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Let K be a local field whose residue field has characteristic p
and let L/K be a finite separable totally ramified extension 
of degree n = apν . The indices of inseparability i0, i1, . . . , iν
of L/K were defined by Fried in the case char(K) = p and by 
Heiermann in the case char(K) = 0; they give a refinement of 
the usual ramification data for L/K. The indices of insepara-
bility can be used to construct “generalized Hasse–Herbrand 
functions” φj

L/K for 0 ≤ j ≤ ν. In this paper we give an in-
terpretation of the values φj

L/K(c) for nonnegative integers c. 
We use this interpretation to study the behavior of generalized 
Hasse–Herbrand functions in towers of field extensions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a local field whose residue field K is a perfect field of characteristic p, and 
let Ksep be a separable closure of K. Let L/K be a finite totally ramified subextension 
of Ksep/K. The indices of inseparability of L/K were defined by Fried [2] in the case 
char(K) = p, and by Heiermann [5] in the case char(K) = 0. The indices of inseparability 
of L/K determine the ramification data of L/K (as defined for instance in Chapter IV 
of [7]), but the ramification data does not always determine the indices of inseparability. 

E-mail address: keating@ufl.edu.
http://dx.doi.org/10.1016/j.jnt.2014.11.009
0022-314X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jnt.2014.11.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:keating@ufl.edu
http://dx.doi.org/10.1016/j.jnt.2014.11.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2014.11.009&domain=pdf


82 K. Keating / Journal of Number Theory 150 (2015) 81–97
Therefore the indices of inseparability of L/K may be viewed as a refinement of the 
usual ramification data of L/K.

Let πK , πL be uniformizers for K, L. The most natural definition of the ramification 
data of L/K is based on the valuations of σ(πL) − πL for K-embeddings σ : L → Ksep; 
this is the approach taken in Serre’s book [7]. The ramification data can also be defined 
in terms of the relation between the norm map NL/K and the filtrations of the unit 
groups of L and K, as in Fesenko–Vostokov [1]. This approach can be used to derive the 
well-known relation between higher ramification theory and class field theory. Finally, 
the ramification data can be computed by expressing πK as a power series in πL with 
coefficients in the set R of Teichmüller representatives for K. This third approach, which 
is used by Fried and Heiermann, makes clear the connection between ramification data 
and the indices of inseparability.

Heiermann [5] defined “generalized Hasse–Herbrand functions” φj
L/K for 0 ≤ j ≤ ν. 

In Section 2 we give an interpretation of the values φj
L/K(c) of these functions at non-

negative integers c. This leads to an alternative definition of the indices of inseparability 
which is closely related to the third method for defining the ramification data. In Sec-
tion 3 we consider a tower of finite totally ramified separable extensions M/L/K. We use 
our interpretation of the values φj

L/K(c) to study the relations between the generalized 
Hasse–Herbrand functions of L/K, M/L, and M/K.

Notation

N0 = N ∪ {0} = {0, 1, 2, . . .}
vp = p-adic valuation on Z
K = local field with perfect residue field K of characteristic p > 0
Ksep = separable closure of K
vK = valuation on Ksep normalized so that vK(K×) = Z

OK = {α ∈ K : vK(α) ≥ 0} = ring of integers of K
πK = uniformizer for K
MK = πKOK = maximal ideal of OK

R = set of Teichmüller representatives for K
L/K = finite totally ramified subextension of Ksep/K of degree n > 1, with vp(n) = ν

M/L = finite totally ramified subextension of Ksep/L of degree m > 1, with 
vp(m) = μ

vK , OK , πK , and MK have natural analogs for L and M

2. Generalized Hasse–Herbrand functions

We begin by recalling the definition of the indices of inseparability ij (0 ≤ j ≤ ν) for a 
nontrivial totally ramified separable extension L/K of degree n = apν , as formulated by 
Heiermann [5]. Let R ⊂ OK be the set of Teichmüller representatives for K. Then there 
is a unique series F̂(X) =

∑∞
h=0 ahX

h+n with coefficients in R such that πK = F̂(πL). 
For 0 ≤ j ≤ ν set
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ı̃j = min
{
h ≥ 0 : vp(h + n) ≤ j, ah �= 0

}
. (2.1)

If char(K) = 0 it may happen that ah = 0 for all h ≥ 0 such that vp(h + n) ≤ j, in 
which case we set ı̃j = ∞. The indices of inseparability are defined recursively in terms 
of ı̃j by iν = ı̃ν = 0 and ij = min{ı̃j , ij+1 + vL(p)} for j = ν − 1, . . . , 1, 0. Thus

ij = min
{
ı̃j1 + (j1 − j)vL(p) : j ≤ j1 ≤ ν

}
. (2.2)

It follows from the definitions that 0 = iν < iν−1 ≤ iν−1 ≤ · · · ≤ i0. If char(K) = p

then vL(p) = ∞, so ij = ı̃j in this case. If char(K) = 0 then ı̃j can depend on the choice 
of πL, and it is not obvious that ij is a well-defined invariant of the extension L/K. We 
will have more to say about this issue in Remark 2.5.

Following [5, (4.4)], for 0 ≤ j ≤ ν we define functions φ̃j
L/K : [0, ∞) → [0, ∞) by 

φ̃j
L/K(x) = ij + pjx. The generalized Hasse–Herbrand functions φj

L/K : [0, ∞) → [0, ∞)
are then defined by

φj
L/K(x) = min

{
φ̃j0
L/K(x) : 0 ≤ j0 ≤ j

}
. (2.3)

Hence we have φj
L/K(x) ≤ φj′

L/K(x) for 0 ≤ j′ ≤ j. Let φL/K : [0, ∞) → [0, ∞) be the 
usual Hasse–Herbrand function, as defined for instance in Chapter IV of [7]. Then by 
[5, Cor. 6.11] we have φν

L/K(x) = nφL/K(x).
In order to reformulate the definition of φj

L/K(x) we will use the following elementary 
fact about binomial coefficients, which is proved in [5, Lemma 5.6].

