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Abstract

This paper, which is largely expository in nature, seeks to illustrate some of the advances
that have been made on the trace formula in the past 15 years. We review the basic theory of
the trace formula, then introduce some ideas of Arthur and Kottwitz that allow one to calculate
the Euler characteristic of theS-cohomology of the discrete spectrum. This Euler characteristic
is first expressed as a trace of a certain test function on the space of automorphic forms, and
then, by the stable trace formula, is converted into a sum of orbital integrals. A result on
global measures allows us to calculate these integrals in terms of the values of certain Artin
L-functions at negative integers.

Our intention is to show how advances in the theory have allowed one to render such
calculations completely explicit. As a byproduct of this calculation, we obtain the existence of
automorphic representations with certain local behavior at the places inS.
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1. Introduction

For a smooth, compactly supported functionf on R, with Fourier transformf̂ , the
Poisson summation formula asserts that

∑
n∈Z

f (n) =
∑
n∈Z

f̂ (n).

This formula (and its generalization to functionsf of rapid decay) has had broad
application in many areas of mathematics. In number theory, for instance, it can be
used to prove the modularity of the theta function of a Euclidean lattice.

We can give a representation theoretic interpretation of the right-hand side of the
summation formula. The functionf acts on the Hilbert spaceL2(Z\R) by the linear
operator sendingF ∈ L2(Z\R) to

(R(f )F )(x) =
∫

R
f (y)F (x + y) dy.

This is just an averaging of the right regular representation of the additive groupR

on L2(Z\R). Now L2(Z\R) is well understood as a representation ofR: it has a
Hilbert space basis consisting of the functionsvn(x) = e−inx , and y ∈ R acts onvn
by multiplication by the charactere−iny . Then we see that

(R(f )vn)(x) =
∫

R
f (y)e−in(x+y) dy = e−inx

∫
R
f (y)e−iny dy = f̂ (n)vn(x).

Hencef̂ (n) is the eigenvalue ofR(f ) on the vectorvn, and the right-hand side of the
Poisson summation formula is the trace ofR(f ) on L2(Z\R). On the other hand, the
left-hand side of the formula is a sum over the elements (or conjugacy classes) of the
discrete subgroupZ of R.

In his 1956 paper[23], Selberg introduced his trace formula for SL(2), which gives
a non-abelian generalization of the Poisson summation formula. We’ll start by looking
at the trace formula in an abstract setting.

Let G be a locally compact topological group, and� a subgroup ofG which is
both discrete and co-compact. In the case of the Poisson summation formula,G is the
additive group of real numbers and� is the subgroup of integers. A Haar measuredg
on G induces a measure on the coset space�\G, taking counting measure on�. Again,
in the case of Poisson summation we takedg to be Lebesgue measure; the induced
measure of�\G ∼= S1 is the Haar measure of volume 1.

Now right translation gives a representation ofG on L2(�\G):

gF(x) = F(xg)
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for g ∈ G and F ∈ L2(�\G). If f is a compactly supported measurable function on
G, then we can average this representation according to the measure� = f dg. So �
gives an endomorphism of the Hilbert spaceL2(�\G, dg), mappingF to the function

�F(x) =
∫
G
F(xg) f (g) dg.

We assume further thatf satisfies a regularity condition. IfG is a Lie group, this
regularity condition is exactly thatf be infinitely differentiable. In general, the regularity
condition is that given by Bruhat[6].

We compute, using Fubini’s theorem and the�-invariance ofF:∫
G
F(xg)f (g) dg =

∫
�\G

∑
�∈�

F(�h)f (x−1�h) dh

=
∫
�\G

F(h)
∑
�∈�

f (x−1�h) dh.

Thus we see that the endomorphism� is given by integration against the compact
kernel

K(x, g) =
∑
�∈�

f (x−1�g).

For fixed x the sum is finite, as� is discrete andf has compact support. Note thatK
is a function on�\G × �\G. Since the kernel is compact, the endomorphism� has a
trace, namely,

Tr(�) =
∫
�\G

K(g, g) dg.

Note thatK(g, g) =∑�∈� f (g−1�g). We would like to exchange the order of the sum
and the integral in our formula for Tr(�). This motivates the following definition.

For � in �, let �� be its centralizer in� and letG� be its centralizer inG. Define
the orbital integral

O�(�, dg�) =
∫
G�\G

f (g−1�g)
dg

dg�
.

This depends on the choice of a Haar measuredg� on G�. The orbital measure

dg�(�) = O�(�, dg�) dg�

on G� is invariant and depends only on�.
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We then have

Tr(�|L2(�\G)) =
∑
�

∫
��\G�

dg�(�)

=
∑
�

∫
��\G�

dg� ·O�(�, dg�),

where� runs through a set of representatives of the conjugacy classes of�. The sum,
moreover, is absolutely convergent[19].

On the other hand, since�\G is compact, the representationL2(�\G) of G is
completely reducible. That is,

L2(�\G) ∼=
⊕

�

m��,

where the� are irreducible representations ofG. Then � acts on each�, again by
averaging. The trace of� on L2(�\G) is then the sum of the traces on the�’s and
thus we get the abstract trace formula

∑
�

∫
��\G�

dg� ·O�(�, dg�) = Tr(�|L2(�\G)) =
∑
�

m�Tr(�|�).

The left-hand side of the trace formula is called the geometric side, as it involves the
geometry of integrals over conjugacy classes, whereas the right-hand side of the trace
formula is called the spectral side, as it involves the spectral decomposition of the
Hilbert spaceL2(�\G) as a representation ofG.

One wants to apply the trace formula to situations where the quotient�\G is not
compact. Quite a number of difficulties arise here, not the least of which is that the
operator is the endomorphism given by�. In his 1956 paper, Selberg employed the
theory of Eisenstein series to study the caseG = SL2(R), � = SL2(Z). This is directly
related to the study of modular forms on the upper half plane.

In a more modern language, we letA be the ring of adèles ofQ and consider
G = GL2(A) and � = GL2(Q). Then the representationV = L2(GL2(Q)\GL2(A))

of GL2(A) encodes information about classical modular forms (holomorphic or not)
on the upper half-plane. Indeed, knowing the irreducible constituents ofV tells us the
dimensions of the spaces of classical cusp forms, as well their Hecke eigenvalues.

More generally, ifG is any reductive algebraic group overQ, we can again look
at V = L2(G(Q)\G(A)). This representation again encodes important arithmetic in-
formation. SinceG(Q)\G(A) need not be compact, the version of the trace formula
given above does not always apply. However, if we restrict our attention to a suitable
subspace ofV and to suitable� then results of Arthur give a version of the trace
formula that does apply. In Sections 2 and 3, we will present a simple version of
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Arthur’s trace formula. For a discussion of Arthur’s proof of this formula we refer the
reader to the books by Gelbart[11] or Shokranian[24].

Our goal for using the trace formula here will be to explicitly determine multiplic-
ities m� appearing on the spectral side. To do this we will have to pick good test
functionsf that will let us isolate certain�. We discuss the choice of these functions in
Section 4.

