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1. Introduction
1.1. Moments of the Riemann zeta function

There has been a long-standing interest in the mean values of families of L-functions.
In the case of the Riemann zeta function, the goal is to determine of the asymptotic

e = [[e(3a)
/

as T'— oo. Hardy and Littlewood [24] established in 1918 that

behaviour of

2k
dt, (1.1)

M(T) ~TlogT, (1.2)

and in 1926 Ingham [26] showed that

1
Ms(T) ~ ﬁTlog‘l T. (1.3)



104 J.C. Andrade, J.P. Keating / Journal of Number Theory 142 (2014) 102-148

For other values of k the problem is still open. It is believed that for a given k

My(T) ~ CpT(log T)*’, (1.4)
for a positive constant C%. Conrey and Ghosh [17] presented (1.4) in a more explicit
form, in which

AL gk

Ck - F(kQ + 1))

(1.5)

where

e IO 5

p prime m2>=0

and g should be an integer. The classical results of Hardy-Littlewood and Ingham
imply that g1 = 1 and g2 = 2. Based on an analogy with the characteristic polynomials
of random matrices, Keating and Snaith [31] conjectured a precise value for C} for
R(k) > —3.

Conjecture 1 (Keating-Snaith). For k fized and R(k) > —1,

wim= [[e(3+4)]”

as T — oo, where ay is the arithmetic factor given by (1.6) and the random matriz

Ak gk

(k2)!T(1ogT)k2, (1.7)

dt ~

theory factor gi is given by

I(k* +1) o, G2(1 + k)
— |- 7
9k Nhféo - ONKE / [4a(e” = (k )'G(l +2k)’ (1.8)

where A is the characteristic polynomial of a unitary N X N matriz A, dA denotes the
Haar measure on U(N), and G(z) denotes the Barnes G-function [5].

Remark 1. For £ € N

1l
() G(1+2k H F (1.9)

is an integer.

The separation into arithmetic and random matrix factors, a; and gi respectively,
in (1.5) is explained by a hybrid product formula for ((s) that includes both the primes
and the zeros [23].
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1.2. Mean values of L-functions

For the family of quadratic Dirichlet L-functions L(s, x4), with x4 a real primitive
Dirichlet character modulo d given by the Kronecker symbol x4(n) = (%), the goal is to
determine the asymptotic behaviour of

> L(%,Xd)k (1.10)

0<d<D

as D — oo. Jutila [27] proved in 1981 that

> L(%,Xd> = %D{log(%) + %G) +47—1+4%(1)}

0<d<D
+0(D34+2) (1.11)
where
ro= 11 (1 G o
p prime
and
1\ e
2 L (5»@) = 73y D108’ D+ O(D(log D)*/**?) (1.13)
0<d<D
with
1 4p* -3 1
= 110550 o

Restricting d to be odd, square-free and positive, so that ysq are real, primitive characters
with conductor 84 and with ygq(—1) = 1, Soundararajan [36] proved that

1 Z (L 3
D+ 2,X8d

0<d<D

1 H ) 12p° — 23p* +23p% — 15p% +6p — 1
184320 PP(p+1)

p=3

)(ng)ﬁ, (1.15)

where the sum " runs over the restricted set, and D* is the number of such d in (0, D).
For other values of k£ the problem is still open.

Extending their approach to the zeta-function moments, Keating and Snaith [32] put
forward the following conjecture for the mean value of quadratic Dirichlet L-functions.
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Conjecture 2 (Keating—Snaith). For k fized with R(k) > 0, as D — o0

k
- 3 n(goa) ~ans- e B Do Dyt (1)

* ~ ak7
De L \2 PVGRE+1)I(2k +1)

where

B (1- l)k(k+1)/2 (1— L)—k +(1+ L)—k 1
ar,sp =22 T ( Ve 5 L —) (1.17)
p=3 p p

and G(z) is Barnes’ G-function.

This conjecture is also in agreement with previous results from Jutila (Egs. (1.11)
and (1.13)), Soundararajan (1.15) and with the conjectures given by Conrey and Farmer
n [12]. The separation into arithmetical and random matrix factors is again explained
by a hybrid product formula [11].

1.8. Integral moments of L-functions

Conrey, Farmer, Keating, Rubinstein and Snaith [14,15] developed a “recipe”, making
use of heuristic arguments, for a sharpened form of Conjectures 1 and 2 for integral k.
Specifically, they gave conjectures beyond the leading order asymptotics to include all
the principal lower order terms. For example, their conjecture for quadratic Dirichlet
L-functions (see [14]) takes the following form.

Conjecture 3 (Conrey, Farmer, Keating, Rubinstein, Snaith). Let X4(s) =|d|"/?*7*X (s, a)
wherea =0 ifd>0anda=1ifd <0, and

X(s,0) = ws—1/2r<$>/r(s‘£“>. (1.18)

That is, Xq(s) is the factor in the functional equation for the quadratic Dirichlet
L-function

L(s,xa) = €aXa(s)L(1 — s, xd)- (1.19)

Summing over fundamental discriminants d

k
> L(%,Xd) =" Qx(logld]) (1 +o(1)) (1.20)
d

d

where Qy, is the polynomial of degree k(k + 1)/2 given by the k-fold residue
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(—1)k=1)/29k G(z1,. .. zk VA2, ..., 22)?
Q@) = k! (2mi)k 2k—1
J 1%5

X e5 i % dyy L dag, (1.21)

with

Nf=

k _
Gz, 2k) = Ak(z1, -0 2k H (—i—z],) H C+2z+2), (1.22)

1<i<j<k

A(z1,...,2) the Vandermonde determinant given by

Az,.nm) = ] (- =), (1.23)

1<i<j<k

and Ay, is the Buler product, absolutely convergent for |R(z;)| < 3, defined by

An(ar,-zm) =11 11 ( ﬁ)

p 1<i<i<k
k -1 k —1
A=) 10 =) )=
x| = 1—-— + 1+ + -

x <1+%)_1. (1.24)

Remark 2. Conjecture 3 was originally stated with error term O(|d|_1/2"’5)7 but it appears
there are extraneous lower order terms, as firstly pointed out by Diaconu, Goldfeld
and Hoffstein [21], with the remainder term being larger for k > 3. This is supported
numerically by the computations of Alderson and Rubinstein [1]. We have therefore
limited ourselves to restating it with an error that is simply o(1).

Conjecture 3 is closely analogous to exact formulae for the moments of the character-
istic polynomials of random matrices [14,13]. By different methods (Multiple Dirichlet
Series Techniques) Diaconu, Goldfeld and Hoffstein also have obtained a conjectural
formula for the moments of quadratic Dirichlet L-functions.

Recently Bui and Heath-Brown [10] showed that for ¢, T > 2

5 [ = (1020 ) ST s

+O(qT(log qT)"/?), (1.25)

X mod ¢ |

where the sum is over all primitive Dirichlet character y modulo ¢, w(g) is the number
of distinct prime factors of g, and ¢*(¢) is the number of primitive Dirichlet characters,
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and Conrey, Iwaniec and Soundararajan [18] obtained the following asymptotic formula
for the sixth moment:

zz/i(w)

q<Q x mod g_",

N42aSZH 5 logqg/‘ (1/2+2y>

q<Q p 2

6
dy

y,  (1.26)

where y is a primitive even Dirichlet character modulo ¢, a3 is a certain product over
primes, ¢*(q) is the number of even primitive Dirichlet characters and

A(; + s,x) = (z)S/2F<i + ;)L(; + s,x). (1.27)

Both (1.25) and (1.26) are consistent with our general conjectural understanding of
moments.

1.4. Ratios conjectures

Conrey, Farmer and Zirnbauer [16] presented a generalization of the heuristic argu-
ments used in [14] leading to conjectures for the ratios of products of L-functions. These
conjectures are very useful, for example it is possible to obtain from them all n-level
correlations of zeros with lower order terms [20] (cf. also [6-8]), averages of mollified
L-functions, discrete moments of Riemann zeta function and non-vanishing results for
various families of L-functions. For more details about these applications see [19].

We will quote in this paper the ratios conjecture for quadratic Dirichlet L-functions
from [16], since we will use it to compare with the results presented in Section 3.

