 4Q
in Theorem 4.1 corresponds to the most relevant range Q2 ≤ N ≤ Q4 in the
classical case, and one can show by simple arguments that the claimed inequality
(8) remains true if N lies outside this range (see [6, inequality (1.3)]).

Acknowledgements: The authors would like to thank the Ramakrishna Mis-
sion Vivekananda Educational and Research Institute for an excellent working
environment and the anonymous referee for his careful checking of our paper.

5. Preliminaries

In this section, we state some basic results needed for the rest of this paper.
The following is the one-dimensional version of a general large sieve bound which
can be found in [4, section 4].

Lemma 5.1. Let X1, X2, ..., XR ∈ Fq(t)∞. Suppose that 0 < Δ ≤ 1/q and R ∈ N.
Set

K(Δ) := max
x∈Fq(t)∞

R∑

r=1
||Xr−x||≤Δ

1.

Then
R∑

r=1

∣
∣ S(Xr)

∣
∣
2� K(Δ)(qN+1 +Δ−1)Z,

with an absolute �-constant.

This implies the following result.

Lemma 5.2. Let X1, X2, ..., XR ∈ Fq(t)∞ and Y1, Y2, ..., YL ∈ Fq(t)∞, where
R,L ∈ N. Suppose that 0 < Δ ≤ 1/q and for every x ∈ Fq(t)∞, there exists Yl

with 1 ≤ l ≤ L such that
‖Yl − x‖ ≤ Δ.

Put

K ′(Δ) := max
1≤l≤L

R∑

r=1
||Xr−Yl||≤Δ

1.

Then
R∑

r=1

∣
∣ S(Xr)

∣
∣
2� K ′(Δ)(qN+1 +Δ−1)Z,

with an absolute �-constant.
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Further, we need the Poisson summation formula for function fields (see [8,
Theorem 4.2.1]).

Lemma 5.3 (Poisson Summation Formula). Let Φ : Fq(t)∞ → C be a function
such that

F (x) =
∑

f∈Fq [t]

|Φ(f + x)|

is uniformly convergent in compact subsets of Fq(t)∞ and

∑

g∈Fq [t]

|Φ̂(g)|

is convergent, where Φ̂ is the Fourier transform of Φ, defined as

Φ̂(x) :=

∫

Fq(t)∞

Φ(y)e(−xy) dy.

Then
∑

f∈Fq [t]

Φ(f) =
∑

g∈Fq [t]

Φ̂(g).

We shall work with the weight function

Φ1(x) :=

{

1, if |x|∞ ≤ 1
q

0, otherwise.
(11)

For this function, the following holds by [10, Lemma 2.2].

Lemma 5.4. We have Φ1 = Φ̂1.

Now we quote Dirichlet’s approximation theorem for function fields of dimen-
sion n ∈ N from [9, Theorem 1.1]. This is an analogue of Dirichlet’s theorem for
local fields of positive characteristic (for more details see [7]).

Theorem 5.5. (Theorem 1.1. in [9]) Let l be a nonnegative integer. For x :=
(x1, x2, · · · , xn) ∈ Fq(t)

n
∞, there exists v = (v1, v2, · · · , vn) ∈ Fq[t]

n and u ∈
Fq[t]\{0} with (u, vi) = 1 for every i, 1 ≤ i ≤ n such that

|v1x1 + v2x2 + · · ·+ vnxn − u|∞ <
1

qnl
and max

1≤j≤n
|vj|∞ ≤ ql.

We shall only need the one-dimensional case of the above theorem.



THE LARGE SIEVE WITH SQUARE MODULI IN FUNCTION FIELDS 9

6. Quadratic Gauss sums

Recall that charFq �= 2. As in the classical case, we define the quadratic Gauss
sums for the rational function field as

G(α, l; β) =
∑

d mod β

e

(
αd2 + ld

β

)

. (12)

These Gauss sums will play an important part in this paper. Along similar lines
as in the classical setting, we will evaluate them in this section. Our first result
is the following multiplicative property.

Lemma 6.1. If (β1, β2) = 1, then

G(α, l; β1β2) = G(αβ2, l; β1)G(αβ1, l; β2).

Proof. We have

G(α, l; β1β2) =
∑

d mod β1β2

e

(
αd2 + ld

β1β2

)

=
∑

d1 mod β1

∑

d2 mod β2

e

(
α(d1β2 + d2β1)

2 + l(d1β2 + d2β1)

β1β2

)

=
∑

d1 mod β1

e

(
αβ2d

2
1 + ld1
β1

)
∑

d2 mod β2

e

(
αβ1d

2
2 + ld2
β2

)

=G(αβ2, l; β1)G(αβ1, l; β2),

which completes the proof. �

Further, we relate G(α, l; β) to G(α, 0; β).

Lemma 6.2. Assuming that (α, β) = 1 and αα = 1 mod β, we have

G(α, l; β) = e

(

−αl2

4β

)

G(α, 0; β).

Proof. Using quadratic completion, we obtain

e

(
αd2 + ld

β

)

= e

(
α(d+ 2−1lα)2

β

)

e

(

−αl2

4β

)

.

Making the change of variable d + 2−1lα → d and summing over d gives the
desired equation. �

Next, we reduce the exponent in power moduli as follows.

Lemma 6.3. Assuming (α, β) = 1 and r ≥ 2, we have

G(α, 0; βr) = qdeg βG(α, 0; βr−2).
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Proof. We write

G(α, 0; βr) =
∑

d mod βr

e

(
αd2

βr

)

=
∑

a mod β

∑

b mod βr−1

e

(
α(aβr−1 + b)2

βr

)

=
∑

b mod βr−1

e

(
αb2

βr

)
∑

a mod β

e

(
2αba

β

)

.

Now

∑

a mod β

e

(
2αba

β

)

=

{

qdeg β if b ≡ 0 mod β

0 otherwise.

It follows that

G(α, 0; βr) =qdeg β
∑

b mod βr−1

b≡0 mod β

e

(
αb2

βr

)

=qdeg β
∑

d mod βr−2

e

(
α(βd)2

βr

)

=qdeg βG(α, 0; βr−2).

�
The next lemma reduces G(α, 0;P ) to G(1, 0;P ) in the case when P is an

irreducible polynomial.

Lemma 6.4. If P ∈ Fq[t] is an irreducible polynomial and (α, P ) = 1, then

G(α, 0;P ) =
(α

P

)

G(1, 0;P ),

where
(α

P

)

is the Legendre symbol for the rational function field.

Proof. We first write

G(α, 0;P ) = 1 +
∑

e mod P
e �≡0 mod P

(

1 +
( e

P

))

e
(αe

P

)

,

which implies

G(α, 0;P ) =
∑

e mod P

( e

P

)

e
(αe

P

)

(13)

using the orthogonality relation
∑

e mod P

e
(αe

P

)

= 0
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if (α, P ) = 1. Changing variables f = αe now gives

G(α, 0;P ) =
∑

e mod P

(
αf

P

)

e

(
f

P

)

=
(α

P

) ∑

f mod P

(
f

P

)

e

(
f

P

)

,

where αα ≡ 1 mod P . Similarly as above,

∑

f mod P

(
f

P

)

e

(
f

P

)

= G(1, 0;P )

which completes the proof. �

Now we are ready to determine the modulus of a quadratic Gauss sum.

Lemma 6.5. Assuming (α, β) = 1, we have

|G(α, l; β)| = |β|1/2∞ . (14)

Proof. By the virtue of the previous lemmas on quadratic Gauss sums, it suffices
to show that

|G(1, 0;P )| = |P |1/2∞ (15)

for any irreducible polynomial P , which we shall establish in the following. Taking
the modulus square of both sides of (13) gives

|G(α, 0;P )|2 =
∑

f1,f2 mod P

(
f1
P

)(
f2
P

)

e

(
(f1 − f2)α

P

)

(16)

for any α with α �≡ 0 mod P . We observe that the right-hand side of (16) equals
0 if α ≡ 0 mod P using the orthogonality relation

∑

f mod P

(
f

P

)

= 0.

