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Abstract

The aim of this work is to obtain the so-called standard lemmas on irrationality bases using the principles
of Chudnovsky and then apply them to obtain conditional irrationality measures for values of the digamma
function.
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0. Introduction

In this note we answer the question posed by Sondow [5] and obtain the so-called standard
lemmas on irrationality bases using the principles of Chudnovsky. We then apply them to prove
conditional irrationality measures for values of the digamma function γα = −�′(α)

�(α)
using a Dio-

phantine approximation construction from [4].
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Let us recall some definitions. Let θ be an irrational real number, the irrationality of which is
usually measured by determining the lower bounds,

∣∣∣∣θ − p

q

∣∣∣∣ >
1

qμ(θ)+ε
,

which hold for all ε > 0 and all integers p,q , with q � q0(ε). Then the least such μ(θ) is called
the irrationality exponent of θ . If μ(θ) = ∞, then θ is called a Liouville number.

If θ has the irrationality measure 1/βq (according to Sondow’s definition [5]), so that β =
β(θ) is the least number with the property that for any ε > 0 there exists q0(ε) > 0, such that

∣∣∣∣θ − p

q

∣∣∣∣ >
1

(β + ε)q
for all integers p,q with q � q0(ε),

then β(θ) is called the irrationality base of θ . Otherwise, if no such β exists, we define β(θ) = ∞
and say that θ is a super Liouville number. Note that β(θ) = 1 if μ(θ) is finite (see Lemma 2 in
[5]).

Explicit formulas for μ(θ) and β(θ) in terms of the continued fraction expansion of θ were
proved by Sondow [6].

In practice, to obtain the upper bounds of μ(θ), one of the following two standard lemmas is
normally used. (For proofs, see Lemma 3.5 in [2] and Remark 2.1 in [3], respectively.)

Lemma 1 (G. Chudnovsky). Let θ be a real number satisfying

Rn = Anθ − Bn, n = 1,2, . . . ,

for some An,Bn ∈ Z. Suppose that

lim sup
n→∞

1

n
log |An| � σ, lim

n→∞
1

n
log |Rn| = −τ

for some positive numbers σ, τ . Then θ is irrational and has irrationality exponent μ(θ) � 1+ σ
τ

.

Lemma 2 (M. Hata). Let θ be a real irrational number satisfying

Rn = Anθ − Bn, n = 1,2, . . . ,

for some An,Bn ∈ Z. Suppose that

lim
n→∞

1

n
log |An| = σ, lim sup

n→∞
1

n
log |Rn| � −τ

for some positive numbers σ, τ . Then the irrationality exponent μ(θ) � 1 + σ
τ

.

In Sections 1 and 3, we prove analogous statements for the irrationality base β(θ). Then in
Sections 2 and 3 we apply them to obtain the conditional upper bounds for β(γα). Section 4 is
devoted to the conditional upper bounds of the irrationality exponent μ(γα).
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1. Some lemmas on irrationality measures

We need the following lemmas concerning rational approximations.

Lemma 3. Let θ be a real number satisfying Rn = Anθ −Bn, n = 1,2, . . . , for some An,Bn ∈ Z.
Suppose that f,g are positive real functions defined in (0,+∞), f is monotonically increasing,
and limn→∞ f (n) = +∞. Suppose further that

lim sup
n→∞

1

n
log |An| � σ, σ ∈ R, σ � 0,

and

‖nR[f (n)]‖ � g(n) (1)

for all n sufficiently large, where ‖x‖ denotes the distance from x to the nearest integer, and [x]
is the integer part of x. Then, for any ε > 0 there exists q0(ε) > 0 such that

∣∣∣∣θ − p

q

∣∣∣∣ � g(q)

qe(σ+ε)f (q)

for all integers p,q with q > q0(ε).

