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Let A be an abelian variety defined over a number field K and let
P and Q be points in A(K ) satisfying the following condition: for
all but finitely many primes p of K , the order of (Q mod p) divides
the order of (P mod p). Larsen proved that there exists a positive
integer c such that c Q is in the EndK (A)-module generated by P .
We study the minimal value of c and construct some refined
counterexamples.
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1. Introduction

Let A be an abelian variety defined over a number field K . Let P , Q be points in A(K ) satisfying
the following condition: for all but finitely many primes p of K , the order of (Q mod p) divides
the order of (P mod p). The support problem asks whether there exists a K -endomorphism of A
mapping P to Q .

If A is K -simple and the points P and Q have infinite order, Khare and Prasad proved in
[6, Theorem 1] that indeed φ(P ) = Q for some φ in EndK (A). This result does not hold for general
abelian varieties. However, Larsen proved that there exist a K -endomorphism φ of A and a positive
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integer c such that φ(P ) = c Q [7, Theorem 1]. So in general one cannot take c = 1 (not even if φ is
taken in EndK̄ (A)), as shown by Larsen in [7, Proposition 2].

We study the minimal positive integer c (depending only on A and K ) for which the follow-
ing holds: for every pair of points P , Q in A(K ) satisfying the condition of the support problem,
there exists a K -endomorphism φ of A such that φ(P ) = c Q . It is known that such an integer exists
([13, Proposition 10] or [8, Proposition 4.3 and Theorem 5.2]): we call it the constant of the support
problem. The following question arises:

Question 1.1. Does the constant of the support problem divide the exponent of the torsion part
of A(K )?

The answer is affirmative for simple abelian varieties, as a consequence of [6, Theorem 1]. Larsen
proved in [8, Proposition 4.3 and Theorem 5.2] that the answer is affirmative whenever all the Tate
modules of A are integrally semi-simple [8, Definition 4.1].

In this paper, we use a new method to study the support problem: we view the Mordell–Weil
group as a module over the endomorphism ring and apply the theory of maximal orders in division
algebras.

We prove that the answer to Question 1.1 is affirmative whenever A is a power of a simple abelian
variety A1 such that EndK (A1) is a maximal order in a division algebra. More generally, the answer
is affirmative for products

∏
Aei

i of such powers, provided that HomK (Ai, A j) = 0 for i �= j, see Theo-
rem 5.1. In particular, the answer is affirmative for at least one variety in every K -isogeny class (this
also follows from the results of Larsen in [8]).

We also construct two counterexamples to Question 1.1 in Section 6. They are respectively of the
following kind: the power of a simple abelian variety whose endomorphism ring is not a maximal
order; an abelian variety which is K̄ -isomorphic (but not K -isomorphic) to the power of an elliptic
curve whose endomorphism ring is a maximal order.

With a similar construction, we answer in the negative to the question of the support problem for
tori, see Section 6.3.

A motivation to study the support problem is given by the following theorem which is a con-
sequence of results on the support problem by Larsen [7], Khare and Prasad [6] and the second
author [13]:

Theorem 1.2. Let A be an abelian variety defined over a number field K . Let R be a point in A(K ) such that
ZR is Zariski-dense in A. Let S be a set of primes of K of Dirichlet density 1.

1. The sequence

{
ord(R mod p)

}
p∈S

determines the K -isomorphism class of A and determines R up to K -isomorphism.
2. Let � be a prime number and write ord� for the �-adic valuation of the order. The sequence

{
ord�(R mod p)

}
p∈S

determines the K -isogeny class of A.

We prove this result at the end of Section 4. An important special case is when A is K -simple
because then ZR is Zariski-dense in A for any point R of infinite order. Notice that we had to assume
that ZR is Zariski-dense in A: for example the point R in A and the point (R,0) in the square of A
give rise to the same sequences.
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2. A result on maximal orders

We begin by recalling some notions concerning algebras, modules and orders. We mainly refer
to [14].

Let R be an associative ring with 1, not necessarily commutative and without zero divisors. By
“R-module”, if not specified otherwise, we mean left R-module.

Let M be an R-module. We say that M is torsion-free if for all α ∈ R \ {0} and P ∈ M \ {0},
we have αP �= 0. We say that M is divisible if, for every P ∈ M and every α ∈ R \ {0}, there exists
Q ∈M such that P = αQ .

Definition 2.1. Let G be an R-module. Let M be a torsion-free submodule of G and let P ∈ G . We say
that P is independent of M if αP /∈M for all α ∈ R \ {0}.

Lemma 2.2. Let G be an R-module. The following are equivalent:

1. G contains a free R-module of infinite rank.
2. For all finitely generated R-modules M⊆ G, there exists some P ∈ G which is independent of M.

Proof. 1 ⇒ 2: Let n ∈ N be such that M can be generated by n elements. By assumption, G contains
a free submodule B = R B1 ⊕ · · · ⊕ R Bn+1. Suppose that none of the points Bi is independent of M.
Then there would exist αi ∈ R \ {0} such that αi Bi ∈M for all i = 1, . . . ,n + 1. Since M is generated
by n elements, there must be some non-trivial linear combination

∑
βi(αi Bi) which is zero. This is a

contradiction.
2 ⇒ 1: We reason by induction. Clearly, {0} ⊆ G is free of rank 0. Let M ⊆ G be a free R-module

of rank n. Since M is finitely generated, there exists a P ∈ G which is independent of M. Then
M + R P � Rn+1. Indeed, suppose that Q + αP = 0 for some Q ∈ M and α ∈ R . Then αP ∈ M,
therefore α = 0 and also Q = 0. �

We recall the definition of tensor products for modules over a ring which is not necessarily com-
mutative:

Definition. Let M be a right R-module and N a left R-module. Then the tensor product M ⊗R N
is the free abelian group on the symbols m ⊗ n, where m ∈ M and n ∈ N , modulo the relations
(m + m′) ⊗ n = m ⊗ n + m′ ⊗ n, m ⊗ (n + n′) = m ⊗ n + m ⊗ n′ , (mr) ⊗ n = m ⊗ (rn) for all m,m′ ∈M,
n,n′ ∈N , r ∈ R .