Now summing both sides of (16) over all α mod P with α �≡ 0 mod P and then
using Lemma 6.4 and the above observation, we obtain

(

qdegP − 1
)

|G(1, 0;P )|2 =
∑

α mod P

∑

f1,f2 mod P

(
f1
P

)(
f2
P

)

e

(
(f1 − f2)α

P

)

=
∑

f1,f2 mod P

(
f1
P

)(
f2
P

)
∑

α mod P

e

(
(f1 − f2)α

P

)

=qdegP
∑

f mod P

(
f

P

)2

=qdegP
(

qdegP − 1
)

,

(17)

which gives us (15). �
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7. Quadratic exponential integrals

Let Fq(t)
2
∞ be the set of squares of elements of Fq(t)∞. Observe that y ∈

Fq(t)
2
∞ � {0} if and only if the leading coefficient cR of

y =
R∑

i=−∞
cit

i (cR �= 0)

is a square in F
∗
q and R is even. Now we fix a square root function

√
y on Fq(t)

2
∞

as follows. If y = 0, then
√
y = 0. If y is a square in F

∗
q, then

√
y is any of the

two s ∈ Fq such that s2 = y. Now, more generally, if y ∈ Fq(t)
2
∞ � {0}, then √

y
is those of the two s ∈ Fq(t)

∗
∞ satisfying s2 = y whose leading coefficients is the

square root
√
cR, fixed above, of the leading coefficient cR of y.

Now let Q be a positive integer and B2(0, 2Q) be the set of squares of elements
of Fq(t)∞ in the ball B(0, 2Q). In this section, we evaluate exponential integrals
of the form

E(A,B) :=

∫

B2(0,2Q)

1

2|√y|∞
e (Ay − B

√
y) dy, (18)

which will show up in this paper as well.
A change of variables y = x2 gives

E(A,B) =

∫

B(0,Q)

e
(

Ax2 − Bx
)

dx, (19)

where we note that

dx2 = 2|x|∞dx.

If A = 0, we immediately deduce the following.

Lemma 7.1. For every B ∈ Fq(t)∞, we have

E(0, B) =

{

qQ+1 if |B|∞ ≤ q−(Q+2)

0 otherwise.

If A �= 0, then we proceed as follows. First, using quadratic completion, we
obtain

E(A,B) = e

(
−B2

4A

) ∫

B(0,Q)

e

(

A

(

x− B

2A

)2
)

dx.

If |B/A|∞ ≤ qQ, then a linear change of variables gives

∫

B(0,Q)

e

(

A

(

x− B

2A

)2
)

dx =

∫

B(0,Q)

e
(

Ax2
)

dx,
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where we use the fact that B(B/(2A), Q) = B(0, Q) in this case. When |B/A|∞ >
qQ, we get

∫

B(0,Q)

e

(

A

(

x− B

2A

)2
)

dx =

∫

B(B/(2A),Q)

e
(

Ax2
)

dx.

Now observe that it is always possible to write A = αA2, where A2 ∈ Fq(t)
2
∞�{0}

and α = ct−ε with c ∈ F
∗
q and ε ∈ {0, 1} suitable. Then making the change of

variables y =
√
A2x, we obtain

∫

B(0,Q)

e
(

Ax2
)

dx =|
√

A2|−1
∞

∫

B(0,Q+deg
√
A2)

e
(

αy2
)

dy

=q−�(degA)/2�
∫

B(0,Q+�(degA)/2�)

e
(

αy2
)

dy

and
∫

B(B/(2A),Q)

e
(

Ax2
)

dx =|
√

A2|−1
∞

∫

B(B
√
A2/(2A),Q+deg

√
A2)

e
(

αy2
)

dy

=q−�(degA)/2�
∫

B(B
√
A2/(2A),Q+�(degA)/2�)

e
(

αy2
)

dy,

where we note that

dCx = |C|∞dx.

Summarizing the above, we have the following.

Lemma 7.2. Suppose that A = αA2 with A2 ∈ Fq(t)
2
∞ � {0} and α = ct−ε for

some c ∈ F
∗
q and ε ∈ {0, 1}. Suppose further that B ∈ Fq(t)∞. Then

E(A,B) = q−�(degA)/2� · e
(
−B2

4A

)

·
∫

B(C,Q+�(degA)/2�)

e
(

αy2
)

dy,

where

C :=

{

0 if |B/A|∞ ≤ qQ

B
√
A2/(2A) if |B/A|∞ > qQ.

It remains to evaluate integrals of the form
∫

B(x,n)
e(αy2)dy, which is done in

the following lemma.
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Lemma 7.3. Suppose that α = ct−ε for some c ∈ F
∗
q and ε ∈ {0, 1}. Suppose

further that x ∈ Fq(t)∞ and n ∈ Z. Then

∫

B(x,n)

e(αy2)dy =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

qn+1 if deg x ≤ n ≤ −1

1 + ε(s(c)q1/2 − 1) if deg x ≤ n and n ≥ 0

e(αx2) · qn+1 if min{deg x,− deg x− 1 + ε} > n

0 if deg x > n ≥ − deg x− 1 + ε,

(20)
where

s(c) =

{

+1 if c is a square in F
∗
q

−1 otherwise.
(21)

Proof. First, just using the definition of e(· · · ), we observe that

∫

B(0,n)

e(αy2)dy = μ(B(0, n)) = qn+1 (22)

if n ≤ −1.
Now suppose that deg x ≤ n. Then

∫

B(x,n)

e(αy2)dy =

∫

B(0,n)

e(αy2)dy.

If n ≤ −1, it follows that

∫

B(x,n)

e(αy2)dy = qn+1

using (22). If n ≥ 0, then we get

∫

B(x,n)

e(αy2)dy =

∫

B(0,n)

e(αy2)dy =

∫

B(0,n)�B(0,−1)

e(αy2)dy + 1,

again using (22). Writing

y =
R∑

i=−∞
cit

i with R ≥ 0, cR �= 0, (23)
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we further have
∫

B(0,n)�B(0,−1)

e(αy2)dy

=
n∑

R=0

∫

deg y=R

E

(

c
R∑

i=0

zicic−i−1+ε

)

dy

=
n∑

R=0

∑

k∈Fq

E(k)μ
({

deg y = R : c

R∑

i=0

zicic−i−1+ε = k
})

=
n∑

R=0

∑

k∈Fq

E(k)μ
({

deg y = R : c−R−1+ε = (zRccR)
−1
(

k − c
R−1∑

i=0

zicic−i−1

)})

,

where

zi :=

{

2 if (i, ε) �= (0, 1)

1 if (i, ε) = (0, 1).
(24)

If (R, ε) �= (0, 1), then the measure in the last line is independent of k, namely

μ
({

deg y = R : c−R−1+ε = (zRccR)
−1
(

k − c
R−1∑

i=0

zicic−i−1

)})

= qR
(

1− 1

q

)

.

From the orthogonality relation
∑

k∈Fq

E(k) = 0, (25)

it then follows that the contribution of (R, ε) �= (0, 1) equals 0. If (R, ε) = (0, 1),
then

∑

k∈Fq

E(k)μ
({

deg y = R : c−R−1+ε = (zRccR)
−1
(

k − c
R−1∑

i=0

zicic−i−1

)})

=
∑

k∈Fq

E(k)μ
({

deg y = 0 : c0 = (cc0)
−1k

})

=
∑

c0∈F∗
q

E(cc20).

The latter is a classical quadratic Gauss sum and has the value
∑

c0∈F∗
q

E(cc20) =
∑

c0∈Fq

E(cc20)− 1 = s(c)q1/2 − 1,

where s(c) is defined as in (21). Hence, if deg x ≤ n and n ≥ 0, then we obtain
∫

B(x,n)

e(αy2)dy = 1 + ε(s(c)q1/2 − 1).
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Now suppose that deg x > n. If min{deg x,− deg x−1+ε} > n, then, similarly
as in (22),

∫

B(x,n)

e(αy2)dy = e(αx2) · μ((B(x, n)) = e(αx2) · qn+1.

Finally, we consider the case when R := deg x > n ≥ − deg x − 1 + ε. In this
case, y ∈ B(x, n) implies deg y = R. Using the same notations as in (23) and
(24), we get

∫

B(x,n)

e(αy2)dy

=

∫

y∈Fq(t)∞
deg(y−x)≤n

E

(

c

R∑

i=0

zicic−i−1+ε

)

dy

=
∑

k∈Fq

E(k)μ
({

y ∈ Fq(t)∞ : deg(y − x) ≤ n, c

R∑

i=0

zicic−i−1+ε = k
})

=
∑

k∈Fq

E(k)μ
({

y ∈ Fq(t)∞ : deg(y − x) ≤ n,

c−R−1+ε = (zRccR)
−1
(

k − c
R−1∑

i=0

zicic−i−1+ε

)})

.

