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Suppose g > 2 is an odd integer. For real number X > 2, define S,(X) the number
of squarefree integers d < X with the class number of the real quadratic field Q(v/d)
being divisible by g. By constructing the discriminants based on the work of
Yamamoto, we prove that a lower bound S,(X) > X'/9 holds for any fixed & > 0,
which improves a result of Ram Murty. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this note, we prove a quantitative result concerning the divisibility of class
numbers of real quadratic fields. More precisely, let g=2 be a positive
integer, and X > 3 a real number, we shall give a lower bound for the
number of fundamental discriminants D<X, with the class group of
Q(v/D) having an element of order g.

There have been numerous qualitative results about divisibility of class
numbers of quadratic fields (cf. [7], [1], [3], etc.). In particular, for the real
quadratic field case, Weinberger [10] and Yamamoto [11] independently
showed that, for any ¢g>2, there are infinitely many real quadratic
fields with class number divisible by g¢. For the complemen-
tary question, Ono [8] proved that, for p a prime, 3<p<5000, there are
>v/X(log X)~' fundamental discriminants D<X such that p does not
divide the class number of Q(v/D).

For prime p, the “Cohen—Lenstra Heuristics” [2] suggests that the
probability that the class number of a real quadratic field is divisible by p is

1_f[<1_1;).

This implies that a positive proportion of real quadratic fields contain a non-
trivial p-part in the class group. The probabilistic model also suggests that,
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for any fixed positive integer g, a positive proportion of real quadratic fields
have a subgroup of order ¢ in the class group.

Murty [5,6] considered the quantitative version of this problem. He
proved the following theorem.

THEOREM 1 (Murty [6]). Let g be odd. The number of real quadratic fields
whose discriminant is <X and whose class group has an element of order ¢ is
> x!'/297¢ for any ¢ > 0.

Murty proved the above theorem based on Weinberger’s construction of
discriminants. To get a better quantitative result, one would expect to make
use of a construction similar to that of Soundararajan [9] in dealing with the
imaginary quadratic fields case. Some invincible difficulty, however, arises in
this case due to lack of control over the size of the fundamental unit.

Yamamoto [11] constructed the discriminant in a different way. To make
the role of the fundamental unit implicit, every discriminant is requested to
have two different representations by a special binary polynomial. Although
this may not be a natural method, it enables us to prove a better quantitative
result.

THEOREM 2. Let g be odd. For any & > 0, the number of real quadratic
fields with discriminant <X and class number divisible by g is > X'/97¢
for any ¢ > 0.

Henceforth, we suppose ¢ < 1072 is a fixed positive real number. As usual,
for real number 7, {r} denotes the fractional part of 7 and ||f|| =
min{{r}, 1 — {t}}; e(r) = exp(2nit); for integer k, we write (k) to denote
the usual divisor function.

2. PRELIMINARY LEMMAS

Throughout this section, g is an odd integer with factorization
01 .00

)
g=ri'py P

where pi1,ps, ..., pr are distinct primes and J;>1 for 1<j<k. For every j
(1<j<k), we fix two distinct primes /; and // such that /; = [; = 1 (mod p;).
Before we construct our discriminant, we state a result of Yamamoto [11].

LEMMA 3. Let y,z,) .,z be a non-trivial solution of the Diophantine
equation

Y? - 4279 = Y"? - 479 (2.1)
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such that

@ r2)=0".2)=1

(i) [ |z and [}| 2

(iii) y (resp. y) is not a p;th power residue modulo I;, (resp. l’)
(1<j<k);

(iv) 255 is a pjth power residue modulo I;, (1<j<k).

Then the ideal class group of the field

F = Q(\/y* —4z29)

has a subgroup N such that

N Z/gZ x Z]/gZ if D< —4,
| Z/yz if D>0,

where D is the discriminant of F.

With Lemma 3, we shall consider a family of special quadratic fields. First
of all, for any prime factor p; of g, we notice that there are infinitely many
primes /; = 1 (mod p;) such that 2 is a p;th power residue modulo /; and 3 is
not. For each p; (1<j<k), we fix two such primes /;, [} such that we have 2k
distinct primes {/y,..., 0, [,..., [}

Set

o=[]14 B :f[ " and Q= 4op. (2.2)
j=1 j=1
Suppose we have the fixed triplet (o, 8, Q).
LeEMMA 4. For a,b two positive integers satisfying
a = o (mod Q), b= f(mod Q), (2.3)

let
d =3(3a? + b9)(a’ + 39). (2.4)
Then the class number of Q(v/d) is divisible by g.

