Journal of Number Theory 150 (2015) 81-97

Contents

Journal

www.elsevier.com /locate/jnt

lists available at ScienceDirect

JOURNAL OF

of Number Theory

Indices of inseparability in towers of field extensions @ CroseMark

Kevin Keating

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 21 February 2014
Received in revised form 28 October
2014

Accepted 2 November 2014
Available online 6 January 2015
Communicated by David Goss

Keywords:

Local field

Ramification theory
Index of inseparability
Hasse-Herbrand functions

Let K be a local field whose residue field has characteristic p
and let L/K be a finite separable totally ramified extension
of degree n = ap”. The indices of inseparability ig,41,...,%,
of L/K were defined by Fried in the case char(K) = p and by
Heiermann in the case char(K) = 0; they give a refinement of
the usual ramification data for L/K. The indices of insepara-
bility can be used to construct “generalized Hasse-Herbrand
functions” JL/K for 0 < j < v. In this paper we give an in-
terpretation of the values ¢£/K(c) for nonnegative integers c.
‘We use this interpretation to study the behavior of generalized

Hasse—Herbrand functions in towers of field extensions.
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1. Introduction

Let K be a local field whose residue field K is a perfect field of characteristic p, and
let K*¢? be a separable closure of K. Let L/K be a finite totally ramified subextension
of K¢ /K. The indices of inseparability of L/K were defined by Fried [2] in the case
char(K) = p, and by Heiermann [5] in the case char(K) = 0. The indices of inseparability

of L/K determine the ramification

data of L/K (as defined for instance in Chapter IV

of [7]), but the ramification data does not always determine the indices of inseparability.
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Therefore the indices of inseparability of L/K may be viewed as a refinement of the
usual ramification data of L/K.

Let g, 71, be uniformizers for K, L. The most natural definition of the ramification
data of L/K is based on the valuations of o(ny,) — 7p, for K-embeddings ¢ : L — K*°P;
this is the approach taken in Serre’s book [7]. The ramification data can also be defined
in terms of the relation between the norm map Ny, and the filtrations of the unit
groups of L and K, as in Fesenko—Vostokov [1]. This approach can be used to derive the
well-known relation between higher ramification theory and class field theory. Finally,
the ramification data can be computed by expressing 7y as a power series in 7wy with
coefficients in the set R of Teichmiiller representatives for K. This third approach, which
is used by Fried and Heiermann, makes clear the connection between ramification data
and the indices of inseparability.

Heiermann [5] defined “generalized Hasse—Herbrand functions” JL /K for 0 <j<v.
In Section 2 we give an interpretation of the values (/)i / r(c) of these functions at non-
negative integers c. This leads to an alternative definition of the indices of inseparability
which is closely related to the third method for defining the ramification data. In Sec-
tion 3 we consider a tower of finite totally ramified separable extensions M/L/K. We use
our interpretation of the values (;S]i / x(c) to study the relations between the generalized
Hasse—Herbrand functions of L/K, M/L, and M/K.

Notation

No=NU{0} ={0,1,2,...}

vp = p-adic valuation on Z

K = local field with perfect residue field K of characteristic p > 0

K?*°P = separable closure of K

vk = valuation on K*° normalized so that vx (K*) = Z

Ok ={a € K : vg(a) > 0} = ring of integers of K

7 = uniformizer for K

Mg = 1Ok = maximal ideal of O

R = set of Teichmiiller representatives for K

L/K = finite totally ramified subextension of K*°?/K of degree n > 1, with v,(n) = v

M/L = finite totally ramified subextension of K®*¢*/L of degree m > 1, with
vp(m) = p

vk, Ok, Tk, and Mg have natural analogs for L and M

2. Generalized Hasse-Herbrand functions

We begin by recalling the definition of the indices of inseparability i; (0 < j < v) for a
nontrivial totally ramified separable extension L/K of degree n = ap”, as formulated by
Heiermann [5]. Let R C Ok be the set of Teichmiiller representatives for K. Then there
is a unique series F(X) = SO0 an X"+ with coefficients in R such that 7x = F(mz).
For 0 < j < v set
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7 =min{h > 0:v,(h+n) < j, ap #0}. (2.1)

If char(K) = 0 it may happen that a; = 0 for all A > 0 such that v,(h +n) < j, in
which case we set 7; = co. The indices of inseparability are defined recursively in terms
of 7; by i, =%, = 0 and i; = min{;,4;41 +vr(p)} for j =v —1,...,1,0. Thus

ij = min{i;, + (j1 — jorlp) : j < j < v} (2.2)

It follows from the definitions that 0 =4, < i,—1 < i,_1 < -+ < ip. If char(K) =p
then v, (p) = oo, so i; = 7; in this case. If char(K) = 0 then 7; can depend on the choice
of mr,, and it is not obvious that i, is a well-defined invariant of the extension L/K. We
will have more to say about this issue in Remark 2.5.