We observe that the case (R, ε) = (0, 1) does not occur here because of our
condition R > n ≥ −R − 1 + ε, and therefore the measure in the last line is
always independent of k, namely

μ
({

y ∈ Fq(t)∞ : deg(y − x) ≤ n,

c−R−1+ε = (zRccR)
−1
(

k − c
R−1∑

i=0

zicic−i−1+ε

)})

= qn.

Again, from the orthogonality relation (25), it then follows that

∫

B(x,n)

e(y2) = 0.

Combining everything, we obtain (20). �
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8. Diophantine approximation

After having provided the basic tools used in this paper, we are ready to
investigate the large sieve with square moduli. We aim to estimate the quantity

∑

f∈Fq [t]
deg f=Q

∑

r mod f2,
(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r

f 2

)
∣
∣
∣
∣

2

.

To this end, we use Lemma 5.2. In our situation, we let X1, · · · , XR be the
sequence of Farey fractions r/f 2 with deg f = Q, deg r ≤ 2 deg f−1 and (r, f) = 1
so that the above expression equals

R∑

r=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g ·Xr

)
∣
∣
∣
∣

2

.

The Yl’s are now chosen as follows. First we set

τ :=
1√
Δ

We let Y1, Y2, ..., YL be the points

u

v
+

1

fkv2
,

where
v ∈ Fq[t]� {0}, |v|∞ ≤ τ, (u, v) = 1, deg u < deg v,

and the fk’s are polynomials of degree k ∈ N with

K := 
logq τ − deg v� ≤ k ≤ κ := 
2 logq τ − 2 deg v�. (26)

We want to show that the Yl’s above satisfy the conditions in Lemma 5.2 if the
fk’s are chosen suitably.

By Dirichlet’s approximation theorem for function fields, Theorem 5.5 with
dimension n = 1, every x ∈ Fq(t)∞ can be written in the form

x =
u

v
+ z, where |v|∞ ≤ τ, (u, v) = 1, |vz|∞ ≤ 1

τ
. (27)

We must show that for every z with |vz|∞ ≤ τ−1, there exists k ∈ N satisfying
(26) such that

∣
∣
∣ z −

1

fkv2

∣
∣
∣
∞
≤ Δ.

First, if deg z ≤ −(2 deg v + κ), then
∣
∣
∣ z −

1

fκv2

∣
∣
∣
∞
≤ max

{

|z|∞,
∣
∣
∣

1

fκv2

∣
∣
∣
∞

}

≤ q−κ−2 deg v ≤ q−2 logq τ = Δ.

Otherwise, if deg z > −(2 deg v + κ) = −
2 logq τ�, then
logq τ + deg v + 1 > deg fKv

2 ≥ logq τ + deg v,
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i.e.

− logq τ − deg v − 1 < deg
1

fKv2
≤ − logq τ − deg v.

Since
−
2 logq τ� < deg z ≤ − logq τ − deg v,

we can now choose fk with k ≥ K in such a way that the leading coefficient of z
is cancelled by that of 1/(fkv

2), so that

deg

(

z − 1

fkv2

)

≤ −
2 logq τ�,

i.e. ∣
∣
∣ z −

1

fkv2

∣
∣
∣
∞
≤ Δ.

For x ∈ Fq(t)∞ we put

P (x) :=
∑

deg f=Q, (r,f)=1
|r/f2−x|∞≤Δ

1.

Then we have
K ′(Δ) ≤ max

1≤l≤L
P (Yl).

Summarizing the above observations, we deduce the following.

Lemma 8.1. We have

K ′(Δ) ≤ max
v∈Fq [t]�{0}
deg v≤logq τ

max
u∈Fq(t)
(u,v)=1

max
K≤k≤κ

P
(u

v
+

1

fkv2

)

.

By the preceding lemma, it suffices to estimate P (x) for x of the form

x =
u

v
+ z, where |v|∞ ≤ τ, (u, v) = 1, z = 1/fkv

2, (28)

where fk is a polynomial of degree k ∈ N satisfying (26). We note that x satisfies
(27) if it satisfies (28).

9. First estimate for P (x)

In this section, we establish a first estimate for P (x) by applying Poisson
summation, a Weyl shift to reduce quadratic to linear exponential sums and a
counting argument. First we set

Φ(x) : =

{

1, if |x|∞ ≤ 1

0, otherwise

=

{

1, if |x
t
|∞ ≤ 1

q

0, otherwise.
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Then Φ(x) = Φ1(x/t) with

Φ1(x) =

{

1, if |x|∞ ≤ 1
q

0, otherwise.

Now define

ω := 
logq Δ�+ 1. (29)

Then it follows that

P (x) ≤
∑

deg f=Q

∑

r∈Fq [t]

Φ1

(r − xf 2

f 2tω

)

.

Applying the Poisson summation formula, Lemma 5.3, with a linear change of
variable to the sum over r, and using Φ1 = Φ̂1 (see Lemma 5.4), we deduce that

P (x) ≤ q2Q+ω
∑

deg f=Q

∑

r′∈Fq [t]

Φ1

(

f 2tωr′
)

e(xr′f 2),

which implies

P (x) ≤q2Q+ω
∑

r′∈Fq [t]
deg r′≤−2Q−ω−1

∑

deg f=Q

e(xr′f 2)

≤q3Q+ω+1 + q2Q+ω
∑

r′∈Fq [t]
0≤deg r′≤−2Q−ω−1

∣
∣
∣
∣
∣

∑

deg f=Q

e(xr′f 2)

∣
∣
∣
∣
∣
,

(30)

where the second line arises from isolating the contribution of r′ = 0. Applying
the Cauchy-Schwarz inequality and

∑

r′∈Fq [t]
0≤deg r′≤−2Q−ω−1

1 = q−2Q−ω,

we deduce from (30) that

P (x)2 � q6Q+2ω+2 + q2Q+ω
∑

r′∈Fq [t]
0≤deg r′≤−2Q−ω−1

∣
∣
∣
∣
∣

∑

deg f=Q

e(xr′f 2)

∣
∣
∣
∣
∣

2

. (31)
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To bound the inner-most sum, we perform a Weyl shift. Using a change of
variables h = f ′ − f , we bound the modulus square by

∣
∣
∣
∣
∣

∑

deg f=Q

e(xr′f 2)

∣
∣
∣
∣
∣

2

=
∑

deg f=Q
deg f ′=Q

e
(

xr′(f ′ − f)(f ′ + f)
)

=(q − 1)qQ +
∑

0≤deg h≤Q

∑

deg f=Q

e
(

xr′h(h+ 2f)
)

≤qQ+1 +
∑

0≤deg h≤Q

∣
∣
∣
∣

∑

deg f=Q

e
(

2xr′hf
)
∣
∣
∣
∣
.

Combining this with (31), we deduce that

P (x)2 �qq
6Q+2ω + q3Q+ω + q2Q+ω

∑

r′∈Fq [t]
0≤deg r′≤−2Q−ω−1

∑

0≤deg h≤Q

∣
∣
∣
∣

∑

deg f=Q

e
(

2xr′hf
)
∣
∣
∣
∣

≤q6Q+2ω + q3Q+ω + q2Q+ω
∑

l∈Fq [t]
0≤deg l≤−Q−ω−1

τ(l)
∣
∣
∣

∑

deg f=Q

e
(

xlf
) ∣
∣
∣,

where τ(l) is the number of divisors of l = 2r′h in Fq[t]. Here we recall our
assumption that q is not a power of 2. We note that

τ(l) ≤ 2deg lq. (32)

It follows that

P (x)2 �q q
6Q+2ω + q3Q+ω + 2−Q−ωq2Q+ω

∑

l∈Fq [t]
0≤deg l≤−Q−ω−1

∣
∣
∣

∑

deg f=Q

e
(

xlf
) ∣
∣
∣ . (33)

Now, using the Poisson summation formula, Lemma 5.3, and Φ1 = Φ̂1 again,
we have

∑

deg f=Q

e
(

xlf
)

=
∑

deg f≤Q

e
(

xlf
)

−
∑

deg f≤Q−1

e
(

xlf
)

=
∑

f∈Fq [t]

e
(

xlf
)

Φ1

(

t−Q−1f
)

−
∑

f∈Fq [t]

e
(

xlf
)

Φ1

(

t−Qf
)

=qQ+1
∑

f∈Fq [t]

Φ̂1

(

tQ+1(f − xl)
)

− qQ
∑

f∈Fq [t]

Φ̂1

(

tQ(f − xl)
)

.

