
Journal of Number Theory 119 (2006) 307–314

www.elsevier.com/locate/jnt

On a conjecture of Erdős, Graham and Spencer ✩
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Abstract

It is conjectured by Erdős, Graham and Spencer that if 1 � a1 � a2 � · · · � as with
∑s

i=1 1/ai <

n − 1/30, then this sum can be decomposed into n parts so that all partial sums are � 1. This is not
true for

∑s
i=1 1/ai = n − 1/30 as shown by a1 = 2, a2 = a3 = 3, a4 = · · · = a5n−3 = 5. In 1997, Sándor

proved that Erdős–Graham–Spencer conjecture is true for
∑s

i=1 1/ai � n − 1/2. In this paper, we reduce
Erdős–Graham–Spencer conjecture to finite calculations and prove that Erdős–Graham–Spencer conjecture
is true for

∑s
i=1 1/ai � n − 1/3. Furthermore, it is proved that Erdős–Graham–Spencer conjecture is true

if
∑s

i=1 1/ai < n − 1/(logn + log logn − 2) and no partial sum (certainly not a single term) is the inverse
of an positive integer.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Erdős [2, p. 41] asked the following question: is it true that if ai ’s are positive integers with
1 < a1 < a2 < · · · < as and

∑s
i=1 1/ai < 2, then there exist εi = 0 or 1 such that

s∑
i=1

εi

ai

< 1,

s∑
i=1

1 − εi

ai

< 1?
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Sándor [3] gave a simple construction to show that the answer is negative: let {ai} =
{divisors of 120 with the exception of 1 and 120}. Furthermore, Sándor [3] proved the following
nice results:

Theorem A. For every n � 2 there exist integers 1 < a1 < a2 < · · · < as such that
∑s

i=1 1/ai < n

and this sum cannot be split into n parts so that all partial sums are � 1.

Theorem B. Let n � 2. If 1 < a1 < a2 < · · · < as with
∑s

i=1 1/ai < n(1 − e1−n), then this sum
can be decomposed into n parts so that all partial sums are � 1.

If we allow repetition of integers, then it is conjectured by Erdős, Graham and Spencer
[2, p. 41] that if 1 � a1 � a2 � · · · � as with

∑s
i=1 1/ai < n − 1/30, then this sum can be de-

composed into n parts so that all partial sums are � 1. This is not true for
∑s

i=1 1/ai = n− 1/30
as shown by a1 = 2, a2 = a3 = 3, a4 = · · · = a5n−3 = 5. Sándor [3] proved the following weaker
assertion.

Theorem C. Let n � 2. If 1 � a1 � a2 � · · · � as with
∑s

i=1 1/ai � n − 1/2, then this sum can
be decomposed into n parts so that all partial sums are � 1.

Sándor [3] noted that n−1/2 = n−0.5 can be improved to n−3/7 = n−0.428 . . . by similar
arguments but much longer calculation (no proof is included in [3]). In this paper, it is improved
the number to n − 1/3 = n − 0.333 . . . . In order to prove or disprove Erdős–Graham–Spencer
conjecture, it is natural to consider only those sequences for which each term is more than 1
and no partial sum (certainly not a single term, the same meaning for late) is the inverse of a
positive integer, otherwise, we may replace the partial sum by the inverse of the integer. We call
a sequence 1 < a1 � a2 � · · · � as primitive if there is no partial sum of

∑s
i=1 1/ai is the inverse

of a positive integer. It is clear that if a sequence 1 < a1 � a2 � · · · � as is primitive, then each
integer a repeats at most p(a) − 1 times, where p(a) is the least prime divisor of a. Hence, the
following Theorem 1 reduces Erdős–Graham–Spencer conjecture to finite calculations. In this
paper, the following main results are proved.

Theorem 1. If for 1 � n < e28 and any primitive sequence a1 � a2 � · · · � as with a1 > 1 and
as < 30n, Erdős–Graham–Spencer conjecture is true, then Erdős–Graham–Spencer conjecture
is true in general.

