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Suppose g > 2 is an odd integer. For real number X > 2, define SgðXÞ the number

of squarefree integers d4X with the class number of the real quadratic field Qð
ffiffiffi
d

p
Þ

being divisible by g. By constructing the discriminants based on the work of

Yamamoto, we prove that a lower bound SgðXÞ4X 1=g�e holds for any fixed e > 0,

which improves a result of Ram Murty. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this note, we prove a quantitative result concerning the divisibility of class
numbers of real quadratic fields. More precisely, let g52 be a positive
integer, and X > 3 a real number, we shall give a lower bound for the
number of fundamental discriminants D4X , with the class group of
Qð

ffiffiffiffi
D

p
Þ having an element of order g.

There have been numerous qualitative results about divisibility of class
numbers of quadratic fields (cf. [7], [1], [3], etc.). In particular, for the real
quadratic field case, Weinberger [10] and Yamamoto [11] independently
showed that, for any g52, there are infinitely many real quadratic
fields with class number divisible by g. For the complemen-
tary question, Ono [8] proved that, for p a prime, 35p55000, there are
4

ffiffiffiffi
X

p
ðlog X Þ�1 fundamental discriminants D4X such that p does not

divide the class number of Qð
ffiffiffiffi
D

p
Þ.

For prime p, the ‘‘Cohen–Lenstra Heuristics’’ [2] suggests that the
probability that the class number of a real quadratic field is divisible by p is

1 �
Y1
i¼2

1 � 1

pi

� �
:

This implies that a positive proportion of real quadratic fields contain a non-
trivial p-part in the class group. The probabilistic model also suggests that,
35
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for any fixed positive integer g, a positive proportion of real quadratic fields
have a subgroup of order g in the class group.

Murty [5, 6] considered the quantitative version of this problem. He
proved the following theorem.

Theorem 1 (Murty [6]). Let g be odd. The number of real quadratic fields

whose discriminant is 4X and whose class group has an element of order g is

4x1=2g�e for any e > 0.

Murty proved the above theorem based on Weinberger’s construction of
discriminants. To get a better quantitative result, one would expect to make
use of a construction similar to that of Soundararajan [9] in dealing with the
imaginary quadratic fields case. Some invincible difficulty, however, arises in
this case due to lack of control over the size of the fundamental unit.

Yamamoto [11] constructed the discriminant in a different way. To make
the role of the fundamental unit implicit, every discriminant is requested to
have two different representations by a special binary polynomial. Although
this may not be a natural method, it enables us to prove a better quantitative
result.

Theorem 2. Let g be odd. For any e > 0, the number of real quadratic

fields with discriminant 4X and class number divisible by g is 4X 1=g�e

for any e > 0.

Henceforth, we suppose e510�2 is a fixed positive real number. As usual,
for real number t, ftg denotes the fractional part of t and jjtjj :¼
minfftg; 1 � ftgg; eðtÞ ¼ expð2pitÞ; for integer k, we write tðkÞ to denote
the usual divisor function.

2. PRELIMINARY LEMMAS

Throughout this section, g is an odd integer with factorization

g ¼ pd1

1 pd2

2 
 
 
 pdk

k ;

where p1; p2; . . . ; pk are distinct primes and dj51 for 14j4k. For every j

ð14j4kÞ, we fix two distinct primes lj and l0j such that lj � l0j � 1 ðmod pjÞ.
Before we construct our discriminant, we state a result of Yamamoto [11].

Lemma 3. Let y; z; y0; z0 be a non-trivial solution of the Diophantine

equation

Y 2 � 4Zg ¼ Y 02 � 4Z0g ð2:1Þ
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such that

(i) ðy; zÞ ¼ ðy0; z0Þ ¼ 1;
(ii) lj j z and l0j j z0;

(iii) y (resp. y0) is not a pjth power residue modulo lj, (resp. l0j ),
ð14j4kÞ;

(iv) yþy0

2
is a pjth power residue modulo lj; ð14j4kÞ.

