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Abstract

This paper, which is largely expository in nature, seeks to illustrate some of the advances
that have been made on the trace formula in the past 15 years. We review the basic theory of
the trace formula, then introduce some ideas of Arthur and Kottwitz that allow one to calculate
the Euler characteristic of th8-cohomology of the discrete spectrum. This Euler characteristic
is first expressed as a trace of a certain test function on the space of automorphic forms, and
then, by the stable trace formula, is converted into a sum of orbital integrals. A result on
global measures allows us to calculate these integrals in terms of the values of certain Artin
L-functions at negative integers.

Our intention is to show how advances in the theory have allowed one to render such
calculations completely explicit. As a byproduct of this calculation, we obtain the existence of
automorphic representations with certain local behavior at the placs in
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1. Introduction

For a smooth, compactly supported functibon R, with Fourier transformf, the
Poisson summation formula asserts that

Yo rm=)" fm.

neZ neZ

This formula (and its generalization to functiorns of rapid decay) has had broad
application in many areas of mathematics. In number theory, for instance, it can be
used to prove the modularity of the theta function of a Euclidean lattice.

We can give a representation theoretic interpretation of the right-hand side of the
summation formula. The functioh acts on the Hilbert spacg&?(Z\R) by the linear
operator sending” € L%(Z\R) to

(R(f)F)(X)=/Rf(y)F(x+y)dy~

This is just an averaging of the right regular representation of the additive dgRoup
on L%(Z\R). Now L2(Z\R) is well understood as a representation Rf it has a
Hilbert space basis consisting of the functiongx) = ¢~"*, andy € R acts onu,

by multiplication by the character—”’. Then we see that

(R(f)vn)(x) = [R F)e Mt gy = ¢=inx /ﬂ;{ FMe ™ dy = fn)v,(x).

Hencef(n) is the eigenvalue oR(f) on the vecton,, and the right-hand side of the
Poisson summation formula is the trace Rff) on L2(Z\R). On the other hand, the
left-hand side of the formula is a sum over the elements (or conjugacy classes) of the
discrete subgrou of R.

In his 1956 papef23], Selberg introduced his trace formula for @b, which gives
a non-abelian generalization of the Poisson summation formula. We'll start by looking
at the trace formula in an abstract setting.

Let G be a locally compact topological group, add a subgroup ofG which is
both discrete and co-compact. In the case of the Poisson summation fognisldhe
additive group of real numbers addis the subgroup of integers. A Haar measdge
on G induces a measure on the coset spBgg, taking counting measure an. Again,
in the case of Poisson summation we talgeto be Lebesgue measure; the induced
measure of'\G = $! is the Haar measure of volume 1.

Now right translation gives a representation®fon L2(I'\G):

gF(x) = F(xg)
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for g € G and F € L3(I'\G). If f is a compactly supported measurable function on
G, then we can average this representation according to the meastré¢ dg. So ¢
gives an endomorphism of the Hilbert spab&I'\G, dg), mappingF to the function

OF(x) = /g F(xg) f(g)ds.

We assume further thdt satisfies a regularity condition. I is a Lie group, this
regularity condition is exactly thdtbe infinitely differentiable. In general, the regularity
condition is that given by Bruhd6].

We compute, using Fubini's theorem and thenvariance ofF:

/g Fxg) f(g) dg = /F L FGh T di

vell

= F(h) (x~Yyh) dh.
/F\g dofaly

vell

Thus we see that the endomorphigmis given by integration against the compact
kernel

K(x, )= fGx"'pg).

vell

For fixed x the sum is finite, ad” is discrete and has compact support. Note thit
is a function onI'\G x I'\G. Since the kernel is compact, the endomorphigrhas a
trace, namely,

Tr(g) = f K(s.8)dg.
g

Note thatK (g, g) = Zyef f(g~1yg). We would like to exchange the order of the sum
and the integral in our formula for T@). This motivates the following definition.

Foryin I', let I', be its centralizer inl" and letG, be its centralizer inG. Define
the orbital integral

dg
dg,

0,(¢, dg,) = / flie™he)
g\g

This depends on the choice of a Haar measigeon G,. The orbital measure
dgy(p) = Oy(p,dg,) dg,

on G, is invariant and depends only on
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We then have

TIL2G) = 3 [ dgto)
y F*;’\g)'

= Z/ dgy - Oy (o, dgy),
y qu\g)'

wherey runs through a set of representatives of the conjugacy classes Tie sum,
moreover, is absolutely convergefio].

On the other hand, sinc&\G is compact, the representatiat?(I'\G) of G is
completely reducible. That is,

L2(I\G) = @ mam,

where ther are irreducible representations ¢f Then ¢ acts on eacht, again by
averaging. The trace ap on L2(I'\G) is then the sum of the traces on thé&s and
thus we get the abstract trace formula

> /F g, 1817 030, dgy) = Tr(pILA(I\G) = Y mzTr(p|n).
y P\ T

The left-hand side of the trace formula is called the geometric side, as it involves the
geometry of integrals over conjugacy classes, whereas the right-hand side of the trace
formula is called the spectral side, as it involves the spectral decomposition of the
Hilbert spaceL2(I'\G) as a representation of.

One wants to apply the trace formula to situations where the quofiggtis not
compact. Quite a number of difficulties arise here, not the least of which is that the
operator is the endomorphism given lpy In his 1956 paper, Selberg employed the
theory of Eisenstein series to study the cgse SLy(R), I' = SLx(Z). This is directly
related to the study of modular forms on the upper half plane.

In a more modern language, we Iét be the ring of adéles ofd and consider
G = GLo(A) and I' = GL»(Q). Then the representatiol = L2(GL2(Q)\GL2(A))
of GL2(A) encodes information about classical modular forms (holomorphic or not)
on the upper half-plane. Indeed, knowing the irreducible constituentétefls us the
dimensions of the spaces of classical cusp forms, as well their Hecke eigenvalues.