Following [5, (4.4)], for 0 < j < v we define functions QBJ'L/K : [0,00) — [0,00) by
~£/K( z) = ij + p’z. The generalized Hasse-Herbrand functions ¢L/K [0,00) — [0, 00)
are then defined by

L/K —mln{qﬁL/K :0<jo<j} (2.3)

Hence we have ngL/K(ac) < QSJLI/K(x) for 0 < j < j. Let ¢/ : [0,00) = [0,00) be the
usual Hasse-Herbrand function, as defined for instance in Chapter IV of [7]. Then by
5, Cor. 6.11] we have ¢,y (¥) = nor /K (z).

In order to reformulate the definition of gi)é / (x) we will use the following elementary
fact about binomial coefficients, which is proved in [5, Lemma 5.6].

Lemma 2.1. Let b > ¢ > 1. Then vp(( )) = vp(b) — vp(c), with equality if vy(b) > vp(c)
and c is a power of p.

Proposition 2.2. For 0 < j <v and x > 0 we have

j . h+n ; .
¢JL/K(:£) = mln{h+vL(< i )) +px:0<7j9<74, ap # ()}_
Proof. Using (2.1)-(2.3) we get
61, xc (%) = min{h + (j1 = jo)vr (p) + PP : 0 < jo < j, jo < jr < v,
Up(h + n) S j17 ap, 7é O}
If jo > vp(h+n) then we can replace jo with jo—1 and j; with j; —1 without increasing the

value of h+(j1 — jo)vr (p) +p’°x. Hence we may assume jo < v,(h+n) and j; = v,(h+n).
It follows that
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jL/K(x) =min{h + (vp(h +n) — jo)vr(p) + p°z : 0 < jo < j, jo < vp(h+n), apn # 0}

h .
:min{h—l—vL(( p—;n>) +p%z: 0 < jo < 74, joSUp(h+n), ah#O}

h .
min{th’uL(( p—;—on>) +px:0<jyg <7, ap # 0},

where the second and third equalities follow from Lemma 2.1. 0O

For d > 0 set By = Op /M7 and let Aqg = (Og + M)/ M3T be the image of
Ok in By. For 0 < j < v set Byle;] = Byle]/(e? v’ 1), so that ¢; = e + (ep ) satisfies

j+1
e +1
J

Proposition 2.3. Let 0 < j < v, let d > ¢ > 0, and let u € Orle;]*. Choose F(X) €
X" Ok|[X]] such that F(rwy) = wx. Then the following are equivalent:

1. F(rp +unSte;) = mr (mod wlf+e).
2. There exists an Ag-algebra homomorphism sq : Bq — Bgle;] such that sq(mr) =
T+ u7rC+1 €.

3. There exists an Agq-algebra homomorphism sq : Bq — Bgle;] such that

sq¢=1idp, (mod 77e;)

sq #idp, (mod it le; - (7L, €5)).

Proof. Suppose Condition 1 holds. Let (X, €;) be an element of O [[X]][e;] such that
(mr, €j) = u. Since F(0) = 0 the Weierstrass polynomial of F(X) — 7k is the minimum
polynomial of 7z, over K. Therefore O = Ok[[X]]/(F(X) — 7k). It follows that the
Oxk-algebra homomorphism 5 : Ok [[X]] = Ok[[X]][e;] defined by §(X) = X + aXTle;
induces an Ag-algebra homomorphism sq : By — Bgle;] such that sq(7r) = 7p, —l—’U,TF?_lEj.
Therefore Condition 2 holds. On the other hand, if Condition 2 holds then applying the

homomorphism s4 to the congruence F () = 7x (mod 7} ™?)

gives Condition 1. Hence
the first two conditions are equivalent. Suppose Condition 2 holds. Since d > cand n > 2
we see that sg satisﬁes the requirements of Condition 3. Suppose Condition 3 holds. Then
sa(mr) = 7 +on§tle; for some v € Byle;]*. Let v : Bylej] — Bale;] be the Bg-algebra

-1

homomorphism such that y(e;) = uv™'¢;, and define s/, : Bg — Bqle;] by s/, = 7 o sq.

Then s/, satisfies the requirements of Condition 2. O

The assumptions on F(X) imply that F(rz +un¢™te;) = mx (mod n7+¢). Therefore
the conditions of the proposition are satisfied when d = ¢. On the other hand, since
L/K is separable we have F(ry + un$tle;) # mx. Hence for d sufficiently large the
conditions in the proposition are not satisfied. We define a function @é K Ny — Ny

by setting @jL / x(c) equal to the largest integer d satisfying the equivalent conditions of
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Proposition 2.3. By Condition 3 we see that this definition does not depend on the choice
of mp, u, or F.
We now show that (PJL K and quL Kk Aagree on nonnegative integers. This gives an

alternative description of the restriction of (bi K to Ny which does not depend on the
indices of inseparability.