We observe that, for n ∈ N,

∑

f∈Fq [t]

Φ̂1

(

tn(f − xl)
)

=

{

1, if ‖xl‖ ≤ q−n−1

0, otherwise,
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with ||xl|| as defined in (1). It follows that

∣
∣
∣
∣
∣

∑

deg f=Q

e
(

xlf
)

∣
∣
∣
∣
∣
=

⎧

⎪⎨

⎪⎩

−qQ, if ‖xl‖ = q−Q−1

qQ+1 − qQ if ‖xl‖ ≤ q−Q−2

0, otherwise

≤qQ+1Iq−Q−1(‖xl‖),

(34)

where

Iy(x) :=

{

1 if x ≤ y

0 if x > y.

Combining (33) and (34), we have

P (x)2 � q6Q+2ω + q3Q+ω + 2−Q−ωq3Q+ω
∑

l∈Fq [t]
0≤deg l≤−Q−ω−1

Iq−Q−1(‖xl‖). (35)

Recall that x = u/v+ z. Writing l = Av+k with unique A, k ∈ Fq[t] such that
deg k < deg v, we transform the sum over l in equation (35) into

∑

l∈Fq [t]
0≤deg l≤−Q−ω−1

Iq−Q−1(‖xl‖)

≤
∑

degA≤
−Q−ω−1−deg v

∑

deg k≤deg v−1

Iq−Q−1

(∥
∥
∥

( u

v
+ z

)

(Av + k)
∥
∥
∥

)

=
∑

degA≤
−Q−ω−1−deg v

∑

deg k≤deg v−1

Iq−Q−1

(∥
∥
∥ Avz +

ku

v
+ kz

∥
∥
∥

)

.

(36)

Now assume k1 �= k2 and deg k1, deg k2 ≤ deg v−1. Using the triangle inequality,
we have

∣
∣
∣
∣

{

Avz +
k1u

v
+ k2

}

−
{

Avz +
k2u

v
+ k2z

}∣
∣
∣
∣
∞

=
∥
∥
∥
(k1 − k2)u

v
+ (k1 − k2)z

∥
∥
∥

≥
∥
∥
∥
(k1 − k2)u

v

∥
∥
∥ −||(k1 − k2)z||.

Furthermore,
‖(k1 − k2)z‖ < |vz|∞ ≤ Δ1/2 ≤ |v|−1

∞
and hence

‖(k1 − k2)z‖∞ ≤ |v|−1
∞ q−1.

It follows that
∥
∥
∥
(k1 − k2)u

v

∥
∥
∥ −||(k1 − k2)z||∞ ≥ |v|−1

∞ − |v|−1
∞ q−1 ≥ |v|−1

∞ q−1
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and hence
∣
∣
∣
∣
∣

∥
∥
∥ Avz +

k1u

v
+ k2

∥
∥
∥ −

∥
∥
∥ Avz +

k2u

v
+ k2z

∥
∥
∥

∣
∣
∣
∣
∣
∞

≥ |v|−1
∞ q−1. (37)

The maximum number of points in Fq(t)∞ of mutual distance greater or equal
d = q−D fitting into the ball {z ∈ Fq(t)∞ : |z|∞ ≤ q−E} is bounded by 1+qD−E+1.
Hence, taking (37) into account, we deduce that

∑

deg k≤deg v−1

Iq−Q−1

(∥
∥
∥ Avz +

ku

v
+ kz

∥
∥
∥

)

≤ 1 + ‖v‖∞q−Q = 1 + qdeg v−Q.

Combining this with (36), we obtain
∑

l∈Fq [t]
deg l≤−Q−ω−1

Iq−Q−1(‖xl‖) �
(

1 + q−Q−ω−deg v
) (

1 + qdeg v−Q
)

,

which together with (35) implies

P (x)2 �qq
6Q+2ω +

(

1 + 2−Q−ω
)

q3Q+ω
(

1 + q−Q−ω−deg v
) (

1 + qdeg v−Q
)

�q

(

q6QΔ2 +
(

1 + 2L−Q
) (

q3QΔ+ q2Q|v|−1
∞ + q2QΔ|v|∞ + qQ

))

,

where here and in the sequel, we set

L := log qΔ−1. (38)

Taking sqare root, the following bound for P (x) emerges.

Proposition 9.1. We have

P
(u

v
+ z

)

�qq
3QΔ+

(

1 + 2(L−Q)/2
)

×
(

q3Q/2Δ1/2 + qQ|v|−1/2
∞ + qQΔ1/2|v|1/2∞ + qQ/2

)

.
(39)

10. Second estimate for P (x)

In this section, we shall prove another estimate for P (x), defined in (42), which
will follow from a more general estimate for a corresponding quantity counting
Farey fractions with denominators from a general set in place of squares. As a
by-product, we obtain a large sieve inequality for

∑

f∈S

∑

r mod f
(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r
f

)
∣
∣
∣
∣

2

, (40)

where

S ⊂ B(0, Q0) ∩ (Fq[t]� {0})
which we shall assume henceforth.
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In analogy to section 8, we let X1, · · · , XR be the sequence of Farey fractions
r/f with f ∈ S, deg f ≤ Q0, deg r ≤ deg f − 1 and (r, f) = 1. Hence, the
expression in (40) equals

R∑

r=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g ·Xr

)
∣
∣
∣
∣

2

.

Again, we set

τ :=
1√
Δ
, (41)

and the Y ′
l s are chosen to be

u

v
+

1

fkv2
,

where

v ∈ Fq[t]� {0}, |v|∞ ≤ τ, (u, v) = 1, deg u < deg v.

The fk’s are polynomials of degree k ∈ N with k satisfying condition (26), i.e.

K := 
logq τ − deg v� ≤ k ≤ κ := 
2 logq τ − 2 deg v�.

The above inequality implies that

Δ ≤
∣
∣
∣

1

fkv2

∣
∣
∣
∞
≤

√
Δ

|v|∞
.

Generalising the notion of P (x) in the previous section for x ∈ Fq(t)∞, we set

PS(x) :=
∑

f∈S, (r,f)=1
|r/f−x|∞≤Δ

1. (42)

As in section 8, it follows that

K ′(Δ) ≤ max
1≤l≤L

P (Yl).

So we deduce the following.

Lemma 10.1.

K ′(Δ) ≤ max
v∈Fq [t]�{0}
deg v≤logq τ

max
u∈Fq(t)
(u,v)=1

max
k

K≤k≤κ

PS

(u

v
+

1

fkv2

)

≤ max
v∈Fq [t]�{0}
deg v≤logq τ

max
u∈Fq(t)
(u,v)=1

max
z∈Fq [t]∞

Δ≤|z|∞≤
√
Δ/|v|∞

PS

(u

v
+ z

)

.

The next lemma gives an estimate for PS(u/v+z) in terms of another quantity
Π(y, δ) which will then be transformed further.
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Lemma 10.2. Suppose that the conditions (27) and (41) are satisfied and also
suppose that |z|∞ ≥ Δ. Suppose further that δ is a natural number satisfying

qQ0−1Δ

|z|∞
≤ qδ < qQ0 . (43)

Let

J(y, δ) := B
(

zvy, logq
(

qδ+1|vz|∞
))

(44)

and

Π(y, δ) :=
∑

f∈S∩B(y,δ)

∑

g∈J(y,δ)
g≡−uf mod v

g �=0

1. (45)

Then

PS

(u

v
+ z

)

�q 1 +
1

qδ

∫

B(0,Q0)

Π(y, δ)dy.

Proof. We first isolate the contribution of f ’s which are associates to v, getting

PS(x) ≤ q − 1 + P ′
S(x), (46)

where

P ′
S :=

∑

f∈S, (r,f)=1
|r/f−x|∞≤Δ

f �≈v

1.