Conjecture 4 (Conrey, Farmer, Zirnbauer). Let Dt = {L(s,xa): d > 0} to be the
symplectic family of L-functions associated with the quadratic character xq, and suppose
that the real parts of oy, and 4 are positive. Then

Z Hk 1 L +04kde)

0<d<X L(3 + Ym, Xa)

1K
E 2: |d| 5 Yoy (€ragp—ag)
<7>

0<d<X ec{—1,1}K
1 o — €L
H9+<§ %)YSAD(QM,MJK&K;’Y)+0(X)a (1.28)
k=1

where
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g+(s) = F(%s), (1.29)

[ichen CA4aj+ar) [, CL+7 + )
K
|| HqQ:1 C(L+ o + )

Ys(ozy) := : (1.30)

and

[ chan (L= 1/p o ) [ oI = 1/pt0a%)
Ap(a,7) = [ HEsksK g<r<Q
p

K
TTems Ty (1 — 1/pttentan)

1 c
1 [1, n(p)
x (1 + <1 * ;) 2 a2 e T, (/707 )

0<32), ak+)_, cq is even p

(1.31)
1.5. Structure of the paper

In this paper we develop the function field analogues of Conjectures 3 and 4 for the
family of quadratic Dirichlet L-functions associated with hyperelliptic curves of genus g
over a fixed finite field F,. In Section 2, we present a background on L-functions over
function fields and how to average in this context. In Section 3, we present our main
results: the integral moments conjecture and ratios conjectures for L-functions in the
hyperelliptic ensemble. In Section 4, we outline the adaptation of the recipe of [14] for
the function field setting. In Section 5 we use the integral moments conjecture over
function fields to compare with the main theorem established in [3] when k£ = 1 and to
conjecture precise values of moments for the case £ = 2 and k£ = 3 in this setting. In
Section 6, we adapt the recipe of Conrey, Farmer and Zirnbauer [16] for the same family
of L-functions over function fields and again we compare our conjecture with the original
ratios conjecture for a symplectic family. In Section 7 we use the ratios conjecture to
compute the one-level density of the zeros of the same family of L-functions.

2. Some basic facts about L-functions in function fields

We begin by fixing a finite field F, of odd cardinality and letting A = F,[z] be the
polynomial ring over [y in the variable z. We will denote by C' any smooth, projective,
geometrically connected curve of genus g > 1 defined over the finite field F,;. The zeta
function of the curve C, first introduced by Artin [4], is defined as

Zo(u) == exp(ZNﬁC)%), lu| < 1/q (2.1)
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where N,,(C) := Card(C(Fy)) is the number of points on C' with coordinates in a field
extension Fyn of Fy of degree n > 1. Weil [37] showed that the zeta function associated
to C is a rational function of the form

Pc(u)

ZeW) = Tu it —qu)

(2.2)

where Po(u) € Z[u] is a polynomial of degree 2g with P-(0) = 1 that satisfies the
functional equation

Pe(u) = (@)oo ). 23)

qu

By the Riemann hypothesis for curves over finite fields, also proved by Weil [37], one

knows that the zeros of Po(u) all lie on the circle |u| = ¢~ /2, i.e.,
29
Po(u) = [[(1 = aju), with |oj|=/g forall j. (2.4)
j=1

2.1. Background on Fg|x]

The norm of a polynomial f € Fyz] is, for f # 0, defined to be |f| := ¢°&/ and if
f=0,|f| =0. A monic irreducible polynomial is called a “prime” polynomial.
The zeta function of A = F,[z], denoted by (a(s), is defined by the infinite series

G = Y ge= I =)™ s> (25)

§ hiomic ifreduaibie
which is
1

Cals) = T— 1= (2.6)
The analogue of the Mobius function u(f) for A = Fy[z] is defined as follows:

(_1)t7 f:CV.Pl.IDQ..._ZDt7

u(f) = . (2.7)
0, otherwise,

where each P; is a distinct monic irreducible.
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2.2. Quadratic characters and the corresponding L-functions
Assume from now on that ¢ is odd and let P(x) € F,[z] be an irreducible polynomial.

In this way we can define the quadratic residue symbol (f/P) € {£1} for f coprime
to P by

(%) = fIPIED/2 (1mod P). (2.8)

We can also define the Jacobi symbol (f/Q) for arbitrary monic @Q: let f be coprime to
Q and Q = aP{1PS? ... P% | then

(5114

if f,@Q are not coprime we set (f/Q) =0 and if « € [y is a scalar then
(%) _ (=12 dez Q. (2.10)

Now we present the definition of quadratic characters for Fy[x].

Definition 1. Let D € F,[z] be square-free. We define the quadratic character xp using
the quadratic residue symbol for F,[z] by

D
win=(7). (211)
f
So, if P € A is monic irreducible we have
0, ifP|D,
xp(P)=< 1, if P{D and D is a square modulo P, (2.12)

—1, if P{D and D is a non-square modulo P.

We define the L-function corresponding to the quadratic character xp by

Luxp) = [] @—xo@u'=?)™" |ul <1/q (2.13)

. P monic
irreducible

where u = ¢—%. The L-function above can also be expressed as an infinite series in the
usual way:

Llu,xp)= Y xo(fHu'®! = L(s,xp) = XD(f).
fea o M

f monic f monic

(2.14)
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We can write (2.14) as

L(u,xp) Z Z xp(f)u". (2.15)

n>0 deg(f)=n
f monic

If we denote

Ap(n):== Y xp(f), (2.16)
i

we can write (2.15) as
Z Ap(n)u™, (2.17)

and by [34, Proposition 4.3], if D is a non-square polynomial of positive degree, then
Ap(n) = 0 for n > deg(D). So in this case the L-function is in fact a polynomial of
degree at most deg(D) — 1.

Assuming the primitivity condition that D is a square-free monic polynomial of pos-
itive degree and following the arguments presented in [35] we have that L(u,xp) has
a “trivial” zero at u = 1 if and only if deg(D) is even, which enables us to define the
“completed” L-function

Lluxp) = (1 - L xp), A= { (1): jig; e (2.18)
where £*(u, xp) is a polynomial of even degree
20 =deg(D)—1—- A (2.19)
satisfying the functional equation
L*(u,xp) = (qu2)6£*(1/qu, XD)- (2.20)

By [34, Propositions 14.6 and 17.7], £L*(u, xp) is the Artin L-function corresponding to
the unique nontrivial quadratic character of Fy(z)(y/D(z) ). The fact that is important
for this paper is that the numerator Pc(u) of the zeta-function of the hyperelliptic curve
y? = D(z) coincides with the completed Dirichlet L-function £*(u,xp) associated with
the quadratic character xp, as was found in Artin’s thesis. So we can write £*(u, xp) as

(u, XD) Z A% (n)u™, (2.21)

where A},(0) =1 and A} (29) =



J.C. Andrade, J.P. Keating / Journal of Number Theory 142 (2014) 102-148 113

For D monic, square-free, and of positive degree, the zeta function (2.2) of the hyper-
elliptic curve y? = D(z) is

___Lfuwxp)
Zop (u) = A= —qu) (2.22)
Note that,
L(s,xp) = L(u,xp), whereu=q"* (2.23)

as deg(D) is odd.
2.3. The hyperelliptic ensemble Hag11,4

Let H4 be the set of square-free monic polynomials of degree d in F, [x]. The cardinality
of Hy is

_ d

(This can be proved using

#Ha —s _ Cals)
dZw & = fmZ 117 = 2 (2.25)
squarefree

and (2.6) [34, Proposition 2.3].) In particular, for D € Hog11,4 and g > 1 we have,

D]
Ca(2)’

#Hogr1.q = (0= 1)¢* = (2.26)
We can treat Hag41,4 as a probability space (ensemble) with uniform probability measure.
Thus the expected value of any continuous function F' on Hag41,4 is defined as

(F(D)) = —

HHag+1,q DeHaa.,

F(D). (2.27)

Using the Mobius function p of Fy[x] defined in (2.7) we can sieve out the square-free
polynomials, since

1, D square free,

Z ud) = {O otherwise. (2.28)

A2|D

In this way we can write the expected value of any function F' as
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<F<D>>=—#H;+Lq Y Y

D monic A2|D
deg(D)=2g+1

:ﬁ S Y Y uA)F(42B).

2a+B=2g+1 B monic A monic
=29 deg B=£ deg A=«

3. Statement of the main results

(2.29)

We now present the main conjectures that will be motivated by extending the recipe

of [14] to the function field setting.

Conjecture 5. Suppose that q odd is the fized cardinality of the finite field Fy, and let

Xp(s) = |D|'?>75X(s) and
X(s) = g~ L2+,
That is, Xp(s) is the factor in the functional equation
L(s,xp) = Xp(s)L(1 — s,xp)-
Summing over fundamental discriminants D € Hogy1,4 we have
1 k
S 2(3w) = 3 Qullog, D) (1+o()
DeHog11.q DeHagii,q
where Qy, s the polynomial of degree k(k + 1)/2 given by the k-fold residue

( )k(k 1)/22k 317._ zk. (2’1,.. )2
Qr(z) = k (2mi)k 22k—1
_] 1

J

X q2 512 dzy ...dzg,

where A(zy,. .., 2x) is defined as in (1.23),

G(zl,...7zk):A<1 zk>HX< +zj>_% [T cai+z+2),

1<i<j<k

and A(%;21,...,21) is the Buler product, absolutely convergent for |R(z;)| <
by

1
A= T (0 s )

P monic 1<i<j<k
irreducible

(3.1)

(3.2)

(3.4)

(3.5)

é , defined
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1(E 1 -1k 1 -1 1
X135 = — + L+ — + 5
(2@( |P|z+zf-) H( |P|2+Zf> ) lP')

Jj=1

y (1 + %) N (3.6)

Remark 3. In the case when k = 1, this conjecture coincides with a theorem in [3]. See
Section 5.1.

