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Abstract

It is conjectured by Erdds, Graham and Spencer that if 1 < a; <ap < --- < ag with Z?:] 1/a; <
n — 1/30, then this sum can be decomposed into n parts so that all partial sums are < 1. This is not
true for Zle 1/a; =n — 1/30 as shown by a1 =2, ap = a3 = 3,a4 =---=as,—3=>5.1In 1997, Sandor
proved that Erdés—Graham-Spencer conjecture is true for Y°7_, 1/a; <n — 1/2. In this paper, we reduce
Erdgs—Graham—Spencer conjecture to finite calculations and prove that Erd6s—Graham—Spencer conjecture
is true for lez 1 I/a; <n —1/3. Furthermore, it is proved that Erd6s-Graham—Spencer conjecture is true
if Zle 1/a; <n —1/(logn + loglogn — 2) and no partial sum (certainly not a single term) is the inverse
of an positive integer.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Erdds [2, p. 41] asked the following question: is it true that if a;’s are positive integers with
l<ay<ay<---<azand Zle 1/a; < 2, then there exist &; = 0 or 1 such that

Z?<l, i:l_gi<l?
X i [
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Séandor [3] gave a simple construction to show that the answer is negative: let {a;} =
{divisors of 120 with the exception of 1 and 120}. Furthermore, Sadndor [3] proved the following
nice results:

Theorem A. For every n > 2 there exist integers 1 < ay <a <--- <as suchthaty ;_,1/a; <n
and this sum cannot be split into n parts so that all partial sums are < 1.

Theorem B. Letn > 2. If 1 <a) <ap <--- < a; with Zle 1/a; <n(l — el_”), then this sum
can be decomposed into n parts so that all partial sums are < 1.

If we allow repetition of integers, then it is conjectured by Erdds, Graham and Spencer
[2,p.41] thatif 1 <a) <ax <--- < ag with Z‘;:l 1/a; <n — 1/30, then this sum can be de-
composed into n parts so that all partial sums are < 1. This is not true for Y ;_, 1/a; =n —1/30

as shownby a; =2,a> =a3 =3, a4 =--- = asy—3 = 5. Sdndor [3] proved the following weaker
assertion.
Theorem C. Letn > 2. If 1 <a; <ay <--- < ag with Zl_l 1/a; < n — 1/2, then this sum can

be decomposed into n parts so that all partlal sums are < 1.

Séndor [3] noted that n — 1 /2 = n — 0.5 can be improved ton —3/7 =n —0.428 . .. by similar
arguments but much longer calculation (no proof is included in [3]). In this paper, it is improved
the number to n — 1/3 =n — 0.333.... In order to prove or disprove Erd6s—Graham—Spencer
conjecture, it is natural to consider only those sequences for which each term is more than 1
and no partial sum (certainly not a single term, the same meaning for late) is the inverse of a
positive integer, otherwise, we may replace the partial sum by the inverse of the integer. We call
asequence 1 < ay <ap < --- < ag primitive if there is no partial sum of > ;_, 1/a; is the inverse
of a positive integer. It is clear that if a sequence 1 < a; < ap < --- < a; is primitive, then each
integer a repeats at most p(a) — 1 times, where p(a) is the least prime divisor of a. Hence, the
following Theorem 1 reduces Erd6s—Graham—Spencer conjecture to finite calculations. In this
paper, the following main results are proved.

Theorem 1. If for 1 < n < €28 and any primitive sequence ay < ar < --- < ag with a; > 1 and
as < 30n, Erdds—Graham—Spencer conjecture is true, then Erdds—Graham—Spencer conjecture
is true in general.

Theorem 2. There exists an effective constant ng such thatifn >ngand 1 <a; <ay <--- < ds
is primitive with

1 1
> Llan- ,
— q; logn +loglogn — 2

then the sum Y ;_, 1/a; can be decomposed into n parts with each partial sum < 1.