Lemma 2.1. Let b ≥ c ≥ 1. Then vp
((

b
c

))
≥ vp(b) − vp(c), with equality if vp(b) ≥ vp(c)

and c is a power of p.

Proposition 2.2. For 0 ≤ j ≤ ν and x ≥ 0 we have

φj
L/K(x) = min

{
h + vL

((
h + n

pj0

))
+ pj0x : 0 ≤ j0 ≤ j, ah �= 0

}
.

Proof. Using (2.1)–(2.3) we get

φj
L/K(x) = min

{
h + (j1 − j0)vL(p) + pj0x : 0 ≤ j0 ≤ j, j0 ≤ j1 ≤ ν,

vp(h + n) ≤ j1, ah �= 0
}
.

If j0 > vp(h +n) then we can replace j0 with j0−1 and j1 with j1−1 without increasing the 
value of h +(j1−j0)vL(p) +pj0x. Hence we may assume j0 ≤ vp(h +n) and j1 = vp(h +n). 
It follows that
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φj
L/K(x) = min

{
h +

(
vp(h + n) − j0

)
vL(p) + pj0x : 0 ≤ j0 ≤ j, j0 ≤ vp(h + n), ah �= 0

}
= min

{
h + vL

((
h + n

pj0

))
+ pj0x : 0 ≤ j0 ≤ j, j0 ≤ vp(h + n), ah �= 0

}

= min
{
h + vL

((
h + n

pj0

))
+ pj0x : 0 ≤ j0 ≤ j, ah �= 0

}
,

where the second and third equalities follow from Lemma 2.1. �
For d ≥ 0 set Bd = OL/Mn+d

L and let Ad = (OK + Mn+d
L )/Mn+d

L be the image of 
OK in Bd. For 0 ≤ j ≤ ν set Bd[εj ] = Bd[ε]/(εp

j+1), so that εj = ε + (εpj+1) satisfies 
εp

j+1

j = 0.

Proposition 2.3. Let 0 ≤ j ≤ ν, let d ≥ c ≥ 0, and let u ∈ OL[εj ]×. Choose F (X) ∈
Xn · OK [[X]] such that F (πL) = πK . Then the following are equivalent:

1. F (πL + uπc+1
L εj) ≡ πK (modπn+d

L ).
2. There exists an Ad-algebra homomorphism sd : Bd → Bd[εj ] such that sd(πL) =

πL + uπc+1
L εj.

3. There exists an Ad-algebra homomorphism sd : Bd → Bd[εj ] such that

sd ≡ idBd

(
mod πc+1

L εj
)

sd �≡ idBd

(
mod πc+1

L εj · (πL, εj)
)
.

Proof. Suppose Condition 1 holds. Let ũ(X, εj) be an element of OK [[X]][εj ] such that 
ũ(πL, εj) = u. Since F (0) = 0 the Weierstrass polynomial of F (X) −πK is the minimum 
polynomial of πL over K. Therefore OL

∼= OK [[X]]/(F (X) − πK). It follows that the 
OK -algebra homomorphism s̃ : OK [[X]] → OK [[X]][εj ] defined by s̃(X) = X + ũXc+1εj
induces an Ad-algebra homomorphism sd : Bd → Bd[εj ] such that sd(πL) = πL+uπc+1

L εj . 
Therefore Condition 2 holds. On the other hand, if Condition 2 holds then applying the 
homomorphism sd to the congruence F (πL) ≡ πK (modπn+d

L ) gives Condition 1. Hence 
the first two conditions are equivalent. Suppose Condition 2 holds. Since d ≥ c and n ≥ 2
we see that sd satisfies the requirements of Condition 3. Suppose Condition 3 holds. Then 
sd(πL) = πL + vπc+1

L εj for some v ∈ Bd[εj ]×. Let γ : Bd[εj ] → Bd[εj ] be the Bd-algebra 
homomorphism such that γ(εj) = uv−1εj , and define s′d : Bd → Bd[εj ] by s′d = γ ◦ sd. 
Then s′d satisfies the requirements of Condition 2. �

The assumptions on F (X) imply that F (πL + uπc+1
L εj) ≡ πK (modπn+c

L ). Therefore 
the conditions of the proposition are satisfied when d = c. On the other hand, since 
L/K is separable we have F (πL + uπc+1

L εj) �= πK . Hence for d sufficiently large the 
conditions in the proposition are not satisfied. We define a function Φj

L/K : N0 → N0

by setting Φj (c) equal to the largest integer d satisfying the equivalent conditions of 
L/K
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Proposition 2.3. By Condition 3 we see that this definition does not depend on the choice 
of πL, u, or F .

We now show that Φj
L/K and φj

L/K agree on nonnegative integers. This gives an 

alternative description of the restriction of φj
L/K to N0 which does not depend on the 

indices of inseparability.

Proposition 2.4. For c ∈ N0 we have Φj
L/K(c) = φj

L/K(c).

Proof. Let c ∈ N0. Since F̂(X) satisfies the hypotheses for F (X) in Proposition 2.3, 
Φj
L/K(c) is equal to the largest d ∈ N0 such that

F̂
(
πL + πc+1

L εj
)
≡ F̂(πL)

(
mod πn+d

L

)
. (2.4)

For m ≥ 0 define

(
DmF̂

)
(X) =

∞∑
h=0

(
h + n

m

)
ahX

h+n−m.

Then

F̂
(
X + εjX

c+1) =
pj+1−1∑
m=0

(
DmF̂

)
(X) ·

(
εjX

c+1)m.

Since εj , ε2j , . . . , ε
pj+1−1
j are linearly independent over OL, (2.4) holds if and only if

(
DmF̂

)
(πL) · π(c+1)m

L ∈ Mn+d
L for 1 ≤ m < pj+1. (2.5)

Hence by Proposition 2.2 it is sufficient to prove that (2.5) is equivalent to the following:

h + vL

((
h + n

pj0

))
+ cpj0 ≥ d for all j0, h such that 0 ≤ j0 ≤ j and ah �= 0.