Proof. Suppose (a,b) = t, and we write

= oyl d’:%
t t+9
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Then we have
d =2(d?+b9) + (a9 — b9)/2)* — 4d
= (2(d9 + 1Y) — (a9 — 1) /2)* — 4b'™. (2.5)
Write

y =2(d¥ + ) + (d9 — 1) )2,
¥ =2 4+ b9) = (d¥ — )2,

z = a/z, 7 = b

Then from (2.5), (y,z,/,2') gives a non-trivial solution of the Diophantine
equation (2.1). We note that (y,z) = (/,z') = 1, that

hiy--llz. LI |7
from (#,Q) = 1, also that, for any j (1<j<k), we have
= 30" (mod [;), Y =3d"¥ (mod [))

and

/

yt+y
2

= 25" (mod /).

Thus, according to our choice of {/;}, {/}}, all the conditions in Lemma 3
are satisfied, whence the class number of Q(vd')(= Q(v/d)) is divisible
by g. 1

Before we end this section, we introduce an estimate of Greaves [4] about
lattice point distribution. For any pair of integers (s,7), we denote

(s, )] = max{]s], [¢[}. (2.6)
For integer r and w € (Z/rZ)”, we denote

My = My(r,0) = min__[|(a,b)]]. (2.7)
a=wb (mod r)
a#0

A simple argument with the Box Principle shows that My(r, ) <\/r.
LEMMA 5. The number N, (r; S, T) of pairs (s,t) for which

s<S, t<T
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and
s = wt (modr)

satisfies

ST S+ T
w ’ )T <_ YR M
Nolri S, 1)<~ +O(Mo<r,w>)

Proof. This is Lemma 1 of Greaves [4].

3. TWO ESTIMATES

Throughout this section, P is a sufficiently large real number,
M = P>>(/2¢ Also, f(a,b) and F(a,b) are the binary forms defined by

fla,b) = (3a’ + 1), F(a,b) =f(a,b)f(b,a). (3.1)

We shall estimate the number of integers representated by F(a,b) in a
range which satisfy some additional restrictions.

We note that, from Chebotarev’s density theorem, the subset of primes ¢
for which 3 is a gth power residue constitutes a positive proportion
of all primes. Thus there exist > P2~ 3/2%(log P)~* integers m satisfying

M<m=qiqq93<8M, (3.2)
where ¢, ¢, and g3 are primes subject the condition
P02 < gy < gy < g3 <2PY3 (1728 (3.3)

and also satisfying the condition that 3 be a gth power residue modulo ¢;,
j=1,273.

Henceforth, the letter m always stands for an integer satisfying the above
conditions. By r(m) we denote the number of pairs (a,b) with
QP<a,b<2QP, for which F(a,b) is divisible by m, and for which (2.3) is
satisfied. We also write

Si(P)= Y r(m),
M<m<8M

and

S$H(P) = Z % (m).

M<m<8M
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LEMMA 6. One has

SZ (P) < P2+28.

Proof. From Lemma 5, we have

2

s Y |y
M<m<8M QP<ab<2QP
(a,p)=(x,p) (mod Q)
F(a,b)=0 (mod m)
< > > N, (mQP,QP)
M<m<8M f(w»,1)=0 (mod m)

L Z oL ()

M<m<8M f(w,1)=0 (mod m)

P? Pt
< S S (3.4)
M<m<8M f(»,1)=0 (mod m) Mo(m’ —0) M
Note from the definition of My(m,w), we have
P2
2
M<m<8M f(w,1)=0 (mod m) Mg (m, —o)
1

2

<P 5 > 1
M<m<8M f(w,1)=0 (mod m) s</M [rl<s
(r+ws)(s+wr)=0 (mod m)
1

2

oy oy |
M<m<8M s<\/M [r|<s
F(r,s)=0 (mod m)
1

2+¢ 2+2¢

<Py S—221<P , (3.5)

s<VM T <
which, along with (3.4), proves the lemma. 1
LeEMMA 7. One has

S\ (P)> P*(log P) .
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Proof. First, we note that