Proposition 2.4. For ¢ € Ny we have @ji/K(c) = (;%/K(C).

Proof. Let ¢ € Ny. Since F(X) satisfies the hypotheses for F(X) in Proposition 2.3,
@JL/K(C) is equal to the largest d € Ny such that

F(rp +n5te;) = F(rr)  (mod 7 +). (2.4)
For m > 0 define
m T — S h+n h+n—m
(D ]-‘)(X)Z( o >ahX .
h=0
Then
Pt
F(X+gXM)= > (D"F)(X)- (X"
m=0
Since €, e?, ceey eijjﬂ_l are linearly independent over O, (2.4) holds if and only if
(Dmf") (mr) ~7r(LC+1)m e M for 1 <m < pith (2.5)

Hence by Proposition 2.2 it is sufficient to prove that (2.5) is equivalent to the following:

h 4
thvL(( p—;on>> +cp’® > d for all jy, h such that 0 < jo < j and ap, # 0.
(2.6)

Assume first that (2.6) holds. Choose m such that 1 < m < p/! and write m = rp’
with p{r and jo < j. Choose h > 0 such that aj, # 0 and set [ = v,(h+n). If m > h+n
then (h;") =0, so we have

h ,
( ;n> apm T e Myt (2.7)

Suppose m < h +n and [ > jg. Using Lemma 2.1 we get

AL mms((2)
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Combining this with (2.6) we get

h h )
h+vL(< ;n>>+cm+n2h+m(< +n>)+cp]0+n2n+d.

p] 0

Hence (2.7) holds in this case. Finally, suppose m < h+n and | < jo < j. It follows from
Lemma 2.1 that UL((h;',")) =0, so by (2.6) we have h + cp' > d. Since m > p© > p! we
get

h
h+vL<( ;n>>+cm+n2h+cpl+n>n+d.

Therefore (2.7) holds in this case as well. It follows that every term in (D™F)(ry) lies
in M7+ 50 (2.5) holds.

Assume conversely that (2.5) holds. Among all the nonzero terms that occur in any
of the series

iA c i > h i
(D? F)(mr) - 772 TP = Z ah( ;n) 7r2+n+0p
h=0

for 0 < i < jlet ay (h;")w?h“pl be a term whose L-valuation w is minimum. If

char(K) = p then for each m > 1 the nonzero terms of (D™F)(xy) have distinct
L-valuations, so it follows from (2.5) that w > n + d. Suppose char(K) = 0 and set
I =vp(h+n). If i > [ then since UL((h;'l")) = 0 we have

v, ( <h +l n> WZ—HH_CPL) < ( <h + n> 7rz+h+0pi) = w.
D D’

Therefore we may assume i < [. Since vp((;»)) = v—iand ag # 0 we have | < v. Suppose
w < n + d. Then it follows from (2.5) that there is b’ # h such that ap # 0 and

/ / (3 i
(G BTG s N

Since n | vy (p) this implies A’ = h (modn). Since v,(h +n) < v and v,(K' +n) < v we
get vp(h' +n) = v,(h + n) = I. Therefore by Lemma 2.1 we have

(55

Combining this with (2.8) gives A’ = h, a contradiction. Therefore w > n + d holds in
general. Hence by the minimality of w we get (2.6). O
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Remark 2.5. If char(K’) = 0 then the value of 7; may depend on the choice of uniformizer
wr, for L. It was proved in [5, Th. 7.1] that i; is a well-defined invariant of the extension
L/K. This can also be deduced from Proposition 2.4 by setting ¢ = 0.

Remark 2.6. Let 0 < 7 < v. Even though the function ¢JL/K : [0,00) — [0, 00) may not
be determined by its restriction to No, it is determined by the sequence (ig,i1,...,1;).

Since %4, = gﬁ? ) 1 (0) this implies that the collection consisting of the restrictions of ¢7° K

to Ny for 0 < jo < j determines chL/K.

For 0 < j < v let Bylg;] = Bale] /(P 1), so that € =€+ (P’ +1) satisfies é;;f-s—l =0.
Define 51/1( : Ny — Nj analogously tQ éé/K, using €; in plgce of €;. Then the arguments
in this section remain valid with €;, & /i replaced by &, P K (In particular, note that
the proof that (2.5) implies (2.6) only uses the fact that (2.5) holds with m = p* for

0 <1 < j.) Hence by Propositions 2.3 and 2.4 and their analogs for é;, @jL/K we get the
following;:

Corollary 2.7. Let ¢,d € Ny, let u € Ople;]*, and let © € O[e;]*. Choose F(X) €
X™ - Ok|[X]] such that F(rwp) = wx. Then the following are equivalent:

L 675 (0) > d,
2. F(rp +un§tle;)
3. F(rp + arfte))