Proof. Let p ∈ Z, q ∈ N be arbitrarily fixed numbers. Then, for any positive integer n we have

Rn = An

(
θ − p

q

)
− Bn + An

p

q
. (2)

Set n = [f (q)]. Then, multiplying both sides of (2) by q , we have

∣∣∣∣qAn

(
θ − p

q

)∣∣∣∣ = ∣∣M + ‖qRn‖
∣∣, (3)

where M ∈ Z. From (1) it follows that

g(q) � ‖qRn‖ � 1

2
(4)

for all q > q1. Now if |M| � 1, then the right-hand side of (3) is not less than 1/2. Hence,
according to (4), for any integer M we have

∣∣∣∣qAn

(
θ − p

q

)∣∣∣∣ � g(q),

or ∣∣∣∣θ − p
∣∣∣∣ � g(q)

.

q q|An|
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Since for any ε > 0, |An| � e(σ+ε)f (q) for all q � q2(ε), then

∣∣∣∣θ − p

q

∣∣∣∣ � g(q)

qe(σ+ε)f (q)
,

as required. �
Corollary 4. Let θ be a real number satisfying Rn = Anθ − Bn, n = 1,2, . . . , for some
An,Bn ∈ Z. Let f,g1, g2 be positive real functions defined in (0,+∞), with f monotonically
increasing, and limn→∞ f (n) = +∞. Suppose that

lim sup
n→∞

1

n
log |An| � σ, σ ∈ R, σ � 0,

and

g1(n) � {nR[f (n)]} � 1 − g2(n) (5)

for all n sufficiently large (where {x} denotes the fractional part of x). Then for any ε > 0 there
exists q0(ε) > 0 such that

∣∣∣∣θ − p

q

∣∣∣∣ � min(g1(q), g2(q))

qe(σ+ε)f (q)
(6)

for all integers p,q with q > q0(ε).

Proof. Inequality (6) follows from the proof of Lemma 3 if we replace ‖ · ‖ by {·} in (3) and use
inequality (5) in place of (4). �
Lemma 5. Let θ be a real number satisfying Rn = Anθ −Bn, n = 1,2, . . . , for some An,Bn ∈ Z,
and

lim sup
n→∞

1

n
log |An| � σ, σ ∈ R, σ � 0.

Suppose that f (x),ψ(x) are positive real continuous functions defined in (0,+∞), strictly in-
creasing for x > x0 > 0, with limn→∞ f (n) = limn→∞ ψ(n) = +∞. Suppose further that

f
(
ψ(n)

) − f (n) � 1

for all n sufficiently large and

lim
n→∞f −1(n) · |Rn| = 1, (7)
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where f −1 is the inverse of f (which exists by the above). Then for any ε > 0 there exists a
positive integer q0(ε) such that

∣∣∣∣θ − p

q

∣∣∣∣ >

⎧⎨
⎩

1
qe(σ+ε)f (ψ((1+ε)q)) , if limq→∞ q

ψ(q)
> 0,

1
ψ((1+ε)q)e(σ+ε)f (ψ((1+ε)q)) , if limq→∞ q

ψ(q)
= 0

for all integers p,q with q � q0(ε).

Proof. It follows from (7) that for any ε > 0 there exists a positive integer k0(ε) such that

1 − ε/2

f −1(k)
� |Rk| � 1 + ε/2

f −1(k)
(8)

for all k � k0(ε). Set k = [f (ψ((1+ ε)n))], n � n0(ε). Then the following inequalities are valid:

f
(
(1 + ε)n

)
� f

(
ψ

(
(1 + ε)n

)) − 1 < k � f
(
ψ

(
(1 + ε)n

))
,

or

(1 + ε)n < f −1(k) � ψ
(
(1 + ε)n

)
.

Hence, from (8) we have

1 − ε/2

ψ((1 + ε)n)
� |Rk| < 1 + ε/2

(1 + ε)n
,

i.e.,

(1 − ε/2)n

ψ((1 + ε)n)
�

{
n|Rk|

}
� 1 + ε/2

1 + ε
.

Thus, according to Corollary 4 (applying inequality (6) with ε/2), for all q > q1(ε) we obtain

∣∣∣∣θ − p

q

∣∣∣∣ >

⎧⎨
⎩

1
qe(σ+ε)f (ψ((1+ε)q)) , if (1−ε/2)q

ψ((1+ε)q)
>

ε/2
1+ε

,

1
ψ((1+ε)q)e(σ+ε)f (ψ((1+ε)q)) , if (1−ε/2)q

ψ((1+ε)q)
� ε/2

1+ε
,

from which the lemma follows. �
Now, using the fact that the irrationality base β(θ) � 1, we can obtain the following corollar-

ies.