Theorem 2. There exists an effective constant n0 such that if n � n0 and 1 < a1 � a2 � · · · � as

is primitive with

s∑
i=1

1

ai

� n − 1

logn + log logn − 2
,

then the sum
∑s

i=1 1/ai can be decomposed into n parts with each partial sum � 1.

Theorem 3. Let n be a positive integer. If 1 � a1 � a2 � · · · � as with
∑s

i=1 1/ai � n − 1/3,
then this sum can be decomposed into n parts with each partial sum � 1.
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Remark. If we require each partial sum < 1, then the problem becomes an easy one. It is clear
that for a1 = a2 = · · · = an+1 = 2 the sum

∑s
i=1 1/ai (= (n + 1)/2) cannot be decomposed into

n parts with each partial sum < 1. On the other hand, we can prove that if 1 < a1 � a2 � · · · � as

with
∑s

i=1 1/ai < (n + 1)/2, then this sum can be decomposed into n parts with each partial
sum < 1. n = 1 is clear. We assume that n � 2. First we take n boxes A1,A2, . . . ,An. Since∑s

i=1 1/ai < (n + 1)/2, there are at most n index i with ai = 2. Then we put these ai (= 2)

into these boxes. Each box contains at most one such ai . Then put each of remaining ai into
one of n boxes A1,A2, . . . ,An such that the partial sum corresponding to each Ai is < 1. Write
T (Ai) for the partial sum corresponding to Ai . If some aj fails to be put into any of n boxes
A1,A2, . . . ,An, then aj � 3 and

T (Ai) � 1 − 1

aj

, i = 1,2, . . . , n.

Hence

n

(
1 − 1

aj

)
�

n∑
i=1

T (Ai) �
s∑

i=1

1

ai

<
n + 1

2
.

Thus 3 � aj < (2n)/(n − 1). Hence n = 2 and aj = 3. Since
∑s

i=1 1/ai < 3/2, we have∑
ai=2,3 1/ai is a part of 1

2 + 1
2 + 1

3 + 1
3 or 1

3 + 1
3 + 1

3 + 1
3 . Thus we can decompose

∑
ai=2,3 1/ai

into 2 parts with each partial sum < 1. This contradicts the definition of aj = 3. The above
assertion is proved.

2. Notations

In this paper, we consider finite sets of positive integers with repetitions. For example,
{3,3,4} �= {3,4}. We call such a set A multiset. For a multiset A and a positive real number x,
let mA(a) denote the multiplicity of a in A, m(A) denote the cardinality of A and let

T (A) =
∑
a∈A

1

a
, S(A) =

∑
a∈A

a, A(x) = {a: a ∈ A, a < x}.

For example, if A = {2,3,3,4,5,5,5} and B = {4,5,5}, then mA(1) = 0, mA(2) = 1,
mA(3) = 2, mA(4) = 1, mA(5) = 3, m(A) = 7 and

T (A) = 1

2
+ 2

3
+ 1

4
+ 3

5
, S(A) = 2 + 3 + 3 + 4 + 5 + 5 + 5,

A(5) = {2,3,3,4}, A \ B = {2,3,3,5}.

With these terms, a multiset A is primitive if there is no any multisubset A1 of A with m(A1) � 2
and T (A1)

−1 being an integer. We say that A has a n-quasiunit-partition if A can be decomposed
into n multisubsets A1,A2, . . . ,An with T (Ai) � 1 (1 � i � n) and mA1(a) + · · · + mAn(a) =
mA(a) for all integers a.
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3. Proofs

Lemma 1. Let A be a finite multiset of positive integers. Then there exists an effective con-
structible finite primitive multiset A′ and a nonnegative integer k such that T (A) = k + T (A′).

Proof. If there exists a multisubset B of A such that m(B) � 2 and T (B)−1 is an integer b, then

T (A) = T
(
(A \ B) ∪ {b}), S(A) > S

(
(A \ B) ∪ {b}).