F(rp) (mod 7rz+d),
F(rr) (mod ™4,

Some of the proofs in Section 3 depend on “tame shifts”:

Lemma 2.8. Let 7y, be a uniformizer for L and choose a uniformizer wg for K such that

7 =7 (mod 7}t Let e > 1 be relatively prime to p[L : K] = pn and let g, € K57

be a root of X¢ — . Set K. = K(rnk,) and L. = LK,. Then

1. K./K and L./ L are totally ramified extensions of degree e.
2. There is a uniformizer 7y, for L. such that Wie =71, and 772e =k, (mod WZ;H).
3. Let F(X) € X™ - Ok|[[X]] be such that F(nr) = mx. Then we can define a series

F.(X) = F(X®)Y¢ with coefficients in Ok such that F.(ny.) = 7k, .

Proof. Statement 1 is clear. Since e and n are relatively prime there are s,t € Z such
that es +nt = 1. Then 7y, = 7} 7% is a uniformizer for L, with 77 = 77 (mod ﬁ'il)
and 77 = 7k, (modfrﬁjl). Hence there is a 1-unit v € (’)fe such that np, = vfp,
satisfies the requirements of Statement 2. To prove Statement 3 we note that since
mp. =Tk, (mod WZjl), the coefficient ag in the series F(X) = agX™ +a; X"t + ... is

a 1-unit. Therefore we may define

F(X) = F(X)Y = (aoX™ + a X" + .. )Y = al/ X" (14 a5 ar X +..) ",
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1/e

where ay’" is the unique 1-unit in Ok whose eth power is ag. Since 7% = F(n7 ) and

T =TK, (modwzzrl) we get Fo(mp,) =7k,. O

Lemma 2.9. Let K., L. be as in Lemma 2.8. Then for x > 0 and 0 < j < v we have

~%e/}(e (73) = e‘%i/}((x/e)

JLC/KE (:L') = engJL/K(x/e).
Proof. Tt suffices to show that eig, i1, ..., ei, are the indices of inseparability of L./K..
By Proposition 2.4 this is equivalent to showing that @JLC/KC (0) = e@JL/K (0). Let 7g,

L, TK,, TL., F(X), Fe(X) satisfy the conditions of Lemma 2.8. If @JL/K(O) > d then

Fo(mp, +7mp,€;)¢ = F(TI'L(l + ej)e)
= F(rz) (mod ﬂ'erd)

= F.(mg,)° (mod 7r7Ll+d).

Since Fo(X) = aé/eX” + ... with a(l)/‘3 a l-unit, it follows that

Fo(mp, +mp,€j) = Fo(m,)  (mod mp ).

Therefore &’

L./K. (0) > de. Conversely, if @%S/KS(O) > d then

F(rp +mpe;) = Fo(mp, (14 €)"¢)°

= Fo(rr,)¢ (mod mg ~7r%e)

= F(rz) (mod Wzﬂd/d),

and hence QY)]L /K
ed’

L/K(O). O

(0) > [d/e]. By combining these results we get @JLE/KE(O) =

3. Towers of extensions

In this section we consider a tower M/L/K of finite totally ramified subextensions
of K*¢P /K. Our goal is to determine relations between the generalized Hasse—Herbrand
functions ¢§\4 K of the extension M/K and the corresponding functions for L/K and
M/L. 1t is well-known that the indices of inseparability of L/K and M/L do not always
determine the indices of inseparability of M/K (see for instance Example 5.8 in [3]
or Remark 7.8 in [5]). Therefore we cannot expect to obtain a general formula which
expresses ¢, in terms of ¢ /i and ¢hy - However, we do get a lower bound for
¢/ i (), and we are able to show that this lower bound is equal to ¢} (2) in certain
cases.
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Set [L : K] =mn, [M : L] = m, v = vp(n), and p = v,(m). Let g, 7, mar be
uniformizers for K, L, M. Choose F(X) € X" - Ok|[[X]] such that F(r;) = mx and
define

F*(e) = my (F(mp + mpe) — Tk ).
Then F*(e) € OL][e]] is uniquely determined by L/K up to multiplication by an element
of Or[[e]]*.
Write F*(€) = cie + coe? + - - - and define the “valuation function” of F* with respect
to v by

Wﬁ(e)(x) =min{vk(¢;) +iz:i>1} (3.1)

for z € [0,00). The graph of WX,
vk . Gross [4, Lemma 1.5] attributes the following observation to Tate:

is the Newton copolygon of F*(e) with respect to

(€)

Proposition 3.1. For 2 > 0 we have ¢,/ (x) = Wl{i(e) (x).