More generally, ifG is any reductive algebraic group ovér, we can again look
at V = L2(G(@)\G(A)). This representation again encodes important arithmetic in-
formation. SinceG(Q)\G(A) need not be compact, the version of the trace formula
given above does not always apply. However, if we restrict our attention to a suitable
subspace ol and to suitablep then results of Arthur give a version of the trace
formula that does apply. In Sections 2 and 3, we will present a simple version of
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Arthur’s trace formula. For a discussion of Arthur’'s proof of this formula we refer the
reader to the books by Gelbdft1] or Shokraniarf24].

Our goal for using the trace formula here will be to explicitly determine multiplic-
ities m, appearing on the spectral side. To do this we will have to pick good test
functionsf that will let us isolate certaim. We discuss the choice of these functions in
Section 4.

Another important application of the trace formula is the comparison of the spectra
of two different groups. Langlands’s theory of functoriality predicts that a map between
the L-groups of two group&51 and G allows one to transfer certain automorphic rep-
resentations between the groups. A major tool in proving instances of this functoriality
is to choose suitable test functiond and f> on G1 and G, as above and then to
prove the corresponding geometric sides of the trace formula agree. We will not go
into this matter here; for the first important case, the reader could coi&jit

Even Arthur’s version of the trace formula we give in Section 2 is still too difficult to
use, since it requires an enumeration of the conjugacy classeglin. In Section 5, we
discuss the “stabilization” by Kottwitz that rewrites the trace formula in terms of stable
conjugacy rather tha (Q) conjugacy (in our case, stable conjugacy is just conjugacy
in G(Q)). In Section 6, we explain how to compare the various local measures that
come up in the orbital integrals with a global measure so that we can make use of
special values oE-series. In Sections 7 and 8, we relate the results of our trace formula
calculations to modular forms. There is an amusing subtlety that arises here: our final
version of the trace formula contains some local quantities whose computation is quite
difficult. We use direct calculations modular forms to obtain these values.

Finally, in Section 9 we make some conjectures related to our computations.

2. The trace formula

Let G be a simply connected, semi-simple algebraic group defined @Qvéte will
keep this condition oG throughout, unless otherwise noted. For exam@eould be
SLy, the group Sp of 4 x 4 symplectic matrices, or the group, of automorphisms
of the octonions.

Let A be the ring of adéles ofd. The groupG(A) is locally compact and uni-
modular; letdg be a fixed Haar measure afi(A). The subgroupG(Q) is discrete
in G(A), so dg induces a measure on the quotigGtQ)\G(A), which has finite
volume [4].

The groupG(A) acts unitarily, by right translation, on the Hilbert space

L? = LA(G(@)\G(A), dg).

If G(R) is compact, thenG(Q)\G(A) is compact and the abstract trace formula as
presented in the introduction applies. If, as is the casedoe SLy, G(R) is not
compact, then we need instead to look at a subspade?@ (Q)\G(A), dg).
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Let
L= Lgisc - L?

be the sum of all irreducible (A)-subspaces of.2. L is called the discrete spectrum
and decomposes as a Hilbert direct sum of irreducible unitary representatiofs
G(A), with finite multiplicities m(r):

L =& m(n)m.
Each irreducibler is a restricted tensor product
T=Q Ty,

with 7, an irreducible, unitary representation 6fQ,) [10].

We need a modification of the trace formula which gives the trace afnly on
the discrete spectrurh. This modification will exist for measureg = I1¢p, on G(A),
satisfying certain local conditions. In order to state these local conditions, we will first
need a few definitions.

If ¢ = ¢, is a smooth, compactly supported measure @&{,), and = is an
irreducible, complex representation 6f(Q,), then the endomorphism

o(w) = / g -w do(g)
G(Q,)

of = has a trace, which we denote (gir). Similarly, if y is a conjugacy class in
G(Q,), we define the orbital integral

-1, dg
0y(p,dgy) = fE& g —,
Gy @\G(Qy) dgy

which depends on the choice of an invariant measigeon the centralizeG,(Q,).
For the convergence of this integral, §22]. The orbital measure

dg,(p) = Oy(@,dgy) dgy

on G, is again well-defined, independent of the choicedgf.

Before stating the trace formula in this context we note that wiiéR) is compact,
G is anisotropic overQd (that is G does not contain a split torus ovép). It follows
that every conjugacy class iG(Q) is semi-simple and elliptic ove®. (Recall thaty
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is elliptic overF if it is contained in a maximal anisotropic tordsof G overF. On the
other hand, ifG(R) is not compactG(Q) will contain elements that are not elliptic
semi-simple. The geometric side of Arthur's trace formula on the discrete spectrum,
however, is still a sum of orbital integrals only over the elliptic semi-simple conjugacy
classes ofG(Q).

Proposition (Arthur). Assume that the smogtbompactly supported measuge= Il ¢,
on G(A) satisfies the following three local conditions

1. Tr(pslmso) = 0, unless the infinitesimal character af, is regular.

2. dgy. (9s) =0, unless the class,, is both elliptic and semi-simple.

3.dg,, (¢,) = 0, unless the clasy, is both elliptic and semi-simplefor some
finite p.

Then ¢ is of trace class on the discrete spectrumand

Tr(plL) = / dg,(¢)
; G, (\Gy(A) '

=y / dg, - 0y(¢. dg;).
7 JGH@\Gy(A)

where the sum is taken over representatives for the ellig@ni-simple conjugacy
classes inG(Q), only finitely many of which have a non-zero orbital integral fer

We now sketch the proof, which follows from Arthur's general theddy2]. Hy-
potheses (2) and (3) above imply that the contributions of non-elliptic terms to Arthur's
trace formula all vanish. Thus the geometric sitlgf) of the trace formula is given
by the sum of orbital integrals over elliptic, semi-simple conjugacy class&s(in):

1(f) =Y _1(GyOy(f).

Y

Here we have used the fact th& is simply connected, so by a result of Borel
Steinberg,G, is connected. This allows us to identify Arthur’s weighting faat6r with
the Tamagawa number(G,), which is the integral oveGG,(Q)\G,(A) of Tamagawa
measure.