Remark 4. Note that (3.3) is the function field analogue of the formula (1.5.11) in [14].

The next conjecture is the translation for function fields of the ratios conjecture for
quadratic Dirichlet L-functions associated with hyperelliptic curves.

Conjecture 6. Suppose that the real parts of ay and 7, are positive and that q odd is the
fized cardinality of the finite field Fy. Then using the same notations as in the previous
conjecture we have

Z Hszl L(% + ag, Xp)

Q 1
DeHagy1,q Hm:l L(§ + Ym; XD)

K
1 1 o — e
= D|3 Zii (erak—ar) x| 2 o 2k kTR
> o (3,

DeHagt1,q e€{—1,1}K

xY(eraq,...,exar;y)Ap(eraa, ..., exar,y) + 0(|D|), (3.7)

where

Ichen(l— W) [lnercol— \p\uﬁ)

Ap(asy) =[]

K Q
. P monic Hk:l Hm:l(]‘ - m)
irreducible
Ly [To_, p(Pe)
X <1—|— (1+m) Z . |P| 2w ar(2+on)+Y,, cm(§+vm))
0<> ) ar+>,, Cm is even
(3.8)
and
; 1+a;+a 1+ 9m +9r
Y(any) = Wisker Call £05 +a0) [Lncrgq Call +#9m +70) (3.9)

Hszl ngl Ca(l+ ag +ym)

If we let,
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K
1 ap—w
HD,\D\,@,W(w) = |D|% i kl_‘[lX(g + %)Y(wl, .. .,wK;y)
X Ap(wi, ..., wk;7y) (3.10)

then the conjecture may be formulated as

Z HkK:I L(% + ag, Xp)

Q 1
D€H29+1,q Hm:l L(§ + Ym XD)

= Z |D|_%ZkK=1 Qg Z HD,\D\,&,’y(Elalw"76KaK)+0(|D|)' (311)
DeHagt1,q ec{—1,1}K

Note that in this paper we are fixing the cardinality ¢ of the ground field IF,. The
asymptotic formulae we present therefore correspond to letting g — oo. This limit is
different from that studied by Katz and Sarnak [28,29], and coincides with that explored
in other contexts by Rudnick and Kurlberg [33], Faifman and Rudnick [22], Bucur et al.
[9] and Andrade and Keating in [2].

4. Integral moments of L-functions in the hyperelliptic ensemble

In this section we will present the details of the recipe for conjecturing moments of
L-functions associated with hyperelliptic curves of genus g over a fixed finite field F,. To
do this we will adapt to the function field setting the recipe presented in [14]. We note
that the recipe is used without rigorous justification in each of its steps, but when seen
as a whole it serves to produce a conjecture for the moments of L-functions that is
consistent with its random matrix analogues and with all results known to date.

Let D € Hogy1,4- For a fixed k, we seek an asymptotic expression for

) L(;xD)k, (4.1)

DeHagy1,q

as g — oo. To achieve this we consider the more general expression obtained by intro-
ducing small shifts, say ay,...,ax

> L(%—Fal,xp)...L(%—Fak,XD). (4.2)

Detagtig

By introducing such shifts, hidden structures are revealed in the form of symmetries
and the calculations are simplified by the removal of higher order poles. In the end we
let each ayq, ..., tend to 0 to recover (4.1).
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4.1. Some analogies between classical L-functions and L-functions over function fields

The starting point to conjecture moments for L-functions is the use of the approximate
functional equation. For the hyperelliptic ensemble considered here, the analogue of the
approximate functional equation is given by

xp(n) Xp(m)
L(s,xp) = Z mE + Xp(s) Z e (4.3)
T BT

which is an exact formula in this case rather than an approximation, where D € Hag11,4
and Xp(s) = ¢?172%); see [3] for more details. Note that we can write

Xp(s) = D>~ X(s), (4.4)
where
X(s)=q 2t (4.5)
corresponds to the gamma factor that appears in the classical quadratic L-functions.
Now we will present some simple lemmas which will be used in the recipe and which
make the analogy between the function field case and the number field case more direct.
Lemma 1. We have that,
Xp(s)/? = Xp(1 —s)71/2, (4.6)
and
Xp(s)Xp(l—s) =1 (4.7)
Proof. The proof is straightforward and follows directly from the definition of Xp(s). O
For ease of presentation, we will work with
Zi(s,xp) = Xp(s)"Y2L(s,x). (4.8)
which satisfies a more symmetric functional equation as follows.

Lemma 2. The function Z1,(s,xp) satisfies the functional equation

Zr(s,xp) = Zr(1 = s,Xp). (4.9)



118 J.C. Andrade, J.P. Keating / Journal of Number Theory 142 (2014) 102-148

Proof. This follows from a direct application of Lemma 1 part (1). O

We would like to produce an asymptotic for the k-shifted moment

LD(S) = Z Z(S;ala"-aak)a (410)
DeHtagri,q

where
k
Z(S;al,...,ak):HZL(S+CVj,XD)~ (411)
j=1

Making use of (4.3) and Lemma 1 part (1) we have that

Zi(s,xp) = Xp(s)™/* > XD | (1= )12 3 xpm) =y )

N o mlte
7. monic m monic
deg(n)<yg deg(m)<g—1

4.2. Adapting the CFKRS recipe for the function field case

We will follow [14, Section 4] making adjustments for function fields when necessary.
(1) We start with a product of k shifted L-functions:

Z(s;a1,...,ar) =Zr(s+a1,Xp) .- Zr(s + ak, XD)- (4.13)

(2) Replace each L-function by its corresponding “approximate” functional equa-
tion (4.12). Hence we obtain,

2( R | (Y CETT A R S IR
g QLo O | = D\ 5 &% ‘n_|%+s,~o¢j ’
gj=%1 j=1 n; monic J

deg(n;)<f(e;)
(4.14)

where f(1) = g and f(—1) = g — 1. We then multiply out and end up with,

Z(l'al %) > ﬁXD<1+6'al>_1/2 Y o)
R B 7 k Lo as’
2 ej=%1 j=1 2 nl,nk Hj:l ‘nj|2+510¢]

deg(n;)<f(e;)

(4.15)

(3) Average the sign of the functional equations.
Note that in this case the signs of the functional equations are all equal to 1 and
therefore do not produce any effect on the final result.
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(4) Replace each summand by its expected value when averaged over the family

H2g+1,q~

In this step we need to average over all fundamental discriminants D € Hog41 4 and

as a preliminary task, we will restate the following orthogonality relation for quadratic

Dirichlet characters over function fields.

Lemma 3. Let

am =[] (1+ %)1.

P monic
irreducible
Plm

Then,

1
im  —— xp(m) =
deg(D)—o0 #Hag+1,q DEHZQQH q (m) {

am

0 otherwise

(4.16)

if m is the square of a polynomial

(4.17)

(for short hand we will use the notation m = O when m is the square of a polynomial).

Proof. We start by considering m = O = 2, then using Proposition 2 from [3] and the

®(1)

fact that T < 1 we have,
1 2
L o (m =)
#H2g+l,q DeHag41,q
_ 1 D] 11 (
#H29+1’q <A(2) P monic
irre]c%ucible

By making use of Eq. (2.26) we obtain

1 1\7! _
1 wm=2 =TI <1+—) o).
#H2g+17q DeMagia P monic |P|

gTha irreducible
Plm
Therefore,

ol Y ween- T ()

deg(D)—o0 #HQQ‘FLQ DeHogi1 P monic |P|
gTha irreducible

/1)

1 —1
1+ +0<7
|P|> #Hogr1,4

Plm

(4.18)

(4.19)

(4.20)

If m # O we can use the function field version of the Polya—Vinogradov inequality

[22, Lemma 2.1] to bound the sum over non-trivial Dirichlet characters,
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> xp(m )‘<< 9des(m) /1D, (4.21)
DeHagii,q
m#0

and so we end up with,

1 29,/|D]

#H2g+1,q DetHagi1,q
< q 929, (4.22)
which tends to zero when g — oo since ¢ > 1 is a fixed odd number. O

Using Lemma 3, we can average the summand in (4.15), since

1+ )7 ifng...np=0
lim <XD(”1) o XD(nk)> — { HP\D( + \p|) I Ny Tk ) (4.23)
g0 0 otherwise.
We therefore write (heuristically as the sums below can diverge depending on the choice
of gja;’s)
1 ny...n
lim o Z 4XD( ' T )
1ic o
g—0o0 # 2g9+1,q DEHags1.q sll’méglkc Hj:l |nj|2 i
Ay, A2
S o D DI DR e e N
z oo
ni,..., Nk HJ 1 I |2+6]a] m monic SNk Hj:l |nj|2+€]otJ
n; monic nl monlc
ni..np=m? ny..np=m?2
(5) Extend, in (4.15), each of nq,...,ny for all monic polynomials and denote the
result M (s;ayq,...,ax) to produce the desired conjecture.