Suppose we also have G(X) € X™ - Ok[[X]] such that G(mp) = mp. Set H(X) =
F(G(X)). Then H(X) € X" . Ok[[X]] satisfies H(mp) = wk. It follows that we can
use the series

G*(e) = Wzl(G(ﬂM + ma€) — L)

H*(e) = mt (H(ma + 7€) — Tk)

to compute the Hasse-Herbrand functions for the extensions M/L and M /K. As Lubin
points out in [6, Th. 1.6], by applying Proposition 3.1 to the relation H*(e) = F*(G*(¢)),
we obtain the well-known composition formula ¢n;/ g = ¢r/x © Par/r-

We wish to extend the results above to apply to the generalized Hasse-Herbrand
functions ¢JL/K. For 0 < j < v let F*(¢;) denote the image of F*(e) in OL[le)/(e” ™) =
OLle;]. Alternatively, we may view F*(e;) as the polynomial obtained by discarding all
the terms of F*(¢) of degree > p?*!. Therefore it makes sense to consider the valuation
function Wﬁ*(éj)(:v) of F*(e;).

Proposition 3.2. ngL/K(x) = ![/I%*(Ej)(x) for all x € [0,00).

Proof. We first prove that d)i/K and WL*(EJ_) agree on Ng. Let d > b > 0. Then
@é/K(b) > d if and qnly if F*(7t¢;) = 0 (mod7?). By (3.1) this is equivalent to
Wﬁ*(ej)(b) > d. Since @7 and !T/ﬁ*(ﬁj) map Ny to Ny, ‘Fhis implies 7, (c) = !I/l%*(q)(c)
for all ¢ € Ny. Using Proposition 2.4 we deduce that (%/K (c) = J/I%*(Ej)(c) for ¢ € Ny.
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Now choose e > 1 relatively prime to p[L : K| = pn. Let K., L., 7k, k., 7L,
71, satisfy the conditions of Lemma 2.8, and choose F(X) € X™ - Ok[[X]] such that
F(r1) = ng. Then F (X) = F(X¢)'/¢ satisfies F.(7;.) = 7k, . Let

Fi(e) = mx (Fe(rL, +mp,€) — Tk,)
=(1+F(1+e° - 1))1/6 —1.

Then F(e) = n~1(F*(n(e))), where n(e) = (1 +e)¢—1and n~'(e) = (1+¢€)*/¢ -1 have
coefficients in O. It follows that for 0 < j < v we have F(e;) = n~ (F*(n(e;))), so for

c € Ny we get

Uit () (©) = Uit (©) = e (efe).

1

By Lemma 2.9 we have d)jL/K(c/e) =e" jﬁc/K,_, (¢). Since the proposition holds for the

extension L./K. with « = ¢ this implies
¢2/K(C/e) =€ lwﬁ*(e (c) = F*(e (c/e)

Since the set {c/e : ¢,e € N, ged(e,pn) = 1} is dense in [0, 00), and ¢‘2/K7 !Illﬁ*(ei) are

continuous on [0, c0), we conclude that qﬁi/K(m) = Wﬁ*(éj)(m) for all z € [0,00). DO
Following [5, (4.4)], for 0 < j < v and m € N we define functions on [0, c0) by
b1k (@) = mdy e (w/m) = mij + o
5 (@) = me e /m) = min{ (@) 10 < o < ).
For 0 <I<v+pulet
Q={0,k):0<j<v, 0<k<p, j+k=1},
and for x > 0 define
Ny () = min{ @ 7 (dhy/ () = (G, k) € 21}
= min{(iﬁﬂn}( (gg)ﬁ/[/L(x)) : (4, k) € £, for some 0 < Iy < 1}.
For 0 <a <1 set
Sla(x) = {(]7 k) €y q;]lj;nK(q;ﬁ/[/L(x)) = >‘5\4/K(‘T>}

Theorem 3.3. Let 0 <! < v+ p and x € [0,00). Then

(a) ¢5lM/K( ) > )‘M/K( ).
(b) Suppose there exists lo < 1 such that |S°(z)| = 1. Then (béVI/K(a:) = )\ZM,/K(x).
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The rest of the paper is devoted to proving this theorem. We first consider the cases
where x = ¢ € Ny. The proof in these cases is based on Proposition 2.4. To get informa-
tion about 455\4/1( (¢) we compute the most significant terms of F(G(mar + 755 e)).