Another important application of the trace formula is the comparison of the spectra
of two different groups. Langlands’s theory of functoriality predicts that a map between
the L-groups of two groupsG1 andG2 allows one to transfer certain automorphic rep-
resentations between the groups. A major tool in proving instances of this functoriality
is to choose suitable test functionsf1 and f2 on G1 and G2 as above and then to
prove the corresponding geometric sides of the trace formula agree. We will not go
into this matter here; for the first important case, the reader could consult[15].

Even Arthur’s version of the trace formula we give in Section 2 is still too difficult to
use, since it requires an enumeration of the conjugacy classes inG(Q). In Section 5, we
discuss the “stabilization” by Kottwitz that rewrites the trace formula in terms of stable
conjugacy rather thanG(Q) conjugacy (in our case, stable conjugacy is just conjugacy
in G(Q)). In Section 6, we explain how to compare the various local measures that
come up in the orbital integrals with a global measure so that we can make use of
special values ofL-series. In Sections 7 and 8, we relate the results of our trace formula
calculations to modular forms. There is an amusing subtlety that arises here: our final
version of the trace formula contains some local quantities whose computation is quite
difficult. We use direct calculations modular forms to obtain these values.

Finally, in Section 9 we make some conjectures related to our computations.

2. The trace formula

Let G be a simply connected, semi-simple algebraic group defined overQ. We will
keep this condition onG throughout, unless otherwise noted. For example,G could be
SL2, the group Sp4 of 4× 4 symplectic matrices, or the groupG2 of automorphisms
of the octonions.

Let A be the ring of adèles ofQ. The groupG(A) is locally compact and uni-
modular; letdg be a fixed Haar measure onG(A). The subgroupG(Q) is discrete
in G(A), so dg induces a measure on the quotientG(Q)\G(A), which has finite
volume [4].

The groupG(A) acts unitarily, by right translation, on the Hilbert space

L2 = L2(G(Q)\G(A), dg).

If G(R) is compact, thenG(Q)\G(A) is compact and the abstract trace formula as
presented in the introduction applies. If, as is the case forG = SL2, G(R) is not
compact, then we need instead to look at a subspace ofL2(G(Q)\G(A), dg).
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Let

L = L2
disc⊂ L2

be the sum of all irreducibleG(A)-subspaces ofL2. L is called the discrete spectrum
and decomposes as a Hilbert direct sum of irreducible unitary representations� of
G(A), with finite multiplicitiesm(�):

L = ⊕ m(�)�.

Each irreducible� is a restricted tensor product

� = ⊗ �v,

with �v an irreducible, unitary representation ofG(Qv) [10].
We need a modification of the trace formula which gives the trace of� only on

the discrete spectrumL. This modification will exist for measures� = ��v on G(A),
satisfying certain local conditions. In order to state these local conditions, we will first
need a few definitions.

If � = �v is a smooth, compactly supported measure onG(Qv), and � is an
irreducible, complex representation ofG(Qv), then the endomorphism

�(w) =
∫
G(Qv)

g · w d�(g)

of � has a trace, which we denote Tr(�|�). Similarly, if � is a conjugacy class in
G(Qv), we define the orbital integral

O�(�, dg�) =
∫
G�(Qv)\G(Qv)

f (g−1�g)
dg

dg�
,

which depends on the choice of an invariant measuredg� on the centralizerG�(Qv).
For the convergence of this integral, see[22]. The orbital measure

dg�(�) = O�(�, dg�) dg�

on G� is again well-defined, independent of the choice ofdg�.
Before stating the trace formula in this context we note that whenG(R) is compact,

G is anisotropic overQ (that is G does not contain a split torus overQ). It follows
that every conjugacy class inG(Q) is semi-simple and elliptic overQ. (Recall that�
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is elliptic overF if it is contained in a maximal anisotropic torusT of G overF. On the
other hand, ifG(R) is not compact,G(Q) will contain elements that are not elliptic
semi-simple. The geometric side of Arthur’s trace formula on the discrete spectrum,
however, is still a sum of orbital integrals only over the elliptic semi-simple conjugacy
classes ofG(Q).

Proposition (Arthur). Assume that the smooth, compactly supported measure� = ��v
on G(A) satisfies the following three local conditions:

1. Tr(�∞|�∞) = 0, unless the infinitesimal character of�∞ is regular.
2. dg�∞(�∞) = 0, unless the class�∞ is both elliptic and semi-simple.
3. dg�p (�p) = 0, unless the class�p is both elliptic and semi-simple, for some

finite p.

Then� is of trace class on the discrete spectrum L, and

Tr(�|L) =
∑
�

∫
G�(Q)\G�(A)

dg�(�)

=
∑
�

∫
G�(Q)\G�(A)

dg� ·O�(�, dg�),

where the sum is taken over representatives for the elliptic, semi-simple conjugacy
classes inG(Q), only finitely many of which have a non-zero orbital integral for�.

We now sketch the proof, which follows from Arthur’s general theory,[1,2]. Hy-
potheses (2) and (3) above imply that the contributions of non-elliptic terms to Arthur’s
trace formula all vanish. Thus the geometric sideI (f ) of the trace formula is given
by the sum of orbital integrals over elliptic, semi-simple conjugacy classes inG(Q):

I (f ) =
∑
�

�(G�)O�(f ).

Here we have used the fact thatG is simply connected, so by a result of Borel
Steinberg,G� is connected. This allows us to identify Arthur’s weighting factoraG with
the Tamagawa number�(G�), which is the integral overG�(Q)\G�(A) of Tamagawa
measure.

The spectral sideJ (f ) of trace formula is given by a sum over conjugacy classes
of Levi subgroupsM of G. However, ifM �= G, each of these terms will be a linear
combination of traces of representations whose real component has singular infinitesimal
character. Since hypothesis (1) implies that these terms vanish for the test measure�,
one is left with the term forM = G, which is just

J (f ) = Tr(�|L).
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3. The cohomology of the discrete spectrum (cf.[5])

We are going to use the trace formula to compute a certain Euler characteristic on
L ⊗ V for an irreducible, finite-dimensional representationV of the real Lie group
G(R). We’ll see in Section 7 that this is tantamount to counting the number of irre-
ducible subrepresentations� = ⊗�v of L satisfying certain prescribed conditions on
the �v.

We say a groupG is split at the primep if G splits over Qp, that is, if G(Qp)

contains a split maximal torus. The groupG need not be split at every primep. Indeed
if, for example,G = SU3(Q(i)/Q) is the special unitary group in three variables
attached to the extensionQ(i)/Q thenG is split only at those primes congruent to 1
to mod 4. However, for almost all primesp, G must split over an unramified extension
of Qp and must contain a Borel subgroup defined overQp [26, 3.9.1]. If p is such a
prime, we sayG is unramified atp.

If S is a finite set of places ofQ which contains the real place and all finite primes
p whereG is ramified, we may choose an integral modelG for G over the ringZS of
S-integers, withG having good reduction at all primesp outside ofS. For such a good
prime p, G(Zp) is a hyperspecial maximal compact subgroup ofG(Qp) = G(Qp) (see
[26, 1.10] for the definition of hyperspecial). The product

GS(A) =
∏
v∈S
G(Qv)×

∏
p/∈S

G(Zp)

is locally compact, and is open inG(A). Moreover,

G(A) = lim−→
S

GS(A).