(2.6)

Assume first that (2.6) holds. Choose m such that 1 ≤ m < pj+1 and write m = rpj0

with p � r and j0 ≤ j. Choose h ≥ 0 such that ah �= 0 and set l = vp(h +n). If m > h +n

then 
(
h+n
m

)
= 0, so we have

(
h + n

m

)
ahπ

h+n−m
L · π(c+1)m

L ∈ Mn+d
L . (2.7)

Suppose m ≤ h + n and l ≥ j0. Using Lemma 2.1 we get

vp

((
h + n

))
≥ l − j0 = vp

((
h + n

j0

))
.

m p
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Combining this with (2.6) we get

h + vL

((
h + n

m

))
+ cm + n ≥ h + vL

((
h + n

pj0

))
+ cpj0 + n ≥ n + d.

Hence (2.7) holds in this case. Finally, suppose m ≤ h +n and l < j0 ≤ j. It follows from 
Lemma 2.1 that vL

((
h+n
pl

))
= 0, so by (2.6) we have h + cpl ≥ d. Since m ≥ pj0 > pl we 

get

h + vL

((
h + n

m

))
+ cm + n ≥ h + cpl + n ≥ n + d.

Therefore (2.7) holds in this case as well. It follows that every term in (DmF̂)(πL) lies 
in Mn+d

L , so (2.5) holds.
Assume conversely that (2.5) holds. Among all the nonzero terms that occur in any 

of the series

(
DpiF̂

)
(πL) · π(c+1)pi

L =
∞∑
h=0

ah

(
h + n

pi

)
πh+n+cpi

L

for 0 ≤ i ≤ j let ah
(
h+n
pi

)
πn+h+cpi

L be a term whose L-valuation w is minimum. If 
char(K) = p then for each m ≥ 1 the nonzero terms of (DmF̂)(πL) have distinct 
L-valuations, so it follows from (2.5) that w ≥ n + d. Suppose char(K) = 0 and set 
l = vp(h + n). If i > l then since vL

((
h+n
pl

))
= 0 we have

vL

((
h + n

pl

)
πn+h+cpl

L

)
≤ vL

((
h + n

pi

)
πn+h+cpi

L

)
= w.

Therefore we may assume i ≤ l. Since vp
((

n
pi

))
= ν−i and a0 �= 0 we have l ≤ ν. Suppose 

w < n + d. Then it follows from (2.5) that there is h′ �= h such that ah′ �= 0 and

vL

((
h′ + n

pi

)
πn+h′+cpi

L

)
= vL

((
h + n

pi

)
πn+h+cpi

L

)
. (2.8)

Since n | vL(p) this implies h′ ≡ h (modn). Since vp(h + n) ≤ ν and vp(h′ + n) ≤ ν we 
get vp(h′ + n) = vp(h + n) = l. Therefore by Lemma 2.1 we have

vp

((
h′ + n

pi

))
= vp

((
h + n

pi

))
= l − i.

Combining this with (2.8) gives h′ = h, a contradiction. Therefore w ≥ n + d holds in 
general. Hence by the minimality of w we get (2.6). �
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Remark 2.5. If char(K) = 0 then the value of ̃ıj may depend on the choice of uniformizer 
πL for L. It was proved in [5, Th. 7.1] that ij is a well-defined invariant of the extension 
L/K. This can also be deduced from Proposition 2.4 by setting c = 0.

Remark 2.6. Let 0 ≤ j ≤ ν. Even though the function φj
L/K : [0, ∞) → [0, ∞) may not 

be determined by its restriction to N0, it is determined by the sequence (i0, i1, . . . , ij). 
Since ij0 = φj0

L/K(0) this implies that the collection consisting of the restrictions of φj0
L/K

to N0 for 0 ≤ j0 ≤ j determines φj
L/K .

For 0 ≤ j ≤ ν let Bd[εj ] = Bd[ε]/(εp
j+1), so that εj = ε + (εpj+1) satisfies εp

j+1
j = 0. 

Define Φj
L/K : N0 → N0 analogously to Φj

L/K , using εj in place of εj . Then the arguments 
in this section remain valid with εj , Φj

L/K replaced by εj , Φj
L/K . (In particular, note that 

the proof that (2.5) implies (2.6) only uses the fact that (2.5) holds with m = pi for 
0 ≤ i ≤ j.) Hence by Propositions 2.3 and 2.4 and their analogs for εj , Φj

L/K we get the 
following:

Corollary 2.7. Let c, d ∈ N0, let u ∈ OL[εj ]×, and let u ∈ OL[εj ]×. Choose F (X) ∈
Xn · OK [[X]] such that F (πL) = πK . Then the following are equivalent:

1. φj
L/K(c) ≥ d,

2. F (πL + uπc+1
L εj) ≡ F (πL) (modπn+d

L ),
3. F (πL + uπc+1

L εj) ≡ F (πL) (modπn+d
L ).

Some of the proofs in Section 3 depend on “tame shifts”:

Lemma 2.8. Let πL be a uniformizer for L and choose a uniformizer πK for K such that 
πK ≡ πn

L (modπn+1
L ). Let e ≥ 1 be relatively prime to p[L : K] = pn and let πKe

∈ Ksep

be a root of Xe − πK . Set Ke = K(πKe
) and Le = LKe. Then

1. Ke/K and Le/L are totally ramified extensions of degree e.
2. There is a uniformizer πLe

for Le such that πe
Le

= πL and πn
Le

≡ πKe
(modπn+1

Le
).

3. Let F (X) ∈ Xn · OK [[X]] be such that F (πL) = πK . Then we can define a series 
Fe(X) = F (Xe)1/e with coefficients in OK such that Fe(πLe

) = πKe
.