It follows from Proposition 2.4 that for 0 < 57 < v we have

.7:—(7TL(1 + e)) =T7K (mod (7r2+ij’€pj+1))'

In addition, since X" divides F(X) we have

f(WL(l +¢€) =nx  (mod 7). (3.2)
Hence
ﬁ(ﬂL(l +¢€) =mk (mod 7} - (W%,e”jﬂ)). (3.3)

Define an ideal in Of][¢]] by
. 1 . 2 . v+1
Ir= (72, )N (7, )N (7, e ) N(e)
= (W%’epo,ﬂ?epl, e ,Wi“epy).
It follows from (3.2) and (3.3) that
.7:—(7TL(]. +¢€) =nx (mod 7} - Ir). (3.4)

Let ig, i}, . ..,4, be the indices of inseparability of M/L. As above we find that

G(ru(l+e) =nr (mod 77y - Ig),
where Ig is the ideal in Oj/[[€]] defined by
Ig = (Wj\é/’lepo, ﬂﬁ\,}fepl, e ,W;I/‘[ep“).
By replacing € with 7§,e we get
G(mar(1+754¢)) =7 (mod 7 - Ig), (3.5)
where I7; is the ideal in Ops[[e]] defined by

I ( P/ (©) Epo 7rj’/[}\/r/L(C) Epl

= (my, ,

L= ﬂfj{/L(C)epu).

geeey

It follows from (3.4) and (3.5) that there are 7,5, € R, dr € (m,¢€) - Ir, and dg €
(mar,€) - 15 such that
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.7:"(7TL(1+6)) =Tk <1+er7r2jepj +6}-> (3.6)
§=0
5 N Bh(e)
G(ma (14 7€) =7 - <1+Zsk7rMM/L P +6g>. (3.7)
k=0

Define an ideal in Oyy|[€]] by
Tim Tk c .
Irg = (myp Ve o< j<v 0 <k <p)
Y c
_ (7_(_1\41\/1/1{( )epg :O§g§u+u).

Hence for d > 0 and 0 < g < v + u we have ﬂ%e”g € Irg if and only if d > )\‘?V[/K(c).
We also define u = 7p/77% € O3,

Lemma 3.4. Let 0 < j < v. Then

ij - Qg’fw/L(C) k ! i S p’ <Z>]L7}<(<5§4/L(C)) itk
T ZsmrM e’ 4+ dg = u" Zsk Tar e’ (mod (maz,€) - Irg).
k=0 k=0

Proof. For 0 < j < v define ideals in Z[X¢, X1,...,X,] by
Hy= "XV " :1<h<j, 0<k<p).
By induction on j we get
(Xo+ X1+ + X )P =X + X7+ + X7 (mod Hj).

Since both sides of this congruence are homogeneous polynomials of degree p/, it follows
that

(Xo+ Xy 4+ X,)P = X(’)’j _|-ij +...+X5j (mod HY), (3.8)
where

j—h

Hi = "X} "X,:1<h<j,0<k<p 0<w<p).

Since dg € (mar, €) - I there are & € Op[[e]] such that 8 = sx (mod (7, €)) and
4 e p e
Zskﬂ_f/[M/L( )Epk 4o = Zékﬂf/}””( )Epk.
k=0 k=0

Tk
Hence by replacing X with §k7rj\b/fM/L(c)epk for 0 <k < pin (3.8) we get



K. Keating / Journal of Number Theory 150 (2015) 81-97 93

® & k v " i pldk, L (c) itk
Z M/L Jer + dg EZCS’Z oy P (mod € - A),

k=0 k=0
where A is the ideal in Opy[[¢]] defined by

j—h

B
A= ("D 1< h <0<k < p).
Let 1 <h <jand 0 <k < p. Since i; + hvr(p) > i;_p we have

. j—h 7k . -
v (77 ~ph7r§\)4 ¢M/L(C)) > Mij_p +p77h¢lf\4/L(C)

= F R (3(0)

htk
)‘3\4/1? (c)

Tk .
¢M/L(c)€pk )pifh

It follows that 7rLe pl(r € € - Irg, and hence that ﬂzje A Ce-Ixg.

Therefore

M Tk X P . ik ok
my (Z Skﬂf}d”(c)ep + (5g> =n; Z Ef wﬁfM/L(c)epH (mod € - Irg)

11
<

[ad k .
i Zgza ¢L/K(¢M/L(c))€pa+k (mod ¢ - Irg).

Since §; = s (mod (7, €)) the lemma follows. 0O

&hryr ()

We now replace € with > 1'_, spm,; e+ dg in (3.6). With the help of Lemma 3.4

we get

Soa NI R AT C) GRS
f(g(wM(1+7TJ°{4e))):7rK~ 1+eru”Zsi 7TML/K MIEEZ T 4L g

j=0 k=0

JALs PR NC)
:wK.<1+Z( Z ,U/Z_]/r] sP L/K M/L >€pg+5}_g>

(4,k)efy

for some dxg € (mpr,€) - Irg.

)\l
To prove (a) in the case x = ¢ € Ny we define an ideal J, = (W;\?H a4/ (0)

OM[[EH Since TK - I]:g C Jl, by (3()) we get
F(G(mu (1 +m5€))) =7k (mod Jp).