Theorem 3. Let n be a positive integer. If 1 < aj; <ay < --- < as with 2171 1/a; <n—1/3
then this sum can be decomposed into n parts with each partzal sum < 1.
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Remark. If we require each partial sum < 1, then the problem becomes an easy one. It is clear
that for a; =ar =--- = ap+1 = 2 the sum Zle 1/a; (= (n + 1)/2) cannot be decomposed into
n parts with each partial sum < 1. On the other hand, we can prove thatif 1 <aj; <ap <--- < ay
with >}, 1/a; < (n + 1)/2, then this sum can be decomposed into n parts with each partial
sum < 1. n =1 is clear. We assume that n > 2. First we take n boxes A1, A, ..., A,. Since
Z‘;:l 1/a; < (n + 1)/2, there are at most n index i with @; = 2. Then we put these a; (= 2)
into these boxes. Each box contains at most one such a;. Then put each of remaining a; into
one of n boxes A1, As, ..., A, such that the partial sum corresponding to each A; is < 1. Write
T (A;) for the partial sum corresponding to A;. If some a; fails to be put into any of n boxes
A1, Az, ..., Ay, thena; > 3 and

1
T(Az1l——, i=12,...,n

aj

Hence

1 " ‘1 1
n(l——_><ZT(A) 3y — ”+
4j i=1 i= 1al

Thus 3 <a; < 2n)/(n — 1) Hence n=2 and aj = 3. Since Zl 1 1/a; < 3/2, we have
> a:=23 1/ai is a part of 4 + + + or 3 ~|— + + . Thus we can decompose ), _, 3 1/a;
into 2 parts with each part1a1 sum < 1 This contradlcts the definition of a; = 3. The above
assertion is proved.

2. Notations

In this paper, we consider finite sets of positive integers with repetitions. For example,
{3, 3,4} # {3, 4}. We call such a set A multiset. For a multiset A and a positive real number x,
let m 4 (a) denote the multiplicity of a in A, m(A) denote the cardinality of A and let

T(A)=Zé, S(A)=Y a, A(x)={a:a€A, a<x).

acA acA

For example, if A = {2,3,3,4,5,5,5} and B = {4,5,5}, then m4(1) =0, ma(2) =
ma(3)=2,ma(4)=1,ms(5) =3, m(A) =7 and

1 2 1 3
TA)=2+3+7+5  SA)=2+43+3+445+5+5,

A(5)=1{2,3,3,4}, A\ B={2,3,3,5}.

With these terms, a multiset A is primitive if there is no any multisubset A of A withm (A1) > 2
and T'(A1)~! being an integer. We say that A has a n-quasiunit-partition if A can be decomposed
into n multisubsets Ay, Az, ..., A, with T(A;) <1 (I <i<n)andmy (a) +---+mgy,(a) =
m 4 (a) for all integers a.
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3. Proofs

Lemma 1. Let A be a finite multiset of positive integers. Then there exists an effective con-
structible finite primitive multiset A’ and a nonnegative integer k such that T (A) =k + T (A").

Proof. If there exists a multisubset B of A such that m(B) > 2 and T(B)~! is an integer b, then
T(A):T((A\B)U{b}), S(A)>S((A\B)U{b}).
Let A = (A \ B) U {b}. We continue this procedure and obtain A1, A», .... Noting that S(A) >
S(A1) > --- and S(A;) are positive integers, the procedure must be terminated. This completes
the proof of Lemma 1. O
From Lemma 1 we immediately obtain the following Lemma 2.

Lemma 2. Let n be a positive real number and n a positive integer. If for any positive integer
k < n, any finite primitive multiset A with T (A) < k — n (respectively T(A) <k —n) has a
k-quasiunit-partition, then any finite multiset A with T (A) < n — n (respectively T(A) <n —n)
has a n-quasiunit-partition.

The idea of Lemma 3 is due to Sandor [3]. But Sandor [3] did not formulate a lemma.

Lemma 3. Let 1 be a positive real number and let A be a multiset with T (A) =n — n. Then A
has a n-quasiunit-partition if and only if A(%n) has a n-quasiunit-partition.

Proof. It is clear that if A has a n-quasiunit-partition, then A(%n) has a n-quasiunit-partition.