Here “f �≈ v” means that f is not an associate of v. Now we define

PS(x, y, δ) :=
∑

f∈S∩B(y,δ)
(r,f)=1

|r/f−x|∞≤Δ
f �≈v

1.

Since δ < Q0, we have
∫

B(0,Q0)

PS(x, y, δ)dy =
∑

f∈S
(r,f)=1

|r/f−x|∞≤Δ
f �≈v

∫

B(0,Q0)∩B(f,δ)

1dy ≥ qδP ′
S(x) (47)

and hence

P ′
S(x) ≤

1

qδ

∫

B(0,Q0)

PS(x, y, δ)dy (48)

whenever δ < Q0.
Now, if |r/f − x|∞ ≤ Δ, then

|r − fx|∞ ≤ Δ|f |∞, i.e. deg(r − fx) ≤ 
logq Δ�+ deg f.
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From this and x = u/v + z, we deduce that
∣
∣
∣
∣
r − fu

v
− fz

∣
∣
∣
∣
∞
≤ Δ|f |∞

and hence
|rv − fu− vfz|∞ ≤ ΔqQ0 |vz|∞/|z|∞.

Since qQ0−1Δ/|z|∞ ≤ qδ, it follows that

|rv − fu− vfz|∞ ≤ qδ+1|vz|∞. (49)

If f ∈ B(y, δ), then
|fvz − yvz|∞ ≤ qδ|vz|∞. (50)

From (49) and (50), we have

|rv − fu− yvz|∞ ≤ qδ+1|vz|∞.

We observe that rv − fu �= 0 because (r, f) = (u, v) = 1 and f �≈ v. Writing
g = rv − fu and recalling (44) and (45), we deduce that

PS(x, y, δ) ≤ Π(y, δ).

Combining this with (46) and (48), we obtain the desired result. �
Further notations: For h ∈ Fq[t]\{0} we put

Sh := {x ∈ Fq[t]∞ : hx ∈ S}.
We note that

Sh ⊂ B
(

0, Q0 − deg h
)

.

We shall require that the number of elements of Sh in small sections of arithmetic
progressions in Fq[t] does not differ too much from the expected number. To
measure the distribution of Sh in sections of arithmetic progressions, we define
the quantity

Ah(m; k, l) := max
y∈Fq(t)∞

|y|∞≤Q0−deg h

∣
∣
∣

{

x ∈ Sh ∩ B(y,m) : x ≡ l mod k
}∣
∣
∣, (51)

where

0 ≤ m ≤ Q0 − deg h, k ∈ Fq[t]\{0}, |k|∞ ≤ Δ−1/2, l ∈ Fq[t], (k, l) = 1. (52)

Next we express Π(y, δ) in terms of Ah(m, k, l). This will lead us to the follow-
ing estimate for PS(u/v + z).

Lemma 10.3. We have

PS(u/v + z) �q 1 +
∑

h|v

∑

|g|∞≤qQ0 |h|−1
∞ |vz|∞

(g,v/h)=1

Ah

(

Q0 + logq

( Δ

|zh|∞

)

;
v

h
,−u′g

)

,

(53)

where uu′ ≡ 1 mod v.
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Proof. We split Π(y, δ) into

Π(y, δ) =
∑

h|v

∑

f∈S∩B(y,δ)
(f,v)=h

∑

g∈J(y,δ)
g≡−uf mod v

g �=0

1,

where h runs over a maximal set of mutually non-associate elements of Fq[t]\{0},
and (f, v) = h means that h is a greatest common divisor of (f, v) (unique up to

associates). Writing f̃ := f/h and g̃ := g/h, it follows that

Π(y, δ) ≤
∑

h|v

∑

f/h∈Sh∩B(y/h, δ−deg h)
(f/h,v/h)=1

∑

g/h∈J(y/h,δ−deg h)
g/h≡−uf/h mod v/h

g/h�=0

1

=
∑

h|v

∑

f̃∈Sh∩B(y/h,δ−deg h)

(f̃ ,v/h)=1

∑

g̃∈J(y/h,δ−deg h)

g̃≡−uf̃ mod v/h
g̃ �=0

1

=
∑

h|v

∑

g̃∈J(y/h,δ−deg h)
(g̃,v/h)=1

g̃ �=0

∑

f̃∈Sh∩B(y/h,δ−deg h)

f̃≡−u′g̃ mod v/h

1,

where uu′ ≡ 1 mod v/h. Hence, by definition of Ah(m; k, l) in (51), we have

Π(y, δ) ≤
∑

h|v

∑

g∈J(y/h,δ−deg h)
(g,v/h)=1

g �=0

Ah

(

δ − deg h;
v

h
,−u′g

)

.
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Integrating the last line over y in the ball B(0, Q0) and rearranging the order of
summation and integration, we get

∫

B(0,Q0)

Π(y, δ)dy

≤
∑

h|v

∫

B(0,Q0)

∑

g∈J(y/h,δ−deg h)
(g,v/h)=1

g �=0

Ah

(

δ − deg h;
v

h
,−u′g

)

dy

≤
∑

h|v

∫

B(0,Q0)

∑

|g−vyz/h|∞≤qδ+1|vz|∞/|h|∞
(g,v/h)=1

g �=0

Ah

(

δ − deg h;
v

h
,−u′g

)

dy

≤
∑

h|v

∑

0<|g|∞≤qQ0 |vz|∞/|h|∞
(g,v/h)=1

Ah

(

δ − deg h;
v

h
,−u′g

)

×

∫

B(0,Q0)∩B(gh/(vz),δ+1)

1dy

≤qδ+2
∑

h|v

∑

0<|g|∞≤qQ0 |vz|∞/|h|∞
(g,v/h)=1

Ah

(

δ − deg h;
v

h
,−u′g

)

.

Now choosing δ such that

qQ0−1Δ

|z|∞
≤ qδ <

qQ0Δ

|z|∞
≤ qδ

and using Lemma 10.2, we obtain (53). �

If we assume the set Sh to be evenly distributed in the residue classes l mod k,
then if B(y,m) ⊂ B

(

0, Q0 − logq |h|∞
)

, the expected cardinality of the set
{

x ∈ Sh ∩ B(y,m) : x ≡ l mod k
}

is

� |Sh|/|k|∞
qQ0/|h|∞

· qm.

This suggests to set a condition of the form

Ah(m, k, l) ≤
(

1 +
|Sh|/|k|∞
qQ0/|h|∞

· qm
)

X, (54)

where X ≥ 1 is thought to be small compared to qQ0 and qN . Under the condition
(54), we shall infer the following bound from Lemma 10.3.
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Lemma 10.4. Suppose the condition (54) to hold for all h, k, l,m satisfying (52).
Then

PS

(u

v
+ z

)

�q 1 + qQ0X2deg v(|vz|∞ + |S|Δ). (55)

Proof. Equations (53) and (54) imply

∑

h|v

∑

0<|g|∞≤qQ0 |vz|∞/|h|∞
(g,v/h)=1

Ah

(

Q0 + logq

( Δ

|zh|∞

)

,
v

h
,−u′g

)

≤
∑

h|v

∑

0<|g|∞≤qQ0 |vz|∞/|h|∞
(g,v/h)=1

(

1 +
|Sh|/|v/h|∞
qQ0/|h|∞

· q
Q0Δ

|zh|∞

)

X

�
∑

h|v

(

1 +
|Sh||h|∞Δ

|vz|∞

)

·q
Q0 |vz|∞
|h|∞

·X

=
∑

h|v

(
|vz|∞
|h|∞

+ |Sh|Δ
)

qQ0X

≤ qQ0Xτ(v)(|vz|∞ + |S|Δ).

This together with (32) and Lemma 10.3 gives the desired result. �
Upon choosing Δ := q−N , Lemmas 5.2, 10.1 and 10.4 imply the following gen-

eral large sieve inequality for function fields which is an analogue of [1, Theorem
2] for the classical case.

Theorem 10.5. Suppose the condition (54) to hold for all h, k, l,m satisfying
(52). Then

∑

f∈S

∑

r mod f
(r,f)=1

∣
∣
∣
∣

∑

g∈Fq [t]
deg g≤N

age
(

g · r
f

)
∣
∣
∣
∣

2

�q

(

qN +Q0X2N/2
(

qN/2 + |S|)
) ∑

g∈Fq [t]
deg g≤N

|ag|2.
(56)

However, this corrected version of [4, Corollary 5.2] (Claim 1 in section 3 of
the present paper), is only a by-product in this paper. Next, we specialize S to
square moduli and derive the following estimate for P (x), as defined in (42), from
Lemma 10.4.