It follows from Corollary 2.7 that ¢!, / wx(0) >, / x(c).
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Now let e > 1 be relatively prime to p[M : K| = pnm. Let mp; be a uniformizer
for M, and choose uniformizers 7z, mx for L, K such that 7, = 7}} (mod wﬂ“) and
7 = 77 (moda}t); then mx = 757" (mod7j" ). Let 7k, € K* be a root of
X¢—7g and set K, = K(7k,), Le = LK., and M, = MK.. Let 0 <h <v,0<1i <y,

and 0 <! < v+ p. Then by Lemma 2.9 we get

Oy (x) =€ (%\45/Le (ex) (3.10)
Sy Te(x) = e 1O (ex) (3.11)
Sy (@) = € Bl e, (ex) (3.12)
Ny () = 671)\11\/16/1(6(633) (3.13)

We know from the preceding paragraph that gblMe / x,(€) = )\5\/15 K. (¢) for every ¢ € Ny.
By applying (3.12) and (3.13) with z = ¢/e we get ¢ZM/K(c/e) > /\IM/K(c/e). It follows
that (a) holds whenever z = ¢/e with ¢ > 0, e > 1, and ged(e, pnm) = 1. Since numbers
of this form are dense in [0, c0), by continuity we get <Z)§\4/K( x) > )\M/K( x) for all z > 0.
This proves (a).

To facilitate the proof of (b) we define a subset of the nonnegative reals by

T(M/K)={t>0:31ly <l with [S]°(t)| =1 and |S(t)| =0 for 0 < a < lo}.
(3.14)

Suppose ¢ > 0 and (t7>‘5\4/K(t)) is not a vertex of the graph of )\5\4/1(. Then there is
a unique 0 < [y < [ such that |Sll° (t)] > 1; in fact, lp is determined by the condition
()\l]\/[/K)'( ) = plo. Hence if the hypotheses of (b) are satisfied with = ¢ then t €
T,(M/K).

Lemma 3.5. Suppose the hypotheses of (b) are satisfied with x = 0. Then 0 € T;(M/K).

Proof. Suppose 0 ¢ T;(M/K), and let Iy be the minimum integer satisfying the hy-
potheses of (b) with = = 0. Also let I; < lp be maximum such that |S/*(0)| # 0. Then
|S1*(0)| > 2. Hence there is (j, k) € S;*(0) such that k < p. Since

AL (0) = iy <5 = By (0)

we get

)‘M/K( ) < 7)) (¢§ZF/1L( ) < 7k (&ﬁxf/L(O)) = )‘IM/K(O)'

It follows that L/K(¢IX/;1L( ) = %TK(&’JCWL(O)), so we have 4 = i, and (j,k+1) €
SEF1(0). Hence by the maximality of I; we get I; = lp — 1. Since [S{°(0)| = 1 we must
have |S°71(0)] = 2 and (lp — p — 1, ) € SI°~1(0). Since qg’]f/[/L(O) = 0 we have
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Mgy < Mgy —p—1 = ¢L/K (D (0)) = Ny (0) < ¢l£/1? " (S (0)) = mit—

and hence )\IM/K( ) = d)lLO/I’; " M/L( ). Thus (lo — p, 1) € Si°(0). Since (j,k +1) €
S/°(0), and [SI°(0)| = 1, we get k + 1 = u, and hence iy, 1 = 1), =i}, = 1, = 0. Since
ij,_1 >, = 0, this is a contradiction. Therefore 0 € T;(M/K). O

Lemma 3.6. Let ¢ € NgNT;(M/K), let ly be the integer specified by (5.1]) for t = c,
and let (j,k) be the unique element of §2;, such that /\é\/f/K( c) = ~%7K(q~5’f\4/L(c)). Then
rj and sy are nonzero.

Proof. Since ¢ € T)(M/K), for 0 < j' < j we have (;BJL//";(( M/L( c)) > qﬁJL;’;{(qBﬁ/[/L(c)).
It follows that ¢; > ¢;, and hence that mx - (7p,€) - Ir C (7 ZH’H, P +1). Therefore by
(3.6) we get

]:—(7713(1 +e)=mk-(1+ rjwiLjepj) (mod (ﬂ-z+ij+1’€pj+1)).

If 7; = 0 then by Corollary 2.7 we have i; = d)]L/K(O) > ij+ 1, a contradiction. It follows
that r; # 0.
Suppose there is 0 < k¥’ < k such that é%/L(c) < quw/L(c). Since ¢ € T}(M/K) we

have (j, k') ¢ SJJrk (¢), and hence

>‘5\/[/K(C) < éi/}((g’ﬁ/’[/L(c)) < QEJL/K (g)ﬁ/[/L(C)) = >\IJ\4/K(C)~

This is a contradiction, so we must have J)ﬁ;/L(c) > (5116\4/L( ¢) for 0 < k' < k. Hence

(b’fWL(c) = J)’]“WL(C). Set d = gb’fWL(c). Then p, - (mar,€) - 15 C (it a e "+1). Using
(3.7) we get

G(mar(1+7576)) = Glmar) (1 + semfye?”)  (mod (e, " +1)).