The spectral side/(f) of trace formula is given by a sum over conjugacy classes
of Levi subgroupsM of G. However, if M # G, each of these terms will be a linear
combination of traces of representations whose real component has singular infinitesimal
character. Since hypothesis (1) implies that these terms vanish for the test measure
one is left with the term forM = G, which is just

J(f) =Tr(plL).
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3. The cohomology of the discrete spectrum (cfi5])

We are going to use the trace formula to compute a certain Euler characteristic on
L ® V for an irreducible, finite-dimensional representatignof the real Lie group
G(R). We'll see in Section 7 that this is tantamount to counting the number of irre-
ducible subrepresentations = ®mn, of L satisfying certain prescribed conditions on
the m,.

We say a groupG is split at the primep if G splits overQ,, that is, if G(Q,)
contains a split maximal torus. The gro@need not be split at every pringe Indeed
if, for example, G = SU3(Q()/Q) is the special unitary group in three variables
attached to the extensiof(i)/Q then G is split only at those primes congruent to 1
to mod 4. However, for almost all primgs G must split over an unramified extension
of @, and must contain a Borel subgroup defined oligy [26, 3.9.1] If p is such a
prime, we sayG is unramified atp.

If Sis a finite set of places of) which contains the real place and all finite primes
p whereG is ramified, we may choose an integral modeffor G over the ringZgs of
Sintegers, withG having good reduction at all primgsoutside ofS. For such a good
primep, G(Z,) is a hyperspecial maximal compact subgrougsgil ) = G(Q),) (see
[26, 1.10]for the definition of hyperspecial). The product

Gs(A) =[]G6@y = [[G6@))

vesS pPES

is locally compact, and is open iG(A). Moreover,

G(A) =lim Gs(A).
S

Fix such a finite setS and an integral modeG for G over Zg, as well as an
irreducible, finite-dimensional representativnof the real Lie groupG(R), such that
V has trivial central character. The tensor prodiic® V is a continuous, complex
representation of the locally compact groGg (A), and we may define the continuous
cohomology groups

H (Gs(A),L®V)

following [5, Chapter IX] These complex vector spaces are finite dimensional, and are
zero fori > 0. Indeed, the subgroup

K=GZs)=[]G@,
PES
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of Gs(A) is compact, so only contributes #°, and we find

H (Gs(A),L® V)~ H' (l_[ G(Q,), L6Zs) g V) ’

ves

by the Kinneth formula. The local continuous cohomology groups are known to be
finite dimensional5, Proposition X.6.3]

We define the Euler characteristic of the discrete spectrum tensoredvwith the
formula

1=2(G. 8, V)=>" (=D dim H'(Gs(A), L® V).
i>0

Our goal is to give an explicit formula foy, under the following two hypotheses:

e CardS)>2, soS contains a finite prime,
e G(R) contains a maximal compact torus.

The first hypothesis is essential to allow us to use the version of the trace formula in
the previous section, as well as results of Kottwitz, to rewrite the geometric side in
terms of stable conjugacy classes rather than rational conjugacy classes. In our setting,
two elements will be stably conjugate if and only if they are conjugate @#D).
The second hypothesis is not essential, but one findsytka0d for local reasons if it
is not met.

When G(R) contains a maximal compact torlis we let W¢ = N(T)/T be its Weyl
group in G(R) (the compact Weyl group) an? = N(T¢)/Tc be its Weyl group in
G(C). We will see that

=W : W .y

with y* equal to the Euler characteristi¢G*, S, V) of any inner formG* of G which

is compact ovefR and unramified outside d& (A form G* of G is called aninner
form if the actions of Gall/Q) on the Dynkin diagrams ofs and G* are the same.)
Our formula will express the integer* as a sum of rational numbers. The terms
in the sum will be indexed by the rational stable torsion conjugacy class€s (or
equivalently, inG*). If S is sufficiently large (for example, i contains all of the
torsion primes forG) the global contribution of each torsion classo the sum will be

1
ot Ls@) TroV).

Here ¢ = dim(T) is the rank ofG over C, and M, is the Artin-Tate motive of rank
I which is associated to the centraliz@y, in [12]. This motive is well-defined by the
stable class of, as G, is determined up to inner twisting ovéd. The termLs(M,)
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is the value of the ArtinL-function of M,, with the Euler factors a6 removed, at
the points = 0. This special value is known to be a rational number, by results of
Siegel [25].
4. A test function to compute x(G,S,\)

To use the trace formula to compute
2G, S, V) =y(Gs(A),L®V),
we will construct a measure on G(A) such that
wGs(A),L® V) =Tr(p|L).
To this end, writeL as a Hilbert direct sum
L=&mmn
with finite multiplicities. Then

1(Gs(A), L®V) =Y mmy(Gs(A), n® V).

The groupGg(A) is a direct product, and the representatio® V of Gg(A) is a
restricted tensor product = ® n,. Since the Euler characteristic is multiplicative, we
have

1(Gs(A), m® V) = 1(GR), 100 @ V) - [ [ 1(G(@)), 7p) [ ] 1(G(Z)), mp).
PES PES

The termy(G(Z,), 7)) = dim n_%(z,,) is either 0 or 1, so the product of Euler charac-

teristics is either 0 or finite.
Since T(g|n) = [[ Tr(p,|m,), our task is to find local measures,, such that for
all irreducible representations, of G(Q,):

Tr((/)oo|noo) = H(GR), 10 ® V),
TH(g,Im) = 2G@,), 1), peS
T, Im,) = Gy 1), p ¢S,
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Then we will have

21(Gs(A), t® V) = Tr(p|rn) for all irreducible, and hence
1(Gs(A), L®V) = Tr(p|L).

Of course, to calculate Tgp|L) using the trace formula, we will have to verify
that ¢, and ¢, satisfy the local conditions of the proposition. We will also need to
calculate orbital measurefg,(¢) of the test measure. For this last calculation we
will ultimately use the fact that the global orbital measure factors as a product of local
orbital measures,

dg, (@) = [ [dg,(e,).

However, as we'll see in Sections 5 and 6, some complications will arise from the fact
that the natural measure to take 6i(A) doesn't factor easily as a product of local
measures. In the meantime, we will carry out the local computations below.