Then the ideal class group of the field

F :¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4zg

p
Þ

has a subgroup N such that

N ffi
Z=gZ� Z=gZ if D5� 4;

Z=gZ if D > 0;

(

where D is the discriminant of F.

With Lemma 3, we shall consider a family of special quadratic fields. First
of all, for any prime factor pj of g, we notice that there are infinitely many
primes lj � 1 ðmod pjÞ such that 2 is a pjth power residue modulo lj and 3 is
not. For each pj ð14j4kÞ, we fix two such primes lj; l0j such that we have 2k

distinct primes fl1; . . . ; lk; l01; . . . ; l0kg.
Set

a :¼
Yk

j¼1

lj ; b :¼
Yk

j¼1

l0j and O :¼ 4ab: ð2:2Þ

Suppose we have the fixed triplet ða;b;OÞ.

Lemma 4. For a; b two positive integers satisfying

a � a ðmod OÞ; b � b ðmod OÞ; ð2:3Þ

let

d :¼ 3
4
ð3ag þ bgÞðag þ 3bgÞ: ð2:4Þ

Then the class number of Qð
ffiffiffi
d

p
Þ is divisible by g.

Proof. Suppose ða; bÞ ¼ t, and we write

a0 ¼ a

t
; b0 ¼ b

t
; d 0 ¼ d

t2g
:



GANG YU38
Then we have

d 0 ¼ ð2ða0g þ b0gÞ þ ða0g � b0gÞ=2Þ2 � 4a02g

¼ð2ða0g þ b0gÞ � ða0g � b0gÞ=2Þ2 � 4b02g: ð2:5Þ

Write

y ¼ 2ða0g þ b0gÞ þ ða0g � b0gÞ=2;

y0 ¼ 2ða0g þ b0gÞ � ða0g � b0gÞ=2;

z ¼ a02; z0 ¼ b02:

Then from (2.5), ðy; z; y0; z0Þ gives a non-trivial solution of the Diophantine
equation (2.1). We note that ðy; zÞ ¼ ðy0; z0Þ ¼ 1, that

l1l2 
 
 
 lk j z: l01l02 
 
 
 l0k j z0

from ðt;OÞ ¼ 1, also that, for any j ð14j4kÞ, we have

y � 3
2
b0g ðmod ljÞ; y0 � 3

2
a0g ðmod l0jÞ

and

y þ y0

2
� 2b0g ðmod ljÞ:

Thus, according to our choice of fljg; fl0jg, all the conditions in Lemma 3
are satisfied, whence the class number of Qð

ffiffiffiffi
d 0

p
Þð¼ Qð

ffiffiffi
d

p
ÞÞ is divisible

by g. ]

Before we end this section, we introduce an estimate of Greaves [4] about
lattice point distribution. For any pair of integers ðs; tÞ, we denote

jjðs; tÞjj :¼ maxfjsj; jtjg: ð2:6Þ

For integer r and o 2 ðZ=rZÞ�, we denote

M0 ¼ M0ðr;oÞ :¼ min
a�ob ðmod rÞ

aa0

jjða; bÞjj: ð2:7Þ

A simple argument with the Box Principle shows that M0ðr;oÞ4
ffiffi
r

p
.

Lemma 5. The number Noðr;S;TÞ of pairs ðs; tÞ for which

s4S; t4T
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and

s � ot ðmod rÞ

satisfies

Noðr;S;TÞ4ST

r
þ O

S þ T

M0ðr;oÞ

� �
:

Proof. This is Lemma 1 of Greaves [4].

3. TWO ESTIMATES

Throughout this section, P is a sufficiently large real number,
M ¼ P2�ð3=2Þe. Also, f ða; bÞ and Fða; bÞ are the binary forms defined by

f ða; bÞ :¼ ð3ag þ bgÞ; Fða; bÞ :¼ f ða; bÞf ðb; aÞ: ð3:1Þ

We shall estimate the number of integers representated by Fða; bÞ in a
range which satisfy some additional restrictions.