This tensor product is always an abelian group, but in general not an R-module. If M is a two-
sided R-module, then M⊗R N becomes a left R-module by defining r(m ⊗ n) := (rm) ⊗ n.

In this paper, a Q-algebra means a ring D ⊇ Q which is a finite dimensional Q-vector space. We
do not assume that the centre is exactly Q.

Let D be a Q-algebra. An order in D is a subring R ⊆ D whose additive group is finitely generated
and such that QR = D . A maximal order is an order which is not contained in any larger order. If D is
a number field, the ring of integers is the unique maximal order.

Proposition 2.3. Let R be a maximal order in a Q-division algebra D. The centre of R is the ring of integers of
the number field K , where K denotes the centre of D.

Proof. Let OK denote the ring of integers of K . We have QR = D , therefore the centre of R is R ∩ K .
Since R ∩ K is an order in K , we must have R ∩ K ⊆ OK . Conversely, OK R is an order in D . Since R
is a maximal order, this implies that OK ⊆ R . We conclude that OK = R ∩ K . �
Lemma 2.4. Let D be a Q-division algebra and let R be a maximal order in D. Let M be a finitely generated
and torsion-free R-module. Then M is projective.



2846 J. Demeyer, A. Perucca / Journal of Number Theory 133 (2013) 2843–2856
Proof. Since R is a maximal Z-order in the Q-algebra D , it follows from [14, (21.4)] that R is a left
(and right) hereditary ring. Such rings have the property that all submodules of free modules are
projective, see [14, (2.44)]. So it suffices to show that M can be embedded in a free R-module.

Define V := D ⊗R M. Since M is torsion-free, the map

θ : M → D ⊗R M; m �→ 1 ⊗ m

is an embedding of R-modules. Let {v1, . . . , vr} be a basis of V as D-vector space. Since QR = D ,
there exists b ∈ Z \ {0} such that bθ(M) is contained in R v1 ⊕ · · · ⊕ R vr . Then the map M → V :
m �→ bθ(m) embeds M into Rr . �
Theorem 2.5. Let D be a Q-division algebra and let R be a maximal order in D. Let G be an R-module
containing a submodule isomorphic to RN . Let M ⊆ N be finitely generated and torsion-free submodules
of G. Then there exists a finitely generated free module F ⊆ G such that F ∩N =M.

Proof. By Lemma 2.4, M is projective. This means that there exists an abstract R-module A such
that M⊕A� Rr for some r � 0.

By Lemma 2.2, there exists B1 ∈ G which is independent of N . Since N and R B1 are torsion-free,
also N ⊕ R B1 is torsion-free. Analogously, we can find B2, . . . , Br in G such that, for all k = 2, . . . , r,
the point Bk is independent of N ⊕〈B1, . . . , Bk−1〉. Eventually, we get a finitely generated and torsion-
free module N ⊕ 〈B1, . . . , Br〉.

Since M ⊕ A � Rr � 〈B1, . . . , Br〉, we can see A as a submodule of 〈B1, . . . , Br〉. Now M and A
are submodules of G satisfying M ∩ A ⊆ N ∩ 〈B1, . . . , Br〉 = {0}. Let F := M ⊕ A. We clearly have
M⊆F ∩N .

Let P ∈ F ∩ N . We need to show that P ∈ M. We can write P = PM + PA with PM ∈ M and
PA ∈ A. Since P ∈ N and PM ∈ N , we also have PA ∈ N . But N ∩ A = {0}, therefore PA = 0 and
P = PM . �
3. Preliminaries on abelian varieties

Let A be an abelian variety defined over a number field K and let L be an extension of K . We write
EndL(A) for the ring of endomorphisms of A which are defined over L. Let D := EndK (A) ⊗Z Q. Then
D is a finite dimensional Q-algebra and EndK (A) is an order in D . If A is K -simple, then EndK (A)

does not contain any zero divisors and D is a division algebra.
The group A(K̄ ) is a divisible Z-module [11, Theorem 7.2]. If A is K -simple, then A(K̄ ) is also a

divisible EndK (A)-module: this is because every non-zero element of EndK (A) is an isogeny and thus
it divides the multiplication by some non-zero integer.

Definition 3.1. We say that a point in A(K ) of infinite order is independent if it generates a free
EndK (A)-module or, equivalently, a free EndK̄ (A)-module. This is also equivalent to the fact that ZR
is Zariski-dense in A. See [12, Section 2]. We say that finitely many points {P1, . . . , Pn} on n abelian
varieties A1, . . . , An are independent if the point (P1, . . . , Pn) in

∏n
i=1 Ai(K ) is independent.