We now proceed to construct the desired local measyped\t primes p which are
not in S the measure

_ ch(G(Z,))

= dg
p p
fg(zp)dgp

has the desired property, where ch is the characteristic function of the open compact
subsetG(Z,). Indeed, the endomorphism, of =, is

¢p(w) = /G gw) ¢(g)

P

= / g(w) dgp f dgp.
G(Zp) G(Zp)

This is just the projection o to the G(Z,)—fixed space int,, so

Tr(p,Im,) = dimmy 7.

The calculation of the orbital integrals of the local measurg specified above is
a fundamental problem in local harmonic analysis. Clearly this orbital integral is zero
unless the conjugacy clagyy) of y in G(Q,) meetsG(Z,). In this case, we say is
integral. There are finitely mang(Z,) orbits onC(y) N G(Z,,), and their stabilizers
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are open compact subgroups of G,(Q,). The orbital measure is then

1
dg,(p,) = —dg,.
: Xz: fo dgy

We say an integral, semi-simple clas®as good reductioimod p) if, for every rootuo
of G, thep-adic integer(a.(y)—1) is either O or a unit. In other words, the classydfas
good reduction if it has no excess intersectiomod p) with the discriminant divisor,
in the variety of conjugacy classes. In this case, Kottwitz has shawn Proposition
7.1] that the group schemgy over Z, has good reductioimod p), so G..(Zp) is a
hyperspecial maximal compact subgroupGn(Q,). Moreover, ify has good reduction
(mod p), the groupG(Z,) has a single orbit o€ (y) NG (Z,), with stabilizerQV(Z,,).
Hence, in this case/g,(¢,) is the unique Haar measure with

/Gy@

If the class ofy has bad reductioimod p), the calculation is much more difficult. We
discuss this further in Section 6.

At finite primesp in S, we need a locally constant, compactly supported measure
¢, such that

P

Tr(p,Im,) =Y (=D dim H'(G(Q,), 7).

Let 7 be a facet of maximal dimension in the building 6{Q,), and letF; be the
facets of 7. The dimension ofF is the rank¢ of G over Q,. Let K; C G(Q,) be
the parahoric subgroup fixing the fac&}. Then Kottwitz has shown that the measure

= ch(K;)
oy =5 aims D
j K; p

has the desired traces. In particular, we have

Z (=1 dim H'(G(@)), 7p) = Z (—1pdim %, dim(ngi).
i j

For example, the Steinberg representation K¢ ,) has a line fixed by the Iwahori
subgroupK fixing F pointwise, and has no fixed vectors under any larger parahoric
subgroup. Hence(St) = (—1)¢; this agrees with the calculation dff(G(Qp), St) by
Casselman, as the cohomology is zero fegt ¢, and one-dimensional far= ¢.
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Kottwitz also calculated the orbital integrals of,. Fory =1, we have

dgy(p,) =Y (=n4m7i. dgp.
J

ij dgp

which is Serre’s formula for Euler—Poincaré measure@i),). This is the unique
invariant measure: such that

dp=yI) = —1) dim H{(I', Q
/r\c;(@p>“ 2(I) lZ( ) (I,

for each discrete, co-compact, torsion-free subgréupgMore generally, Kottwitz has
shown that for anyy

dgy(e,) =du, = Euler—Poincaré measure 60 (Q,).

This measure is zero, unlessis elliptic and semi-simple.
At the real place, we need to construct a smooth, compactly supported meagure
on G(R) such that

TPl o) = Y (=D dim H (G(R), 0o ® V).

When G(R) is compact, we haveél’ =0 for i >1 and the Euler characteristic is equal
to

dim(ree ® V)O ).
In this case, we may take the test measure

 Tr(goolV)

= ————dgco.
fG(R) dgoo

oo

Indeed, the endomorphisp,, of 7 is just /dim V* times the projection onto the
V*-isotypical space. In the case whénR) is not compact, a suitable measupg,
was constructed by Clozel and Delorrf, who also calculated its orbital integrals.
We have

dgy(ps,) = Tr(y|V) - Euler—Poincaré measure 6h(R).

This is zero, unless is semi-simple and elliptic. Also, since amy, with cohomology
has the same infinitesimal character1as which is regular, we have @, |n.) =0
unlessm, has a regular infinitesimal character.
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Since #>2, with these choices op, the test measure = [[ ¢, = f dg satisfies
all the conditions of the proposition. Hence

_ dg
(G, S, V)=Tr(p|L) =) / dg; - / O
7 GH@\Gy(A) GH(AN\G(A) 8y

where again the sum is taken over representatives for the elliptic, semi-simple conjugacy
classes inG(Q). Moreover, since the support af, is the union of compact open
subgroups for alp, the classy must be lie in a compact subgroup of eaGkQ,) to
contribute a non-vanishing orbital integral. Sinces also elliptic overR, it is contained
in a compact subgrould of G(A). But KNG (Q) is finite, soy is a torsion conjugacy
class. Finally, ify is not elliptic at some finite primg in S then we've seen that
dg,(¢,) is zero, and hence doesn’t contribute to the sum. Hence, the above sum is
over torsion classes which are also elliptic at the finite primeS.in

We now fix this choice of test measuge for the rest of the paper.

5. The stable trace formula

The problem in using the trace formula as just obtained to calcylaie S, W) is
that semi-simple conjugacy classgdn G(Q) are difficult to describe. For example,
when G = SLy, there are infinitely many conjugacy classes of order 4, all conjugate
over Q. Using the Euler—Poincaré test measygrg, Kottwitz was able to convert the
above expression into a sum ov@ableconjugacy classes in the quasi-split inner form
G’ of G over Q. (A group overQ is called quasi-split if it contains a Borel subgroup
defined overQ. Every groupG has a unique quasi-split inner form.) Recall that two
semi-simple elements off’(Q) are stably conjugate if and only if they are conjugate
in G’(Q) since G’ is simply connected.

We describe Kottwitz's formula below, and use it to computen the next section.
To carry out the stabilization, Kottwitz take&, to be the Tamagawa measure on the
adelic groupG,(A), so

/ dg, = 1(G,)
Gy(@\G,(A)

is, by definition, the Tamagawa number. We henceforth fix this choicégof For a
discussion of Tamagawa measure §&Je The trace formula then reads

1(G, 8, V) =Tr(pIL) =Y (G} 0y(p, dg,).