Fix such a finite setS and an integral modelG for G over ZS , as well as an
irreducible, finite-dimensional representationV of the real Lie groupG(R), such that
V has trivial central character. The tensor productL ⊗ V is a continuous, complex
representation of the locally compact groupGS(A), and we may define the continuous
cohomology groups

Hi(GS(A), L⊗ V )

following [5, Chapter IX]. These complex vector spaces are finite dimensional, and are
zero for i � 0. Indeed, the subgroup

K = G(ẐS) =
∏
p/∈S

G(Zp)
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of GS(A) is compact, so only contributes toH 0, and we find

Hi(GS(A), L⊗ V ) � Hi
(∏
v∈S
G(Qv), L

G(ẐS) ⊗ V
)
,

by the Künneth formula. The local continuous cohomology groups are known to be
finite dimensional[5, Proposition X.6.3].

We define the Euler characteristic of the discrete spectrum tensored withV by the
formula

� = �(G, S, V ) =
∑
i�0

(−1)i dimHi(GS(A), L⊗ V ).

Our goal is to give an explicit formula for�, under the following two hypotheses:

• Card(S)�2, soS contains a finite prime,
• G(R) contains a maximal compact torus.

The first hypothesis is essential to allow us to use the version of the trace formula in
the previous section, as well as results of Kottwitz, to rewrite the geometric side in
terms of stable conjugacy classes rather than rational conjugacy classes. In our setting,
two elements will be stably conjugate if and only if they are conjugate overG(Q).
The second hypothesis is not essential, but one finds that� = 0 for local reasons if it
is not met.

WhenG(R) contains a maximal compact torusT, we letW c = N(T )/T be its Weyl
group inG(R) (the compact Weyl group) andW = N(TC)/TC be its Weyl group in
G(C). We will see that

� = (W : W c) · �∗

with �∗ equal to the Euler characteristic�(G∗, S, V ) of any inner formG∗ of G which
is compact overR and unramified outside ofS. (A form G∗ of G is called aninner
form if the actions of Gal(Q/Q) on the Dynkin diagrams ofG andG∗ are the same.)
Our formula will express the integer�∗ as a sum of rational numbers. The terms
in the sum will be indexed by the rational stable torsion conjugacy classes inG (or
equivalently, inG∗). If S is sufficiently large (for example, ifS contains all of the
torsion primes forG) the global contribution of each torsion class� to the sum will be

1

2$
LS(M�)Tr(�|V ).

Here $ = dim(T ) is the rank ofG over C, andM� is the Artin-Tate motive of rank
l which is associated to the centralizerG� in [12]. This motive is well-defined by the
stable class of�, asG� is determined up to inner twisting overQ. The termLS(M�)
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is the value of the ArtinL-function of M�, with the Euler factors atS removed, at
the point s = 0. This special value is known to be a rational number, by results of
Siegel [25].

4. A test function to compute�(G,S,V)

To use the trace formula to compute

�(G, S, V ) = �(GS(A), L⊗ V ),

we will construct a measure� on G(A) such that

�(GS(A), L⊗ V ) = Tr(�|L).

To this end, writeL as a Hilbert direct sum

L = ⊕̂ m(�)�

with finite multiplicities. Then

�(GS(A), L⊗ V ) =
∑

m(�)�(GS(A),�⊗ V ).

The groupGS(A) is a direct product, and the representation� ⊗ V of GS(A) is a
restricted tensor product:� = ⊗ �v. Since the Euler characteristic is multiplicative, we
have

�(GS(A),�⊗ V ) = �(G(R),�∞ ⊗ V ) ·
∏
p∈S

�(G(Qp),�p)
∏
p/∈S

�(G(Zp),�p).

The term�(G(Zp),�p) = dim �
G(Zp)
p is either 0 or 1, so the product of Euler charac-

teristics is either 0 or finite.
Since Tr(�|�) = ∏

Tr(�v|�v), our task is to find local measures�v, such that for
all irreducible representations�v of G(Qv):

Tr(�∞|�∞) = �(G(R),�∞ ⊗ V ),
Tr(�p|�p) = �(G(Qp),�p), p ∈ S
Tr(�p|�p) = �(G(Zp),�p), p /∈ S.
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Then we will have

�(GS(A),�⊗ V ) = Tr(�|�) for all irreducible�, and hence

�(GS(A), L⊗ V ) = Tr(�|L).

Of course, to calculate Tr(�|L) using the trace formula, we will have to verify
that �∞ and �p satisfy the local conditions of the proposition. We will also need to
calculate orbital measuresdg�(�) of the test measure�. For this last calculation we
will ultimately use the fact that the global orbital measure factors as a product of local
orbital measures,

dg�(�) =
∏
v

dg�(�v).

However, as we’ll see in Sections 5 and 6, some complications will arise from the fact
that the natural measure to take onG�(A) doesn’t factor easily as a product of local
measures. In the meantime, we will carry out the local computations below.

We now proceed to construct the desired local measures�v. At primesp which are
not in S, the measure

�p =
ch(G(Zp))∫
G(Zp)

dgp
dgp

has the desired property, where ch is the characteristic function of the open compact
subsetG(Zp). Indeed, the endomorphism�p of �p is

�p(w) =
∫
G(Qp)

g(w) �(g)

=
∫
G(Zp)

g(w) dgp

/∫
G(Zp)

dgp.

This is just the projection ofw to theG(Zp)–fixed space in�p, so

Tr(�p|�p) = dim�
G(Zp)
p .

The calculation of the orbital integrals of the local measure�p specified above is
a fundamental problem in local harmonic analysis. Clearly this orbital integral is zero
unless the conjugacy classC(�) of � in G(Qp) meetsG(Zp). In this case, we say� is
integral. There are finitely manyG(Zp) orbits onC(�) ∩G(Zp), and their stabilizers
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are open compact subgroupsKi of G�(Qp). The orbital measure is then

dg�(�p) =
∑
i

1∫
Ki
dg�

dg�.

We say an integral, semi-simple class� has good reduction(modp) if, for every root�
of G, thep-adic integer(�(�)−1) is either 0 or a unit. In other words, the class of� has
good reduction if it has no excess intersection(modp) with the discriminant divisor,
in the variety of conjugacy classes. In this case, Kottwitz has shown[17, Proposition
7.1] that the group schemeG� over Zp has good reduction(modp), soG�(Zp) is a
hyperspecial maximal compact subgroup inG�(Qp). Moreover, if� has good reduction
(modp), the groupG(Zp) has a single orbit onC(�)∩G(Zp), with stabilizerG�(Zp).
Hence, in this case,dg�(�p) is the unique Haar measure with

∫
G�(Zp)

dg�(�p) = 1.

If the class of� has bad reduction(modp), the calculation is much more difficult. We
discuss this further in Section 6.

At finite primes p in S, we need a locally constant, compactly supported measure
�p such that

Tr(�p|�p) =
∑

(−1)i dimHi(G(Qp),�p).