SiP)= > > > L. (3.6)

M<m<8M ®9=3 (mod m) QP<ab<2QP
(a,p)=(x,p) (mod Q)
a+wb=0 (mod m)

By abuse of notation, we replace ¢ and b in the sum, respectively, by
aQ + o and bQ + f to get rid of the restriction (a,b) = («, ) (mod Q). Then
we have

Sip)= Y o> > $(a), (37)

M<m<8M @I=3 (modm) P<b<2P P<a<2P
a=—wb—Q(a+wp) (mod m)

where, for convenience, we have added a sufficiently smooth weight function
¢(a) supported on [P,2P] such that

0<p(&)<1 on[P,2P] and $(1)=1 on [P/2,3P/2], (3.8)

PV <P, j=1,2,3,..., (3.9)
and
oV (P) =9V 2P) =0, j=0,1,2,... K, (3.10)

for some sufficiently large K,. Now from (3.7) and Poisson’s summation
formula, we have

SICESD DD DD DI

M<m<8M =3 (mod m) P<b<2P
. (wb + Qo+ wp))
x;(j)(%)e( p. , (3.11)

where d) is the Fourier transform of ¢. It is easy to see that the contribution
of the terms with 7 =0 is

> P$(0 Z > P*(log P) . (3.12)

Thus, to prove the lemma, it suffices to show that the other terms gives a
contribution of O(P*(log P)~*). Let

H = MP~ '3,
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We first note that, from (3.8) to (3.10), integrating by parts, the terms with
|h| > H give a negligible contribution. Hence, to prove the lemma, it suffices
to show that the sum

(P = Y 1

M<m<8M m

LY Yy (ﬁ(%)e(h(wbﬁ—énioc#—wﬁ)))(3_13)

@I=3 (mod m) P<b<2P 0<|h|<H

is bounded by O(P*(log P)™™).
Summing over b, we see that

P - !
ZZ(P)<MZ > mm{P’W}

mo < |Iz\ <H

P? P 1
7DD MR LD IREDD o]

mo  0<|h<H mao  0<|h|<H
[|heo /m|| < P! || /m]||= P!
:221(13) +222(P) say. (314)

From Lemma 5, we have

SN RS S SR DI

mo 0<|h|<H |c|<8M/P
c=wh (mod m)

P2 MH MP'+H
<M Z (mP + Mo(m7w))

m,m
< HP Z ~ L Z Z
M<3J_ [r[<s

< P4 (3.15)

Again, from Lemma 5, we have

m
Zn(P < — E E — E 1
mm mP-'<e<m/2 ¢ 0<|h|<H
c=wh (mod m)

<P > 1 > No(m; H,2C) (3.16)

MP-'<C=2<4M m,w
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HC H+C
r 3 > (g
MP*1<C:2/<4M m,m m 0 m w)

> HP’log P 1
HP(log P)~>
< (log P)™~ + M Z My(m, w)

m,m

< PZ—S +Pl+8/2\/]_\—4—<P2_H/2.

By combining estimates (3.15) and (3.16), we have completed the proof. 1

4. PROOF OF THE THEOREM

From Lemmas 6 and 7, we have

-1

3g+1 Z

3 m<azan
r(m)>0

_Sipy’
)>52(P)2

> P>, (4.1)

We note that, from our construction of the integers m, the left-hand
side of (4.1) gives a lower bound for the cardinality of a set 2(P) which
satisfies:

(1) 2(P) € [12P%,12(2P)*];

(2) every d € Z(P) is divisible by some m and is given by the form
(2.4) for some a, b satisfying (2.3);

(3) if d,d, € Z(P) are distinct, then g.c.d.(d;, d>) is not divisible by
any m.

For every d € 9(P), we write d = dof* such that dy is squarefree. Suppose
9'(P) is the subset of Z(P) consist of the elements d with d, divisible by
some m. Then, from our constructions (3.2) and (3.3), it is easy to see that

|Z'(P)| = |2(P)| + O(P*3+%) > P>~ (4.2)

We conclude that, up to 12(2P)2g, there are > P>~ integers d, with
distinct squarefree part, satisfying the conditions of Lemma 4. Setting

1/ X\ %
P=-(2) |
2(12)

we have proved Theorem 2.
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