Proposition 3.2. Let K be a number field and fix an algebraic closure K̄ of K . Let F ⊆ K̄ be a finite extension
of K . Then there exists an extension E ⊆ K̄ of K such that E ∩ F = K and such that, for every abelian variety
A/K of positive dimension, A(E) has infinite rank.

Proof. Without loss of generality, we may assume that F/K is Galois. Let {σ1, . . . , σe} be generators
of Gal(F/K ). We can equip Gal(K̄/K ) with the normalized Haar measure and consider the product
measure on Gal(K̄/K )e . By translation invariance, the set of all lifts of (σ1, . . . , σe) in Gal(K̄/K )e has
the same measure as the set of lifts of (id, . . . , id). Therefore, the set of lifts of (σ1, . . . , σe) has positive
measure [F : K ]−e [3, Lemma 1.1]. So by [3, Theorem 9.1] there exists a lift (τ1, . . . , τe) of (σ1, . . . , σe)

in Gal(K̄/K )e such that the following holds: for all abelian varieties A/K of positive dimension, the
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rank of A(E) is infinite, where E is the subfield of K̄ fixed by {τ1, . . . , τe}. Every element of F ∩ E
must be fixed by {σ1, . . . , σe}, therefore E ∩ F = K . �

Every simple abelian variety is isogenous to a simple abelian variety whose endomorphism ring is
a maximal order in a division algebra:

Proposition 3.3. Let A be an abelian variety defined over a number field K and assume that A is K -simple.
Let R := EndK (A) and D := R ⊗Z Q. Let Λ be a maximal order in D. There exists an abelian variety B defined
over K which is K -isogenous to A and such that EndK (B) � Λ.

Proof. Since R and Λ are full-rank lattices in the same Q-vector space, we can take an n ∈ Z \ {0}
such that nΛ ⊆ R . Define


 := nΛ and H := {
T ∈ A(K̄ )

∣∣ 
 · T = 0
}
.

Since H is contained in A[n], it is a finite group. Consider the quotient abelian variety B := A/H .
Since the endomorphisms in 
 ⊆ R are defined over K , it follows that H is stable under Gal(K̄/K ).
Therefore, B and the projection isogeny π : A → B are defined over K .

Now we prove that the endomorphism ring of B is Λ. Since A and B are K -isogenous, they have
the same K -endomorphism algebra; hence, EndK (B) is an order in D . Since A(K̄ ) is divisible, we
can write every point P in B(K̄ ) as P = π(nP̂ ) for some P̂ ∈ A(K̄ ). Let α be in Λ and remark that
αn = nα belongs to R . Thus we can define

αP = π
(
(αn) P̂

)
.

This definition does not depend on the choice of P̂ . Indeed, let P = π(nP̂ ′). Then the difference
n( P̂ − P̂ ′) is in H because π maps it to 0. This implies 
n( P̂ − P̂ ′) = 0. Since 
 is a right Λ-module,
we have 
αn ⊆ 
n and so 
αn( P̂ − P̂ ′) = 0. This means that π((αn) P̂ ) = π((αn) P̂ ′).

It is clear that α is an endomorphism and that the above map Λ → EndK (B) is an injection of
rings. Since Λ is a maximal order, this must be an isomorphism. �
4. The condition of the support problem

Let A be an abelian variety defined over a number field K and let P and Q be points in A(K ). The
support problem asks whether there exists a K -endomorphism of A which maps P to Q , provided
that the following condition is satisfied:

Condition (SP). For all but finitely many primes p of K , the order of (Q mod p) divides the order of
(P mod p).

We reformulate the condition of the support problem by using EndK (A)-modules instead of points
on A(K ). Let Q be a point in A(K ) and let M be an EndK (A)-submodule of A(K ). The condition of
the support problem for modules is the following:

Condition (SPM). For all but finitely many primes p of K , the order of (Q mod p) divides the exponent
of (M mod p).

The question now is whether Q belongs to M. For free modules, we have the analogue of
[13, Proposition 9]:

Theorem 4.1. Let A be an abelian variety defined over a number field K . Let F be a free EndK (A)-submodule
of A(K ) and let Q ∈ A(K ). If Q and F satisfy Condition (SPM), then Q ∈F .
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Proof. Let {P1, . . . , Pn} be a basis of F and consider P ′ = (P1, . . . , Pn) ∈ An(K ). Since F is a free
module, the point P ′ is independent in An . Then we can apply [13, Proposition 9] to the points
P ′ = (P1, . . . , Pn) and Q ′ = (Q ,0, . . . ,0) in An(K ). We find Q ′ = φ(P ′) for some φ ∈ EndK (An), which
implies Q ∈F . �

It is important to note that Conditions (SP) and (SPM) do not depend on the field: if the condition
is satisfied over a field K , it is also satisfied over any finite extension.

In this paper, coherently to the other references on the support problem, we consider Condi-
tions (SP) and (SPM) for all but finitely many primes p of K . However, it is possible to require the
conditions only for a set of primes p of K of Dirichlet density 1. The same results hold as soon as the
proofs are based on the Cebotarev Density Theorem. For example, one has:

Theorem 4.2. (See [13, Corollary 8 and Proposition 9].) Let A and A′ be products of an abelian variety and a
torus defined over a number field K . Let R be a point in A(K ) and let R ′ be a point in A′(K ). Let � be a rational
prime and let S be a set of primes of K of Dirichlet density 1. Suppose that for every p ∈ S we have

ord�(R mod p) � ord�

(
R ′ mod p

)
.