)
/

The sum is over torsion classef G(Q) which are elliptic inG(Q,) for all v € S.
Let T denote a set of representatives for the (finitely many) torsion stable conjugacy
classes inG’(Q). Fix an inner twistingyy : G’ — G over Q. The geometric side of
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the stable trace formula will be a sum over thgsén G(A) that, for somer € T,
are conjugate tay(r) in G(A). For each sucly we have the adélic centralizer, (A),
but in generalG, is not defined over. If y is conjugate to an element i6G(Q),
then G,(A) contains the discrete subgro@p,(Q) and so we have the usual notion of
Tamagawa measure oG, (A).

Even if G, is not defined overd, we can still define Tamagawa measutg, on
G,(A), using the inner twisting. Indeed, &g, be Tamagawa measure 6f(A), and
fix a product decompositionig; = ®(dg;),. For each place, G, is an inner twist of
G;U over Q,, so we may transfer the measue;), to a measurédg), on G, (Q,).
We then define

dgy =® (dg)y,)-

If visin G(Q), this agrees with usual Tamagawa measure, and we can detine.
In general, there is no Tamagawa number, but we can still define the adélic orbital
integral

_ dg
0y(¢p, dg)) = / fg 1“/g)d—.
G, (A)\G(A) 8y

We may also attach a sigrn(y) = +1 to the adelic class, by the formula
e(y) =[]eG,,).

where the local invariants(G,, ) = +1 are defined if16]. If y is in G(Q), e(y) = +1.

Proposition (Kottwitz).

1G, S, V)= e()0y(p. dgy),
T 7

where the first sum is over representatives t of the stable torsion classg<@), and
the second is over representativef the G(A)-conjugacy classes;(A) which are
conjugate toy(¢r) in G(A).

We sketch the proof. As usual, there are an infinite number of the inner sum,
but only finitely many have a non-zero orbital integral.

For eacht, Kottwitz defines a finite abelian grouft, and fory € G(A) conju-
gate toy(¢r) in G(A) he defines an invariant obs in the dual of%. This invariant
gives an obstruction to the existence of an elemenGof)) in the G(A)-conjugacy
class ofy. He then[17, 9.6.5] writes the geometric side of the trace formula as a
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triple sum

D3> (obsy). K)e() 0, (0. dgy),

T 7y K

wherek runs overi.

Actually, Kottwitz only states this triple sum formula for the contributions of the
non-central classegs € G(Q). This restriction was needed at the time since he used
Weil's conjecture on Tamagawa numbers 6 and he was only assuming Weil's
conjecture for groups of smaller dimension th@nHe later used this formula to prove
Weil conjecture[18, Theorem 3] and so his original derivation gives the triple sum
expansion of the entire geometric side.

We switch the inner sums, and exploit the fact thatis the Euler—Poincaré function
at a finite prime inS

Then Kottwitz showq18, p. 641]that for x # 1:

Y (0bsy), K)e() 0y (e, dgy) = 0.

)
/

Hence we obtain the simple stable formula in the proposition.

6. A comparison of measures

The stable formula for/(G, S, V) is still not readily computable, as we have only
evaluated thdocal orbital measures for our test measupe while the trace formula
involves the global term0, (¢, dg,). To convertO,(¢,dg,) into a product of local
integrals, we need to express Tamagawa meaggyeon G,(A) as a product of local
measures.

To do this, we use the results {ff2]. Again let G’ be the quasi-split inner form of
G over Q with fixed inner twistingyy over Q@ and letr € G'(Q) be a torsion element
(in particular, an element appearing in the outer sum of the stable trace formula). Let
y = (y,) € G(A) be an element conjugate t(r) in G(A) (in particular, an element
appearing in the inner sum of the stable trace formula).

Forv e §, we Ietduvv be Euler—Poincaré measure 63 (Q,). For p not in S the
group G, is the quasi-split inner form OGVP over@,, and we Ietduyp be the measure

on va(@p) transferred from the Haar measure 6f(Q,,) which gives the connected
component of a certain special compact subgroup volume 1. This measﬂ?@p(ﬂa,,)

is denotedL (M} (1)) - |wGW,p| in [12, Section 4] When va is unramified atp and
p Y

G, isa model overZ, with good reduction, we hav¢’gyp(zp)duyp = 1. Hence we

can form the product measurg:, = ® dp, on Gy(A).
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The main global result of12] then gives the ratio of measures 6h(A):

du,/dg, = Ls(M)/ [ [e@e@y).

vesS

Here Lg(M;) is the value of the ArtinL-series of the motive of5, at s = 0, which

only depends on the stable clagsr) of 7, and the sigre(y,) = e(G, ) = £1 is the

local invariant defined by Kottwit{16]. The invariantc(y,) is defined as follows.
For finite primesp in S

c(y,) =#H(Q,. G,).
This depends only on the stable classyoft,) over @,, and gives the number of
classesy, in the stable class (aHl(@,,, G)=1).

At the real place, we have

#HY(R, T)
#keHY(R, T) - HYR, G)))’

C(yoo) =

whereT C G, C G is a maximal anisotropic torus, soHH(R, T) = 2¢, with ¢ =
dimT.
We now replace the measuig/dg, on G,(A)\G(A) by the equivalent term

dg/du, - Ls(My)/ [ [ e@)e(,).

ves

This allows us to write the adélic orbital integral as a product of local integrals

e O0y(9.dgy) = Ls(M) - [ ] 0y, (y. dp, ) /() - [T 05, (0,0 dity D))
ves PES

For a fixedt = (z,), each adélic clasg in the stable class ofy(¢) is the product
of local classeg, in the stable classes of thi(r,). We define the local stable orbital
integrals by

SO(g,) = ) e() 0y, (9, diy),

Tv

and forv € S the modified local stable orbital integrals by

SO:(QDU) = Zc(yv)_lo“/v((pv’ d'uyv)’