We note that, from Chebotarev’s density theorem, the subset of primes q

for which 3 is a gth power residue constitutes a positive proportion
of all primes. Thus there exist 4P2�ð3=2Þeðlog PÞ�3 integers m satisfying

M5m ¼ q1q2q348M; ð3:2Þ

where q1; q2 and q3 are primes subject the condition

P2=3�ð1=2Þe5q15q25q342P2=3�ð1=2Þe ð3:3Þ

and also satisfying the condition that 3 be a gth power residue modulo qj,
j ¼ 1; 2; 3.

Henceforth, the letter m always stands for an integer satisfying the above
conditions. By rðmÞ we denote the number of pairs ða; bÞ with
OP5a; b42OP, for which Fða; bÞ is divisible by m, and for which (2.3) is
satisfied. We also write

S1ðPÞ :¼
X

M5m48M

rðmÞ;

and

S2ðPÞ :¼
X

M5m48M

r2ðmÞ:
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Lemma 6. One has

S2ðPÞ5P2þ2e:

Proof. From Lemma 5, we have

S2ðPÞ ¼
X

M5m48M

X
OP5a;b42OP

ða;bÞ�ða;bÞ ðmod OÞ
Fða;bÞ�0 ðmod mÞ

1

0
BBBB@

1
CCCCA

2

5

X
M5m48M

X
f ðo;1Þ�0 ðmod mÞ

N2
�oðm;OP;OPÞ

5

X
M5m48M

X
f ðo;1Þ�0 ðmod mÞ

P4

m2
þ P2

M2
0 ðm;�oÞ

� �

5

X
M5m48M

X
f ðo;1Þ�0 ðmod mÞ

P2

M2
0 ðm;�oÞ þ

P4

M
: ð3:4Þ

Note from the definition of M0ðm;oÞ, we have

X
M5m48M

X
f ðo;1Þ�0 ðmod mÞ

P2

M2
0 ðm;�oÞ

5 P2
X

M5m48M

X
f ðo;1Þ�0 ðmod mÞ

X
s4
ffiffiffiffi
M

p

1

s2

X
jrj4s

ðrþosÞðsþorÞ�0 ðmod mÞ

1

5 P2
X

M5m48M

X
s4
ffiffiffiffi
M

p

1

s2

X
jrj4s

Fðr;sÞ�0 ðmod mÞ

1

5 P2þe
X

s4
ffiffiffiffi
M

p

1

s2

X
jrj4s

15P2þ2e; ð3:5Þ

which, along with (3.4), proves the lemma. ]

Lemma 7. One has

S1ðPÞ4P2ðlog PÞ�3:
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Proof. First, we note that

S1ðPÞ5
X

M5m48M

X
og�3 ðmod mÞ

X
OP5a;b42OP

ða;bÞ�ða;bÞ ðmod OÞ
aþob�0 ðmod mÞ

1: ð3:6Þ

By abuse of notation, we replace a and b in the sum, respectively, by
aOþ a and bOþ b to get rid of the restriction ða; bÞ � ða; bÞ ðmod OÞ. Then
we have

S1ðPÞ5
X

M5m48M

X
og�3 ðmod mÞ

X
P5b52P

X
P5a52P

a��ob� %OOðaþobÞ ðmod mÞ

fðaÞ; ð3:7Þ

where, for convenience, we have added a sufficiently smooth weight function
fðaÞ supported on ½P; 2P� such that

04fðxÞ41 on ½P; 2P� and fðtÞ ¼ 1 on ½P=2; 3P=2�; ð3:8Þ

fðjÞðtÞ5jP
�j; j ¼ 1; 2; 3; . . . ; ð3:9Þ

and

fðjÞðPÞ ¼ fðjÞð2PÞ ¼ 0; j ¼ 0; 1; 2; . . . ;Ke ð3:10Þ

for some sufficiently large Ke. Now from (3.7) and Poisson’s summation
formula, we have