Proposition 10.6. We have

P
(u

v
+ z

)

�q 1 + 2Lq2Q
(

Δ1/2 + qQΔ
)

, (57)

where L is defined as in (38).
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Proof. We shall apply Lemma (10.4) with Q0 = 2Q and S the set of all squares
s of norm q2Q. All we need to do is to work out the size of X in condition (54).
This is completely parallel to the classical case, which has been worked out in [1].
First, let

h = εP v1
1 · · ·P vn

n

be the unique prime factorization of h with P1, ..., Pn ∈ Fq[t] monic irreducible
polynomials and ε ∈ F

∗
q. For i = 1, ..., n let

ui :=

{

vi if vi is even,

vi + 1 if vi is odd.

Put

Fh := P
u1/2
1 · · ·P un/2

n

Then R = R2
1 ∈ S is divisible by h if and only if R1 is divisible by Fh. Thus

Sh =
{

R2
2Gh : degR2 = Q− degFh

}

⊂ {a : deg a = 2Q− deg h}
where

Gh :=
F 2
h

h
= ε−1P u1−v1

1 · · ·P u1−v1
n .

Hence,

|Sh| ≤ qQ−degFh+1.

Let δh(k, l) be the number of solutions x mod k to the congruence

x2Gh ≡ l mod k. (58)

Then it follows that condition (54) holds true for all positive m ≤ 2Q−deg h and

X = δh(k, l).

Thus the remaining task is to bound δh(k, l).
If (Gh, k) > 1, then δh(k, l) = 0 since k and l are supposed to be coprime.

Therefore, we can assume that (Gh, k) = 1. Let G mod k be a multiplicative
inverse of Gh mod k, i.e. GGh ≡ 1 mod k. Put l∗ := Gl. Then (58) is equivalent
to

x2 ≡ l∗ mod k.

Taking into account that (k, l∗) = 1, this congruence has at most two solutions if
k is a power of an irreducible polynomial, where we recall that q is not a power of
2. From this it follows using the Chinese remainder theorem that for all k ∈ Fq[t]
we have

δh(k, l) ≤ 2ω(k),

where ω(k) is the number of distinct monic irreducible factors of k. For |k|∞ ≤
Δ−1/2, we have

ω(k) ≤ deg k ≤ logq Δ
−1/2 =

L
2
.
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Therefore, (51) holds with
X := 2L/2.

Now the claimed inequality follows from Lemma 10.4 upon recalling that

|vz|∞ ≤ Δ1/2

and

deg v = logq |v|∞ ≤ logq Δ
−1/2 =

L
2
.

�

11. Further transformation of P (x)

In this section we transform P (x) further by an application of Poisson summa-
tion. We then derive a third estimate for P (x) which, in certain ranges, is better
than the previously proved ones.

Throughout the following, we suppose that |z|∞ ≥ Δ. We further assume that
Q0 is even and set

Q :=
Q0

2
.

Then applying Lemma 10.2 with x of the form in (28), δ a real parameter satis-
fying (43) and

S := {h2 : h ∈ Fq[t], deg h = Q},
we have

PS

(u

v
+ z

)

�q 1 +
1

qδ

∫

B(0,2Q)

Π(y, δ)dy, (59)

where
Π(y, δ) :=

∑

deg h=Q
|h2−y|∞≤qδ

∑

g∈J(y,δ)
g≡−uh2 mod v

g �=0

1. (60)

Recall the notations in section 7. If y �∈ Fq(t)
2
∞, then

deg(x2 − y) = max{2 deg x, deg y}
for every x ∈ Fq(t)∞. Hence, in this case,

deg(h2 − y) = 2Q > δ

and therefore
Π(y, δ) = 0.

If y ∈ Fq(t)
2
∞, then the conditions |h2 − y|∞ ≤ qδ and deg h = Q imply that

deg y = 2Q and

|h−√
y|∞ ≤ qδ−Q or |h+

√
y|∞ ≤ qδ−Q.

It follows that

Π(y, δ) � Π1(y, δ) + Π2(y, δ),
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where, for i = 1, 2, Πi(y, δ) = 0 if y �∈ Fq(t)
2
∞ and

Πi(y, δ) :=
qQ

2|√y|∞

∑

|h+(−1)i
√
y|∞≤qδ−Q

∑

|g−yvz|∞≤qδ+1|vz|∞
g≡−uh2 mod v

1

if y ∈ Fq(t)
2
∞.

It follows that

Πi(y, δ) ≤
qQ

2|√y|∞
· Σi, (61)

where

Σi :=
∑

h∈Fq [t]

Φ1

(
h+ (−1)i

√
y

tδ−Q+1

)
∑

g∈Fq [t]
g≡−uh2 mod v

Φ1

(
g − yvz

vztδ+1

)

(62)

for i = 1, 2. Here Φ1(x) is defined as in (11).
Applying the Poisson summation formula, Lemma 5.3, with a linear change of

variable to the sum over g, and using Φ1 = Φ̂1 (see Lemma 5.4), we transform
the inner-most sum in (62) into

∑

g∈Fq [t]
g≡−uh2 mod v

Φ1

(
g − yvz

vztδ+1

)

= |z|∞qδ+1
∑


∈Fq [t]

Φ1(zt
δ+1�)e

(

yz�+
uh2�

v

)

.

It follows that

Σi =|z|∞qδ+1
∑


∈Fq [t]

Φ1(zt
δ+1�)e (yz�)

∑

s mod v∗

e

(
us2�∗

v∗

)

×

∑

r∈Fq [t]
r=s mod v∗

Φ1

(
r + (−1)i

√
y

tδ−Q+1

) (63)

for i = 1, 2, where

v∗ := v/(v, �) and �∗ := �/(v, �). (64)

Again applying the Poisson summation formula, Lemma 5.3, with a linear change
of variable to the sum over r, and using Φ1 = Φ̂1, we transform the inner-most
sum into

∑

r∈Fq [t]
r=s mod v∗

Φ1

(
r + (−1)i

√
y

tδ−Q+1

)

=
qδ−Q+1

|v∗|∞

∑

b∈Fq [t]

Φ1

(
tδ−Q+1b

v∗

)

e

(

b ·
−(s+ (−1)i

√
y)

v∗

)

.

(65)
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Combining (59), (61), (63) and (65), we obtain

PS

(u

v
+ z

)

�q 1 + |z|∞ · qδ ·

∣
∣
∣
∣
∣

∑


∈Fq [t]

Φ1(zt
δ+1�)

|v∗|∞

∑

b∈Fq [t]

Φ1

(
tδ−Q+1b

v∗

)

·G
(

u�∗,−b, v∗
)

·
(

E
(

z�,
b

v∗

)

+ E
(

z�,− b

v∗

))
∣
∣
∣
∣
∣

(66)

for i = 1, 2, where the quadratic Gauss sumG(α, l; β) and the exponential integral
E(A,B) are defined as in (12) and (18), respectively.

12. Treatment of simple cases

In this section, we estimate the contributions to (66) which can be treated
easily.

Note that v∗ = 1 if � = 0. It follows that the contribution of � = 0 = b is
bounded by

�q q
δ+Q|z|∞,

and the contribution of � = 0, b �= 0 vanishes using Lemma 7.1.
Now we consider the case when � �= 0 and |b/(v∗z�)|∞ > qQ. To apply the

results on quadratic exponential integrals in section 7, we set

A := z� and B := ± b

v∗
.

Then from Lemma 7.2, we deduce that

E(A,B) � |z�|−1/2
∞ ·

∣
∣
∣
∣
∣
∣
∣

∫

B(x,n)

e(αy2)dy

∣
∣
∣
∣
∣
∣
∣

, (67)

where

x =
b

2v∗
√
z�α

and

n = Q+ deg

√

z�

α
. (68)

We note that we are here in the case when deg x > n. Now taking Lemma
7.3 into consideration, the integral on the right-hand side of (67) is zero unless
n < − deg x, which is equivalent to

deg b < −Q+ deg v∗ + degα.