Let F be a facet of maximal dimension in the building ofG(Qp), and letFj be the
facets ofF . The dimension ofF is the rank$ of G over Qp. Let Kj ⊂ G(Qp) be
the parahoric subgroup fixing the facetFj . Then Kottwitz has shown that the measure

�p =
∑
j

(−1)dim Fj · ch(Kj )∫
Kj
dgp

dgp

has the desired traces. In particular, we have

∑
i

(−1)i dimHi(G(Qp),�p) =
∑
j

(−1)dim Fj dim(�
Kj
p ).

For example, the Steinberg representation St ofG(Qp) has a line fixed by the Iwahori
subgroupK fixing F pointwise, and has no fixed vectors under any larger parahoric
subgroup. Hence�(St) = (−1)$; this agrees with the calculation ofHi(G(Qp),St) by
Casselman, as the cohomology is zero fori �= $, and one-dimensional fori = $.
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Kottwitz also calculated the orbital integrals of�p. For � = 1, we have

dg�(�p) =
∑
j

(−1)dim Fj · 1∫
Kj
dgp

dgp,

which is Serre’s formula for Euler–Poincaré measure onG(Qp). This is the unique
invariant measure	 such that

∫
�\G(Qp)

d	 = �(�) =
∑
i

(−1)i dimHi(�,Q)

for each discrete, co-compact, torsion-free subgroup�. More generally, Kottwitz has
shown that for any�

dg�(�p) = d	� = Euler–Poincaré measure onG�(Qp).

This measure is zero, unless� is elliptic and semi-simple.
At the real place, we need to construct a smooth, compactly supported measure�∞

on G(R) such that

Tr(�∞|�∞) =
∑

(−1)i dimHi(G(R),�∞ ⊗ V ).

WhenG(R) is compact, we haveHi = 0 for i�1 and the Euler characteristic is equal
to

dim(�∞ ⊗ V )G(R).

In this case, we may take the test measure

�∞ =
Tr(g∞|V )∫
G(R) dg∞

dg∞.

Indeed, the endomorphism�∞ of �∞ is just 1/dim V ∗ times the projection onto the
V ∗-isotypical space. In the case whenG(R) is not compact, a suitable measure�∞
was constructed by Clozel and Delorme[9], who also calculated its orbital integrals.
We have

dg�(�∞) = Tr(�|V ) · Euler–Poincaré measure onG�(R).

This is zero, unless� is semi-simple and elliptic. Also, since any�∞ with cohomology
has the same infinitesimal character asV ∗, which is regular, we have Tr(�∞|�∞) = 0
unless�∞ has a regular infinitesimal character.
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Since #S�2, with these choices of�v the test measure� =∏�v = f dg satisfies
all the conditions of the proposition. Hence

�(G, S, V ) = Tr(�|L) =
∑
�

∫
G�(Q)\G�(A)

dg� ·
∫
G�(A)\G(A)

f (g−1�g)
dg

dg�
,

where again the sum is taken over representatives for the elliptic, semi-simple conjugacy
classes inG(Q). Moreover, since the support of�p is the union of compact open
subgroups for allp, the class� must be lie in a compact subgroup of eachG(Qp) to
contribute a non-vanishing orbital integral. Since� is also elliptic overR, it is contained
in a compact subgroupK of G(A). But K ∩G(Q) is finite, so� is a torsion conjugacy
class. Finally, if � is not elliptic at some finite primep in S, then we’ve seen that
dg�(�p) is zero, and hence� doesn’t contribute to the sum. Hence, the above sum is
over torsion classes which are also elliptic at the finite primes inS.

We now fix this choice of test measure� for the rest of the paper.

5. The stable trace formula

The problem in using the trace formula as just obtained to calculate�(G, S,W) is
that semi-simple conjugacy classes� in G(Q) are difficult to describe. For example,
whenG = SL2, there are infinitely many conjugacy classes of order 4, all conjugate
over Q. Using the Euler–Poincaré test measure�p, Kottwitz was able to convert the
above expression into a sum overstableconjugacy classes in the quasi-split inner form
G′ of G over Q. (A group overQ is called quasi-split if it contains a Borel subgroup
defined overQ. Every groupG has a unique quasi-split inner form.) Recall that two
semi-simple elements ofG′(Q) are stably conjugate if and only if they are conjugate
in G′(Q) sinceG′ is simply connected.

We describe Kottwitz’s formula below, and use it to compute� in the next section.
To carry out the stabilization, Kottwitz takesdg� to be the Tamagawa measure on the
adèlic groupG�(A), so

∫
G�(Q)\G�(A)

dg� = �(G�)

is, by definition, the Tamagawa number. We henceforth fix this choice ofdg�. For a
discussion of Tamagawa measure see[8]. The trace formula then reads

�(G, S, V ) = Tr(�|L) =
∑
�

�(G�)O�(�, dg�).

The sum is over torsion classes� of G(Q) which are elliptic inG(Qv) for all v ∈ S.
Let T denote a set of representatives for the (finitely many) torsion stable conjugacy

classes inG′(Q). Fix an inner twisting
 : G′ → G over Q. The geometric side of
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the stable trace formula will be a sum over those� in G(A) that, for somet ∈ T ,
are conjugate to
(t) in G(A). For each such� we have the adèlic centralizerG�(A),
but in generalG� is not defined overQ. If � is conjugate to an element inG(Q),
thenG�(A) contains the discrete subgroupG�(Q) and so we have the usual notion of
Tamagawa measure onG�(A).

Even if G� is not defined overQ, we can still define Tamagawa measuredg� on
G�(A), using the inner twisting. Indeed, letdg′t be Tamagawa measure onG′t (A), and
fix a product decomposition:dg′t = ⊗(dg′t )v. For each placev, G�v is an inner twist of
G′tv over Qv, so we may transfer the measure(dg′t )v to a measure(dg)�v onG�v (Qv).
We then define

dg� = ⊗ (dg)�v .

If � is in G(Q), this agrees with usual Tamagawa measure, and we can define�(G�).
In general, there is no Tamagawa number, but we can still define the adèlic orbital
integral

O�(�, dg�) =
∫
G�(A)\G(A)

f (g−1�g)
dg

dg�
.

We may also attach a signe(�) = ±1 to the adèlic class�, by the formula

e(�) =
∏
v

e(G�v ),

where the local invariantse(G�v ) = ±1 are defined in[16]. If � is in G(Q), e(�) = +1.

Proposition (Kottwitz).

�(G, S, V ) =
∑
T

∑
�

e(�)O�(�, dg�),

where the first sum is over representatives t of the stable torsion classes inG′(Q), and
the second is over representatives� of theG(A)-conjugacy classesG(A) which are
conjugate to
(t) in G(A).

We sketch the proof. As usual, there are an infinite number of� in the inner sum,
but only finitely many have a non-zero orbital integral.