Proof. Statement 1 is clear. Since e and n are relatively prime there are s, t ∈ Z such 
that es + nt = 1. Then π̃Le

= πs
Lπ

t
Ke

is a uniformizer for Le with π̃e
Le

≡ πL (mod π̃e+1
Le

)
and π̃n

Le
≡ πKe

(mod π̃n+1
Le

). Hence there is a 1-unit v ∈ O×
Le

such that πLe
= vπ̃Le

satisfies the requirements of Statement 2. To prove Statement 3 we note that since 
πn
Le

≡ πKe
(modπn+1

Le
), the coefficient a0 in the series F (X) = a0X

n + a1X
n+1 + . . . is 

a 1-unit. Therefore we may define

Fe(X) = F
(
Xe

)1/e =
(
a0X

ne + a1X
ne+e + . . .

)1/e = a
1/e
0 Xn

(
1 + a−1

0 a1X
e + . . .

)1/e
,
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where a1/e
0 is the unique 1-unit in OK whose eth power is a0. Since πe

Ke
= F (πe

Le
) and 

πn
Le

≡ πKe
(modπn+1

Le
) we get Fe(πLe

) = πKe
. �

Lemma 2.9. Let Ke, Le be as in Lemma 2.8. Then for x ≥ 0 and 0 ≤ j ≤ ν we have

φ̃j
Le/Ke

(x) = eφ̃j
L/K(x/e)

φj
Le/Ke

(x) = eφj
L/K(x/e).

Proof. It suffices to show that ei0, ei1, . . . , eiν are the indices of inseparability of Le/Ke. 
By Proposition 2.4 this is equivalent to showing that Φj

Le/Ke
(0) = eΦj

L/K(0). Let πK , 
πL, πKe

, πLe
, F (X), Fe(X) satisfy the conditions of Lemma 2.8. If Φj

L/K(0) ≥ d then

Fe(πLe
+ πLe

εj)e = F
(
πL(1 + εj)e

)
≡ F (πL)

(
mod πn+d

L

)
≡ Fe(πLe

)e
(
mod πn+d

L

)
.

Since Fe(X) = a
1/e
0 Xn + . . . with a1/e

0 a 1-unit, it follows that

Fe(πLe
+ πLe

εj) ≡ Fe(πLe
)

(
mod πn+de

Le

)
.

Therefore Φj
Le/Ke

(0) ≥ de. Conversely, if Φj
Le/Ke

(0) ≥ d then

F (πL + πLεj) = Fe

(
πLe

(1 + εj)1/e
)e

≡ Fe(πLe
)e

(
mod πK · πd

Le

)
≡ F (πL)

(
mod π

n+�d/e�
L

)
,

and hence Φj
L/K(0) ≥ 
d/e�. By combining these results we get Φj

Le/Ke
(0) =

eΦj
L/K(0). �

3. Towers of extensions

In this section we consider a tower M/L/K of finite totally ramified subextensions 
of Ksep/K. Our goal is to determine relations between the generalized Hasse–Herbrand 
functions φl

M/K of the extension M/K and the corresponding functions for L/K and 
M/L. It is well-known that the indices of inseparability of L/K and M/L do not always 
determine the indices of inseparability of M/K (see for instance Example 5.8 in [3]
or Remark 7.8 in [5]). Therefore we cannot expect to obtain a general formula which 
expresses φl

M/K in terms of φj
L/K and φk

M/L. However, we do get a lower bound for 
φl
M/K(x), and we are able to show that this lower bound is equal to φl

M/K(x) in certain 
cases.
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Set [L : K] = n, [M : L] = m, ν = vp(n), and μ = vp(m). Let πK , πL, πM be 
uniformizers for K, L, M . Choose F (X) ∈ Xn · OK [[X]] such that F (πL) = πK and 
define

F ∗(ε) = π−1
K

(
F (πL + πLε) − πK

)
.

Then F ∗(ε) ∈ OL[[ε]] is uniquely determined by L/K up to multiplication by an element 
of OL[[ε]]×.

Write F ∗(ε) = c1ε + c2ε
2 + · · · and define the “valuation function” of F ∗ with respect 

to vK by

ΨK
F∗(ε)(x) = min

{
vK(ci) + ix : i ≥ 1

}
(3.1)

for x ∈ [0, ∞). The graph of ΨK
F∗(ε) is the Newton copolygon of F ∗(ε) with respect to 

vK . Gross [4, Lemma 1.5] attributes the following observation to Tate:

Proposition 3.1. For x ≥ 0 we have φL/K(x) = ΨK
F∗(ε)(x).

Suppose we also have G(X) ∈ Xm · OK [[X]] such that G(πM ) = πL. Set H(X) =
F (G(X)). Then H(X) ∈ Xnm · OK [[X]] satisfies H(πM ) = πK . It follows that we can 
use the series

G∗(ε) = π−1
L

(
G(πM + πM ε) − πL

)
H∗(ε) = π−1

K

(
H(πM + πM ε) − πK

)
to compute the Hasse–Herbrand functions for the extensions M/L and M/K. As Lubin 
points out in [6, Th. 1.6], by applying Proposition 3.1 to the relation H∗(ε) = F ∗(G∗(ε)), 
we obtain the well-known composition formula φM/K = φL/K ◦ φM/L.

We wish to extend the results above to apply to the generalized Hasse–Herbrand 
functions φj

L/K . For 0 ≤ j ≤ ν let F ∗(εj) denote the image of F ∗(ε) in OL[[ε]]/(εpj+1) ∼=
OL[εj ]. Alternatively, we may view F ∗(εj) as the polynomial obtained by discarding all 
the terms of F ∗(ε) of degree ≥ pj+1. Therefore it makes sense to consider the valuation 
function ΨL

F∗(εj)(x) of F ∗(εj).

Proposition 3.2. φj
L/K(x) = ΨL

F∗(εj)(x) for all x ∈ [0, ∞).