Corollary 6. If under the conditions of Lemma 5 we have

lim
n→∞

n
> 0 and lim

n→∞
f (ψ(n)) = 0,
ψ(n) n
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or

lim
n→∞

n

ψ(n)
= 0, lim

n→∞
f (ψ(n))

n
= 0, and lim

n→∞
1

n
ln

(
ψ(n)

) = 0,

then β(θ) = 1.

Proposition 7. Let θ be a real number satisfying Rn = Anθ − Bn, n = 1,2, . . . , for some
An,Bn ∈ Z, with

lim sup
n→∞

1

n
log |An| � σ, σ ∈ R, σ � 0,

and

lim
n→∞|nRn| = τ, τ ∈ R, τ � 0.

If τ = 0, suppose also that Rn �= 0 for all n � n0. Then θ is irrational and

β(θ) � eστ . (9)

In particular, if σ or τ equals zero, then β(θ) = 1.

Proof. The irrationality of θ follows from the standard argument. Suppose, on the contrary, that
θ = p/q , p ∈ Z, q ∈ N. Then, for an arbitrarily small ε > 0, there exists a positive number
n1(ε) > n0 such that

max

(
0,

τ − ε

n

)
< |qRn| = |Anp − qBn| < q

τ + ε

n
(10)

for all n > n1(ε). Since Anp − qBn is a non-zero integer, we have that |Anp − qBn| � 1 and this
contradicts the right-hand side of inequality (10), which tends to zero as n → ∞.

If τ > 0, set f (n) = τn and ψ(n) = n + 1/τ . Then the required inequality immediately fol-
lows from Lemma 5. Letting τ tend to zero and using Corollary 6, we obtain that (9) holds for
all τ � 0. �
2. Conditional bounds on the irrationality base for values of the digamma function

In [4] we gave irrationality criteria for the values of the digamma function (or the generalized
Euler constant)

γα = −�′(α)

�(α)
,

where α = a/b is a rational number, 1 � a � b, (a, b) = 1. The proof was based on the represen-
tation

Im(α) =
(

m1 + m2
)

γα + Lm(α) − Am(α), (11)

m1
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where for m = (m1,m2) ∈ N2,m1 � m2,

Im(α) =
∫ ∫
[0,1]2

− (xy)m1+α−1(1 − x)m1(1 − y)m2

(1 − xy) logxy
dx dy, (12)

and Lm(α) is the Q-linear form in logarithms

Lm(α) =
m1∑
l=1

l−1∑
k=0

(
m1

k

)(
m2

k

)
(Hm1−k + Hm2−k − 2Hk) log(l + m1 + α − 1)

+
m2∑

l=m1+1

m2∑
k=l

(−1)k−1−m1

k

(
m2

k

)/(
k − 1

m1

)
log(l + m1 + α − 1), (13)

Am(α) =
m1∑
k=0

(
m1

k

)(
m2

k

)
Hm1+k−1(α) ∈ Q, d2m1(a, b)Am(α) ∈ Z,

where dm(a, b) denotes the least common multiple of the numbers a, a + b, . . . , a + (m −
1)b, Lm = Lm(1), dm = dm(1,1) and Hm(α) = ∑m

l=0(l + α)−1, Hm = Hm−1(1). Let n, r1, r2
be positive integers, with m1 = r1n,m2 = r2n,m = (m1,m2). From [4] and [1], and Stirling’s
formula, we have

I(r1n,r2n)(α) =
(

r
r1
1 r

r2
2

4r1(r1 + r2)r1+r2

)n(1+o(1))

as n → ∞, (14)

(
(r1 + r2)n

r1n

)
=

(
(r1 + r2)

r1+r2

r
r1
1 r

r2
2

)n(1+o(1))

as n → ∞, (15)

dn(a, b) = eh(b)·n(1+o(1)) as n → ∞, (16)

where

h(b) = b

ϕ(b)

b∑
k=1

(k,b)=1

1

k
,

and ϕ is the Euler function.