Then there exist φ ∈ HomK (A, A′) and a non-zero integer c such that φ(R) = cR ′ . If ZR is Zariski-dense in A,
one can take c coprime to �.

Corollary 4.3. Let A be the product of an abelian variety and a torus defined over a number field K . Let R be a
point in A(K ) such that ZR is Zariski-dense in A. Let S be a set of primes of K of Dirichlet density 1.

1. The sequence

{
ord(R mod p)

}
p∈S

determines the K -isomorphism class of A and determines R up to K -isomorphism.
2. Let � be a prime number and write ord� for the �-adic valuation of the order. The sequence

{
ord�(R mod p)

}
p∈S

determines the K -isogeny class of A.

Proof. Let A′ be the product of an abelian variety and a torus defined over K and let R ′ be a point in
A′(K ) such that ZR ′ is Zariski-dense in A′ . Suppose that ord�(R mod p) = ord�(R ′ mod p) for ev-
ery p ∈ S . Then by Theorem 4.2 there exist an integer c coprime to � and a K -homomorphism
φ from A to A′ mapping R to cR ′ and analogously there exist an integer c′ coprime to � and a
K -homomorphism φ′ from A′ to A mapping R ′ to c′R . Then φ′ ◦ φ maps R to c′cR . Since ZR is
Zariski-dense in A, we deduce φ′ ◦ φ = [c′c]. In particular, φ is an isogeny of degree coprime to �.
Now suppose that ord(R mod p) = ord(R ′ mod p) for every p ∈ S . Then we can take c = c′ = 1 (con-
sider a suitable finite linear combination of the isogenies obtained for each prime �). Thus φ is a
K -isomorphism mapping R to R ′ . �
5. Positive results for the constant of the support problem

In this section, we prove that Question 1.1 has an affirmative answer provided that the abelian
variety is of the following type: it is the product of powers of simple abelian varieties, which are in
pairs non-isogenous and whose endomorphism rings are maximal orders in division algebras.

We start with the torsion-free case.
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Theorem 5.1. Let A1, . . . , An be abelian varieties defined over a number field K and let A := A1 × · · · × An.
Suppose that all Ai are K -simple and that HomK (Ai, A j) = {0} whenever i �= j. Assume that every EndK (Ai)

is a maximal order. Let M be an EndK (A)-submodule of A(K ) and let Q ∈ A(K ). If Q and M satisfy Condi-
tion (SPM) and M is torsion-free, then Q ∈M.

Proof. Let R := EndK (A). The assumptions on A imply that R � EndK (A1) × · · · × EndK (An). Define
Mi as the projection of M onto the factor Ai(K ). So Mi is an EndK (Ai)-module and we have

M = M1 × · · · ×Mn.

Let N :=M+ R Q . Analogously, we can write N =N1 × · · · ×Nn .
Since every EndK̄ (Ai) is a finitely generated group, there exists a finite extension F of K such that

EndK̄ (Ai) = EndF (Ai) for all i. We apply Proposition 3.2 to find a field E ⊆ K̄ such that E ∩ F = K and
such that every Ai(E) has infinite rank as a Z-module. Clearly, EndE(Ai) = EndK (Ai) for all i. Recall
that every non-zero element of EndK (Ai) divides a non-zero integer. Then, by applying Lemma 2.2, it
easily follows that Ai(E) contains a free EndK (Ai)-module of infinite rank.

The modules M and N are finitely generated since A(K ) is finitely generated. By assumption M
is torsion-free; we now prove that N is torsion-free. Let e be the exponent of Ntor and suppose e > 1.
For all i = 1, . . . ,n, Theorem 2.5 (with G := Ai(E) and R := EndK (Ai)) shows that Mi is contained
in a finitely generated free EndK (Ai)-module Fi ⊆ Ai(E). For every i, let {Fi1, . . . , Firi } be a basis
for Fi . Let L ⊆ E be a finite extension of K where all points Fij are defined. Since the points {Fij}
are independent, by [12, Proposition 12] there exists a positive density of primes p of L such that for
every i and j the order of (Fij mod p) is coprime to e. Hence, the exponent of (M mod p) is coprime
to e. After removing finitely many primes p we may assume that ord(Q mod p) | exp(M mod p) and
also that exp(Ntor mod p) = e. It follows that the exponent of (N mod p) is coprime to e. We have a
contradiction: the exponent of (N mod p) is a multiple of e, but it is also coprime to e.

We can apply Theorem 2.5 on Mi ⊆ Ni , for every i = 1, . . . ,n. We find that Mi is contained in a
finitely generated free EndK (Ai)-module Fi ⊆ Ai(E) such that Fi ∩Ni = Mi . These free modules Fi
can be chosen of arbitrarily large rank, so choose them such that their ranks are all equal to some
r > 0. Then F :=F1 ×· · ·×Fn is a free R-module of rank r such that F∩N =M. Let L ⊆ E be a finite
extension of K such that all points of F are defined over L. Since Q and F satisfy Condition (SPM)
and F is free over EndL(A) = R , Theorem 4.1 implies that Q ∈F . Thus Q ∈F ∩N =M. �
Corollary 5.2. Let A be an abelian variety defined over a number field K . Suppose that A = ∏n

i=1 Aei
i is the

product of powers of K -simple abelian varieties, which are in pairs non-K -isogenous. Suppose that EndK (Ai)

is a maximal order for every i = 1, . . . ,n. Let P and Q be points in A(K ) satisfying Condition (SP). Suppose
that the EndK (A)-module generated by P is torsion-free. Then there exists φ in EndK (A) such that φ(P ) = Q .