If s = 0 then by Corollary 2.7 we have ¢4, / . (€) > d+1, a contradiction. It follows that
s #0. O

We now prove (b) for x = ¢ € NgNT;(M/K). Let Iy be the minimum integer satisfying
the hypotheses of (b) for = c¢. Then there is a unique pair (j,k) € (2, such that

)\IM/K(C) = ~%7K(q~5’f\4/L( ¢)). Furthermore, we have )\M/K( c) = )\lM/K( ¢) and )\M/K( c) >

)\l]\/[/K<C) for Iy < lo. Define Jj = (7T]7\l/[m+/\M/K(c)+1,e 41, Then 7t (T, €) - Irg C Jj

so by (3.9) we get

ﬁ(g(ﬂM (1+ 7€) =7k - (1+ ui-frjsfw])\\;M/K(c)eplo) (mod Jj ).

It follows from Lemma 3.6 that r;, sy € R\ {0} are units. Therefore we have
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ﬁ(Q(WM(l +75€))) #7x  (mod Jj).

Hence by (a) and Corollary 2.7 we get
A0 i (0) < 05 (0) < Nagyse(0) + 1= Ny e (€) + 1.

Since )\l]\(j[/K( ¢) and qSlI\”/I/K( ¢) are integers this implies that )\M/K( c) = ¢M/K( ¢). Using (a)

we get

Nyr/x(€) < e (0) < ¢5\04/K( c) = )‘l]\/[/K( ¢) = Xy /x (),

and hence )\lM/K(c) = ¢§\4/K(C)' Thus (b) holds for x € No N T;(M/K). In particular, it
follows from Lemma 3.5 that (b) holds for 2 = 0.

As in the proof of (a) let e > 1 be relatively prime to pnm, let mp; be a uniformizer
for M, and choose uniformizers 7z, mx for L, K such that 7 = 7}} (mod wﬂ“) and
7 = 77 (mod 77T, Let g, € K*°P be a root of X¢ —7x and set K, = K(nk,), L. =
LK.,and M, = MK.. Let ¢ € Ny be such that ¢/e € T;(M/K) and the hypotheses of (b)
are satisfied for the extensions M/L/K with x = ¢/e. Then it follows from (3.10)-(3.13)
that ¢ € Tj(M./K.) and the hypotheses of (b) are satisfied for the extensions M./L. /K,
with © = ¢. Hence by the preceding paragraph we get ¢§we / k. (c) = /\lMe /K. (¢). Using
(3.12) and (3.13) we deduce that ¢M/K(c/e) = /\éw/K(c/e).

Now let r be any positive real number such that the hypotheses of (b) are satisfied
with = r, and let lp be the minimum integer which satisfies the hypotheses. Then there
is a unique element (j, k) € 2, such that (bL/K oq%“w/L( r) = )\M/K( r). Let 0 < a <l
and let (u,v) € 2,. Then the graph of (/5%/";( o qu/L is a line of slope pity = p < plo,
Hence if (u,v) # (j, k) and 0 < ¢ < r then (5111/7?( ogZ’M/L(t) > L/K o ¢M/L( ). It follows
that Sllg(t) = {(j,k)} and S{(t) = @ for 0 < a < lp. Hence t € Tj,(M/K) and the
hypotheses of (b) are satisfied with = ¢ and [ replaced by lj.

Suppose (;SlM/K(r) > AﬁWK(r). Then there are ¢, e > 1 such that ged(e, pnm) = 1 and

& r) — A r
o< € o Q) - (). (3.15)
e prTH

Since /\5\04/;((7“) = Ny (1) we get

By 5 (1) = Ny e (1) = Sy (1) = My (1) > 0. (3.16)

Since ¢§\°4 K and )\5\‘}[ /K ATe continuous increasing piecewise linear functions with deriva-
tives at most p*T# it follows from (3.15) and (3.16) that qu/K(c/e) )\é\“jl/K(c/e) > 0.
On the other hand, by the preceding paragraph we know that c/e € T;,(M/K)
and the hypotheses of (b) are satisfied with z = ¢/e and [ replaced by lo. Hence

M/K(c/e) M/K(c/e). This is a contradiction, so we must have (ﬁlM/K( r) < /\M/K( ).
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By combining this inequality with (a) we get ¢, / o(r) =\, / (). This completes the
proof of (b).

By setting £ = 0 in Theorem 3.3 we get the following. A special case of this result is
given in [3, Prop. 5.10].

Corollary 3.7. For 0 <! < v+ p let i} denote the lth index of inseparability of M/K.
Then

i < min{mi; + p’i}, : (j,k) € 2, for some 0 < ly <1},

with equality if there exists 0 < ly <1 such that there is a unique pair (j,k) € 21, which
realizes the minimum.
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