Now we assume that A(%n) has a n-quasiunit-partition:

1
A<—n>=31UBzU--~UBn,
n

n
TB)<1, i=12,...,n, ZmBi (a) =my(a) for all integers a.

i=1

We add eacha € A\ A(%n) to one of By, By, ..., B, to keep all T(B;) < 1. Suppose we stuck
ath e A\A(%n). Then

Thus
1 n
n(l - E) < ;T(Bi) <T(A)=n—n1.

Hence b < %n a contradiction with b ¢ A(%n). This completes the proof of Lemma 3. O
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Lemma 4. Let n > 2 and L(n) be a real number with L(n) > 1 and

L(n) 1.2762L(n) 24/L(n) <1

1
lognL(m) | (ognLm)? | v M

If A is a primitive multiset with

1
Tr(Aysn———,
L(n)
then A has a n-quasiunit-partition.
Proof. By Lemma 3 and [3, Theorem 3] (that is, Theorem C), we need only to prove that
T(A(nL(n))) <n — 5. Since A is primitive, we have 1 ¢ A and ma(a) < p(a) — 1. Hence,
if a is composite, then ma(a) < p(a) — 1 < /a. Thus (p denotes a prime)

nL(n) nL(n)

-1
T(A(nL(n))) < Z < Z (a)
a=2
S nL(n)) —
2< p<nL(n) p N/— = ﬁ
nL(n) 1.2762
= log(nL(n)) (1 * log(nL(n))) +2ynL(n) —=2<n—2.

Here we employ a result of prime distribution of Dusart [1]:

X 1.2762
mT(x) < 1+ ;o x> 1.
o logx

This completes the proof of Lemma 4. O
Lemma 5. Let n be a positive real number with 0 < n < 1. Suppose that any finite multiset B
with T(B) <n — 1 —n has a (n — 1)-quasiunit-partition. Let A be a multiset with T (A) <
n—n, At CAwith T(A1)=1-36, 0< 6 <n. If § =0 or if there exists a € A\ Ay with
n—1)/(n—358) <a<1/s, then A has a n-quasiunit-partition.
Proof. By T(A;) =1—36 and T(A) <n — n, we have

T(ANAD<n—1-—(—9). (2)

If 6 #£ 0 and there existsa € A\ A} with (n — 1)/(n — 8) < a < 1/6, then

(n(3=)) 1
T\ (A\Ayp) <sn—1-m—-8—-—<n—-1-n.
n—3=4 a
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n—

By the assumption we have that (A \ Al)(n_—é) has a (n — 1)-quasiunit-partition. By (2) and
Lemma 3, A\ A; has a (n — 1)-quasiunit-partition. Therefore, A has a n-quasiunit-partition.
This completes the proof of Lemma 5. O

Proof of Theorem 1. Take L(n) = 30. By calculation for n > ¢?® we have (1). Hence, by
Lemma 4, if n > 28 and A is a finite primitive multiset with

1
T(A)sn— .,
(A)<n 30

then A has a n-quasiunit-partition. The assumption in Theorem 1 and Lemma 3 imply that if
n < e?® and A is a finite primitive multiset with

1
T(A - —,
(A)<n—

then A has a n-quasiunit-partition. Now Theorem 1 follows from Lemma 2. O

Proof of Theorem 2. Take L(n) =logn + loglogn — 2. Then

L(n) 1.2762L(n)  2JL(n)
log(nL(n))  (log(nL(n)))? Jn

logn +loglogn — 2 1.2762 2./logn +1loglogn
< g glog i n g glog

logn + loglogn logn +loglogn N
. 0.7238 n 2/logn +loglogn
logn + loglogn Jn

<1
for all sufficiently large n. Now Theorem 2 follows from Lemma 4. O

Proof of Theorem 3. By Lemma 2 we may assume that A is primitive. Take L(n) = 3. By
calculation for n > 100 we have (1). By Lemma 4 we may further assume that n < 100. By
Lemma 3 we need only to prove that A(3n) has a n-quasiunit-partition. Since A is primitive and
% + % = %, we have m4(3) =0orm4(6) = 0. For 12 < n <99, by directly calculation, we have

3n—1
pa—1 1 1

By [3, Theorem 3], for 12 < n < 99, we have that A(3n) has a n-quasiunit-partition.
Now we prove Theorem 3 for 2 < n < 11. First we consider the case n = 2. Let A be a
primitive multiset with 7 (A) <2 — % Then T (A(6)) is the partial sum of