Let A1 = (A \ B) ∪ {b}. We continue this procedure and obtain A1,A2, . . . . Noting that S(A) >

S(A1) > · · · and S(Ai) are positive integers, the procedure must be terminated. This completes
the proof of Lemma 1. �

From Lemma 1 we immediately obtain the following Lemma 2.

Lemma 2. Let η be a positive real number and n a positive integer. If for any positive integer
k � n, any finite primitive multiset A with T (A) � k − η (respectively T (A) < k − η) has a
k-quasiunit-partition, then any finite multiset A with T (A) � n − η (respectively T (A) < n − η)
has a n-quasiunit-partition.

The idea of Lemma 3 is due to Sándor [3]. But Sándor [3] did not formulate a lemma.

Lemma 3. Let η be a positive real number and let A be a multiset with T (A) = n − η. Then A

has a n-quasiunit-partition if and only if A( 1
η
n) has a n-quasiunit-partition.

Proof. It is clear that if A has a n-quasiunit-partition, then A( 1
η
n) has a n-quasiunit-partition.

Now we assume that A( 1
η
n) has a n-quasiunit-partition:

A

(
1

η
n

)
= B1 ∪ B2 ∪ · · · ∪ Bn,

T (Bi) � 1, i = 1,2, . . . , n,

n∑
i=1

mBi
(a) = mA(a) for all integers a.

We add each a ∈ A \ A( 1
η
n) to one of B1,B2, . . . ,Bn to keep all T (Bi) � 1. Suppose we stuck

at b ∈ A \ A( 1
η
n). Then

T (Bi) > 1 − 1

b
, i = 1,2, . . . , n.

Thus

n

(
1 − 1

b

)
<

n∑
i=1

T (Bi) � T (A) = n − η.

Hence b < 1
η
n, a contradiction with b /∈ A( 1

η
n). This completes the proof of Lemma 3. �
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Lemma 4. Let n � 2 and L(n) be a real number with L(n) � 1 and

L(n)

log(nL(n))
+ 1.2762L(n)

(log(nL(n)))2
+ 2

√
L(n)√
n

� 1. (1)

If A is a primitive multiset with

T (A) � n − 1

L(n)
,

then A has a n-quasiunit-partition.

Proof. By Lemma 3 and [3, Theorem 3] (that is, Theorem C), we need only to prove that
T (A(nL(n))) � n − 1

2 . Since A is primitive, we have 1 /∈ A and mA(a) � p(a) − 1. Hence,
if a is composite, then mA(a) � p(a) − 1 <

√
a. Thus (p denotes a prime)

T
(
A

(
nL(n)

))
�

nL(n)∑
a=2

mA(a)

a
�

nL(n)∑
a=2

p(a) − 1

a

�
∑

2�p�nL(n)

p − 1

p
+

nL(n)∑
a=2

1√
a

� π
(
nL(n)

) +
nL(n)∑
a=2

1√
a

� nL(n)

log(nL(n))

(
1 + 1.2762

log(nL(n))

)
+ 2

√
nL(n) − 2 � n − 2.

Here we employ a result of prime distribution of Dusart [1]:

π(x) � x

logx

(
1 + 1.2762

logx

)
, x > 1.

This completes the proof of Lemma 4. �
Lemma 5. Let η be a positive real number with 0 < η < 1. Suppose that any finite multiset B

with T (B) � n − 1 − η has a (n − 1)-quasiunit-partition. Let A be a multiset with T (A) �
n − η, A1 ⊆ A with T (A1) = 1 − δ, 0 � δ < η. If δ = 0 or if there exists a ∈ A \ A1 with
(n − 1)/(η − δ) � a � 1/δ, then A has a n-quasiunit-partition.