If we call

1 Qyp2
Ry, (§;€1a17~'~75k@k = E g k—l-Q—E‘(!" (425)
m monic M1 Nk Hj:l ‘{n’j‘Q I
n; monic

nl...nk:mQ

the recipe thus predicts
Z Z 1041 coap | = Z M lal oo ) (T40(1),  (4.26)
27 ) ) 27 ) ) )
DeHag41,q DeHagt1,q
where

1 -2
M<§;o¢1... ) Z HXD< +sja]> Rk<§;61a1,...,£kak>. (4.27)

=+1 j=1
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4.3. Putting the conjecture in a more useful form

The conjecture

(4.26) is problematic in the form presented because the individ-

ual terms have poles that cancel when summed. In this section we put it in a more
useful form, writing Ry as an Euler product and then factoring out the appropriate

Ca(s)-factors.

We have that a,, is multiplicative, since

where

and if we define

we have that ¢ (m?

So,

IS

m monic  M1,;---,Nk
n; monic
ni..np=m?

where

Amn = Gmay whenever ged(m,n) =1, (4.28)

am= ] @+, (4.29)

P monic
irreducible
Plm

1
= 4.
w(x) Z |n1|s+a1 . |nk|s+ak ’ ( 30)

niy.. ==
n; monic

) is multiplicative on m.

- > > 1
= Ay 2
Y R L P S (01 MR [ e
n,; monic

ny..np=m?

= Z amzw(mQ)

m monic
o]
- I <1 + Zapzj’(/)(PZj)>7 (4.31)
irlseé?f():rilti)cle 3=t
25\ _ 1
T/f(P ) mznk Ingfster . |nglstor” (4.32)
n; monic

ny..np=P3%

and so, n; = P, fori=1,...,kand ey +--- + e, = 2j.
Hence we can write

k
. 1
¢(P2j) = Z H W (433)

e1,...,ep =0 i=1
e1+-+ep=2j
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and thus we end up with

Ri(s;aq, ... ar) = H <1+Zapzj¢(p2j)>

P monic j=1
irreducible

-1 <1+_§apgj 3 H

. P monic = €1,..,ep =20 1= 1
irreducible e1+-+ep=2j

Sw)) (4.34)

But
ap2j = (1 —+ |P|71)_1, (435)

so that (4.34) becomes

Ri(s;ar,...,ap) = H <1+( +|P|™ 1 Z Z H \P|€1(‘5+°‘1 )

P monic e =20 =1
irreducible €1+”'+5k:2j
- I Rer (4.36)
P monic
irreducible

Using

(1P =Y (4:37)

we have that

oo o0 k (_1)l
Bop=1+> >, 2. lipeeram (4.38)

=0 j=1 e1,...,ex20 11=1
e1t-ter=2j

and so

Ri(sion,...,ar) =[] <1+ZZ > (SWHl) (4.39)

P monic =0 j=1 e1,...,ep 20 i= 1
irreducible e1+-+ep=2j

The key point is that when «; = 0 and s = 1/2 only terms with e; + -+ - + e = 2 give
rise to poles. Isolating the term with [ =0 and j = 1:
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Ryp=1+ Z H |P|e (s+a 5 + (lower order terms)
e1+--+ep=2 i=1

=1+ Z |2S+a pw + (lower order terms) (4.40)
1<i<<k

Hence we can write, for R(«;) sufficiently small,

=1+ > |P|2&+a1+% +O(|P[71 72 FE) 4 O(|P| %) (4.41)
1<i<G<k
(for more details see [14, p. 87]). Expressing Ry p as a product, we finish with
1 —1—48T¢ —O8T€&
Rk7P: H (1+|H%JFW>X(1+O(|P| 1 2+)+O(|P| 3+)). (442)
1<i< <k

Now, since

1 . Ca(2s)
P gnic <1 i |P|2S) " Cal4s) (4.43)

irreducible

has a simple pole at s = % and

H (14+O(|P|7172%) + O(|P|319)) (4.44)

. P monic
irreducible

%, we see that ], Ry p has a pole at s = % of order k(k + 1)/2 if

is analytic in R(s) >
o) =---=aqa=0.
With the divergent sums replaced by their analytic continuation and the leading order
poles clearly identified, we are almost ready to put conjecture (4.26) in a more desirable
form. We just need to factor out the appropriate zeta-factors and write the above product

[1p Ri.p as

Ri(s;ay,...,ax) = H Ca(2s+ i + o) A(s;an, ..., ag), (4.45)
1<i<j<k
where
1
A(S;O[17...7Oék): H Rk;)P(S;Oé17...7Oék) H 1_|P|25+7041W .
P monic 1<i<j<k
irreducible
(4.46)
Here, A(s;aq,..., ;) defines an absolutely convergent Dirichlet series for RR(s) = 5 and

for all a;’s positive. Consequently, we have
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k _1
1 1 2
M(i;()q,...,ak) = Z HXD<§ —|—8j04j) H CA(1+5i04i+5j01j)

e;=+1 j=1 1<i<i<k
1
x A 5;51041,...,%0% , (4.47)

and so the conjectured asymptotic takes the form

Z Z<%,a1,...,ak)

DeHagt1,q

k 1
= Z Z HXD(%+5jaj> 2A<%;51a1,...,5kak>

DeHogi1,q €j=%1 j=1

< I ¢al+eicn +e505) (1 +0(1)). (4.48)

1<iyi<k

Using the definition of Xp(s), we have that

1 1
1 2 5% 1 2
Xp (5 +ejaj) =|D| ™= X(§ - Ejaj) : (4.49)

and substituting this into (4.48), after some arithmetical manipulations we are led to
the following form of the conjecture:

1 1
> ZL(§+0417XD> ---ZL(§+Oék7XD>

DeHzg+1,q
k 1 -1/2 1
= Z HX(§ +€jaj) Z Rk<§§51a17---a5kak>
g;£1 j=1 DeHagt1,q
x |D|(2) Zi= =% (14 o(1)). (4.50)

Note that (4.50) is the function field analogue of the formula (4.4.22) in [14].
4.4. The contour integral representation of the conjecture
In this section we will use the following lemma from [14].
Lemma 4 (Conrey, Farmer, Keating, Rubinstein, Snaith). Suppose F is a symmetric

function of k variables, reqular near (0,...,0), and that f(s) has a simple pole of residue 1
at s = 0 and is otherwise analytic in a neighbourhood of s =0, and let

K(ay,...,a) = F(ay,...,ax) [] flai+a)) (4.51)

1<i<i<k
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or

K(ay,...,ax) = Flay,...,ax) ] flai+ay). (4.52)
1<i<j<k

If a; + o are contained in the region of analyticity of f(s) then

(_ k(k—1)/2 ok
Z K(elal,...,ekak) 27TZ % fK 21y 2

€j::t1
A(22,...,23)? HJ 1%

Hkﬂ ITj= (s — )z + ) dzy---dzy, - (4.53)

and
k ( k(k 1)/2 9k

Z Hej K(61a1,...76ko¢k) 2 f %Kzl,...,

ej=41 \j=1 i)
AZ3,... 2 Q;
. (1 k) H] 1+ le"'de,

Hi:1 Hj:l(zi_ ;) (zi + o)
(4.54)

where the path of integration encloses the £o;’s

We will use this lemma to write conjecture (4.50) for function fields as a contour
integral. For this, note that

1
> ZL( +CY17XD> ZL(§+Oék>XD>

DeHagi1,q

= Z HXD< +aj>_l/2L<%+Oé1,XD>--~L<%+Ozk,XD> (4.55)

DeHag+1,4 J=

and as Xp(3 + a;) /% depends only on |D|, which is the same for all D € Hagi1,q,
we can factor it out, so that (4.50) becomes

1 1
Z L<§+OZ1,XD>...L<§+O%,XD>

DeHagy1,q

O IR L op | EICEROY

DeHogy1,q J=1 gj=*1j=1

XA< JE1Q, ... ekak>|D|2 g=1 5% H CA(1+€iOéi+€jC¥j)(l+O(1)).
1<i<i<k

(4.56)
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Hence, taking out a factor of log g from each term in the second product