Proof. We first prove that φj
L/K and ΨL

F∗(εj) agree on N0. Let d ≥ b ≥ 0. Then 

Φj
L/K(b) ≥ d if and only if F ∗(πb

Lεj) ≡ 0 (modπd
L). By (3.1) this is equivalent to 

ΨL
F∗(εj)(b) ≥ d. Since Φj

L/K and ΨL
F∗(εj) map N0 to N0, this implies Φj

L/K(c) = ΨL
F∗(εj)(c)

for all c ∈ N0. Using Proposition 2.4 we deduce that φj (c) = ΨL
∗ (c) for c ∈ N0.
L/K F (εj)
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Now choose e ≥ 1 relatively prime to p[L : K] = pn. Let Ke, Le, πK , πKe
, πL, 

πLe
satisfy the conditions of Lemma 2.8, and choose F (X) ∈ Xn · OK [[X]] such that 

F (πL) = πK . Then Fe(X) = F (Xe)1/e satisfies Fe(πLe
) = πKe

. Let

F ∗
e (ε) = π−1

Ke

(
Fe(πLe

+ πLe
ε) − πKe

)
=

(
1 + F ∗((1 + ε)e − 1

))1/e − 1.

Then F ∗
e (ε) = η−1(F ∗(η(ε))), where η(ε) = (1 + ε)e − 1 and η−1(ε) = (1 + ε)1/e − 1 have 

coefficients in OK . It follows that for 0 ≤ j ≤ ν we have F ∗
e (εj) = η−1(F ∗(η(εj))), so for 

c ∈ N0 we get

ΨLe

F∗
e (εj)(c) = ΨLe

F∗(εj)(c) = eΨL
F∗(εj)(c/e).

By Lemma 2.9 we have φj
L/K(c/e) = e−1φj

Le/Ke
(c). Since the proposition holds for the 

extension Le/Ke with x = c this implies

φj
L/K(c/e) = e−1ΨLe

F∗
e (εj)(c) = ΨL

F∗(εj)(c/e).

Since the set {c/e : c, e ∈ N, gcd(e, pn) = 1} is dense in [0, ∞), and φj
L/K , ΨL

F∗(εj) are 

continuous on [0, ∞), we conclude that φj
L/K(x) = ΨL

F∗(εj)(x) for all x ∈ [0, ∞). �
Following [5, (4.4)], for 0 ≤ j ≤ ν and m ∈ N we define functions on [0, ∞) by

φ̃j,m
L/K(x) = mφ̃j

L/K(x/m) = mij + pjx

φj,m
L/K(x) = mφj

L/K(x/m) = min
{
φ̃j0,m
L/K(x) : 0 ≤ j0 ≤ j

}
.

For 0 ≤ l ≤ ν + μ let

Ωl =
{
(j, k) : 0 ≤ j ≤ ν, 0 ≤ k ≤ μ, j + k = l

}
,

and for x ≥ 0 define

λl
M/K(x) = min

{
φj,m
L/K

(
φk
M/L(x)

)
: (j, k) ∈ Ωl

}
= min

{
φ̃j,m
L/K

(
φ̃k
M/L(x)

)
: (j, k) ∈ Ωl0 for some 0 ≤ l0 ≤ l

}
.

For 0 ≤ a ≤ l set

Sa
l (x) =

{
(j, k) ∈ Ωa : φ̃j,m

L/K

(
φ̃k
M/L(x)

)
= λl

M/K(x)
}
.

Theorem 3.3. Let 0 ≤ l ≤ ν + μ and x ∈ [0, ∞). Then

(a) φl
M/K(x) ≥ λl

M/K(x).
(b) Suppose there exists l0 ≤ l such that |Sl0

l (x)| = 1. Then φl (x) = λl (x).
M/K M/K
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The rest of the paper is devoted to proving this theorem. We first consider the cases 
where x = c ∈ N0. The proof in these cases is based on Proposition 2.4. To get informa-
tion about Φl

M/K(c) we compute the most significant terms of F̂(Ĝ(πM + πc+1
M ε)).

It follows from Proposition 2.4 that for 0 ≤ j ≤ ν we have

F̂
(
πL(1 + ε)

)
≡ πK

(
mod

(
π
n+ij
L , εp

j+1))
.

In addition, since Xn divides F̂(X) we have

F̂
(
πL(1 + ε)

)
≡ πK

(
mod πn

Lε
)
. (3.2)

Hence

F̂
(
πL(1 + ε)

)
≡ πK

(
mod πn

L ·
(
π
ij
L , εp

j+1))
. (3.3)

Define an ideal in OL[[ε]] by

IF =
(
πi0
L , εp

1) ∩ (
πi1
L , εp

2) ∩ · · · ∩
(
πiν
L , εp

ν+1) ∩ (ε)

=
(
πi0
L εp

0
, πi1

L εp
1
, . . . , πiν

L εp
ν)
.

It follows from (3.2) and (3.3) that

F̂
(
πL(1 + ε)

)
≡ πK

(
mod πn

L · IF
)
. (3.4)

Let i′0, i′1, . . . , i′μ be the indices of inseparability of M/L. As above we find that

Ĝ
(
πM (1 + ε)

)
≡ πL

(
mod πm

M · IG
)
,

where IG is the ideal in OM [[ε]] defined by

IG =
(
π
i′0
M εp

0
, π

i′1
M εp

1
, . . . , π

i′μ
M εp

μ)
.

By replacing ε with πc
M ε we get

Ĝ
(
πM

(
1 + πc

M ε
))

≡ πL

(
mod πm

M · I ′G
)
, (3.5)

where I ′G is the ideal in OM [[ε]] defined by

I ′G =
(
π
φ̃0
M/L(c)

M εp
0
, π

φ̃1
M/L(c)

M εp
1
, . . . , π

φ̃μ
M/L(c)

M εp
μ)
.