Yv
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where the sums are taken over the finitely many clagses G(Q,) which are in the
stable class of)(z,) in G(Q,). If v ¢ S we let SG(¢,) = SO (¢,). Then summing
over the classes in the stable class of/(r) we see

D e 0y(p,dgy) = Ls(M) [ [ SO (o,),

Y

and so

1G.S. V)= Ls(My) - [[ SO (o,).
T v

We now turn to the evaluation of the stable local terms' Skt v = p be a finite
prime in S If y, is elliptic then we haveO%((pv,duyv) = 1. If not, Lg(M;) = 0.
The constant(y,) = ¢(#,) is the number of local classes in the stable clasg @f).
Hence either the contribution of the stable class killed off by the Lg(M;) term, or

Whenv = oo andy, is elliptic, we haveoyv((pv,d,u,y,v) = Tr(y,|V). This depends
only on the stable clasg(r,) of y,. Using the formula forc(y,) above, we get

SO (g,) = Tr("V) Y ke HYNR, T) — HY(R, Gy,)

Tv

= Tr(ztlv) ke HY(R, T) — HY(R, G)).

The latter kernel has cardinalityy : W€). Hence we have shown

1(G, S, V) =(W: W°>Z Ls(M)Tr(t|V) - [ [ SO (o,).

PES

Finally, we consider the stable orbital integrals at the primest in S. For each class
t, almost all of these terms are equal to 1. For example,dbes not divide the order
of t, then there is a single clags, in the stable class oveid, which meetsG(Z),),
and for this class we have seen tf(a}p((pp,d,uyp) = 1. SinceG,  is unramified in

this casee(y,) =1 and hence SQp,) = 1. We are left with the formula

1(G, S, V)= (W: W°>226LS<M,>Tr(r|V) [ sOw,. (1)

p |orderr)
PES

If, for example, the torsion primes fd& are all contained irS, we have a complete
formula (as the product is empty). In all cases, the primary contribution of the stable
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torsion class to y is
o 1
(W :Ww") - ?LS(M,)Tr(tW),

as claimed earlier.
The remaining calculation of SQp,) is a central local problem. For eagh, in
G(Q,) which is stably conjugate t¢/(z,), we must write

Clrp) NG(Zp) = HKN\G(Zp).

Then,

1
i KT

7p

Unfortunately, even the first step of decomposing the integral elemen&(@f,)
into integral conjugacy classes is not readily computable. Our approach to computing
the stable orbital integrals $®,) in the next section of this paper is rather round-
about. We will see in the next section that the Euler characterigtit; S, V) can be
computed directly for certai and smallS, V. We may use these values in Eq. (1) to
get a system of equations in the unknowns,&Q). We are able to compute enough
values ofy(G, S, V) to solve for all of the remaining SQp,) whenG is SLp, Sp,
or Gz. We give these values in Section 7 and use them to compute more values of
(G, S, V) via (1).

Before going on, we note that from expressi@), (it follows that SQ is a rational
number, which is positive whenevers regular. In the regular case(y,,) = 1 andduyp

has volume 1 on the connected compongHth) of the Néron model ofl = va-
Hence

SQ(g,) =Y > (T%Z)) : Ky).

Vp 1

These “indices” can have denominat@igZ,) :'_I'O(Z,,)). However, in all cases where
we have been able to determine $@ turns out to be an integer (which can be
negative for non-regulat).

7. Algebraic modular forms

For this section we drop the requirement tabe simply connected, but insist that
G(R) be compact. This guarantees thatQ) is discrete and co-compact iG(A).
For a given representatiovi of G over @ and an open compact subgrolpof G(Q)
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(where Q = Z ® Q is the ring of finite adéles) we define the space of (algebraic)
modular forms onG of weightV and levelK to be the rational vector spa¢#3]:

Mg(V,K) = {F:G(A)/(GR). x K) —> V :
F(yg) = 7F(g), for all y e G(Q)},

where G(R).. is the connected component of the identityGi{R).

If Kis a productk = ]'[p K p, with eachK, open and compact iw(Q),), then the
Hecke algebras{(G(Q,), K,) each act onM(V, K), and commute with each other
in EndM(V, K)). We will fix a finite setS of places of@Q containing those for which
G is ramified, and an integral modél for G over the ringZg with good reduction at
all pnotinS Forpnotin§ we letK, = G(Z,). For primesp in S we letK, be an
lwahori subgroup ofG(Q,), which fixes a maximal facet in the Bruhat-Tits building
pointwise.

The Steinberg representation 6fQ,) has a vector fixed by the lwahori subgroup,
So gives rise to a one-dimensional representation of the Hecke algglorel) ), K ).
We call a character of this algebspecialif it is the twist of the Steinberg character
by a character of the fundamental gro@pof G. We may twist by such characters as
Q= G(Q,)/G(Q)p)s, where G(Q,); D K, is the normal subgroup of elements of
G(Q,) that preserve the types of vertices in the building. Thus, special representations
are those representations G{Q,,) with an lwahori-fixed vector on which the standard
generators of the simply-connected Hecke algebra acthyWe denote by (V, K)St
the subspace a¥/(V, K) on which the Hecke algebra¢(G(Q,), K,) act by special
characters for alp in S

Proposition (Padowitz[21]). Assume that G is absolutely simple and simply connected
and letry; = Z[,Es rank G(Qp). Let V be an absolutely irreducible representation of G
over @ with trivial central character and definek =[] K, as above.

Then

2(G, S, V) = (=1)sdim Mg(V*, K)S,

except in the case when V is the trivial representation and 0. In the exceptional
case

2(G, S, V) =1+ (=1)sdim Mg(V*, K)St.

Proof. The dimension ofMg(V*, K)St is the number of irreducible automorphic
representationsr (counted with their multiplicities in the discrete spectrum) which
satisfy:

o Tl = V*,
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e 7, is the Steinberg representation fpre S,
e 7, has a vector fixed bys(Z,) for p ¢ S.