1 1
Z L<2+a1,XD>...L<2+ak,XD>

DeHagt1,9
1 k
[T, X (4 +a;)|D| 2 == e -1/2
> L Y T (e
DeHagt1,q gj=%1j=1

><A< j€1a, . .. 5kak>|D|2 =183

< JI <¢all +eici +gja;)(ogq) (1 + o(1)).
1<ig<y<k

If we call

k 1 -1z
F(al,...,ak)—HX<§—|—ozj> A<§§€1041,-~

Jj=1

€kak>|D| J 1

and

f(s) =Ca(l+s)logg andso f(a;+ ;) =Ca(l+a;+;)logg

we have that f(s) has a simple pole at s = 0 with residue 1.
Denoting

T fla+ay,

1<i<ji<k

we can write (4.57) as

>

DeHagt1,q

15, X(3 +a)|D| 3 e
(log ¢ 107

Ej::l:l

and now we can use Lemma 4 to write

D

DeHag11,q

[Tjo X (5 + ay)|D|~H By (Lqprie-n/2 b .
(log q)*(-+1)/2 (2mi)F 74 74 (21,...,2

k
A2, 27)? Hj:l <j

T T (o — o) e+ )

= Y Hx( +a]> —3 2

DeHtagti,q 5=1

d2’1

cedzy + 0(|DD

o, (C1FE=D/2 1)k(k=1)/2 2k

2m

(4.57)

(4.58)

(4.59)

(4.60)

Z K(slal,...,skak)> (1+0(1)),

(4.61)



J.C. Andrade, J.P. Keating / Journal of Number Theory 142 (2014) 102-148 127

A(Z3,...,22)? Koz
y H Call+ 2+ ) (21 i) Hj_1 J

dzy -+ dzy + o(|D]).
k %
1<i<i<k [Tici ITj=1 (20 — )2 + o)

(4.62)

If we denote

K(z1,...,2k) = F(z1, ..., 28) H Ca(l+ 2z + 21), (4.63)

1<i<j<k

we have that (4.62) becomes

1)k(k=1)/2 gk
Z HX( +04J)|D|2271%( oni)F ]{ j{th...,Zk)

DeHtzgi1,4 5=1

k
A(Z%7 LR} 213)2 H_j:l Zj

day -~ dz. + (| D]), 4.64
XHf:1H?:1(Zz‘—@j)(Z¢+aj) ! k+o(ID)) (4.64)

and if we denote

we have that the equation above is

_ kl)/22k
> HX( +a])|D| § o CUT 2m f{ ]{Gzl,...7zk)

DeHagia,q =1

k
Al 2) T 2

‘D| jer s % 2
ITies Hj:l(zi —aj)(2i + )

dzy -+ -dzi, + o(|D)). (4.66)

Now calling

A(217-~  27)° H] 17
;)

DA

X q? =i=1 % dzy - - dzg, (4.67)
k

ITies Hj:1(zi —oy)(zi + Oéj)

and setting o; = 0, we have arrived at the formulae given in Conjecture 5
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5. Some conjectural formulae for moments of L-functions in the hyperelliptic ensemble

In this section we use Conjecture 5 to obtain explicit conjectural formulae for the first
few moments of quadratic Dirichlet L-functions over function fields.

5.1. First moment

We will use Conjecture 5 to determine the asymptotics of the first moment (k = 1) of
our family of L-functions and compare with the main theorem of [3]. Specifically, we will
specialize the formula in Conjecture 5 for £ = 1 to compute

1
S 2(paw) = X Qultor, 1D (1+o0). (51)
DeHogy1,q DeHagyi,q

where @1 (z) is a polynomial of degree 1, i.e., Q1(x) = ax + b. This will be done using
the contour integral formula for Q(x). We have,

2\2
Qi(z) = %f%q%m dz (5.2)
where
1 1 -1/
G(Zl) :A<5721)X(§ +Zl> CA(1+2221). (53)

Remembering that,

and

So (5.2) becomes,
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We also have that,

o) = T (s GO )

. P monic
irreducible

+ (1+|P|1}2+Z1>1) +|]£|> (1+|;|)1. (5.8)

Our goal is to compute the integral (5.7) where the contour is a small circle around
the origin, and for that we need to locate the poles of the integrand,

1. —z1/2
fla) = AGEIATH BT o, (5.9)

21

We note that f(z1) has a pole of order 2 at z; = 0. To compute the residue we expand
f(z1) as a Laurent series and pick up the coefficient of 1/z;. Expanding the numerator
of f(z1) around z; = 0 we have,

(1)
A(%m) = A(%,O) +A'(%,O>z1 + %A”(%,o)ﬁ 4
(2)
¢ =1- (log q)z1 + 8(log En
(3)
g2 = (log q)rzy + 8(1og q)x°2g +-
(4)

1
1——(log3q)zf+~-~

1 1 1
CA(1+221)=——+—+—(10gq)z 90

2loggzr 2 6

Hence we can write,

f(zl)—<M+A’<%;O>+#%;O)zl+m><l—(logq)zl+ ~(logq)27 + - )

21

X ( (logQ):vzl += (log q)a222 + - )

1 1 1 1 1
LR — —(log? ) 4. 1
x<210qu1+2+6(0gq)21 9O(og q)z] + ) (5.10)
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Multiplying the above expression we identify the coefficient of 1/z;. Therefore

1 1 1 1 1 1 1 1
3 _ = —A - ——A - —A -, —A, =5 . 11
Reszlfof(zl) B (2,0) 1 (2,0>+4 (2,0)x+210gq <2,0> (5 )

We find, after some straightforward calculations, that:

A(%;O) =r1)= ] (1 - M) (5.12)

P monic
irreducible
and
; ; deg(P)
A/(_;()) :A<‘?0> (2logg) S o)l 19
i ? P monic |P|(|P| + 1) -1
irreducible

and so (5.11) is

1 1 deg(P)
= = -P(1 -P(1 P(1 _— .14
Res:i—o f(z1) = ; P(1) + 7 P(L)z + P(1) P%}:ﬂic |P|(|P|+1)—1 (5:14)
irreducible
Hence we have that,
1. —z1/2
L A(5321)Ca(1 +221)g 7 dz
iy Z1
1. (1 1 deg(P)
=2 -P(1 -P(1 P(1 —
o 7TZ(4 <)+4 ()m‘f' ()PZ ‘P|(|P‘—|—1)—1
irrccrililoclilll)(ic
1 1 deg(P)
=-P(1)+ sP(1)z+2P(1 BB T 5.15
irreducible
So,
1 deg(P)
=_P(1 144 STTBTT (- 5.16
) =grnferies S Gt 10
irreducible

We therefore have that

1
> 1(z0)
Detagiag

= Z Ql(logq |D|)(1—|—0(l))

DeHagt1,q
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> ;P(l){logq|D|+1+4 > Wﬁjjgfl))_l}(uou))

DeMtagti,q iffeé’t%?écle
1 deg(P)
—-p(1!1 D|+1+4 PP L1 1 1 b
. P monic €Hagt1,9
irreducible
_ Py |D|{log Dl41+d Y ng—(P)} +o(ID). (5.17)
2<A(2) ? P monic ‘P‘(|P| + 1) -1
irreducible

If we compare the main theorem of [3] with the conjecture we note that the main
term and the principal lower order terms are the same. Hence the main theorem of [3]
proves our conjecture with an error O(|D|?/4*¢) when k = 1.

5.2. Second moment

For the second moment, Conjecture 5 asserts that
2
> 2(ya0) = X Qullon,ID)(1-+0) (5.18)
DeHag+1,q DeMtagi1,q
where

ZlazQ

2\2
Q2(z) = ACLA) et gy dsy. (5.19)

Zl Z2

We denote by A; the partial derivative, evaluated at zero, of the function A(%;
21,...,2r) With respect to jth variable, with repeated indices denoting higher deriva-
tives. So, for example

9% 0 1
A112(0,0,...,0) A( 21,227...,Zk>

ELR (5.20)

z1=z29=+=2z=0

We then have that,

212
21, 29) A (23, 23)? &
7{]{ L22) . %) 2 %2) dzy dzy

2122

= (2mi)? [—m ((6+ 11z + 622 + a:s)A(O7 0)(log q)*
+ (11 + 12z + 32%) (log ¢)* (A42(0,0) 4+ 4;(0,0)) + 12(2 + z)(log g) A12(0, 0)

— 2(A222(0,0) — 3A;122(0,0) — 3A112(0,0) + A111(0,0))) | (5.21)

Hence the leading order asymptotic for the second moment for this family of L-func-
tions can be written, conjecturally, as
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Z L(l >2N;A(l.0 0>|D|(1 |D|)3 (5.22)
DeHagi1.q 27XD 24¢4(2) 97 0g, 7 '
when g — oo, where

1 B 4|P|? - 3|P| + 1
A<§,0,0) = II (1—W : (5.23)

. P monic
irreducible

5.8. Third moment

For the third moment, our conjecture states that:

3
1
3 L(Q,XD) — Y Qs(log, ID)(1+ (1)), (5.24)
DeHagt1,q DeHagri,q
where
2 .2 ,2\2
QS(JT):( 5 747{% (21, 22, 23) ('zlaz2723) q§(21+zz+23) dz1 dzo dzs.
! 27m 292528