For eacht, Kottwitz defines a finite abelian group�, and for � ∈ G(A) conju-
gate to
(t) in G(A) he defines an invariant obs(�) in the dual of�. This invariant
gives an obstruction to the existence of an element ofG(Q) in the G(A)-conjugacy
class of �. He then [17, 9.6.5] writes the geometric side of the trace formula as a
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triple sum

∑
T

∑
�

∑
�

〈obs(�),�〉e(�)O�(�, dg�),

where� runs over�.
Actually, Kottwitz only states this triple sum formula for the contributions of the

non-central classes� ∈ G(Q). This restriction was needed at the time since he used
Weil’s conjecture on Tamagawa numbers forG� and he was only assuming Weil’s
conjecture for groups of smaller dimension thanG. He later used this formula to prove
Weil conjecture[18, Theorem 3], and so his original derivation gives the triple sum
expansion of the entire geometric side.

We switch the inner sums, and exploit the fact that�p is the Euler–Poincaré function
at a finite prime inS.

Then Kottwitz shows[18, p. 641] that for � �= 1:

∑
�

〈obs(�),�〉e(�)O�(�, dg�) = 0.

Hence we obtain the simple stable formula in the proposition.

6. A comparison of measures

The stable formula for�(G, S, V ) is still not readily computable, as we have only
evaluated thelocal orbital measures for our test measure�, while the trace formula
involves the global termO�(�, dg�). To convertO�(�, dg�) into a product of local
integrals, we need to express Tamagawa measuredg� on G�(A) as a product of local
measures.

To do this, we use the results of[12]. Again letG′ be the quasi-split inner form of
G over Q with fixed inner twisting
 over Q and let t ∈ G′(Q) be a torsion element
(in particular, an element appearing in the outer sum of the stable trace formula). Let
� = (�v) ∈ G(A) be an element conjugate to
(t) in G(A) (in particular, an element
appearing in the inner sum of the stable trace formula).

For v ∈ S, we let d	�v
be Euler–Poincaré measure onG�v (Qv). For p not in S, the

groupG′t is the quasi-split inner form ofG�p over Qp, and we letd	�p
be the measure

on G�p (Qp) transferred from the Haar measure onG′t (Qp) which gives the connected
component of a certain special compact subgroup volume 1. This measure onG�p (Qp)

is denotedL(M∨
G�p
(1)) · |
G�p

| in [12, Section 4]. WhenG�p is unramified atp and

G�p
is a model overZp with good reduction, we have

∫
G�p

(Zp)
d	�p

= 1. Hence we

can form the product measured	� = ⊗ d	�v
on G�(A).
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The main global result of[12] then gives the ratio of measures onG�(A):

d	�/dg� = LS(Mt)/
∏
v∈S
e(�v)c(�v).

Here LS(Mt) is the value of the ArtinL-series of the motive ofG� at s = 0, which
only depends on the stable class
(t) of �, and the signe(�v) = e(G�v ) = ±1 is the
local invariant defined by Kottwitz[16]. The invariantc(�v) is defined as follows.

For finite primesp in S,

c(�p) = #H 1(Qp,G�).

This depends only on the stable class of
(tp) over Qp, and gives the number of
classes�p in the stable class (asH 1(Qp,G) = 1).

At the real place, we have

c(�∞) =
#H 1(R, T )

# ker(H 1(R, T )→ H 1(R,G�))
,

where T ⊂ G� ⊂ G is a maximal anisotropic torus, so #H 1(R, T ) = 2$, with $ =
dim T .

We now replace the measuredg/dg� on G�(A)\G(A) by the equivalent term

dg/d	� · LS(Mt)/
∏
v∈S
e(�v)c(�v).

This allows us to write the adèlic orbital integral as a product of local integrals

e(�)O�(�, dg�) = LS(Mt) ·
∏
v∈S
O�v (�v, d	�v

)/c(�v) ·
∏
p/∈S

O�p (�p, d	�p
)e(�p).

For a fixed t = (tv), each adèlic class� in the stable class of
(t) is the product
of local classes�v in the stable classes of the
(tv). We define the local stable orbital
integrals by

SOt (�v) =
∑
�v

e(�v)O�v (�v, d	�v
),

and for v ∈ S the modified local stable orbital integrals by

SO∗t (�v) =
∑
�v

c(�v)
−1O�v (�v, d	�v

),
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where the sums are taken over the finitely many classes�v in G(Qv) which are in the
stable class of
(tv) in G(Qv). If v /∈ S we let SO∗t (�v) = SOt (�v). Then summing
over the classes� in the stable class of
(t) we see

∑
�

e(�)O�(�, dg�) = LS(Mt)
∏
v

SO∗t (�v),

and so

�(G, S, V ) =
∑
T

LS(Mt) ·
∏
v

SO∗t (�v).

We now turn to the evaluation of the stable local terms SO∗
t . Let v = p be a finite

prime in S. If �v is elliptic then we haveO�v (�v, d	�v
) = 1. If not, LS(Mt) = 0.

The constantc(�v) = c(tv) is the number of local classes in the stable class of
(tv).
Hence either the contribution of the stable classt is killed off by theLS(Mt) term, or
SO∗t (�v) = 1.

When v = ∞ and �v is elliptic, we haveO�v (�v, d	�v
) = Tr(�v|V ). This depends

only on the stable class
(tv) of �v. Using the formula forc(�v) above, we get

SO∗t (�v) =
Tr(t |V )

2$
·
∑
�v

# ker(H 1(R, T )→ H 1(R,G�v ))

= Tr(t |V )
2$

· # ker(H 1(R, T )→ H 1(R,G)).

The latter kernel has cardinality(W : W c). Hence we have shown

�(G, S, V ) = (W : W c)
∑
T

1

2$
LS(Mt)Tr(t |V ) ·

∏
p/∈S

SOt (�p).

Finally, we consider the stable orbital integrals at the primesp not inS. For each class
t, almost all of these terms are equal to 1. For example, ifp does not divide the order
of t, then there is a single class�p in the stable class overQp which meetsG(Zp),
and for this class we have seen thatO�p (�p, d	�p

) = 1. SinceG�p is unramified in
this case,e(�p) = 1 and hence SOt (�p) = 1. We are left with the formula

�(G, S, V ) = (W : W c)
∑
T

1

2$
LS(Mt)Tr(t |V ) ·

∏
p |order(t)
p/∈S

SOt (�p). (1)

If, for example, the torsion primes forG are all contained inS, we have a complete
formula (as the product is empty). In all cases, the primary contribution of the stable
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torsion classt to � is

(W : W c) · 1

2$
LS(Mt)Tr(t |V ),

as claimed earlier.
The remaining calculation of SOt (�p) is a central local problem. For each�p in

G(Qp) which is stably conjugate to
(tp), we must write

C$(�p) ∩G(Zp) = �
i
Ki\G(Zp).

Then,

SOt (�p) =
∑
�p

e(�p) ·
∑
i

1∫
Ki
d	�p

. (2)

Unfortunately, even the first step of decomposing the integral elements ofC$(�p)
into integral conjugacy classes is not readily computable. Our approach to computing
the stable orbital integrals SOt (�p) in the next section of this paper is rather round-
about. We will see in the next section that the Euler characteristic�(G, S, V ) can be
computed directly for certainG and smallS, V. We may use these values in Eq. (1) to
get a system of equations in the unknowns SOt (�p). We are able to compute enough
values of�(G, S, V ) to solve for all of the remaining SOt (�p) whenG is SL2, Sp4,
or G2. We give these values in Section 7 and use them to compute more values of
�(G, S, V ) via (1).