Proof. Let Ā = A1 × · · · × An and M̄ = HomK (A, Ā) · P . The assumption on P implies that M̄ is a
torsion-free EndK ( Ā)-module. Notice that the identity of EndK (A) can be written as β1α1 +· · ·+βmαm
for some m ∈ N, where αi ∈ HomK (A, Ā) and βi ∈ HomK ( Ā, A).

Let σ be any element of HomK (A, Ā) and let Q̄ := σ Q . If p is a prime of K , we have
ord(Q̄ mod p) | ord(Q mod p) and ord(βiαi P mod p) | ord(αi P mod p) for every i = 1, . . . ,m. We de-
duce that ord(P mod p) | exp(M̄ mod p) and then that Q̄ and M̄ satisfy Condition (SPM). By applying
Theorem 5.1, we get that Q̄ ∈ M̄.

Since σ was chosen freely, for every i = 1, . . . ,m there exists ψi ∈ Hom(A, Ā) such that αi Q = ψi P .
Thus Q = ∑

i βiαi Q = (
∑

i βiψi)(P ). �
We now turn our attention from torsion-free EndK (A)-modules to the general case. Consider the

following property:

Definition 5.3. Let R be a ring and let M be an R-module with a finite number of elements. We
call M semi-cyclic if the following property is satisfied: for any two elements T1 and T2 in M with
ord(T1) | ord(T2), we must have that T1 = φT2 for some φ ∈ R .
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This notion of semi-cyclic is “in between” the notions of cyclic group and cyclic module. Indeed,
an R-module whose additive group is cyclic, is obviously semi-cyclic. On the other hand, a finite
semi-cyclic R-module is generated (as R-module) by any element of largest order.

Let A be an abelian variety defined over a number field K . Whenever the torsion part of A(K ) is
not a semi-cyclic EndK (A)-module, the constant of the support problem is greater than 1 (take P and
Q independent torsion points of the same order).

Corollary 5.4. Let A be as in Corollary 5.2. Let c ∈ N be such that c · A(K )tor is a semi-cyclic EndK (A)-
module. Let P and Q be points in A(K ) satisfying Condition (SP). Then there exists φ in EndK (A) such that
Q = φ(P ) + T for some T ∈ A(K )[c].

Proof. Let M be the EndK (A)-module generated by P and let e be the exponent of the torsion part
of M. By applying Corollary 5.2 to e P and e Q , we find φ(e P ) = e Q for some φ in EndK (A).

Let T := Q −φP , then ord(T ) | e. Let Te be a torsion point in M of order e and write Te = τ P . The
fact that c A(K )tor is semi-cyclic implies that cT = ψcTe for some ψ ∈ EndK (A). Now we can write
Q = (φ + ψτ)P + (T − ψTe) with c(T − ψTe) = 0. �

This corollary has two important special cases. Firstly, if A(K )tor is semi-cyclic then we can take
c = 1 and we find that Q = φ(P ) for some φ ∈ EndK (A). Secondly, since the zero module is semi-
cyclic, we can always take c to be the exponent of A(K )tor. Then we have Q = φ(P ) + T for some
T ∈ A(K )tor and φ ∈ EndK (A).

The question whether or not (SP) implies Q = φ(P )+ T for some torsion point T in A(K ) has been
investigated by Larsen and Schoof in [8] and [9]. They showed in [9] that this is not true in general.
However in [8, Proposition 4.3 and Theorem 5.2] Larsen proved that the above property holds for at
least one variety in every K -isogeny class (whenever all Tate modules of A are integrally semi-simple
[8, Definition 4.1]). This also follows from our results: by the Poincaré Reducibility Theorem and by
Proposition 3.3, in every K -isogeny class there is at least one variety satisfying the hypothesis of
Corollary 5.2.

6. Refined counterexamples to the support problem

6.1. First counterexample

We construct a counterexample to Question 1.1. The abelian variety in this counterexample is the
square of an absolutely simple abelian variety whose endomorphism ring is not a maximal order.

Let ζ7 be a primitive seventh root of unity and consider τ := ζ7 + ζ−1
7 . The ring R := Z[2τ ,2τ 2] is

a non-maximal order in Q(τ ). Let m := (2,2τ ,2τ 2), a maximal ideal in R with residue field F2.
In Appendix A, we constructed an abelian variety A defined over a number field K satisfying the

following properties: it is absolutely simple, it has dimension 6, EndK̄ (A) = R and A[2] � (R/2R)2 ×
(R/m)6 as R-modules.

Enlarge K if necessary such that the 2-torsion points on A are K -rational, such that all en-
domorphisms of A are defined over K and such that A(K ) contains a point of infinite order. Let
L1, . . . , L8 ∈ A[2] be such that

A[2] = (R/2R)L1 ⊕ (R/2R)L2 ⊕ (R/m)L3 ⊕ · · · ⊕ (R/m)L8.

In the ring R/2R , all elements apart from 0 and 1 have m as annihilator. This implies the following
crucial fact:

Observation 6.1. Every point of A[2] has as annihilator inside EndK (A) either (1), (2) or m =
(2,2τ ,2τ 2).
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A result by Bogomolov [1, Corollaire 1] tells us that the image of the 2-adic representation of A
contains an open subset of the homotheties of the Tate module T2 A. In particular, there exist an
integer t � 2 and an element of the Galois group which fixes every point in A[2t] and does not fix
any point of A order 2t+1. Then, after extending K , we may assume that all the 2t -torsion points of A
are K -rational but no point of order 2t+1 is K -rational. For i ∈ {1, . . . ,8}, choose Ti in A(K ) such that
2t−1Ti = Li . In particular, Ti has order 2t .