1 2 1 4

2+3+4+5'
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Itis clear thatif m4(2) = 0 or m4(3) =0, then T (A(6)) has a 2-quasiunit-partition. If 2 € A and

3 € A, then
AU A W B B A
Y A CEY A

So T (A(6)) has a 2-quasiunit-partition.
In the following, we assume that 3 <n < 11. Let

R TAVE VAR G L (1Y L1y 11y 2
'=373\6) " 4\12) " 16 27575 10) "5\15) "5\20) " 11°

Y B O ) [T
277 0 7\14) 7\21) 8 9 9\18 11 13 15
16 1 18 1 22 1
=t T Tn BTnty

1 4 1 28 1 30 1
Sg = 5 2— 2— _+28 SlO:E‘F%, Sllzﬁ‘Fﬁ,

PR l(i TR O L B

2 4\12 6 37277 8 14 21
S’_l l 1<L>+ S/Zl—i-i—i-i
4729 18 T2 1315

Sézl-i-l-f-i S§:1+§+i, S§:1+1—0.

217 21 219 22 223

In the above constructions, 3( ) denotes that we can only choose one of 3 1 and 1 . The others
a(b) have the similar meanings. The reasons are that A is primitive and

tTrr 1+ 1r 1 1 2 1 1 1 2 1 1 1 1
3672 1Ty sty sTTy 5T w
31 1 2 1 1 1 1 1
TSy 3Tty vt mTe

For every possible, each of S; and S’ does not exceed 1. For the convenience of reader, we give
more explanations here. For example, we consider the integer 15. Since A is primitive, we have

ma(15) < 2. If ma(15) < 1, then we put 1/15 in Ss and 1 (15)_ in S. If ma(15) =2, then
by

2 1 1

57573
we know that m 4 (5) = 0. Then we put 1/15 in S5 and %(%) = % in S;.

If n=9,10, 11, then Sy, S2, ..., S, imply a n-quasiunit-partition of A(3n). To see this, we
explain why S1, S2, ..., S11 imply a 11-quasiunit-partition of A(33). The others are similar. Let

1
A; = {a: — appears in S,-}.
a
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For a € A(33), we have 2 < a < 32. Since % appears in S, S2, ..., S11 exactly p(a) — 1 times
and m4(a) < p(a) — 1, where p(a) is the least prime factor of a, we have

AB3)) CAUAU---UA/;.
Since
T(ANA)LSi<1, i=1,2,...,11,

we have that S, 5>, ..., S11 imply a 11-quasiunit-partition of A(33).

If3<n<8and my(2) =0, then S1, 52, ..., S, imply a n-quasiunit-partition of A(3n). If
3<n<8and my(3) =0, then S{, S, ..., S, imply a n-quasiunit-partition of A(3n). If 3 <n <
8 and m4(7) < 1, then Sy, S, Sé, S4, ..., S, imply a n-quasiunit-partition of A(3n). Hence, for
3 < n < 8, we may assume that

ma(2) = 1, ma(3) = 1, ma(7) 2 2.

Similarly, by using S}, S:, S¢, S5, Sg, we may assume that m(11) > 3, for 4 <n < 8;
ma(13) > 6, for 5<n <8 ma(17) =2 8, for 6 < n <8, ma(19) > 9, for 7 < n < §;
ma(23) > 11, forn = 8.

Now we apply Lemma 5 to complete the proof.

For3<n<5,letn=13, A1 ={2,3,7}and § = 3.

For6 <n<8letn=13, A =1{2,3,13,13} and § = .

Then

s

n—1

n—

1
<3n—2<3n—1<g.

By Lemma 5, if Theorem 3 is true for n — 1 and A \ A contains 3n — 1 or 3n — 2, then A has a
n-quasiunit-partition. In fact, by m4(7) > 2 we have 7 € A\ A forn = 3. Similarly, 11 € A\ A;
forn=4;13e€ A\ A forn=5;17€¢ A\ A forn=6;19€ A\ A forn="7;23 € A\ A for
n = 8. This completes the proof of Theorem 3. O
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