(5.25)

Computing the triple contour integral with the help of the symbolic manipulation
software MATHEMATICA we obtain

2 2 232
21,2’2’23 A(zi,25,25)° = :
7{‘7{?{ 5 q2 122 12) 4oy doy dzg

2'1 22 23

1
_ N3 -
= (2m) [ 11520(log ¢)°

+ 4(471 4 949z + 7202 + 2602° + 452" + 32°) (log ¢)° (A3(0,0,0) + A2(0,0,0)
+ A1(0,0,0)) + 4(949 + 1440z + 780z* + 1802° + 152*) (log q)* (425(0, 0, 0)
+ A13(0,0,0) + A12(0,0,0)) — 10(24 + 262 + 92° + 2°) (log q)* (24533(0, 0, 0)

(

(

(3(3 + 2)%(40 + 78z + 492® + 122° + 2*) A(0,0, 0)(log ¢)°

— 34533(0,0,0) — 3423(0,0,0) + 2A4522(0,0,0) — 3A;33(0,0,0) — 364;23(0,0,0)

— 34122(0,0,0) — 3A;15(0,0,0) — 34112(0,0,0) + 24,11 (0,0, 0))

—20(26 + 18z + 32%) (log ¢)* (A2333(0, 0, 0) + A2225(0,0,0)

+ A1333(0,0,0) — 6A1233(0,0,0) — 6A1993(0,0,0) + A1222(0,0,0) — 6A1123(0,0,0)
+ A1113(0,0,0) + A1112(0,0,0)) + 6(3 + x)(log q) (2A433333(0, 0, 0) — 5A23333(0,0,0)
— 10A22333(0,0,0) — 10A22233(0,0,0) — 5A22923(0,0,0) + 2A29292(0, 0,0)

— 5A13333(0,0,0) + 60A412233(0,0,0) — 5A412922(0,0,0) — 10A411333(0,0,0)

4+ 60A11233(0,0,0) + 60411223(0,0,0) — 10A11922(0,0,0) — 10A4;1133(0,0,0)
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—10411122(0,0,0) — 5A431113(0,0,0) — 5A411112(0,0,0) + 2411111 (0, 0, 0))

+ 4(3A233333 (0,0,0) — 20A4222333(0,0,0) + 3A292923(0,0,0) + 3A222225(0,0,0)
— 30A4123333(0,0,0) 4+ 30A122333(0,0,0) + 30A122233(0,0,0) — 30A122225(0, 0, 0)
+ 3A4122222(0,0,0) + 30A4112333(0,0,0) + 30A4112223(0,0,0) — 20A4111333(0,0,0)
+30A111233(0,0,0) + 30A4111223(0,0,0) — 20A4111222(0,0,0) — 30A111123

+3A111113(0,0,0) + 3A11112(0,0, 0)))} . (5.26)

And so, identifying the coefficient of 2%, we conjecture

1 s 1 1
Z L<2,XD> ~ WA(2§OaO»O)|D|(Iqu |D|)6a (5.27)

DeHagt1,q

as g — 0o, where

1 12|P|5 — 23| P|* + 23| P[> — 15|P|2 + 6|P| — 1
A(i;0,0,0): 11 (1— P~ 23 ‘ZG‘P‘ : PI” +617] >
P monic | |(| ‘+ )
irreducible
(5.28)

5.4. Leading order for general k

In this section we will show how to obtain an explicit conjecture for the leading order
asymptotic of the moments for a general integer k. The calculations presented here follow
closely those presented in [30]. The main result is the following conjecture:

Theorem 1. Conditional on Conjecture 5 we have that as g — oo the following holds
k koo
1 D] kk+1)/2 4 (1 j!
L{= ~ ——(1 D Al =;0,...,0 —. 5.29
> (330) ~ ciytomai?) 200 gy 029
2g+1,q J=

To establish the above theorem we will first prove the following lemma.

Lemma 5. Suppose F' is a symmetric function of k variables, reqular near (0,...,0) and

f(s) has a simple pole of residue 1 at s = 0 and is otherwise analytic in a neighbourhood
of s =0. Let

K(\D|;w1,...,wk)

= Z 6%10g‘D‘Z§=1 Ea'wﬂ'F(alwl,...,ejwj) H f(@iwi—I—ejwj) (5.30)

e;j==%1 1<i<G<k
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and define I(|D|, k;w = 0) to be the value of K when wy,...,w, = 0. We have that,
1 k(k+1)/2 koo
I(|D|,k;0) ~ <§logD> F(0,...,0)2k k+1>/2<H ) (5.31)
j:l

Proof. We begin by defining the following function

1 k )
G(|D|;w17._.,wk) :eilog‘D‘ZJ:leF(’wl,...,wk) H f(wz—kw]) (532)

So by Lemma 2.5.2 of [14] we have,

(—1)kk-D/2 1)k(k=1)/2 ok
Z G(|Dl;erwy, . .. epwy) = 2m }[ 7{G |D[; 21, ..., 2k)

ej==%1

A2, 27)? H] 175
T T (5 — ) (21 — )

dzy...dzg. (5.33)

We will analyze this integral as w; — 0. It follows from (5.33) that

(—1)k(-D/2 g
I(|D|, k;0) = ]{ %G|D| 215, 2k)

A(Z% S 2)? Hg 17
X

dzl co.dz. (5.34)
k
[l=1 5"
We expand G(|D|; z1, . . ., z;) and make the following variable change z; = —lozlijD - which
provides us with
1 k(k+1)/2
I(|D|, k;0) = <1ogD|)
(—1)kE-1/2 1 .
- @Tk'?{ % = 7F (2v1/log|D|, ..., 2vx/log | D)
X H f ( ) L(vl +U)
log |D| log | D| J
1<i<j<k
2
1;[ (10g|D| )> (log|D|( vj))
1 A, 03)?2
< 11 i, ’;]’f) dvy ... dvy. (5.35)
1<idien VTV Tl

Letting g — oo (i.e. |D| — o0) we have,
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1 (k+1)/2
I(|D|, k;0) ~ <§log|D> F(0,...,0)

k(k—1)/2
X —F ( / ZJ 1Y
2m k'

2
< I AL %) (5.36)

) . k 2k
v v
1<i<j<k i T HJ 1 Y5

Using equation (3.36) from [13], Lemma 2.5.2 from [14], and the result from [32] for the
moments at the symmetry point for the symplectic ensemble completes the proof of the
lemma. O

Now we are ready to establish Theorem 1. Using (4.61), which is a conjectural formula,

with a1, ..., = 0 and the lemma above we have that
k k(k+1)/2
1 1 1
S r(yxe) ~ X (3]
) (k+1)/2
Detis 2 Detmns (log q)k(k+1)/2 \ 2
x A l~0 0 ) 2k(k+1/2) ﬁ i (5.37)
2’ ok (25)! '

So as g — oo we have the formula given in the conjecture.
6. Ratios conjecture for L-functions over function fields

In this section we will present a natural generalization of Conjecture 5: we give a
heuristic for all of the main terms in the quotient of products of L-functions over function
fields averaged over a family of hyperelliptic curves. The family of curves that we consider
is the same as that considered above: curves of the form Cp : y?> = D(x), where D(z) €
Hog+1,4- Essentially the goal is to adjust the recipe presented by Conrey, Farmer and
Zirnbauer [16] for the case of quadratic Dirichlet L-functions over function fields.

Recall that in Section 2 we introduced our family of L-functions. In particular if

Hag+1,¢ = {D monic, D square-free, deg(D) =29+ 1, D € Fylz]} (6.1)

the family D = {L(s,xp): D € Hag+1,q4} is a symplectic family. We can make a conjec-
ture which is the function field analogue of Conjecture 5.2 in [16] for

TTr ) L(% + o, xp)
Z Q 1 : (6.2)
DeHagi1,q Hm:l L<§ + Yms XD)

The main difficulty will be to identify and factor out the appropriate zeta factors
(arithmetic factors) as was done in the previous section. We follow the recipe given in
[16, Section 5] and we will adapt the recipe for the function field setting when necessary.
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The L-functions in the numerator are written as

Xp(n) Xp(n)
B, o

and those in denominator are expanded into series

v _ w(n)xp(n)
oo~ AL (1 |P|s) 2 \n|s (64)

P monic n monic
irreducible
with pu(n) and xp(n) defined in Section 2.
In the numerator we will again replace L(s, xp) with Zp (s, xp) and so the quantity
that we will apply the recipe to is

HszlzL(%-i-Oék,XD) 1 1
2 o0 = 2 Zilgren ) Zu(gFanxo

DEHog11,q Hm:l L(§ + Ym, XD) DeHagi1,q

Y plh). - h)xp(h - hg) o o

1
hi,....,hq H = ‘hm|2+’ym

h; monic

We have that,

1 1
ZL(§ +0417XD> ~--ZL(§ -I-OémXD)

—1/2

B xp(my ...my)

- X qIw(jree) |y e
mi,..., MK

e{— K k=1
er€{-1,1} m; monic

and so, (6.5) becomes

> ¥ a(jrae)

DeHagii,q ep€{—1,1} K k=1

Z 12 _, ulh )xD(m1 )XD(hl hQ).