Before going on, we note that from expression (2), it follows that SOt is a rational
number, which is positive whenevert is regular. In the regular case,e(�p) = 1 andd	�p
has volume 1 on the connected componentT 0(Zp) of the Néron model ofT = G�p .
Hence

SOt (�p) =
∑
�p

∑
i

(T0(Zp) : Ki).

These “indices” can have denominators(T(Zp) : T0(Zp)). However, in all cases where
we have been able to determine SOt , it turns out to be an integer (which can be
negative for non-regulart).

7. Algebraic modular forms

For this section we drop the requirement thatG be simply connected, but insist that
G(R) be compact. This guarantees thatG(Q) is discrete and co-compact inG(A).
For a given representationV of G over Q and an open compact subgroupK of G(Q̂)
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(where Q̂ = Ẑ ⊗ Q is the ring of finite adéles) we define the space of (algebraic)
modular forms onG of weightV and levelK to be the rational vector space[13]:

MG(V,K) = {F :G(A)/(G(R)+ ×K)→ V :

F(�g) = �F(g), for all � ∈ G(Q)},

whereG(R)+ is the connected component of the identity inG(R).
If K is a productK =∏p Kp, with eachKp open and compact inG(Qp), then the

Hecke algebrasH(G(Qp),Kp) each act onM(V,K), and commute with each other
in End(M(V,K)). We will fix a finite setS of places ofQ containing those for which
G is ramified, and an integral modelG for G over the ringZS with good reduction at
all p not in S. For p not in S, we letKp = G(Zp). For primesp in S, we letKp be an
Iwahori subgroup ofG(Qp), which fixes a maximal facet in the Bruhat–Tits building
pointwise.

The Steinberg representation ofG(Qp) has a vector fixed by the Iwahori subgroup,
so gives rise to a one-dimensional representation of the Hecke algebraH(G(Qp),Kp).
We call a character of this algebraspecial if it is the twist of the Steinberg character
by a character of the fundamental group� of G. We may twist by such characters as
� ∼= G(Qp)/G(Qp)s , whereG(Qp)s ⊃ Kp is the normal subgroup of elements of
G(Qp) that preserve the types of vertices in the building. Thus, special representations
are those representations ofG(Qp) with an Iwahori-fixed vector on which the standard
generators of the simply-connected Hecke algebra act by−1. We denote byMG(V,K)St

the subspace ofMG(V,K) on which the Hecke algebrasH(G(Qp),Kp) act by special
characters for allp in S.

Proposition (Padowitz[21]). Assume that G is absolutely simple and simply connected,
and let rs =∑p∈S rank G(Qp). Let V be an absolutely irreducible representation of G
over Q with trivial central character, and defineK =∏Kp as above.
Then

�(G, S, V ) = (−1)rsdimMG(V
∗,K)St,

except in the case when V is the trivial representation andrs > 0. In the exceptional
case,

�(G, S, V ) = 1+ (−1)rsdimMG(V
∗,K)St.

Proof. The dimension ofMG(V ∗,K)St is the number of irreducible automorphic
representations� (counted with their multiplicities in the discrete spectrum) which
satisfy:

• �∞ ∼= V ∗,
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• �p is the Steinberg representation forp ∈ S,
• �p has a vector fixed byG(Zp) for p �∈ S.

Each such representation contributes a space of dimensionm(�) in HrS (GS(A), L⊗
V ) wherem(�) is the multiplicity of � occurring inL. Moreover, by results of Cassel-
man [7], these are theonly unitary representations contributing to cohomology (except
whenV is trivial andrS > 0, in which case� = C contribute a line toH 0(GS(A), L)).
This completes the proof.�

Since we will actually compute the spacesMG(V,K)St for groupsG of adjoint
type, we need a lemma to compare spaces for isogenous groups. LetG be a reductive
group (such as GLn or GSp2n) with the following property: the derived subgroupG0
is simply connected, and the centerC of G is a split torus. PutḠ = G/C, which is a
group of adjoint type, and letf :G0 → Ḡ be the corresponding isogeny.

Let V be an irreducible representation ofḠ, which we may also view as a repre-
sentation ofG0 with trivial central character. LetK0 be an open compact subgroup
of G0(Q̂), defined as above, and let̄K be such a subgroup of̄G(Q̂) which contains
f (K0).

The mapf :G0 → Ḡ then induces a linear map ofQ-vector spacesMḠ(V, K̄)→
MG0(V ,K0) which is equivariant for the action of the Hecke algebras. The comparison
lemma we need is the following easily proved fact.

Lemma. The induced map

MḠ(V, K̄)
St → MG0(V ,K0)

St

is an isomorphism.

The proposition and the lemma together allow us to use the calculations of
MG(V,K)

St in [20] to get the values of

�∗ = 1

(W : W c)
�(G, S, V ).

8. Examples

We now give some examples. By interpretingG(A)/K geometrically, and making
heavy use of a computer, the spacesMG(V,K) andMG(V,K)St are worked out for
certainG,V,K in [20]. In particular the calculations there work with the (unique)
form of G2 which is compact overR and with the forms of PGSp4 which are ramified
at {2,∞} and at{3,∞}.

The calculation of theM(V,K) is computationally intensive and so has only been
carried out for small weights and levels. We now tabulate the values of�∗ we derive
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from these direct calculations. The corresponding values whenG is the split form of
SL2 are well known.

Directly computed values of�∗(G, S, V ) for G = Sp4

V = V�
� = (0,0) (0,1)

S dim V = 1 5

{∞,2} 1 0
{∞,2,3} 1 −1
{∞,2,5} −1
{∞,2,7} −4
{∞,2,11} −33
{∞,3,5} −8

Directly computed values of�∗(G, S, V ) for G = G2

V = V�
� = (0,0) (1,0) (0,1) (2,0) (1,1)

S dim V = 1 7 14 27 64

{∞,2} 1 0 0 0 1
{∞,3} 1 0 0 2
{∞,5} 2 7 11 31
{∞,7} 13 54 120
{∞,11} 135
{∞,13} 386
{∞,2,3} 2
{∞,2,7} 253

For the three split, simply connected groups SL2, Sp4, andG2 over Q, we will now
tabulate the rational stable torsion classes. Since our groups are simply connected, these
are just the stable torsion classes that meet the group of rational points. We group the
classest and zt, for z in the center, as these have the same contribution to the stable
trace formula for�. There are 3 groups for SL2, 12 groups for Sp4, and 14 rational
stable torsion classes forG2. Similarly, one can show there are 102 rational stable
torsion classes forF4, and 785 rational stable torsion classes forE8.

The stable class of an elementt in SL2, Sp4, orG2 is determined by its characteristic
polynomial on the fundamental representation of dimension 2, 4, or 7 respectively.
Since t is torsion, this is a product of cyclotomic polynomials�m. We tabulate this
polynomial, as well as the valueL(Mt).