Proof. By T (A1) = 1 − δ and T (A) � n − η, we have

T (A \ A1) � n − 1 − (η − δ). (2)

If δ �= 0 and there exists a ∈ A \ A1 with (n − 1)/(η − δ) � a � 1/δ, then

T

(
(A \ A1)

(
n − 1

))
� n − 1 − (η − δ) − 1 � n − 1 − η.
η − δ a
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By the assumption we have that (A \ A1)(
n−1
η−δ

) has a (n − 1)-quasiunit-partition. By (2) and
Lemma 3, A \ A1 has a (n − 1)-quasiunit-partition. Therefore, A has a n-quasiunit-partition.
This completes the proof of Lemma 5. �
Proof of Theorem 1. Take L(n) = 30. By calculation for n � e28 we have (1). Hence, by
Lemma 4, if n � e28 and A is a finite primitive multiset with

T (A) � n − 1

30
,

then A has a n-quasiunit-partition. The assumption in Theorem 1 and Lemma 3 imply that if
n < e28 and A is a finite primitive multiset with

T (A) < n − 1

30
,

then A has a n-quasiunit-partition. Now Theorem 1 follows from Lemma 2. �
Proof of Theorem 2. Take L(n) = logn + log logn − 2. Then

L(n)

log(nL(n))
+ 1.2762L(n)

(log(nL(n)))2
+ 2

√
L(n)√
n

� logn + log logn − 2

logn + log logn
+ 1.2762

logn + log logn
+ 2

√
logn + log logn√

n

= 1 − 0.7238

logn + log logn
+ 2

√
logn + log logn√

n

� 1

for all sufficiently large n. Now Theorem 2 follows from Lemma 4. �
Proof of Theorem 3. By Lemma 2 we may assume that A is primitive. Take L(n) = 3. By
calculation for n � 100 we have (1). By Lemma 4 we may further assume that n < 100. By
Lemma 3 we need only to prove that A(3n) has a n-quasiunit-partition. Since A is primitive and
1
3 + 1

6 = 1
2 , we have mA(3) = 0 or mA(6) = 0. For 12 � n � 99, by directly calculation, we have

T
(
A(3n)

)
�

3n−1∑
a=2

p(a) − 1

a
− 1

6
� n − 1

2
.

By [3, Theorem 3], for 12 � n � 99, we have that A(3n) has a n-quasiunit-partition.
Now we prove Theorem 3 for 2 � n � 11. First we consider the case n = 2. Let A be a

primitive multiset with T (A) � 2 − 1
3 . Then T (A(6)) is the partial sum of

1 + 2 + 1 + 4
.

2 3 4 5
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It is clear that if mA(2) = 0 or mA(3) = 0, then T (A(6)) has a 2-quasiunit-partition. If 2 ∈ A and
3 ∈ A, then

T (A) −
(

1

2
+ 1

3

)
� 2 − 1

3
−

(
1

2
+ 1

3

)
< 1.

So T (A(6)) has a 2-quasiunit-partition.
In the following, we assume that 3 � n � 11. Let

S1 = 1

3
+ 1

3

(
1

6

)
+ 1

4

(
1

12

)
+ 1

16
, S2 = 1

5
+ 1

5

(
1

10

)
+ 1

5

(
1

15

)
+ 1

5

(
1

20

)
+ 2

11
,

S3 = 4

7
+ 1

7

(
1

14

)
+ 1

7

(
1

21

)
+ 1

8
, S4 = 1

9
+ 1

9

(
1

18

)
+ 8

11
, S5 = 12

13
+ 1

15
,

S6 = 16

17
+ 1

21
, S7 = 18

19
+ 1

22
, S8 = 22

23
+ 1

24
,

S9 = 1

2
+ 4

25
+ 1

26
+ 2

27
+ 1

28
, S10 = 28

29
+ 1

30
, S11 = 30

31
+ 1

32
,

S′
1 = 1

2
+ 1

4

(
1

12

)
+ 1

6
+ 1

16
, S′

3 = 1

2
+ 1

7
+ 1

8
+ 1

14
+ 1

21
,

S′
4 = 1

2
+ 1

9
+ 1

9

(
1

18

)
+ 2

11
, S′

5 = 1

2
+ 5

13
+ 1

15
,

S′
6 = 1

2
+ 7

17
+ 1

21
, S′

7 = 1

2
+ 8

19
+ 1

22
, S′

8 = 1

2
+ 10

23
.