Hence, we possibly have a non-zero contribution only if

|b|∞ ≤ q1−Q|v∗|∞,
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in which case we use the trivial estimate

E(A,B) � qQ

(which is essentially the same as what we get when combining (67) and Lemma
(7.3)). Using Lemma (6.5), it follows that the total contribution in this case is
bounded by

�q qδ|z|∞ ·
∑


�=0

|
|∞≤q−δ |z|−1
∞

|v∗|−1/2
∞

∑

|b|∞≤q1−Q|v∗|∞

qQ �q |v|1/2∞ .

Finally, we consider the case when � �= 0 and |b/(v∗z�)|∞ ≤ qQ and n ≤ −1,
where n is defined as in (68). In this case we use the trivial estimate

E(A,B) �q |z�|−1/2
∞ .

Also note that the condition n ≤ −1 implies

|�|∞ ≤ q−2Q−3|z|−1
∞ .

Hence, the contribution of this case to (66) is bounded by

�q q
δ|z|∞ ·

∑


�=0

|
|∞≤q−2Q−3|z|−1
∞

|v∗|−1/2
∞

∑

|b|∞≤|v∗|∞q−δ+Q−2

|z�|−1/2
∞ �q |v|1/2∞ .

(69)

Consequently, the total contribution to (66) of the above three cases is

�q q
δ+Q|z|∞ + |v|1/2∞ . (70)

13. Treatment of critical case

It remains to consider the critical case when � �= 0 and |b/(v∗z�)|∞ ≤ qQ and
n ≥ 0 in which we perform a precise evaluation of the Gauss sums and exponential
integrals and then transform the resulting exponential sums further.

As in the last section we set

A := z� and B := ± b

v∗
.

Then from Lemma 7.2, we deduce that

E(A,B) = q−�(deg z
)/2� · e
(

−b2

4v∗2z�

)

·
∫

B(0,n)

e
(

αy2
)

dy, (71)

where n is defined as in (68). In the case n ≥ 0, Lemma 7.3 gives

∫

B(0,n)

e
(

αy2
)

dy =

⎧

⎪⎨

⎪⎩

1 if ε = 0

q1/2 if ε = 1 and c is a square

−q1/2 if ε = 1 and c is not a square.
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Now we define

σ(�) :=

⎧

⎪⎨

⎪⎩

1 if z� has even degree or

z� has odd degree and c is a square

−1 if z� has odd degree and c is not a square.

(72)

Then it follows that

E(A,B) = e

(
−b2

4v∗2z�

)

· |z�|−1/2
∞ · σ(�).

We note that the condition n ≥ 0 is equivalent to

deg z� ≥ −2− 2Q.

Hence, the contribution of this case to the right-hand side of (66) is bounded by

�qδ|z|∞ ·
∑


�=0

|
|∞≤q−δ |z|−1
∞

|v∗|−1
∞ ·

∣
∣
∣
∣
∣

∑

|b|∞≤qQ|v∗z
|∞

G
(

u�∗,−b, v∗
)

×

e

(
−b2

4v∗2z�

)

· |z�|−1/2
∞ · σ(�)

∣
∣
∣
∣
∣
.

(73)

Using Lemmas 6.2 and 6.5, we bound the above double sum by

� qδ|z|1/2∞ ·
∑


�=0

|
|∞≤q−δ |z|−1
∞

|v∗�|−1/2
∞ ·

∣
∣
∣
∣
∣

∑

deg b≤M

e
(

V b2
)

∣
∣
∣
∣
∣
,

(74)

where we set

V :=
u�∗

4v∗
+

1

4v∗2z�
(75)

and
M := Q+ deg v∗ + deg z + deg �, (76)

keeping in mind that V and M depend on �. We note that

M ≤ Q+ L, (77)

where L is defined as in (38).

14. Simplification of the quadratic exponential sum

In the following, we simplify the exponential sum over b in (74). First we
rewrite V in a more suitable form. Set

f ∗
k =

1

zv∗v
. (78)

From (28) and the fact that v∗|v, we have f ∗
k ∈ Fq[t] � {0}. We further assume

that
u ≡ −a mod v∗, deg a < deg v∗.



THE LARGE SIEVE WITH SQUARE MODULI IN FUNCTION FIELDS 35

Using the reciprocity relation

�∗

v∗
≡ −v∗

�∗
+

1

�∗v∗
mod 1

for Kloosterman fractions and the relation v∗� = �∗v, we deduce that

V ≡ av∗ + f ∗
k

4�∗
− a

4v∗�∗
mod 1.

Next, we remove the term a/(4v∗�∗) using summation by parts. We arrange
the b’s in question into a sequence b1, b2, ..., bN satisfying

b1 = 0 and |bi+1 − bi|∞ = qordq(i) for i = 1, ..., N − 1,

where N := qM+1 and

ordq(i) = max
qα|i

α.

Now we write

∑

deg b≤M

e
(

V b2
)

=
N∑

i=1

e
(

− a

4v∗�∗
· b2i

)

· e
(
av∗ + f ∗

k

4�∗
· b2i

)

=e
(

− a

4v∗�∗
· b2N

)

·
N∑

j=1

e

(
av∗ + f ∗

k

4�∗

)

−

N−1∑

i=1

(

e
(

− a

4v∗�∗
· b2i+1

)

− e
(

− a

4v∗�∗
· b2i

))

·
i∑

j=1

e

(
av∗ + f ∗

k

4�∗
· b2j

)

.

We bound the differences of exponentials above by
∣
∣
∣e
(

− a

4v∗�∗
· b2i+1

)

− e
(

− a

4v∗�∗
· b2i

)∣
∣
∣ =

∣
∣
∣e
(

− a

4v∗�∗
· (b2i+1 − b2i )

)

− 1
∣
∣
∣

�
∣
∣
∣

a

4v∗�∗
· (b2i+1 − b2i )

∣
∣
∣
∞

≤ qM |�∗|−1
∞ |bi+1 − bi|∞.

We calculate that
N−1∑

i=1

|bi+1 − bi|∞ = MqM+1.

Hence, we deduce that

∑

deg b≤M

e
(

V b2
)

�
(

1 +Mq2M |�∗|−1
)

sup
1≤i≤N

∣
∣
∣
∣
∣

i∑

j=1

e
(

Wb2j
)

∣
∣
∣
∣
∣
, (79)

where we set

W :=
av∗ + f ∗

k

4�∗

for convenience.
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15. Application of Weyl shift

It remains to estimate the partial sums

i∑

j=1

e
(

Wb2j
)

.

Taking the ordering of the bj’s into account, we split this sum into O(Mq) sub-
sums of the form

∑

|b−B|∞≤qm

e (Wb) ,

where −1 ≤ m ≤ M − 1 and qm+1 ≤ |B|∞ ≤ qM .
To bound the above subsums, we apply a Weyl shift to the modulus square,

getting
∣
∣
∣
∣
∣

∑

|b−B|∞≤qm

e
(

Wb2
)

∣
∣
∣
∣
∣

2

=
∑

b,b̃
|b−B|∞≤qm

|b̃−B|∞≤qm

e
(

W (b̃− b)(b̃+ b)
)

=
∑

|h|∞≤qm

∑

|c−B|∞≤qm

e (Whc) ,

where we write c = b̃ + b and h = b̃ − b. Defining Φ1 as in (11) and using the

Poisson summation formula (Lemma 5.3) together with Φ1 = Φ̂1 (Lemma 5.4),
we have

∑

|c−B|∞≤qm

e (Whc) =e(WhB)
∑

c̃∈Fq [t]

e (Whc̃) Φ1(t
−m−1c̃)

=qm+1e(WhB)
∑

x∈Fq [t]

Φ1

(

tm+1(x−Wh)
)

�
{

qm+1 if ‖Wh‖ ≤ q−m−2

0 otherwise.

Taking square root, we deduce that
∣
∣
∣
∣
∣

∑

|b−B|∞≤qm

e
(

Wb2
)

∣
∣
∣
∣
∣
�

(

qm+1
∑

|h|∞≤qm

‖Wh‖≤q−m−2

1

)1/2

. (80)

We observe that the sum on the right-hand is bounded by

qm+1
∑

|h|∞≤qm

‖Wh‖≤q−m−2

1 ≤
∑

|h|∞≤qM

min{qM , ‖Wh‖−1}. (81)



THE LARGE SIEVE WITH SQUARE MODULI IN FUNCTION FIELDS 37

Using (77), (79), (80) and (81), we now bound (74) by

�q(Q+ L)2qδ|z|1/2∞ ·
∑


�=0

|
|∞≤q−δ |z|−1
∞

|v∗�|−1/2
∞

(

1 + q2M |�∗|−1
)

×

(
∑

|h|∞≤qM

min{qM , ‖Wh‖−1}
)1/2

.