Using Eq. (2), the data in the two preceding tables, and a separate calculation of
�(Sp4, {p}, V ) for p prime andV trivial, we are able to solve for the values of SOt (�p).
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Recall that we know that all but finitely many of these values are equal to 1. We
include in our tables only those values of SOt (�p) which arenot equal to 1. With
these values computed, we are then able to tabulate the integers

�∗ = 1

(W : W c)
�(G, S, V )

for many pairs(S, V ) beyond those values obtained directly from looking at modular
forms. The value of�∗ depends only on the inner class ofG over Q.

Torsion classes inSL2

order t char poly t L(Mt) SOt

1,2 �2
1,�

2
2 − 1

12

3,6 �3,�6
1
3

4 �4
1
2

Torsion Classes inSp4

order t char poly t L(Mt) SOt

1,2 �4
1,�

4
2 − 1

1440

2 �2
1�

2
2

1
144 SOt (�2) = 7

3,6 �2
1�3,�

2
1�6 − 1

36

3,6 �2
3,�

2
6 − 1

36

4 �2
4 − 1

24

4,4 �2
1�

2
4,�

2
2�

2
4 − 1

24

6,6 �2
1�6,�

2
2�3 − 1

36

5,10 �5,�10
2
6

6 �3�6
1
9 SOt (�2) = 4

8 �8
1
2

12 �12
1
6

12,12 �3�4,�6�4
1
6
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Torsion Classes inG2

ordert char poly t L(Mt) SOt

1 �7
1

1
3024

2 �3
1�

4
2

1
144 SOt (�2) = 31

3 �1�
3
3

1
54

3 �3
1�3 − 1

36

4 �1�
2
2�

2
4 − 1

24

4 �3
1�

2
4 − 1

24

6 �1�3�
2
6 − 1

36 SOt (�2) = −2

6 �3
1�

2
6 − 1

36

6 �1�
2
2�3�6

1
9 SOt (�2) = 4

7 �1�7
4
7

8 �1�
2
2�8

1
2

8 �1�4�8
1
2

12 �1�
2
2�12

1
6

12 �1�3�12
1
6 SOt (�2) = 4

Values of �∗(G, S, V ) for G = SL2, using the trace formula

V = V�
� = 0 2 4 6 8 10

S dim V = 1 3 5 7 9 11

{∞,2} 1 0 0 1 1 0
{∞,3} 1 0 1 1 2 1
{∞,5} 1 1 1 3 3 3
{∞,7} 1 1 3 3 5 5
{∞,11} 2 2 4 6 8 8
{∞,13} 1 3 5 7 9 11
{∞,2,3} 1 –1 –1 –1 –1 –3
{∞,2,5} 1 –1 –3 –1 –3 –5
{∞,3,5} 0 –2 –4 –4 –6 –8
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Values of �∗(G, S, V ) for G = Sp4, using the trace formula

V = V�

� = (0,0) (0,1) (2,0) (0,2) (0,3) (2,1) (4,0) (0,4) (2,2) (6,0) (0,5)
S dim V = 1 5 10 14 30 35 35 55 81 84 91

{∞,2} 1 0 0 0 0 0 0 0 0 0 0
{∞,3} 1 0 0 0 –1 –1 0 0 –1 –1 –2
{∞,5} 1 –1 –1 –1 –7 –6 –5 –7 –12 –12 –20
{∞,7} 1 –5 –6 –8 –26 –27 –23 –31 –55 –58 –73
{∞,11} –1 –25 –42 –56 –150 –167 –155 –235 –365 –378 –445
{∞,13} –7 –51 –88 –118 –292 –329 –315 –477 –725 –762 –869
{∞,17} –22 –144 –264 –362 –848 –968 –944 –1456 –2182 –2274 –2550
{∞,19} –37 –225 –420 –578 –1326 –1521 –1485 –2295 –3439 –3584 –3979
{∞,2,3} 1 –1 –2 –2 –4 –5 –5 –7 –9 –12 –11
{∞,2,5} –1 –7 –14 –18 –38 –43 –43 –65 –97 –104 –109
{∞,2,7} –4 –26 –50 –70 –150 –174 –176 –274 –402 –420 –456
{∞,2,11} –33 –165 –328 –452 –974 –1135 –1135 –1775 –2615 –2722 –2945
{∞,2,13} –63 –321 –640 –896 –1924 –2243 –2241 –3519 –5185 –5380 –5833
{∞,3,5} –8 –48 –90 –122 –278 –318 –312 –480 –718 –752 –830
{∞,3,7} –36 –192 –368 –508 –1128 –1304 –1296 –2016 –2980 –3108 –3412

Values of �∗(G, S, V ) for G = G2, using the trace formula

V = V�

� = (0,0) (1,0) (0,1) (2,0) (1,1) (3,0) (0,2) (4,0) (2,1) (0,3)
S dim V = 1 7 14 27 64 77 77 182 189 273

{∞,2} 1 0 0 0 1 0 0 1 1 0
{∞,3} 1 0 0 2 3 3 4 9 7 9
{∞,5} 2 7 11 31 71 76 77 198 194 261
{∞,7} 13 54 120 231 523 642 670 1520 1570 2302
{∞,11} 135 938 1826 3613 8569 10212 10200 24308 25150 36140
{∞,13} 386 2552 5188 9968 23500 28386 28532 67020 69594 100784
{∞,17} 1871 13176 26160 50753 120375 144472 144384 342056 354928 511984
{∞,19} 3733 25716 51702 99539 235579 283818 284226 670506 696348 1006692
{∞,2,3} 2 8 17 33 79 95 96 225 234 340
{∞,2,5} 35 218 460 863 2029 2476 2498 5810 6050 8814
{∞,2,7} 253 1822 3584 6977 16593 19864 19806 47080 48844 70350
{∞,2,11} 4157 28832 57922 111437 263927 317948 318206 750992 780080 1127636
{∞,3,5} 505 3494 6998 13509 31991 38492 38530 91012 94488 136506
{∞,3,7} 4039 28240 56456 108961 258247 310640 310680 734392 762552 1101360

For groups of higher rank, one can enumerate the classest and determine the mo-
tives Mt of their centralizers. The local stable orbital integrals SOt (�p) at primes
p dividing the order of t are difficult to calculate. However, a good estimate for
�∗ comes from the central terms in the trace formula, which together contribute the
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rational number

#Z · 1

2$
LS(MG)dim V.

For G = F4, this estimate suggests that�∗ > 103 wheneverS �= {∞,2}, and for
G = E8, this estimate suggests that�∗ > 1030 for all pairs (S, V ).

9. Discrete series and a conjecture

How can one account for the term(W : W c), which is the only non-stable factor in
the formula for�(G, S, V ):

�(G, S, V ) = (W : W c) · �∗(G, S, V )?

On one hand,(W : W c) is the Euler characteristic of the trivial representationC of
GS(A), arising from the cohomology of the trivial representation ofG(R). Indeed, if
K is a maximal compact subgroup ofG(R) and p = Lie(G)/Lie(K), then:

H •(G(R),C) = (�̇p)K.