Hk 1|mk| +€k0¢k HQ 1|hm‘ +'Y7n

hl, 7hQ
m,h; monic

Now, following the recipe we average the summand over fundamental discriminants
D e Hagriq
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~1/2
lim Z HXD< +6k04k)

deg(D)—
(D)  ee{—1,1}K k=1

oy Dot (s 1mkH221hm)>

1’ MK Hk L lma]2 3Hekan H =1 ‘hmﬁ—wm

-shQ
my ,hi monic

. HXD( wak)w > A0 N RS | A

en€{—1,1}K k=1 Hk:l || 2 esen Hm:1 [Py | 57

15--,hQ
m,h; monic

(6.8)

where 6(n) =[] P monic (14 ‘%)_1 if n is a square and is 0 otherwise.
P 1rre(‘iuC1ble
n

So, using the same notation as in [16]

Golasy) = Z Hm 1 (him)d (Hk 1Mk Hm 1 ) (6.9)

mi,...,mK Hk;:l |mk| 2+O¢k Hm:l ‘hm| +’Ym

h],.“,hQ
my,h; monic

We can express Gp(«; ) as a convergent Euler product provided that $R(ay) > 0 and
R(Vm) > 0. Thus,

Goasy)= ][] (1+<1+|%>1

. P monic
irreducible

X Z ngl pu(Pem) > (6.10)

Sk ak(3F+or)+3,, cm(3+vm)
0<Y ) ar+>,, ¢m is even |P| * 2 ?

The above expression will enable us to locate the zeros and poles. We obtain

Go(asy) = ]] <1+ (1+ |]13|>1

P monic
irreducible
1 1 u(P)?
. {Z;; P[(Fra (e +zk: R WZ; PGt
j]%k m,r

p(P)
+;; | P|(zFer) (3 +7m) + D’ (6.11)

where - - - indicates terms that converge. Remembering that,
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)= ] <1—|P%>_1 (6.12)

. P monic
irreducible

and using that

(1 |1i|s> i(w ) (6.13)

J

we have that the terms in (6.11) with 25:1 ay + Zfi:l ¢m = 2 contribute to the zeros
and poles. The poles come from terms with a; = ar = 1,1 < j < k < K, and from terms
ar = 2,1 < k < K. In addition, there are poles coming from terms with ¢,, = ¢, = 1,
1<m<r<aQ.

We also note that poles do not arise from terms with ¢,, = 2 since p(P?) = 0.
The contribution of zeros arises from terms with ar, = 1 = ¢, with 1 < k < K and
1 <m < Q. After all this analysis, the contribution, expressed in terms of (4(s), of all
these zeros and poles is

ngkgx Ca(l+aj + o) Hm<T<Q Ca(l+vm + ’Yr)

Y(a;7v) :=
(@57 Hk 1Hm 16a(l+ ak +vm)

(6.14)

So, when we factor Y out from Gp we are left with the Euler product Ap which is
absolutely convergent for all of the variables in small disks around 0:

H [Licrern(l— W)qug(g(l - W)

Ap(a;7) = .
' Q
P monic Hk:l Hmzl(l - m)
irreducible
-1 Q ,
H 1 ’u(pcm)
14+ — m= )
- <1 " ( " |P|> Z | P| 2k ar (3 aw)+ 5, em(5+7m)
0<Y >, ak+>,, €m is even
(6.15)
So we can conclude that,
K
Z | ZL(% + ag, XD)
Q 1
DE’H29+1,Q Hm:l L(§ + Yms XD)
—1/2
= Z Z HXD( +6k0¢k) Y(€1a17...76KaK;’y)
DeHagt1,q ce{—1,1}K k=1
><AD(elal,...,eKaK;'y)+o(|D|), (6.16)

using (4.8) we have that,
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5 T,y L(3 + ax, xp)

Q
DeMagt1.q Hm:l L(% + Ym» XD)

= Y > HXD< +€kak>1/2ﬁXD< +ak>1/2

DeHagt1,q ee{—1,1}K k=1

x Y(eroa, ... exar;y)Ap(erar, ... exar;y) + 0(|D|),

moreover,
1 —1/2 —1/2
XD<2 +€kak> |D|26ka’“X( +6k04k)
and
1 1/2 1/2
X, (2 —I—ak) |D|_a’"X( -I-Oék) )
and so

K ~1/2 1 1/2
H ( +6kak> XD( +Ozk>
K ) K -1/2 1/2
= H | D| 2 (exex—e) H ( + Gkak> X<§ + ak)
k=1 k=1
K -1/2 1/2
= |D|# Dimalerar—an) U ( + Gkak> X<§ + ak) ~

139

(6.17)

(6.18)

(6.19)

(6.20)

To put our conjecture in the same form as Conjecture 5.2 in [16] and see clearly
the analogies between the conjectures for the classical quadratic L-functions and the
L-functions over function fields, we need first to establish the following simple lemma:;:

Lemma 6. We have that,

~1/2 1/2
1 1 L | o — epoy
X[z X = =X = .
(o) x(gre) =x(aemg)
Proof. Follows directly from the X (s) = ¢~'/2*5. O

If the real parts of oy and v, are positive we are led to

5 151 L(3 + ax, xp)

Q
DeMagi1.q Hm:l L(% + Ym, XD)

(6.21)
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K
1 1 ap — e
— D|3 Ty (erak—ar) x|z k — CkCk
S 3 g (G

DeHagy1,q ee{—1,1}K

xY(eraq,...,exar;y)Ap(e1a, ..., exaK;y) + 0(|D|). (6.22)

If we let,

K
1K 1 Qg — W
Hp,|p|.ay(w) = |D|2 izt v ,CHIX<§ N T)

X Y(wy,...,wg;v)Ap(wy, ..., wk;7) (6.23)

then the conjecture may be formulated as

5 [T L(% + ax, xp)

Q
DeHagi1q Hm:l L(% + Ym, XD)

K
= Z |D =3 Y1 @k Z HD,|D|,a,~/(€1041,-~-7€K04K§’Y)+0(|D|)7
DeHagyi,q ec{-1,1}¥

(6.24)
which are precisely the formulae given in Conjecture 6.

Remark 5. Note that the formulas (6.22) and (6.24) can be seen as the function field
analogues of the formulae (5.27) and (5.29) in [16].

6.1. Refinements of the conjecture
In this section we refine the ratios conjecture first by deriving a closed form expression
for the Euler product Ap(a;7), and second by expressing the combinatorial sum as a

multiple integral. This is similar to the treatment given in the previous section.

6.1.1. Closed form expression for Ap
Suppose that f(z) =1+ 2, u,z". Then

g U,z =

0<n is even

(f(@)+ f(=2) —2) (6.25)

DN | =

and so,

(o) Y e et (1) (R0 e )

0<n is even
1 (f(x) +f(-a) , 1)
1+ 5y 2 \P| )"

(6.26)
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Now, let

H(i)=% T2, u(Per)
‘Pl |P|Zk ak(%+o¢k)+zm Cm(%+'ym)

Ak ,Cm

=Z 1 3 [Ty p(Pe)
‘p|2kak( +ak) |p|chm(%+7m)

Cm

p(Pem)
- Z H |P|ak 1tar) Z H ‘P‘('7n( +'Ym)

ar k=1

Cm

Ty (1 = )

= i . (6‘27)
[Teea (U = ppeeear)
We are ready to prove the following lemma:
Lemma 7. We have that,
-1 Q
1 [y (P)
bt (1 * |P|> Z ) |P| 2k ar(aFaw)+ 5, em(5+7m)
0<> ) ak+,, C¢m is even
1 (1HSL (1 *|p|1/++m)+1ngz1(1+|pp/++m)+ 1) (6.28)
- 1 9 17K Pl ) :
i \2 [ (U ) 2 I (Ut ) 1P

Proof. The proof follows directly using (6.26) and (6.27). O
We have the following corollary to this lemma

Corollary 1.

ngkgK(]‘ - |P‘1+ij+0‘k¢ ) Hm<r<Q(1 - |P‘1+’1Ym+’YT )

P monic Hk:l ngzl(l - m)

irreducible
1 (11_[311(1_|P|1/++7m) 1Hm (1 +|pp/++w)+ 1)
K p— .
2 Hk:l(l - ‘]3|1/++‘1k) Hk 1(1 + \P|l/2+ak) |P|

(6.29)

6.2. The final form of the ratios conjecture

We begin this subsection by quoting the following lemma from [16].
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Lemma 8. Suppose that F(z) = F(z1,...,2K) is a function of K wvariables, which is
symmetric and regular near (0,...,0). Suppose further that f(s) has a simple pole of
residue 1 at s = 0 but is otherwise analytic in |s| < 1. Let either

H(zi,...,2x) = F(z1,...2x) [ flzi+2) (6.30)
1<GShSK
or
H(zi,...,2x) =F(z1,...,2K) H flz + z). (6.31)
1<j<k<K

If |ag| < 1 then

Z H(elah...,eKaK)

ee{—1,+1}K

(—1)KE-1)/29K H(z1,...,25)A(23,. .., 2%)? HkK:1 2k
= TR 7 7 dzy...dzg
(27d) oi]=1 Hj:l [Timi (2e — o)) (21 + o)
(6.32)
and
Z sgn(e)H (e10v, . .., exaK)
ec{—1,+1} X
(—1)K(E-1)/29K H(z1,. o 2i0) A2, 252 T, o
- K1(2 K 174 174 Z1 dZK
I(2mi) i [T [her (2 — @) (26 + )
(6.33)

Now we are in a position to present the final form of the ratios conjecture for
L-functions over functions fields using the contour integrals introduced above. Conjec-
ture 6 can be written as follows.