Let S be a point of infinite order on A(K ). Let G := A × A and consider the following points in
G(K ):

P = (2S + T1,2τ S + T2) and Q = (
2τ 2 S + T3,0

)
.

We claim that the points P and Q satisfy Condition (SP) for every prime p of good reduction
for A, not over 2. By [4, Theorem C.1.4], the reduction modulo p gives an isomorphism from A[2t] to
(A mod p)[2t]. If n is the order of (P mod p), we have

2nS + nT1 ≡ 0 (mod p) and 2τnS + nT2 ≡ 0 (mod p). (1)

It follows that (2τnT1 mod p) = (2nT2 mod p). Then we have 2τnT1 = 2nT2. This is only possible if
2τnT1 = 2nT2 = 0. Since Ann(L1) = (2), we have Ann(T1) = (2t); hence n is a multiple of 2t .

From (1) we deduce that (nS mod p) equals (U mod p) for a point U in A[2]. Since nT3 = 0, to
prove that (nQ mod p) = 0, it suffices to show that 2τ 2U = 0. By (1), we know that (2τnS mod p) = 0.
Therefore 2τ U = 0. Because of Observation 6.1, this implies 2τ 2U = 0.

Suppose that c is an integer such that φ(P ) = c Q for some φ in EndK (A). We now prove that
c must be a multiple of 2t+1. Because A(K ) has no torsion point of order 2t+1, this will give a
counterexample to Question 1.1.

Since φ(P ) = c Q , there exist φ1, φ2 ∈ EndK (A) such that

φ1(2S + T1) + φ2(2τ S + T2) = 2τ 2cS + cT3. (2)

After rearranging the terms:

(
2τ 2c − 2φ1 − 2τφ2

)
S = φ1T1 + φ2T2 − cT3. (3)

Since S has infinite order and the points T1, T2, T3 are independent over R/2t R , (3) implies

2τ 2c − 2φ1 − 2τφ2 = 0; φ1T1 = φ2T2 = cT3 = 0. (4)

Since Ann(T1) = Ann(T2) = (2t) and T3 has order 2t , we can divide φ1, φ2 and c by 2t . So there
exist φ′

1 and φ′
2 in EndK (A) and an integer c′ such that φ1 = 2tφ′

1, φ2 = 2tφ′
2 and c = 2tc′ . Then (4)

implies

2τ 2c′ − 2φ′
1 − 2τφ′

2 = 0.

An odd multiple of 2τ 2 is not contained in the ideal (2,2τ ). Therefore, c′ is even and c is divisible
by 2t+1.

6.2. Second counterexample

We construct a different counterexample for Question 1.1. Only after a finite extension of the base
field, the abelian variety of this counterexample is isomorphic to the power of an elliptic curve whose
endomorphism ring is a maximal order. The two given points lie on a proper abelian subvariety and
one point is the image of the other by an isomorphism of the subvariety.
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Consider the following elliptic curves over Q:

A: y2 = x3 + 40,

B: y2 = x3 + 5.

Both A and B have complex multiplication over the field Q(ζ3), where ζ3 corresponds to the map
x �→ ζ3x; y �→ y. This means that EndQ̄(A) � EndQ̄(B) � Z[ζ3], the maximal order in Q(ζ3). The two

curves are isomorphic over Q(
√

2) (from B to A, consider θ : x �→ 2x; y �→ 2
√

2y). However, the two
curves are not isogenous over Q. Suppose there is an isogeny α ∈ HomQ(A, B). Then θ ◦ α is an
endomorphism of A defined over Q(

√
2). Since End

Q(
√

2)
(A) = EndQ(A) and α is defined over Q, it

would follow that θ is also defined over Q.
The map θ induces an isomorphism of Galois modules from B[2] to A[2]. Thus the group

H := {
(θT , T ) ∈ (

A(K̄ ), B(K̄ )
) ∣∣ T ∈ B[2]}

is Gal(Q̄/Q)-stable. It follows that the abelian variety

G = (
(A×B)/H

) × B

is defined over Q. We claim that G[2](Q) is zero. Since B has no torsion over Q, it suffices to show
that (A × B)/H has no 2-torsion over Q. Over Q(

√
2), we have

(A × B)/H = (A × B)/
{
(θT , T )

} � (B × B)/
{
(T , T )

}

� (B × B)/
{
(T ,0)

} � B/B[2] × B � B × B.

Since B[2](Q(
√

2)) = {0}, it follows that (A × B)/H has no 2-torsion over Q.
The point R = (−1,2) in B(Q) has infinite order. Define the following points in G(Q):

P = ([
(0, R)

]
,0

); Q = ([
(0,0)

]
, R

)
.

The two points belong to the abelian subvariety ({0}×B)/H × B � B × B . The isomorphism which
switches the two factors maps P to Q . In particular, the points P and Q satisfy Condition (SP).

We now prove that the above points provide a counterexample to Question 1.1. Since G[2](Q) is
zero, it suffices to show that if φ(P ) = c Q for some φ in EndQ(G) and c ∈ Z, then c must be even.