In the above constructions, 1
3 ( 1

6 ) denotes that we can only choose one of 1
3 and 1

6 . The others
a(b) have the similar meanings. The reasons are that A is primitive and

1

3
+ 1

6
= 1

2
,

1

4
+ 1

12
= 1

3
,

2

5
+ 1

10
= 1

2
,

1

5
+ 2

15
= 1

3
,

1

5
+ 1

20
= 1

4
,

3

7
+ 1

14
= 1

2
,

2

7
+ 1

21
= 1

3
,

1

9
+ 1

18
= 1

6
.

For every possible, each of Si and S′
i does not exceed 1. For the convenience of reader, we give

more explanations here. For example, we consider the integer 15. Since A is primitive, we have
mA(15) � 2. If mA(15) � 1, then we put 1/15 in S5 and 1

5 ( 1
15 ) = 1

5 in S2. If mA(15) = 2, then
by

2

15
+ 1

5
= 1

3

we know that mA(5) = 0. Then we put 1/15 in S5 and 1
5 ( 1

15 ) = 1
15 in S2.

If n = 9,10,11, then S1, S2, . . . , Sn imply a n-quasiunit-partition of A(3n). To see this, we
explain why S1, S2, . . . , S11 imply a 11-quasiunit-partition of A(33). The others are similar. Let

Ai =
{
a:

1
appears in Si

}
.

a
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For a ∈ A(33), we have 2 � a � 32. Since 1
a

appears in S1, S2, . . . , S11 exactly p(a) − 1 times
and mA(a) � p(a) − 1, where p(a) is the least prime factor of a, we have

A(33) ⊆ A1 ∪ A2 ∪ · · · ∪ A11.

Since

T (A ∩ Ai) � Si < 1, i = 1,2, . . . ,11,

we have that S1, S2, . . . , S11 imply a 11-quasiunit-partition of A(33).
If 3 � n � 8 and mA(2) = 0, then S1, S2, . . . , Sn imply a n-quasiunit-partition of A(3n). If

3 � n � 8 and mA(3) = 0, then S′
1, S2, . . . , Sn imply a n-quasiunit-partition of A(3n). If 3 � n �

8 and mA(7) � 1, then S1, S2, S
′
3, S4, . . . , Sn imply a n-quasiunit-partition of A(3n). Hence, for

3 � n � 8, we may assume that

mA(2) � 1, mA(3) � 1, mA(7) � 2.

Similarly, by using S′
4, S

′
5, S

′
6, S

′
7, S

′
8, we may assume that mA(11) � 3, for 4 � n � 8;

mA(13) � 6, for 5 � n � 8; mA(17) � 8, for 6 � n � 8; mA(19) � 9, for 7 � n � 8;
mA(23) � 11, for n = 8.

Now we apply Lemma 5 to complete the proof.
For 3 � n � 5, let η = 1

3 , A1 = {2,3,7} and δ = 1
42 .

For 6 � n � 8, let η = 1
3 , A1 = {2,3,13,13} and δ = 1

78 .
Then

n − 1

η − δ
< 3n − 2 < 3n − 1 <

1

δ
.

By Lemma 5, if Theorem 3 is true for n − 1 and A \ A1 contains 3n − 1 or 3n − 2, then A has a
n-quasiunit-partition. In fact, by mA(7) � 2 we have 7 ∈ A\A1 for n = 3. Similarly, 11 ∈ A\A1
for n = 4; 13 ∈ A \ A1 for n = 5; 17 ∈ A \ A1 for n = 6; 19 ∈ A \ A1 for n = 7; 23 ∈ A \ A1 for
n = 8. This completes the proof of Theorem 3. �
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