Each such representation contributes a space of dimensiphin H"S(Gs(A), L ®
V) wherem(n) is the multiplicity of = occurring inL. Moreover, by results of Cassel-
man[7], these are thenly unitary representations contributing to cohomology (except
whenV is trivial andrs > 0, in which caser = C contribute a line taH%(Gs(A), L)).
This completes the proof.(]

Since we will actually compute the spacéfg(V, K)St for groups G of adjoint
type, we need a lemma to compare spaces for isogenous groupS. theta reductive
group (such as GlLor GSp,,) with the following property: the derived subgrouiy
is simply connected, and the cen@rof G is a split torus. PuG = G/C, which is a
group of adjoint type, and lef: Go — G be the corresponding isogeny.

Let V be an irreducible representation 6f, which we may also view as a repre-
sentation ofGo with trivial central character. LeKy be an open compact subgroup
of Go(Q), defined as above, and & be such a subgroup o (Q) which contains
f(Ko).

The map f: Go — G then induces a linear map @d-vector spaced/(V, K) —>
Mg, (V, Ko) which is equivariant for the action of the Hecke algebras. The comparison
lemma we need is the following easily proved fact.

Lemma. The induced map
MgV, K)S'— Mgy (V, Ko)™*

is an isomorphism

The proposition and the lemma together allow us to use the calculations of
Mg (V, K)Stin [20] to get the values of

- 1 Gosy
X_(W:WC)/{(57 )

8. Examples

We now give some examples. By interpretigg A)/K geometrically, and making
heavy use of a computer, the spades (V, K) and Mg (V, K)St are worked out for
certain G, V, K in [20]. In particular the calculations there work with the (unique)
form of G2 which is compact oveR and with the forms of PGSpwhich are ramified
at {2, oo} and at{3, oo}.

The calculation of theM (V, K) is computationally intensive and so has only been
carried out for small weights and levels. We now tabulate the valueg® afe derive
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from these direct calculations. The corresponding values whés the split form of
SL, are well known.

Directly computed values of y*(G, S, V) for G = Sp,

V=Y,
A= (0,0) 0,1)

S dmV = 1 5
{00, 2} 1 0
{00, 2,3} 1 -1
(00, 2, 5) 1

(00,2, 7) —4

{00, 2,11} ~33

{00, 3, 5) -8

Directly computed values of y*(G, S, V) for G = G»

V=YV
A= (0,00 (1,00 (0,1) (2,00 (1,2

S dmv= 1 7 14 27 64
{00, 2} 1 0 0O O 1
{00, 3} 1 0 0o 2
{00, 5} 2 7 11 31
{00, 7} 13 54 120
{00, 11} 135
{00, 13} 386
{00, 2,3} 2
{00,2,7} 253

For the three split, simply connected groups,S8p,, and G over @, we will now
tabulate the rational stable torsion classes. Since our groups are simply connected, these
are just the stable torsion classes that meet the group of rational points. We group the
classest and zt, for z in the center, as these have the same contribution to the stable
trace formula fory. There are 3 groups for SL 12 groups for Sp and 14 rational
stable torsion classes fag,. Similarly, one can show there are 102 rational stable
torsion classes fof,, and 785 rational stable torsion classes .

The stable class of an elemarih SLy, Sp, or G2 is determined by its characteristic
polynomial on the fundamental representation of dimension 2, 4, or 7 respectively.
Sincet is torsion, this is a product of cyclotomic polynomiafs,. We tabulate this
polynomial, as well as the value(M,).

Using Eq. @), the data in the two preceding tables, and a separate calculation of
2(Sp, {p}, V) for p prime anaV trivial, we are able to solve for the values of 20,).
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Recall that we know that all but finitely many of these values are equal to 1. We

include in our tables only those values of $0,) which arenot equal to 1. With
these values computed, we are then able to tabulate the integers

*—; G, S,V
X_(W:WC)X(” )

for many pairs(S, V) beyond those values obtained directly from looking at modular
forms. The value of¢* depends only on the inner class @fover Q.

Torsion classes inSLy

order¢ char polyz L(M;) SO
1,2 SR ~1

3,6 b3 6 3

4 b4 3

Torsion Classes inSpy

order¢ char polyz L(M;) SO

1.2 1. 93 —im

2 103 14 SO/ (pp) =7
3.6 Pids dids 3%

3,6 ¢5. 0% ~3%

1 ¢4 5

44 $i0h 0307 -4

6.6 Pide P3bs 3%

5,10 ¢s, P10 g

6 P3be 3 SO (pp) =4
8 bsg 3

12 12 s

12,12 $3P4, PePa 3
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Torsion Classes inG»

order char polyz L(M,;) SO
1 ¢1 507
2 ¢33 @ SO(p) =31
3 $103 &
3 P33 —%
4 P1505 —%
4 $i03 ~ 3
6 P13 - % SO (gy) = -2
6 102 ~%
6 $1050306 3 SO/ (p,) = 4
7 P197 3
8 $195¢g 3
8 19408 3
12 $105012 g
12 $103b1 5 SQ/(py) = 4

Values of y*(G, S, V) for G = SL,, using the trace formula

V=YV,

A= 0 2 4 6 8 10
S dmV = 1 3 5 7 9 11
{o0, 2} 1 0 0 1 1 0
{o0, 3} 1 0 1 1 2 1
{0, 5} 1 1 1 3 3 3
{0, 7} 1 1 3 3 5 5
{oc0, 11} 2 2 4 6 8 8
{o0, 13} 1 3 5 7 9 11
{o0, 2, 3} 1 -1 -1 -1 -1 -3
{o0, 2, 5} 1 -1 -3 -1 -3 -5
{c0, 3, 5} 0 -2 -4 -4 -6 -8
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Values of y*(G, S, V) for G = Sps, using the trace formula