It follows from (3.4) and (3.5) that there are rj , sk ∈ R, δF ∈ (πL, ε) · IF , and δG ∈
(πM , ε) · I ′G such that
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F̂
(
πL(1 + ε)

)
= πK ·

(
1 +

ν∑
j=0

rjπ
ij
L εp

j

+ δF

)
(3.6)

Ĝ
(
πM

(
1 + πc

M ε
))

= πL ·
(

1 +
μ∑

k=0

skπ
φ̃k
M/L(c)

M εp
k

+ δG

)
. (3.7)

Define an ideal in OM [[ε]] by

IFG =
(
π
φ̃j,m
L/K(φ̃k

M/L(c))
M εp

j+k

: 0 ≤ j ≤ ν, 0 ≤ k ≤ μ
)

=
(
π
λg
M/K(c)

M εp
g

: 0 ≤ g ≤ ν + μ
)
.

Hence for d ≥ 0 and 0 ≤ g ≤ ν + μ we have πd
Mεp

g ∈ IFG if and only if d ≥ λg
M/K(c). 

We also define u = πL/π
m
M ∈ O×

M .

Lemma 3.4. Let 0 ≤ j ≤ ν. Then

π
ij
L

(
μ∑

k=0

skπ
φ̃k
M/L(c)

M εp
k

+ δG

)pj

≡ uij

μ∑
k=0

sp
j

k π
φ̃j,m
L/K(φ̃k

M/L(c))
M εp

j+k (
mod (πM , ε) · IFG

)
.

Proof. For 0 ≤ j ≤ ν define ideals in Z[X0, X1, . . . , Xμ] by

Hj =
(
phXpj−h

k : 1 ≤ h ≤ j, 0 ≤ k ≤ μ
)
.

By induction on j we get

(X0 + X1 + · · · + Xμ)p
j ≡ Xpj

0 + Xpj

1 + · · · + Xpj

μ (mod Hj).

Since both sides of this congruence are homogeneous polynomials of degree pj, it follows 
that

(X0 + X1 + · · · + Xμ)p
j ≡ Xpj

0 + Xpj

1 + · · · + Xpj

μ

(
mod H ′

j

)
, (3.8)

where

H ′
j =

(
phXpj−h

k Xw : 1 ≤ h ≤ j, 0 ≤ k ≤ μ, 0 ≤ w ≤ μ
)
.

Since δG ∈ (πM , ε) · I ′G there are s̃k ∈ OM [[ε]] such that s̃k ≡ sk (mod (πM , ε)) and

μ∑
k=0

skπ
φ̃k
M/L(c)

M εp
k

+ δG =
μ∑

k=0

s̃kπ
φ̃k
M/L(c)

M εp
k

.

Hence by replacing Xk with s̃kπ
φ̃k
M/L(c)

M εp
k for 0 ≤ k ≤ μ in (3.8) we get
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(
μ∑

k=0

skπ
φ̃k
M/L(c)

M εp
k

+ δG

)pj

≡
μ∑

k=0

s̃p
j

k π
pj φ̃k

M/L(c)
M εp

j+k

(mod ε ·A),

where A is the ideal in OM [[ε]] defined by

A =
(
ph

(
π
φ̃k
M/L(c)

M εp
k)pj−h

: 1 ≤ h ≤ j, 0 ≤ k ≤ μ
)
.

Let 1 ≤ h ≤ j and 0 ≤ k ≤ μ. Since ij + hvL(p) ≥ ij−h we have

vM
(
π
ij
L · phπpj−hφ̃k

M/L(c)
M

)
≥ mij−h + pj−hφ̃k

M/L(c)

= φ̃j−h,m
L/K

(
φ̃k
M/L(c)

)
≥ λj−h+k

M/K (c).

It follows that πij
L ε · ph(πφ̃k

M/L(c)
M εp

k)pj−h ∈ ε · IFG , and hence that πij
L ε · A ⊂ ε · IFG . 

Therefore

π
ij
L

(
μ∑

k=0

skπ
φ̃k
M/L(c)

M εp
k

+ δG

)pj

≡ π
ij
L

μ∑
k=0

s̃p
j

k π
pj φ̃k

M/L(c)
M εp

j+k

(mod ε · IFG)

≡ uij

μ∑
k=0

s̃p
j

k π
φ̃j,m
L/K(φ̃k

M/L(c))
M εp

j+k

(mod ε · IFG).

Since s̃k ≡ sk (mod (πM , ε)) the lemma follows. �
We now replace ε with 

∑μ
k=0 skπ

φ̃k
M/L(c)

M εp
k + δG in (3.6). With the help of Lemma 3.4

we get

F̂
(
Ĝ
(
πM

(
1 + πc

M ε
)))

= πK ·
(

1 +
ν∑

j=0
rju

ij

μ∑
k=0

sp
j

k π
φ̃j,m
L/K(φ̃k

M/L(c))
M εp

j+k

+ δFG

)

= πK ·
(

1 +
ν+μ∑
g=0

( ∑
(j,k)∈Ωg

uijrjs
pj

k π
φ̃j,m
L/K(φ̃k

M/L(c))
M

)
εp

g

+ δFG

)

(3.9)

for some δFG ∈ (πM , ε) · IFG .
To prove (a) in the case x = c ∈ N0 we define an ideal Jl = (πnm+λl

M/K(c)
M , εp

l+1) in 
OM [[ε]]. Since πK · IFG ⊂ Jl, by (3.9) we get

F̂
(
Ĝ
(
πM

(
1 + πc

M ε
)))

≡ πK (mod Jl).