Theorem 8 (Conditional bounds on β(γα)). Let r1 � r2 be positive integers, and α = a/b,
a, b ∈ Z, 1 � a � b, (a, b) = 1, satisfying the inequality

2r1 log 2 + (r1 + r2) log(r1 + r2) − r1 log r1 − r2 log r2 > 2r1h(b).

Suppose that there exists a sequence of positive integers nk , k = 1,2, . . . , such that

lim sup
nk

k
� σ, lim sup

log k

n
< log

(
4r1(r1 + r2)

r1+r2

e2r1h(b)r
r1r

r2

)
, (17)
k→∞ k→∞ k 1 2
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and

lim
k→∞ k

∣∣u − v
{
d2r1nk

(a, b)L(r1nk,r2nk)(α)
}∣∣ = τ, (18)

for some integers u,v and non-negative numbers σ, τ . If τ = 0, then suppose also that

lim
k→∞

1

nk

log

∣∣∣∣uv − {
d2r1nk

(a, b)L(r1nk,r2nk)(α)
}∣∣∣∣ �= log

(
e2r1h(b)r

r1
1 r

r2
2

4r1(r1 + r2)r1+r2

)
. (19)

Then γα is irrational and the irrationality base of γα satisfies

β(γα) �
(

e2h(b)r1
(r1 + r2)

r1+r2

r
r1
1 r

r2
2

)στ

.

In particular, if σ or τ equals zero, then β(γα) = 1.

Proof. We define the integers Ak,Bk , for k = 1,2, . . . , by the formulas

Bk = vd2r1nk
(a, b)A(r1nk,r2nk)(α) − v

[
d2r1nk

(a, b)L(r1nk,r2nk)(α)
] − u, (20)

Ak = vd2r1nk
(a, b)

(
(r1 + r2)nk

r1nk

)
. (21)

According to (11), we have Akγα − Bk = Rk , where

Rk = vd2r1nk
(a, b)I(r1nk,r2nk)(α) + u − v

{
d2r1nk

(a, b)L(r1nk,r2nk)(α)
}
.

The asymptotics (14), (15) and (16), together with (17) and (18), imply that

lim sup
k→∞

1

k
log |Ak| � σ

(
2h(b)r1 + (r1 + r2) log(r1 + r2) − r1 log r1 − r2 log r2

)
and limk→∞ k|Rk| = τ . Thus, by Proposition 7, the theorem follows. �
Remark. Note that the theorem remains valid if we replace the fractional parts in (18) and (19)
by the distances to the nearest integers.

Setting α = a = b = r1 = r2 = 1 in Theorem 8, we obtain the conditional bound on the irra-
tionality base of Euler’s constant γ .

Corollary 9. Suppose that there exists a sequence of positive integers nk , k = 1,2, . . . , such that

lim sup
k→∞

nk

k
� σ, lim sup

k→∞
logk

nk

< 2 log

(
4

e

)
,

and

lim k
∣∣u − v{d2nk

L(nk,nk)}
∣∣ = τ
k→∞
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for some integers u,v and non-negative numbers σ, τ . If τ = 0, suppose also that

lim
k→∞

1

nk

log

∣∣∣∣uv − {d2nk
L(nk,nk)}

∣∣∣∣ �= −2 log

(
4

e

)
.

Then Euler’s constant γ is irrational and has irrationality base

β(γ ) � (2e)2στ .

In particular, if σ or τ equals zero, then β(γ ) = 1.

3. Another approach to the estimation of irrationality bases

Generalizing Sondow’s arguments in proving conditional upper bounds for the irrationality
base β(γ ), we can obtain the following statement that is weaker than Lemma 3.

Lemma 10. Let θ be a real number satisfying Rn = Anθ − Bn, n = 1,2, . . . , for some An ∈ Z,
Bn ∈ Q. Let f,g be positive real functions defined in (0,+∞), with f monotonically increasing
and limn→∞ f (n) = ∞. Suppose that dnB[f (n)] ∈ Z,

lim sup
n→∞

1

n
log |An| � σ, σ ∈ Z, σ � 0,

and

‖dnR[f (n)]‖ � g(n).

Then for any ε > 0 there exists q0(ε) > 0 such that∣∣∣∣θ − p

q

∣∣∣∣ >
g(q)

eq(1+ε)ef (q)(σ+ε)

for all integers p,q with q � q0(ε).