(82)

Recalling the definitions of v∗ and �∗ in (64), the above is dominated by

�q(Q+ L)2qδ|z|1/2∞ ·
∑

d|v

Σd, (83)

where

Σd :=
∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

|v�∗|−1/2
∞

(

1 + q2M |�∗|−1
)

(
∑

|h|∞≤qM

min{qM , ‖Wh‖−1}
)1/2

and

M = Q+ deg v + deg z + deg �∗. (84)

Applying the Cauchy-Schwarz inequality, we bound Σ2
d by

Σ2
d ≤

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

|v�∗|−1
∞

(

1 + q4M |�∗|−2
)

×

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

min{qM , ‖Wh‖−1}

�q

(

(Q+ L)|v|−1
∞ + q4Q−2δ|v|3∞|z|2∞|d|−2

∞
)

×
∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

min{qM , ‖Wh‖−1}.

(85)
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16. Final Count

We bound the double sum over �∗ and h on the right-hand side of (85) in the
form

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

min{qM , ‖Wh‖−1}

≤
∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

(av∗+f∗
k )h≡0 mod 
∗

qM+

∑

0≤j≤L

∑

degα≤j

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

(av∗+f∗
k )h≡α mod 
∗

|�∗|∞q−j

�q

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

h≡0 mod 
∗

qM +
∑

0≤j≤L

q−j×

∑

degα≤j

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

(f∗
k v

∗+a)h≡αv∗ mod 
∗

|�∗|∞,

(86)

where we use (v∗, �∗) = 1 and (f ∗
kv

∗ + a, v∗) = 1. Further,

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

h≡0 mod 
∗

qM �
∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

qM
(

1 +
qM

|�∗|∞

)

�qQ−2δ|v|∞|z|−1
∞ |d|−2

∞ + q2Q−2δ|v|2∞|d|−2
∞ ,

(87)

where we use (84). Finally, we bound the triple sum over α, �∗ and h in the last
line of (86). We consider two cases: If (f ∗

kv
∗ + a)h = αv∗, then the congruence

(f ∗
kv

∗ + a)h ≡ αv∗ mod �∗ is satisfied for every �∗. If (f ∗
kv

∗ + a)h �= αv∗, then the



THE LARGE SIEVE WITH SQUARE MODULI IN FUNCTION FIELDS 39

above congruence is equivalent to �∗|(f ∗
kv

∗h+ ah− αv∗). Hence,
∑

degα≤j

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

(f∗
k v

∗+a)h≡αv∗ mod 
∗

|�∗|∞

=
∑

degα≤j

∑

deg h≤Q+deg v−δ−deg d
(f∗

k v
∗+a)h=αv∗

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

|�∗|∞+

∑

degα≤j

∑

deg h≤Q+deg v−δ−deg d
(f∗

k v
∗+a)h �=αv∗

∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞


∗|(f∗
k v

∗h+ah−αv∗)

|�∗|∞

�qq
−2δ|zd|−2

∞

∑

degα≤j

∑

deg h≤Q+deg v−δ−deg d
(f∗

k v
∗+a)h=αv∗

1+

2Q+Lqj+Q−2δ|v|∞|z|−1
∞ |d|−2

∞ ,

(88)

where we use the estimates
∑

|
∗|∞≤X

∗|n

|�∗|∞ ≤ X
∑


∗|n

1 �q 2
degnX

and

deg(f ∗
kv

∗h+ ah− αv∗) ≤ Q+ L.
We further observe that

∑

degα≤j

∑

deg h≤Q+deg v−δ−deg d
(f∗

k v
∗+a)h=αv∗

1 ≤ qj+1|f ∗
kv

∗ + a|−1
∞

because (f ∗
kv

∗ + a, v∗) = 1. By (78), we have

|f ∗
kv

∗ + a|∞ = |f ∗
kv

∗|∞ = |vz|−1
∞ .

It follows that
∑

degα≤j

∑

deg h≤Q+deg v−δ−deg d
(f∗

k v
∗+a)h=αv∗

1 ≤ qj+1|vz|∞. (89)

Combining (86), (87), (88) and (89), we obtain
∑

(
∗,v∗)=1

0<|
∗|∞≤q−δ |zd|−1
∞

∑

|h|∞≤qM

min{qM , ‖Wh‖−1}

≤q2Q−2δ|v|2∞|d|−2
∞ + 2Q+LLqQ−2δ|v|∞|z|−1

∞ |d|−2
∞ .

(90)
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Plugging this into (85) gives

Σ2
d �q

(

(Q+ L)|v|−1
∞ + q4Q−2δ|v|3∞|z|2∞|d|−2

∞
)

×
(

q2Q−2δ|v|2∞|d|−2
∞ + 2Q+LLqQ−2δ|v|∞|z|−1

∞ |d|−2
∞
)

.
(91)

Hence, the expression in (83) is bounded by

�q(Q+ L)2qδ|z|1/2∞ L
(

(Q+ L)|v|−1
∞ + q4Q−2δ|v|3∞|z|2∞

)1/2×
(

q2Q−2δ|v|2∞ + 2Q+LLqQ−2δ|v|∞|z|−1
∞
)1/2

,
(92)

where we use the bound

∑

d|v

1

|d|∞
≤

∑

0<|d|∞≤|v|∞

1

|d|∞
�q logq |v|∞ ≤ L.

17. Third estimate for P (x)

Combining (70) (total contribution to P (x) of the simple cases) and (92) (total
contribution to P (x) of the critical case), and simplifying, we obtain the estimate

P
(u

v
+ z

)

�qq
δ+Q|z|∞ + |v|1/2∞ + (Q+ L)4qδ|z|1/2∞ ×
(

|v|−1
∞ + q4Q−2δ|v|3∞|z|2∞

)1/2×
(

q2Q−2δ|v|2∞ + 2Q+LqQ−2δ|v|∞|z|−1
∞
)1/2

.

Choosing qδ as small as possible in (43), i.e.

q2Q−1Δ

|z|∞
=

qQ0−1Δ

|z|∞
≤ qδ <

qQ0Δ

|z|∞
=

q2QΔ

|z|∞

and using

|vz|∞ ≤ Δ1/2

and the (rough) bound

(Q+ L)4 � 2(Q+L)/2,

we arrive at the following estimate for P (x).

Proposition 17.1. We have

P
(u

v
+ z

)

�qq
3QΔ+ |v|1/2∞ + (Q+ L)4qQΔ1/4 + 2Q+Lq3Q/2Δ1/2.
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18. Proof of Theorem 4.1

Finally, we are ready to prove Theorem 4.1. We use Proposition 9.1 if |v|∞ > qQ

and Proposition 17.1 if |v|∞ ≤ qQ to get

P
(u

v
+ z

)

�qq
3QΔ+ (Q+ L)4qQΔ1/4 + 2Q+L (qQ/2 + q3Q/2Δ1/2

)

. (93)

Alternatively, we have the estimate

P
(u

v
+ z

)

�q 1 + 2Q+L (q2QΔ1/2 + q3QΔ
)

(94)

from Proposition 10.6. If q2Q ≤ Δ−1 ≤ q3Q, then (93) gives the estimate

P
(u

v
+ z

)

�q2
Q+L (q3QΔ+ qQ/2

)

, (95)

and if q3Q ≤ Δ−1 ≤ q4Q, then (94) gives the estimate

P
(u

v
+ z

)

�q 2
Q+L (q3QΔ+ q2QΔ1/2

)

. (96)

We observe that

Q1/2 ≤ q2QΔ1/2 ⇔ Δ−1 ≤ q3Q.

Hence, in the range q2Q ≤ Δ−1 ≤ q4Q, we have

P
(u

v
+ z

)

�q 2
Q+L (q3QΔ+min

{

qQ/2, q2QΔ1/2
})

. (97)

Now Theorem 4.1 follows from (97) and Lemmas 5.2 and 8.1 upon taking Δ :=
q−N . �
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