It follows from Corollary 2.7 that φl (c) ≥ λl (c).
M/K M/K
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Now let e ≥ 1 be relatively prime to p[M : K] = pnm. Let πM be a uniformizer 
for M , and choose uniformizers πL, πK for L, K such that πL ≡ πm

M (modπm+1
M ) and 

πK ≡ πn
L (modπn+1

L ); then πK ≡ πnm
M (modπnm+1

M ). Let πKe
∈ Ksep be a root of 

Xe − πK and set Ke = K(πKe
), Le = LKe, and Me = MKe. Let 0 ≤ h ≤ ν, 0 ≤ i ≤ μ, 

and 0 ≤ l ≤ ν + μ. Then by Lemma 2.9 we get

φ̃i
M/L(x) = e−1φ̃i

Me/Le
(ex) (3.10)

φ̃h,m
L/K(x) = e−1φ̃h,m

Le/Ke
(ex) (3.11)

φl
M/K(x) = e−1φl

Me/Ke
(ex) (3.12)

λl
M/K(x) = e−1λl

Me/Ke
(ex). (3.13)

We know from the preceding paragraph that φl
Me/Ke

(c) ≥ λl
Me/Ke

(c) for every c ∈ N0. 
By applying (3.12) and (3.13) with x = c/e we get φl

M/K(c/e) ≥ λl
M/K(c/e). It follows 

that (a) holds whenever x = c/e with c ≥ 0, e ≥ 1, and gcd(e, pnm) = 1. Since numbers 
of this form are dense in [0, ∞), by continuity we get φl

M/K(x) ≥ λl
M/K(x) for all x ≥ 0. 

This proves (a).
To facilitate the proof of (b) we define a subset of the nonnegative reals by

Tl(M/K) =
{
t ≥ 0 : ∃ l0 ≤ l with

∣∣Sl0
l (t)

∣∣ = 1 and
∣∣Sa

l (t)
∣∣ = 0 for 0 ≤ a < l0

}
.

(3.14)

Suppose t > 0 and (t, λl
M/K(t)) is not a vertex of the graph of λl

M/K . Then there is 
a unique 0 ≤ l0 ≤ l such that |Sl0

l (t)| ≥ 1; in fact, l0 is determined by the condition 
(λl

M/K)′(t) = pl0 . Hence if the hypotheses of (b) are satisfied with x = t then t ∈
Tl(M/K).

Lemma 3.5. Suppose the hypotheses of (b) are satisfied with x = 0. Then 0 ∈ Tl(M/K).

Proof. Suppose 0 /∈ Tl(M/K), and let l0 be the minimum integer satisfying the hy-
potheses of (b) with x = 0. Also let l1 < l0 be maximum such that |Sl1

l (0)| �= 0. Then 
|Sl1

l (0)| ≥ 2. Hence there is (j, k) ∈ Sl1
l (0) such that k < μ. Since

φ̃k+1
M/L(0) = i′k+1 ≤ i′k = φ̃k

M/L(0)

we get

λl
M/K(0) ≤ φ̃j,m

L/K

(
φ̃k+1
M/L(0)

)
≤ φ̃j,m

L/K

(
φ̃k
M/L(0)

)
= λl

M/K(0).

It follows that φ̃j,m
L/K(φ̃k+1

M/L(0)) = φ̃j,m
L/K(φ̃k

M/L(0)), so we have i′k = i′k+1 and (j, k + 1) ∈
Sl1+1
l (0). Hence by the maximality of l1 we get l1 = l0 − 1. Since |Sl0

l (0)| = 1 we must 
have |Sl0−1

l (0)| = 2 and (l0 − μ − 1, μ) ∈ Sl0−1
l (0). Since φ̃μ (0) = 0 we have
M/L
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mil0−μ ≤ mil0−μ−1 = φ̃l0−μ−1,m
L/K

(
φ̃μ
M/L(0)

)
= λl

M/K(0) ≤ φ̃l0−μ,m
L/K

(
φ̃μ
M/L(0)

)
= mil0−μ

and hence λl
M/K(0) = φ̃l0−μ,m

L/K (φ̃μ
M/L(0)). Thus (l0 − μ, μ) ∈ Sl0

l (0). Since (j, k + 1) ∈
Sl0
l (0), and |Sl0

l (0)| = 1, we get k + 1 = μ, and hence i′μ−1 = i′k = i′k+1 = i′μ = 0. Since 
i′μ−1 > i′μ = 0, this is a contradiction. Therefore 0 ∈ Tl(M/K). �
Lemma 3.6. Let c ∈ N0 ∩ Tl(M/K), let l0 be the integer specified by (3.14) for t = c, 
and let (j, k) be the unique element of Ωl0 such that λl

M/K(c) = φ̃j,m
L/K(φ̃k

M/L(c)). Then 
rj and sk are nonzero.

Proof. Since c ∈ Tl(M/K), for 0 ≤ j′ < j we have φ̃j′,m
L/K(φ̃k

M/L(c)) > φ̃j,m
L/K(φ̃k

M/L(c)). 
It follows that ij′ > ij , and hence that πK · (πL, ε) · IF ⊂ (πn+ij+1

L , εp
j+1). Therefore by 

(3.6) we get

F̂
(
πL(1 + ε)

)
≡ πK ·

(
1 + rjπ

ij
L εp

j) (
mod

(
π
n+ij+1
L , εp

j+1)).
If rj = 0 then by Corollary 2.7 we have ij = φj

L/K(0) ≥ ij +1, a contradiction. It follows 
that rj �= 0.

Suppose there is 0 ≤ k′ < k such that φ̃k′

M/L(c) ≤ φ̃k
M/L(c). Since c ∈ Tl(M/K) we 

have (j, k′) /∈ Sj+k′

l (c), and hence

λl
M/K(c) < φ̃j

L/K

(
φ̃k′

M/L(c)
)
≤ φ̃j

L/K

(
φ̃k
M/L(c)

)
= λl

M/K(c).