Conjecture 7. Suppose that the real parts of ay and ., are positive. Then

3 T, L(3 + ax, xp)
Q
DeHagi1,q Hm:l L(% + Yms XD)

(71)K(K71)/22K

1 K
= |D 2 Zk:l Ak -
DeHqu:H , K!(2mi)K

K
» / HD,\D\,Q,7(217~'~,ZK;’Y)A(Z%7~',Z%()2Hk:1zkd

Zldz ol(|D]).
T1 T (o — ) (o + ) K +o(|Dl)

[zi]=1
(6.34)
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Remark 6. If we compare the formula (6.34) with the formula (6.31) presented in [16]
we can see clearly the analogy between the classical conjecture and its translation for
function fields.

7. One-level density

In this section we present an application of the Ratios Conjecture 6 for L-functions
over function fields: we derive a formula the one-level density. The ideas and calculations
presented in this section can be seen as a translation to the function field language of
the calculations presented in [19] and [25].

Our goal is to consider

Z L(%+aaXD)

R 1Y) = .
ples) L+ x0)

DeHagia,q

In this case the conjecture is

Conjecture 8. With — < R(a) < {, zp < R(Y) < § and (@), I(7) < | D= for
every € > 0, we have

L(% =+ avXD)
L(% +’Y?XD)

Rp(a;v) = Z

DeHtagii,q

- ¥ (MAD(W)HD—W(%m)

Dettia Cal+a+7)

CA(l — 205)

A2 ap(-ain)) +o(1D), (72)

where

1 —1 1 1
Ap(asy) =[] (1—|p|1w) <1‘(p|+1)|P|1+2a_(P+1)|P|W)'

. P monic
irreducible

(7.3)

To obtain the formula for the one-level density from the ratios conjecture, we note
that

=—R ; . 7.4
L(% +r, XD) da ple57) a=y=r (74)

Z L'(3+7,xp) d

DeHagt1,q
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Now, a direct calculation gives

d Ca(l+2a)
daCa(1+a+7)

— MAD(T;T) JrA/D(T;T) (7.5)

D(O‘;’Y) CA(]~+2T)

a=y=r

and a simple use of the quotient rule give us that

(x5 a) A2 ap-ai)

Ca(l—a+7) oy
= —(logq)|D|TX<% + r) Ca(1 =2r)Ap(—r;r). (7.6)
Also,
Ap(ryr) =1, (7.7)
Ap(—r;r) = H (1 — L) - (1 — ! — ! ) (7.8)
AL (Pl+ 0P [P+ 1)
irreducible

and using the logarithmic-derivative formula we can easily obtain that,

log | P|
Ap(rsr) = : (7.9)
D DO e I (O EY
irreducible

Thus, the ratios conjecture implies that the following holds

Theorem 2. Assuming Conjecture 8, m < R(r) < 1 and I(r) <. |D|*~¢ we have

Z L/(% + 7, XD)

DeHagi1,q L(% + &) XD)
Z (% +Ap(r;7) — (log q)|D|TX<% + T) Ca(l— QT)AD(T;T)>
DeHtzg41,q
+o(ID), o

where Ap(a;7y) is defined in (7.3).

Now we are in a position to derive the formula for the one-level density for the zeros
of quadratic Dirichlet L-functions over function fields, complete with lower order terms.

Let vp denote the ordinate of a generic zero of L(s, xp) on the half-line (remember
that here, unlike in the number field case, we do not need to assume that all of the
complex zeros are on the half-line, because the Riemann hypothesis is established for
this family of L-functions). As L(s, xp) is a functions of ¢~* and so is periodic with period
27/ log ¢ we can confine our analysis of the zeros to —mi/logq < J(s) < 7i/logq.
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We consider the one-level density

Si(f):=>, > fOw) (7.11)

DeHagr1,4 YD

where f is a (27/log q)-periodic even test function and holomorphic.
By Cauchy’s theorem we have

Si(f) = ﬂ(/ [ )il i -mas )

De”%“ RO

where (c¢) denotes a vertical line from ¢ — wi/loggq to ¢ + mi/logq and 3/4 > ¢ >
1/2 4+ 1/log |D|. The integral on the c-line is

w/ log q
1 . L'(1/2+ (c — 1/2 +1it),
5 [ fliemi) S T e ()

—x/logq Detagiag

The sum over D can be replaced by Theorem 2 (see the 1-level density section of [19]
for a more detailed analysis). Next we move the path of integration to ¢ = 1/2 as the
integrand is regular at ¢ = 0 to obtain

w/logq

1 Cl(L+2it)
2 7 (7 + A (it; it)
27T7r/4gq Deq.%;ﬂq Ca(l + 2it) D

(1ogQ)|D|ti( + zt) Ca(l = 2it)Ap(—it; zt)) dt +o(|D)). (714)

For the integral on the 1 — c-line, we change variables, letting s — 1 — s, and we use
the functional equation (3.2) to obtain

L'(l1—s,xp) Xp(s) L'(s,xp)

L(I—s,xp) Ap(s) L(s;xp)’ (7.15)
where
Xp(s) _ X'
X - BIPIF6) (7.16)

We thus obtain, finally, the following theorem.

Theorem 3. Assuming the Ratios Conjecture 8, the one-level density for the zeros of the
family of quadratic Dirichlet L-functions associated with hyperelliptic curves given by the
affine equation Cp : y* = D(x), where D € Hagy1,4 is given by
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Z Zf('VD)

DeHzgi1,q 7D

S1(f)

m/logq
1 X' /1 (14 24t
=50 / f) Z (log |D| + X <§ - it> + 2(% + A'p (it; it)
—n/logq DeHag+1,q
- (1ogq)|D|“X<% + it) Ca(l— 2it)AD(—it;it)>) dt + o(|D|) (7.17)

where yp is the ordinate of a generic zero of L(s,xp) and f is an even and periodic nice
test function.

Defining
t(2glog q)
t)=h| —————= 7.1
fie) = n( 222 (7.18)
we now scale the variable ¢ as
t(2glogq)
— et 7.19
5 (7.19)

and get after a change of variables

Z Z ( Zglogq))

DeHagy1,4 VD

g
1 X' 2miT
= E log|D|+ —| =
2910gq/h(7) (0g| I+ (2 leogq)
-9

DeHtagt1,q

l 4miT . .
2<CA(1+2910g11; + oA ( 2miT . 2miT >(logq)e(Qﬂ'i‘r/2glogq)logD

AmiT ’
( 591083 2glogq’ 2glogq
X 1 n 2miT a1 4dmit Ap 2miT ; 2mir dr
2 2gloggq 2glog q 2glogq’ 2glogq
0(|D|). (7.20)
Writing
1/1 1
Ca(l+s) = /logq —|— + —(logq)s + O(s?) (7.21)
5 2 12
we have,
CGu(1+s) 1, 1 1 2 3
=— =1 ——(1 0] . 7.22
G s — % tglosa— ppllosa)s+ (s”) (7.22)
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As g — oo only the log|D| term, the ¢/, /Ca term, and the final term in the integral
contribute, yielding the asymptotic

Z Zh( QQIOgQ)>

DeHag41,4 VD

oo

1 (#H29+1,q)(29 log q)
2glog q / h(T)((#HQ“?“"’)log D] omir
—2miT
+ (#H2g+17q)W(2g 10g q)) dT (723)

But, since h is an even function, the middle term above drops out and the last term
can be duplicated with a change of sign of 7, leaving

o0

i X S ) = [ao (-2 e

4 DeHagr1,q YD 0

(7.24)

Thus for ¢ fixed and in the large g limit, the one-level density of the scaled zeros has
the same form as the one-level density of the eigenvalues of the matrices from USp(2g)
chosen with respect to Haar measure and so our result is in agreement with results
obtained previously by Rudnick [35].
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