V=YV

J= (0,00 (0,1) (200 (0,2 (0,3) (21) (40 (04 (220 (6,0 (0,5)
N dmv= 1 5 10 14 30 35 35 55 81 84 91
{00, 2} 1 0 0 0 0 0 0 0 0 0 0
{00, 3) 1 0 0 0 -1 -1 0 -1 -1 )
{00, 5} 1 -1 -1 -1 -7 -6 -5 -7 -12  -12 =20
{00, 7} i1 -5 -6 -8 26 -27 -23 -3 55 58 73
{00, 11} -1 -25 -42 -56 -150 -167 -155 -235 -365 -—378 —445
{00, 13} -7 -51 -88 -118 -292 329 -315 -477 -—725 -762 —869
{00, 17} —22 -144 -264 -362 848 -968 -944 -1456 -2182 -2274 —2550
{00, 19} 37 225 —420 -578 —1326 -1521 -1485 -2295 -3439 -3584 -3979
{00, 2, 3} I ) -4 -5 -5 -7 -9 -12 -1
{00, 2,5} -1 -7 -14 -18 38 43 43 -65 -97 -104 -109
{00,2, 7} -4 -26 -50 -70 -150 -174 -176 -274 -402 —420 -456
{00, 2,11} —-33 -165 -328 -452 —974 -1135 -1135 -1775 -2615 -2722 —2945
{00, 2,13} —63 -321 -640 -896 -1924 -2243 -2241 -3519 -5185 -5380 -5833
{00, 3,5} -8 -48 -—90 -122 -278 -318 -312 -480 -718 -752 —830
{00, 3,7} -36 -192 -368 -508 -1128 -1304 -1296 -2016 -2980 -3108 -3412

Values of y*(G, S, V) for G = G2, using the trace formula

V=yv,

J= (0,00 (1,00 (01) (20 (@11 (B0 (02 (40 (1) (03)
N dmv =1 7 14 27 64 77 77 182 189 273
{c0, 2) 1 0 0 0 1 0 0 1 1 0
{00, 3} 1 0 0 2 3 3 4 9 7 9
{00, 5) 2 7 11 31 71 76 77 198 194 261
(o0, 7} 13 54 120 231 523 642 670 1520 1570 2302
(o0, 11} 135 938 1826 3613 8569 10212 10200 24308 25150 36140
(o0, 13} 386 2552 5188 9968 23500 28386 28532 67020 69594 100784
{00, 17} 1871 13176 26160 50753 120375 144472 144384 342056 354928 511984
(o0, 19} 3733 25716 51702 99539 235579 283818 284226 670506 696348 1006692
{00, 2, 3} 2 8 17 33 79 95 96 225 234 340
{00, 2, 5} 35 218 460 863 2029 2476 2498 5810 6050 8814
{00, 2,7} 253 1822 3584 6977 16593 19864 19806 47080 48844 70350
{00, 2,11} 4157 28832 57922 111437 263927 317948 318206 750992 780080 1127636
{0, 3,5} 505 3494 6998 13509 31991 38492 38530 91012 94488 136506
{00, 3,7} 4039 28240 56456 108961 258247 310640 310680 734392 762552 1101360

For groups of higher rank, one can enumerate the classesl determine the mo-
tives M, of their centralizers. The local stable orbital integrals,&@) at primes
p dividing the order oft are difficult to calculate. However, a good estimate for
y* comes from the central terms in the trace formula, which together contribute the
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rational number
1 .
#Z - % Ls(Mg)dim V.

For G = Fy, this estimate suggests that > 10° wheneverS # {oc, 2}, and for
G = Eg, this estimate suggests that > 10°° for all pairs (S, V).

9. Discrete series and a conjecture

How can one account for the tert : W¢), which is the only non-stable factor in
the formula fory(G, S, V):

212G, S, V)y=(W:W%.yG,S,V)?

On one hand(W : W°®) is the Euler characteristic of the trivial representationof
Ggs(A), arising from the cohomology of the trivial representation@fR). Indeed, if
K is a maximal compact subgroup 6f(R) and p = Lie(G)/Lie(K), then:

H*(G(R), C) = (Ap)K.

On the other hand(W : W€ is the number of discrete series representations
of G(R) with a fixed central and infinitesimal character. This leads us to make the
following optimistic prediction.
Conjecture. Let = be an irreducible representation @ (A) which occurs inL = L3,
and has non-zer@; s(A)-cohomologyH* (G s(A), n® V) when tensored with the finite-
dimensional representation V @f(R).

Then either

1. = is the trivial representation oG (A) and V = C, or

2. n IS a discrete series representation 6f(R) with trivial central character and
the same infinitesimal character as*, and for all finite placesv € S, =, is the
Steinberg representation.

Note that this conjecture is true when the highest weight @ regular, since then
the only unitary representations that have cohomology when tensoredvwatie the
discrete series representations.

Even more should be true. L&’ be any inner form of G, with good reduction
outside ofS Let 7 = 1o ® Q)5 St,® 7’ be the local factorization of a representation
of type 2) inL, with =% unramified. Ifn is any discrete series foG'(R) with the
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same infinitesimal and central charactermas, then we would expect that:

dim HOTT)G/(A) (TE:X) ® ®St:) ® TCS, L/> =1

ves

If this is true, we can use the fact that discrete series representatiagnd¥®fand the
Steinberg representation ¢f(Q,) contribute cohomology of dimension 1 in a single
degree, to count theaumber of distinct automorphic representations of a fixed local

type.

Conjecture. Let dy, be a fixed discrete series far(R), with infinitesimal character
equal to the infinitesimal character df *. Then the number of distinct irreducible
representationst = ®, m, of G(A) with local components

Moo =~ doo,
T, >~ Sty for all v € S,

n%‘Z“ #0 forall p¢s

which appear in the discrete spectrum L of G is equal to the absolute value of the
integer x*(G, S, V) (except in the case whe¥i = C and the groupGs(A) is non-
compact when this number is the absolute value of the integ&G, S, V) — 1).

For example, wherG = G2, S = {00, 5}, andV = C, we saw that*(G, S, V) = 2.
Hence, for any discrete series representatignof G2(R) with infinitesimal character
p, there should be aniqueautomorphic irreducible representatianof the form

n:doo®8t5®®n,,
P#S

with 7, unramified for allp # 5. For the anisotropic fornG’ of Gy, this is true by
calculations of Lansky and Pollack (who also determing@ndrs). The representation

7' of G'(A) lifts to PGSg(A) via an exceptional theta correspondence, and yields a
holomorphic Siegel modular forr of weight 4, whose level is the lwahori subgroup
at 5 in PGSp(Z) [14, Proposition 5.8]
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