This is a contradiction, so we must have φ̃k′

M/L(c) > φ̃k
M/L(c) for 0 ≤ k′ < k. Hence 

φk
M/L(c) = φ̃k

M/L(c). Set d = φk
M/L(c). Then πL · (πM , ε) · I ′G ⊂ (πm+d+1

M , εp
k+1). Using 

(3.7) we get

Ĝ
(
πM

(
1 + πc

M ε
))

≡ Ĝ(πM )
(
1 + skπ

d
M εp

k) (
mod

(
πm+d+1
M , εp

k+1)).
If sk = 0 then by Corollary 2.7 we have φk

M/L(c) ≥ d +1, a contradiction. It follows that 
sk �= 0. �

We now prove (b) for x = c ∈ N0∩Tl(M/K). Let l0 be the minimum integer satisfying 
the hypotheses of (b) for x = c. Then there is a unique pair (j, k) ∈ Ωl0 such that 
λl
M/K(c) = φ̃j,m

L/K(φ̃k
M/L(c)). Furthermore, we have λl0

M/K(c) = λl
M/K(c) and λl1

M/K(c) >

λl
M/K(c) for l1 < l0. Define J ′

l0
= (πnm+λl

M/K(c)+1
M , εp

l0+1). Then πn
L · (πM , ε) · IFG ⊂ J ′

l0
, 

so by (3.9) we get

F̂
(
Ĝ
(
πM

(
1 + πc

M ε
)))

≡ πK ·
(
1 + uijrjs

pj

k π
λl
M/K(c)

M εp
l0 ) (

mod J ′
l0

)
.

It follows from Lemma 3.6 that rj , sk ∈ R� {0} are units. Therefore we have



96 K. Keating / Journal of Number Theory 150 (2015) 81–97
F̂
(
Ĝ
(
πM

(
1 + πc

M ε
)))

�≡ πK

(
mod J ′

l0

)
.

Hence by (a) and Corollary 2.7 we get

λl0
M/K(c) ≤ φl0

M/K(c) < λl
M/K(c) + 1 = λl0

M/K(c) + 1.

Since λl0
M/K(c) and φl0

M/K(c) are integers this implies that λl0
M/K(c) = φl0

M/K(c). Using (a) 
we get

λl
M/K(c) ≤ φl

M/K(c) ≤ φl0
M/K(c) = λl0

M/K(c) = λl
M/K(c),

and hence λl
M/K(c) = φl

M/K(c). Thus (b) holds for x ∈ N0 ∩ Tl(M/K). In particular, it 
follows from Lemma 3.5 that (b) holds for x = 0.

As in the proof of (a) let e ≥ 1 be relatively prime to pnm, let πM be a uniformizer 
for M , and choose uniformizers πL, πK for L, K such that πL ≡ πm

M (modπm+1
M ) and 

πK ≡ πn
L (modπn+1

L ). Let πKe
∈ Ksep be a root of Xe−πK and set Ke = K(πKe

), Le =
LKe, and Me = MKe. Let c ∈ N0 be such that c/e ∈ Tl(M/K) and the hypotheses of (b) 
are satisfied for the extensions M/L/K with x = c/e. Then it follows from (3.10)–(3.13)
that c ∈ Tl(Me/Ke) and the hypotheses of (b) are satisfied for the extensions Me/Le/Ke

with x = c. Hence by the preceding paragraph we get φl
Me/Ke

(c) = λl
Me/Ke

(c). Using 

(3.12) and (3.13) we deduce that φl
M/K(c/e) = λl

M/K(c/e).
Now let r be any positive real number such that the hypotheses of (b) are satisfied 

with x = r, and let l0 be the minimum integer which satisfies the hypotheses. Then there 
is a unique element (j, k) ∈ Ωl0 such that φ̃j,m

L/K ◦ φ̃k
M/L(r) = λl

M/K(r). Let 0 ≤ a ≤ l0

and let (u, v) ∈ Ωa. Then the graph of φ̃u,m
L/K ◦ φ̃v

M/L is a line of slope pu+v = pa ≤ pl0 . 
Hence if (u, v) �= (j, k) and 0 ≤ t < r then φ̃u,m

L/K ◦ φ̃v
M/L(t) > φ̃j,m

L/K ◦ φ̃k
M/L(t). It follows 

that Sl0
l0

(t) = {(j, k)} and Sa
l0

(t) = ∅ for 0 ≤ a < l0. Hence t ∈ Tl0(M/K) and the 
hypotheses of (b) are satisfied with x = t and l replaced by l0.

Suppose φl
M/K(r) > λl

M/K(r). Then there are c, e ≥ 1 such that gcd(e, pnm) = 1 and

0 < r − c

e
<

φl
M/K(r) − λl

M/K(r)
pν+μ

. (3.15)

Since λl0
M/K(r) = λl

M/K(r) we get

φl0
M/K(r) − λl0

M/K(r) ≥ φl
M/K(r) − λl

M/K(r) > 0. (3.16)

Since φl0
M/K and λl0

M/K are continuous increasing piecewise linear functions with deriva-
tives at most pν+μ it follows from (3.15) and (3.16) that φl0

M/K(c/e) − λl0
M/K(c/e) > 0. 

On the other hand, by the preceding paragraph we know that c/e ∈ Tl0(M/K)
and the hypotheses of (b) are satisfied with x = c/e and l replaced by l0. Hence 
φl0 (c/e) = λl0 (c/e). This is a contradiction, so we must have φl (r) ≤ λl (r). 
M/K M/K M/K M/K
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By combining this inequality with (a) we get φl
M/K(r) = λl

M/K(r). This completes the 
proof of (b).

By setting x = 0 in Theorem 3.3 we get the following. A special case of this result is 
given in [3, Prop. 5.10].

Corollary 3.7. For 0 ≤ l ≤ ν + μ let i′′l denote the lth index of inseparability of M/K. 
Then

i′′l ≤ min
{
mij + pji′k : (j, k) ∈ Ωl0 for some 0 ≤ l0 ≤ l

}
,

with equality if there exists 0 ≤ l0 ≤ l such that there is a unique pair (j, k) ∈ Ωl0 which 
realizes the minimum.
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