Proof. The argument is as for Lemma 3, except that here we multiply both sides of (2) by dq

instead of q . �
Directly from this lemma we have:

Proposition 11. Let θ be a real number satisfying Rn = Anθ − Bn, n = 1,2, . . . , for some An ∈
Z, Bn ∈ Q. Suppose that d[cn]Bn ∈ Z for some positive real constant c and

lim sup
n→∞

1

n
log |An| � σ, σ ∈ R, σ � 0.

If

lim inf
1

log‖d[cn]Rn‖ � −δ (22)

n→∞ n
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for some non-negative number δ, then θ is irrational and

β(θ) � e1+ σ+δ
c .

In particular, if δ = 0, i.e.,

lim
n→∞

1

n
log‖d[cn]Rn‖ = 0,

then θ is irrational and β(θ) � e1+ σ
c .

Proof. We show that θ is irrational. We first note that (22) implies

‖d[cn]Rn‖ > e(−δ−ε)n > 0 for all n > n0(ε). (23)

Now, if θ = p/q for some p ∈ Z, q ∈ N, we can choose n > n0(ε) such that [cn] > q . Then

d[cn]Rn = d[cn]Anθ − d[cn]Bn ∈ Z

and, therefore, ‖d[cn]Rn‖ = 0, which contradicts (23). Thus, θ is irrational. The upper bound for
β(θ) easily follows from the proof of Lemma 10. �

Applying Proposition 11 to the Diophantine approximation construction (11), we can obtain
the following.

Theorem 12. Let r1 � r2 be positive integers and α = a/b, a, b ∈ Z, 1 � a � b, (a, b) = 1. If

lim inf
n→∞

1

n
log

∥∥d[cn]L(r1n,r2n)(α)
∥∥ � −δ (24)

for some real constant c � 2br1 and non-negative number δ, such that

δ < (r1 + r2) log(r1 + r2) + 2r1 log 2 − r1 log r1 − r2 log r2 − c,

then γα is irrational and

β(γα) � e1+ δ
c

(
(r1 + r2)

r1+r2

r
r1
1 r

r2
2

) 1
c

.

In particular, if δ = 0, i.e., if

lim
n→∞

1

n
log

∥∥d[cn]L(r1n,r2n)(α)
∥∥ = 0,

where 2br1 � c < (r1 + r2) log(r1 + r2) + 2r1 log 2 − r1 log r1 − r2 log r2, then γα is irrational
and

β(γα) � e

(
(r1 + r2)

r1+r2

r
r1
1 r

r2
2

) 1
c

.
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Proof. From (11) we have Rn = Anγα − Bn, where

An = −
(

(r1 + r2)n

r1n

)
, Bn = A(r1n,r2n)(α),

Rn = L(r1n,r2n)(α) − I(r1n,r2n)(α),

d[cn]Bn ∈ Z if c � 2br1, and

lim
n→∞

1

n
log |An| = (r1 + r2) log(r1 + r2) − r1 log r1 − r2 log r2. (25)

According to (24) and (14), and the Prime Number Theorem, for any 0 < 2ε < (r1 + r2) log(r1 +
r2) + 2r1 log 2 − r1 log r1 − r2 log r2 − δ − c, there exists an integer n0(ε) such that∥∥d[cn]L(r1n,r2n)(α)

∥∥ � e(−δ−ε)n (26)

and

∣∣d[cn]I(r1n,r2n)(α)
∣∣ <

(
ecr

r1
1 r

r2
2

4r1(r1 + r2)r1+r2

)n(1+ε)

(27)

for all n � n0(ε). Setting ν = 2 − c − log(
r
r1
1 r

r2
2

4r1 (r1+r2)
r1+r2

) > δ + 2 � 2, from (27) and (26), for all
n � max(n0(ε), (log 2)/ε) we have

∣∣d[cn]I(r1n,r2n)(α)
∣∣ < e(−δ−νε)n � 1

2
e(−δ−ε)n � 1

2

∥∥d[cn]L(r1n,r2n)(α)
∥∥, (28)

from which it follows that∣∣±∥∥d[cn]L(r1n,r2n)(α)
∥∥ − d[cn]I(r1n,r2n)(α)