Let Φ be the composition

A × B
π−→ (A × B)/H

ι
↪→ G

φ−→ G
πB−→ B

where π is the quotient map, ι is the inclusion and πB is the projection of G onto its direct factor B .
Having Φ : A × B → B is equivalent to having ΦA in HomQ(A, B) and ΦB in EndQ(B). We know

that ΦA is zero since A and B are not Q-isogenous. Since φ(P ) = c Q , we deduce that ΦB(R) = cR;
hence ΦB is the multiplication by c. Let (θT , T ) be a non-zero element of H . Notice that the order
of θT equals the order of T . If c is odd, we have a contradiction:

0 = ΦA(θT ) = Φ(θT ,0) = Φ(0,−T ) = ΦB(−T ) = −cT �= 0.
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6.3. The support problem for tori

Let G be a torus defined over a number field K and let P and Q be points in G(K ) satisfying
Condition (SP). The support problem asks whether there exists a K -endomorphism of G mapping P
to Q .

If G is one-dimensional then φ(P ) = Q for some φ in EndK (G), as follows from a result by Khare
[5, Proposition 3]. The second author proved in [13, Proposition 12] that if G is split then φ(P ) = Q
for some φ in EndK (G). Furthermore, she proved that in general φ(P ) = dQ for some φ in EndK (G),
where d is the degree of the smallest Galois extension of K splitting the torus [13, Lemma 2 and
Proposition 12]. We now answer in the negative the question of the support problem for tori.

Let T be any torus satisfying the following property: the intersection Ta ∩ Td of the maximal
anisotropic subtorus with the maximal split subtorus is non-trivial (this intersection is always finite,
see [2, Chapter III, Section 8.15, Proposition]). Let R be a point in Td(K ) which is independent: this
amounts to choosing some multiplicatively independent elements in K ∗ . Then a counterexample is
given by:

G = T × Td; P = (R,0); Q = (0, R).

It is clear that the points P and Q satisfy Condition (SP). By [13, Main Theorem], we have φ(P ) = c Q
for some minimal positive integer c and for some φ in EndK (G). Let Φ be the composition

T
ι

↪→ G
φ−→ G

π−→ Td

where ι is the inclusion and π is the projection of G onto Td . Since Φ(R) = cR and R is inde-
pendent in Td , the restriction of Φ to Td is the multiplication by c. Because HomK (Ta, Td) is zero
[2, Chapter III, Section 8.15, Proposition], the restriction of Φ to Ta is zero. We deduce that the points
in (Ta ∩ Td)(K̄ ) are killed by the multiplication by c. So c must be a multiple of the exponent of the
group (Ta ∩ Td)(K̄ ) and in particular it is not 1.

Since c divides the degree of the smallest Galois extension of K splitting the torus [13, Lemma 2
and Proposition 12], we also provided an alternative proof of the following: for every torus T de-
fined over a number field K , the exponent of (Ta ∩ Td)(K̄ ) divides the degree of the smallest Galois
extension of K where T splits.
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Appendix A

In this appendix, we construct an abelian variety for the counterexample in Section 6.1.
Let ζ7 be a primitive seventh root of unity and consider τ := ζ7 + ζ−1

7 . The minimal polynomial
of τ is x3 + x2 − 2x − 1. The number field Q(τ ) is totally real and Galois with ring of integers Z[τ ].
The ring R := Z[2τ ,2τ 2] is a non-maximal order in Q(τ ). Let m := (2,2τ ,2τ 2) be a maximal ideal
in R with residue field F2.

Theorem A.1. There exist a number field K and an abelian variety A defined over K which is absolutely simple
of dimension 6, with EndK̄ (A) = R and such that A[2] � (R/2R)2 × (R/m)6 as R-modules.

The outline of the construction is the following: We define a lattice Λ in C6, by which we mean a
discrete subgroup of C6 of rank 12. We show that the complex torus A := C6/Λ is an abelian variety
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by exhibiting a positive definite hermitian form on C6 whose imaginary part takes integer values on
Λ × Λ. We check that EndC(A) is R and that A[2] � (R/2R)2 × (R/m)6 as R-modules. We conclude
by applying a result on the specialization of abelian varieties.

Proof of Theorem A.1. Consider the following matrices, where 03 denotes the zero matrix of dimen-
sion 3 by 3:

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1
1 0 2 03
0 1 −1

0 0 1
03 1 0 2

0 1 −1

⎞
⎟⎟⎟⎟⎟⎠

; X =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 2
−1 2 −2 03
2 −2 5

2 −1 2
03 −1 2 −2

2 −2 5

⎞
⎟⎟⎟⎟⎟⎠

.

These matrices satisfy X M = MT X . The minimal polynomial of M is x3 + x2 −2x−1. This implies that
Z[M] = {a0I6 + a1M + a2M2 | a0,a1,a2 ∈ Z} is a commutative integral domain isomorphic to Z[τ ]. The
characteristic polynomial of X is (x − 1)4(x − 7)2 so in particular X is positive definite.

For i = 1, . . . ,6 we call ei the column vector that has only one non-zero entry, located at the i-th
row and of value 1. Notice that we have

e2 = Me1; e3 = M2e1; e5 = Me4; e6 = M2e4.