On the other hand,(W : W c) is the number of discrete series representations�∞
of G(R) with a fixed central and infinitesimal character. This leads us to make the
following optimistic prediction.

Conjecture. Let � be an irreducible representation ofG(A) which occurs inL = L2
disc

and has non-zeroGS(A)-cohomologyH •(GS(A),�⊗V ) when tensored with the finite-
dimensional representation V ofG(R).
Then either:

1. � is the trivial representation ofG(A) and V = C, or
2. �∞ is a discrete series representation ofG(R) with trivial central character and

the same infinitesimal character asV ∗, and for all finite placesv ∈ S, �v is the
Steinberg representation.

Note that this conjecture is true when the highest weight ofV is regular, since then
the only unitary representations that have cohomology when tensored withV are the
discrete series representations.

Even more should be true. LetG′ be any inner form of G, with good reduction
outside ofS. Let � = �∞⊗⊗v∈S Stv⊗�S be the local factorization of a representation
of type 2) in L, with �S unramified. If �′∞ is any discrete series forG′(R) with the
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same infinitesimal and central character as�∞, then we would expect that:

dim HomG′(A)

(
�′∞ ⊗

⊗
v∈S

St′v ⊗ �S, L′
)
= 1.

If this is true, we can use the fact that discrete series representations ofG(R) and the
Steinberg representation ofG(Qp) contribute cohomology of dimension 1 in a single
degree, to count thenumber of distinct automorphic representations of a fixed local
type.

Conjecture. Let d∞ be a fixed discrete series forG(R), with infinitesimal character
equal to the infinitesimal character ofV ∗. Then the number of distinct irreducible
representations� = ⊗′v�v of G(A) with local components




�∞ � d∞,
�v � Stv for all v ∈ S,

�
G(Zp)
p �= 0 for all p /∈ S

which appear in the discrete spectrum L of G is equal to the absolute value of the
integer �∗(G, S, V ) (except in the case whenV = C and the groupGS(A) is non-
compact, when this number is the absolute value of the integer�∗(G, S, V )− 1).

For example, whenG = G2, S = {∞,5}, andV = C, we saw that�∗(G, S, V ) = 2.
Hence, for any discrete series representationd∞ of G2(R) with infinitesimal character
�, there should be auniqueautomorphic irreducible representation� of the form

� = d∞ ⊗ St5⊗
⊗
p �=5

�p

with �p unramified for allp �= 5. For the anisotropic formG′ of G2, this is true by
calculations of Lansky and Pollack (who also determined�2 and�3). The representation
�′ of G′(A) lifts to PGSp6(A) via an exceptional theta correspondence, and yields a
holomorphic Siegel modular formF of weight 4, whose level is the Iwahori subgroup
at 5 in PGSp6(Z) [14, Proposition 5.8].

Acknowledgments

We would like to thank Jim Arthur and Bob Kottwitz, who explained important points
of their work; they have since gone far beyond the techniques used here. We would
also like to thank Wee-Teck Gan, Joshua Lansky, and Seth Padowitz for their help.
The first author would like to thank his hosts at the IMS of the National University of
Singapore, where a preliminary version of this paper was written.



B.H. Gross, D. Pollack / Journal of Number Theory 110 (2005) 136–163 163

References

[1] J. Arthur, The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (2) (1988) 323–383.
[2] J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (3) (1988) 501–554.
[4] A. Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962)

485–535.
[5] A. Borel, N.R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive

groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, NJ, 1980.
[6] F. Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations

des groupes℘-adiques, Bull. Soc. Math. France 89 (1961) 43–75.
[7] W. Casselman, On ap-adic vanishing theorem of Garland, Bull. Amer. Math. Soc. 80 (1974) 1001

–1004.
[8] L. Clozel, Nombres de Tamagawa des groupes semi-simples (d’après Kottwitz), Astérisque

(177–178):Exp. No. 702, 61–82, 1989. Séminaire Bourbaki, vol. 1988/89.
[9] L. Clozel, P. Delorme, Pseudo-coefficients et cohomologie des groupes de Lie réductifs réels, C. R.

Acad. Sci. Paris Sér. I Math. 300 (12) (1985) 385–387.
[10] D. Flath, Decomposition of representations into tensor products, in: Automorphic Forms,

Representations andL-functions (Proceedings of the Symposium on Pure Mathematics, Oregon State
University, Corvallis, OR, 1977), Part 1, Proceedings of the Symposium on Pure Mathematics, vol.
XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 179–183.

[11] S. Gelbart, Lectures on the Arthur–Selberg trace formula, University Lecture Series, vol. 9, American
Mathematical Society, Providence, RI, 1996.

[12] B.H. Gross, On the motive of a reductive group, Invent. Math. 130 (2) (1997) 287–313.
[13] B.H. Gross, Algebraic modular forms, Israel J. Math. 113 (1999) 61–93.
[14] B.H. Gross, G. Savin, Motives with Galois group of typeG2: an exceptional theta-correspondence,

Compositio Math. 114 (2) (1998) 153–217.
[15] H. Jacquet, R.P. Langlands, Automorphic Forms on GL(2), Springer, Berlin, 1970.
[16] R.E. Kottwitz, Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. 278

(1) (1983) 289–297.
[17] R.E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (3) (1986) 365–399.
[18] R.E. Kottwitz, Tamagawa numbers, Ann. of Math. (2) 127 (3) (1988) 629–646.
[19] J.-P. Labesse, La formule des traces d’Arthur–Selberg, Astérisque (133–134) (1986) 73–88. Seminar

Bourbaki, vol. 1984/85.
[20] J. Lansky, D. Pollack, Hecke algebras and automorphic forms, Compositio Math. 130 (1) (2002) 21

–48.
[21] S. Padowitz, Trace of Hecke Operators, Ph.D. Thesis, Harvard University, 1998.
[22] R.R. Rao, Orbital integrals in reductive groups, Ann. of Math. 96 (1972) 505–510.
[23] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces

with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956) 47–87.
[24] S. Shokranian, The Selberg–Arthur trace formula, Lecture Notes in Mathematics, vol. 1503, Springer,

Berlin, 1992.
[25] C.L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen

Math.-Phys. Kl. II 1969 (1969) 87–102.
[26] J. Tits, Reductive groups over local fields, in: Automorphic forms, representations andL-functions

(Proceedings of the Symposium on Pure Mathematics, Oregon State University, Corvallis, OR, 1977),
Part 1, Proceedings of the Symposium on Pure Mathematics, vol. XXXIII, American Mathematical
Society, Providence, RI, 1979, pp. 29–69.

Further reading

[3] J. Arthur, TheL2-Lefschetz numbers of Hecke operators, Invent. Math. 97 (2) (1989) 257–290.


	On the Euler characteristic of the discrete spectrum
	Introduction
	The trace formula
	The cohomology of the discrete spectrum (cf. bib5[5])
	A test function to compute chi(G,S,VG,S,VG,S,VG,S,V)
	The stable trace formula
	A comparison of measures
	Algebraic modular forms
	Examples
	Discrete series and a conjecture
	Acknowledgements
	References
	Further reading