∣∣ < 1. (29)

Applying inequalities (28) and (29), we obtain that

‖d[cn]Rn‖ = ∥∥d[cn]L(r1n,r2n)(α) − d[cn]I(r1n,r2n)(α)
∥∥

is equal to ‖d[cn]L(r1n,r2n)(α)‖±d[cn]I(r1n,r2n)(α) or 1−‖d[cn]L(r1n,r2n)(α)‖±d[cn]I(r1n,r2n)(α),
which is not less than ‖d[cn]L(r1n,r2n)(α)‖ − |d[cn]I(r1n,r2n)(α)| (we use here that for any real x,
1 − ‖x‖ � ‖x‖). Finally, by (28),

‖d[cn]Rn‖ �
∥∥d[cn]L(r1n,r2n)(α)

∥∥ − ∣∣d[cn]I(r1n,r2n)(α)
∣∣ >

1

2

∥∥d[cn]L(r1n,r2n)(α)
∥∥.

And therefore,

lim inf
n→∞

1

n
log‖d[cn]Rn‖ � −δ. (30)

Thus, from (25) and (30), and Proposition 11, the theorem follows. �
For example, from Theorem 12, we have:
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Corollary 13. If

lim
n→∞

1

n
log‖d[cn]L(n,n)‖ = 0

for some 2 � c < 4 log 2, then Euler’s constant γ is irrational and β(γ ) � 4
1
c · e.

Remark. From Theorem 12, for the case α = r1 = r2 = 1 and c = 2 we obtain Sondow’s condi-
tional bounds (Theorems 1–3 in [5]) for the irrationality base of Euler’s constant γ .

4. Conditional bounds for the irrationality exponent of γα

Here we obtain conditional upper bounds for the irrationality exponent of γα in the same way
as in [5, §4] using Lemmas 1 and 2 (see the introduction).

Theorem 14 (Conditional bounds on μ(γα)). Let r1 � r2 be positive integers, and α = a/b,
a, b ∈ Z, 1 � a � b, (a, b) = 1, satisfying the inequality

2r1 log 2 + (r1 + r2) log(r1 + r2) − r1 log r1 − r2 log r2 > 2r1h(b).

Suppose that there exists a sequence of positive integers nk, k = 1,2, . . . , such that

lim
k→∞

nk

k
= σ, lim

k→∞
1

k
log

∣∣∣∣{d2r1nk
(a, b)L(r1nk,r2nk)(α)

} − u

v

∣∣∣∣ = −τ

for some integers u,v and positive numbers σ, τ , with

τ �= σ
(
(r1 + r2) log(r1 + r2) + 2r1 log 2 − r1 log r1 − r2 log r2 − 2r1h(b)

)
.

Then γα is irrational and has irrationality exponent μ(γα) � μh(b),σ,τ , where

μh(b),σ,τ =
{

1 + σ
τ
(λ + 2r1h(b)), if τ

σ
< λ + 2r1(log 2 − h(b)),

1 + λ+2r1h(b)
λ+2r1(log 2−h(b))

, if τ
σ

> λ + 2r1(log 2 − h(b)),
(31)

and λ = log(
(r1+r2)

r1+r2

r
r1
1 r

r2
2

).

Theorem 15. Let r2 � r1 be positive integers, and α = a/b, a, b ∈ Z, 1 � a � b, (a, b) = 1,
satisfying the inequality λ > 2r1(b − log 2). Suppose that there exists a sequence of positive
integers nk such that limk→∞ nk/k = σ and

lim sup
k→∞

1

k
log

∣∣∣∣{d2br1nk
L(r1nk,r2nk)(α)

} − u

v

∣∣∣∣ � −τ (32)

for some integers u,v and positive numbers σ, τ . Suppose further that σ(2r1(b − log 2) − λ)

is not the limit of any subsequence of (1/k) log |{d2br1nk
L(r1nk,r2nk)(α)} − u/v|. Then γα has

irrationality exponent μ(γα) � μb,σ,τ , where μb,σ,τ and λ are given by (31).
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Remark. Note that the assertions of Theorems 14 and 15 are valid if we replace the fractional
parts in their hypotheses by the distances to the nearest integers.
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