Let α1, . . . ,α9 be real numbers such that {1,α1, . . . ,α9} is a Q-linearly independent set. Let ω be a
positive real number such that ω2 is not equal to f (α1, . . . ,α9) for any polynomial f ∈ Q[x1, . . . , x9]
of degree at most 2. Write

r =

⎛
⎜⎜⎜⎜⎜⎝

α1
α2
α3
α4
α5
α6

⎞
⎟⎟⎟⎟⎟⎠

; s =

⎛
⎜⎜⎜⎜⎜⎝

α4
α5
α6
α7
α8
α9

⎞
⎟⎟⎟⎟⎟⎠

and define

e7 = r + (ωi)e1; e10 = s + (ωi)e4;
e8 = 2Me7 = 2Mr + (2ωi)e2; e11 = 2Me10 = 2Ms + (2ωi)e5;
e9 = 2M2e7 = 2M2r + (2ωi)e3; e12 = 2M2e10 = 2M2s + (2ωi)e6.

By the choice of the αi ’s and of ω, the vectors e1, . . . ,e12 are R-linearly independent. We define
Λ to be the Z-span of {e1, . . . ,e12} inside C6.

Consider the following positive definite hermitian form on C6:

H(x,y) = (
x̄T Xy

)
ω−1.

Let E be the imaginary part of H , which is an R-bilinear alternating form on C6. Since X M = MT X ,
we have E(Mx,y) = E(x, My). Using this property, one can easily check that E(x,y) ∈ Z for all x and y
in Λ. Thus the complex torus A := C6/Λ is an abelian variety of dimension 6 [11, Corollary, p. 35].

We can write Λ = Z6 + ΩZ6, where Ω = (e7|e8|e9|e10|e11|e12). The imaginary part of Ω is

�(Ω) = (e1|2e2|2e3|e4|2e5|2e6)ω.

The real part �(Ω) is a matrix whose entries are linear combinations of the αi ’s.
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The C-endomorphisms of A are the C-linear maps σ : C6 → C6 such that σ(Λ) ⊆ Λ. Let S be a
6 × 6 matrix over C defining an endomorphism. We first show that S has integer coefficients, and
then that it belongs to Z[2M,2M2].

Since S maps e1, . . . ,e6 into Λ, there exist two 6 × 6 matrices A1 and A2 with coefficients in Z

such that S = A1 +Ω A2. Similarly, e7, . . . ,e12 get mapped into Λ so we have integer matrices B1 and
B2 such that SΩ = B1 + ΩB2. By equating the two ways of writing SΩ , we get

Ω A2Ω + (A1Ω − Ω B2) − B1 = 0.

Taking the real part of the above equation yields:

�(Ω)A2�(Ω) + (
A1�(Ω) − �(Ω)B2

) − B1

= �(Ω)A2�(Ω)

= (e1|2e2|2e3|e4|2e5|2e6)A2(e1|2e2|2e3|e4|2e5|2e6)ω
2.

The assumption on ω2 then implies that A2 = 0. Hence S is a matrix with integer coefficients.
Since S maps e7 into Λ, there exist c1, . . . , c12 ∈ Z such that Se7 = ∑12

i=1 ciei . Define

C1 := c1I6 + c2M + c3M2; C4 := c4I6 + c5M + c6M2;
C7 := c7I6 + 2c8M + 2c9M2; C10 := c10I6 + 2c11M + 2c12M2.

Then we have

Se7 = C1e1 + C4e4 + C7e7 + C10e10.

The entries of �(Se7) and of �(C7e7 + C10e10) are linear combinations of α1, . . . ,α9. Thus the
entries of (C1e1 + C4e4), which are integers, must be all zero. So we have �((S − C7)e7) = �(C10e10).
By looking at the sixth entry, we get that a linear combination of α1, . . . ,α6 is equal to

2c12α7 + (2c11 − 2c12)α8 + (c10 + 2c11 + 6c12)α9.

By the independence of the αi ’s, we deduce that c10 = c11 = c12 = 0; hence C10 = 0. So we have
Se7 = C7e7. Again by the independence of the αi ’s, we deduce that S = C7. This means that S belongs
to Z[2M,2M2].

It can easily be checked that every element in Z[2M,2M2] defines an endomorphism of A. Since
Z[2M,2M2] � Z[2τ ,2τ 2] as rings, we conclude that EndC(A) = R .

We now study the action of EndC(A) on A[2]. Define Ti := ei/2 + Λ for all i = 1, . . . ,12. Since
A[2] = ( 1

2 Λ)/Λ, it is clear that

A[2] �
12⊕

i=1

(Z/2Z)Ti .

For all i = 1, . . . ,6, we have 2MTi = 0 and also 2M2Ti = 0. It follows that (Z/2Z)Ti is an R-module
isomorphic to R/m. On the other hand, we have 2MT7 = T8 and 2M2T7 = T9. This implies that⊕9

i=7(Z/2Z)Ti is an R-module isomorphic to R/2R . Similarly for
⊕12

i=10(Z/2Z)Ti .
Let F = Q(z1, . . . , zs) be a finitely generated subfield of C such that A is defined over F , all

2-torsion points of A are F -rational and EndF (A) = EndC(A). Call k the relative algebraic closure
of Q in F , which is a number field. Choose an affine variety V over k whose function field is F . We
can specialize A with respect to the k̄-points of V . After replacing V by an open affine subvariety,
we may assume that the specialization is injective on the finite set A[2] and that the dimension of
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the specialized variety is dimCA= 6. By [10, Theorem, Section 1] there exists a specialization A of A
which is an abelian variety over a number field K ⊇ k such that EndK̄ (A) = EndC(A) = R . Since A[2]
is mapped injectively into A[2], they are isomorphic as R-modules. Finally, A is absolutely simple by
the Poincaré Reducibility Theorem because R has no zero divisors. �
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