S1ðPÞ5
X

M5m48M

X
og�3 ðmod mÞ

X
P5b52P

1

m

�
X

h

#ff
h

m

� �
e

hðob þ %OOðaþ obÞÞ
m

� �
; ð3:11Þ

where #ff is the Fourier transform of f. It is easy to see that the contribution
of the terms with h ¼ 0 is

4P #ffð0Þ
X

m

1

m
4P2ðlog PÞ�3: ð3:12Þ

Thus, to prove the lemma, it suffices to show that the other terms gives a
contribution of OðP2ðlog PÞ�4Þ. Let

H :¼ MP�1þe=3:



GANG YU42
We first note that, from (3.8) to (3.10), integrating by parts, the terms with
jhj > H give a negligible contribution. Hence, to prove the lemma, it suffices
to show that the sum

S2ðPÞ :¼
X

M5m48M

1

m

�
X

og�3 ðmod mÞ

X
P5b52P

X
05jhj4H

#ff
h

m

� �
e

hðob þ %OOðaþ obÞÞ
m

� �
ð3:13Þ

is bounded by OðP2ðlog PÞ�4Þ.
Summing over b, we see that

S2ðPÞ5
P

M

X
m;o

X
05jhj4H

min P;
1

jjho=mjj

� �

5
P2

M

X
m;o

X
05jhj4H

jjho=mjj5P�1

1 þ P

M

X
m;o

X
05jhj4H

jjho=mjj5P�1

1

jjho=mjj

¼S21ðPÞ þ S22ðPÞ say: ð3:14Þ

From Lemma 5, we have

S21ðPÞ5
P2

M

X
m;o

X
05jhj4H

X
jcj48M=P

c�oh ðmod mÞ

1

5
P2

M

X
m;o

MH

mP
þ MP�1 þ H

M0ðm;oÞ

� �

5HP
X

m

1

m
þ HP2

M

X
jsj53

ffiffiffiffi
M

p

1

jsj
X
jrj4s

tðFðr; sÞÞ

5P2�e=4: ð3:15Þ

Again, from Lemma 5, we have

S22ðPÞ5
P

M

X
m;o

X
mP�15c4m=2

m

c

X
05jhj4H

c�oh ðmod mÞ

1

5P
X

MP�15C¼2j44M

1

C

X
m;o

Noðm;H; 2CÞ ð3:16Þ
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5P
X

MP�15C¼2j44M

1

C

X
m;o

HC

m
þ H þ C

M0ðm;oÞ

� �

5HPðlog PÞ�2 þ HP2 log P

M

X
m;o

1

M0ðm;oÞ

5P2�e þ P1þe=2
ffiffiffiffiffiffi
M

p
5P2�e=2:

By combining estimates (3.15) and (3.16), we have completed the proof. ]

4. PROOF OF THE THEOREM

From Lemmas 6 and 7, we have

3g þ 1

3

 !�1 X
M5m48M

rðmÞ>0

1

rðmÞ4
S1ðPÞ3

S2ðPÞ2
4P2�5e: ð4:1Þ

We note that, from our construction of the integers m, the left-hand
side of (4.1) gives a lower bound for the cardinality of a set DðPÞ which
satisfies:

(1) DðPÞ 2 ½12P2g; 12ð2PÞ2g�;
(2) every d 2 DðPÞ is divisible by some m and is given by the form

(2.4) for some a, b satisfying (2.3);
(3) if d1; d2 2 DðPÞ are distinct, then g:c:d:ðd1; d2Þ is not divisible by

any m.

For every d 2 DðPÞ, we write d ¼ d0f 2 such that d0 is squarefree. Suppose
D0ðPÞ is the subset of DðPÞ consist of the elements d with d0 divisible by
some m. Then, from our constructions (3.2) and (3.3), it is easy to see that

jD0ðPÞj ¼ jDðPÞj þ OðP4=3þeÞ4P2�5e: ð4:2Þ

We conclude that, up to 12ð2PÞ2g, there are 4P2�5e integers d, with
distinct squarefree part, satisfying the conditions of Lemma 4. Setting

P ¼ 1

2

X

12

� �1=2g

;

we have proved Theorem 2.
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