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Let p be an odd prime. We show that the integral points 
on the sphere with radius n are equidistributed modulo p as 
n −→ ∞ where n is not of the shape 4l(8m +7) and its 2-adic 
valuation is bounded. In particular if n is sufficiently large and 
if n satisfies a congruence equation α2

1 +α2
2 +α2

3 ≡ n (mod p)
where p2|n if all αi ≡ 0 (mod p), then there are integers xi

with xi ≡ αi (mod p) (i = 1, 2, 3) satisfying x2
1 +x2

2 +x2
3 = n. 

The similar result holds also in the case modulo 8.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let r3(n) be the number of representations of a natural number n as a sum of three 
squares. Legendre showed that r3(n) is positive for every natural number n not of the 
shape 4l(8m + 7), and Gauss gave formula for r3(n) when n is square-free.
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Let 1N denote the trivial character modulo N for which 1N (n) is 1 or 0 according as 
the greatest common divisor (n, N) is 1 or not. If D is a discriminant of a quadratic 
field, then χD denotes the Kronecker–Jacobi–Legendre symbol associated with D.
If m ∈ Z, �= 0, then χm2D denotes χD1m. We define σχ′

k,χ by

σχ′

k,χ(n) :=
∑
d|n

χ(d)χ′(n/d)dk (n ∈ N)

for Dirichlet characters χ, χ′. We omit χ or χ′ from the notation if it is the trivial 
character 1, for which 1(n) = 1 for all n ∈ Z. We define σχ′

k,χ(n) to be 0 if n is negative 
or not integral. Bateman [1] (see also Corollary 5.3 later) showed the formula

r3(an2) = 12L(0, χ−4a)
∑
d|n

μ(d)χ−4a(d)σ1,12(n/d)

for a square-free a where μ denotes Möbius function. Here we note that L(0, χ−4a) =
2L(0, χ−a) if a ≡ 3 (mod 8), and L(0, χ−4a) = 0 if a ≡ 7 (mod 8).

The r3(n) is regarded as the number of lattice points on the sphere with the radius √
n. Linnik [12] showed under the generalised Riemann hypothesis, that the projection of 

lattice points to the unit sphere S is equidistributed as n −→ ∞ with n �≡ 0, 4, 7 (mod 8), 
namely if Ωn is the set of the points on the unit sphere, then

1
r3(n)

∑
x∈Ωn

f(x) −→
∫
S

f(x)dx (n −→ ∞)

for any continuous function f on the unit sphere where dx is the normalised measure 
on the sphere so that the area of the sphere be 1. The equidistribution property is 
unconditionally proved by Duke [3], Golubeva and Fomenko [5].

The purpose of the present paper is to show that the lattice points are equidistributed 
modulo 8 or modulo any odd prime p. Let

|x|2 := x2
1 + x2

2 + x2
3 for x = (x1, x2, x3).

For α = (α1, α2, α3) ∈ Z3, let

r(p)
α (n) := #{x ∈ Z3 | xi ≡ ±αi (mod p) (i = 1, 2, 3), |x|2 = n}.

If n is not integral, then r3(n) and r(p)
α (n) are obviously 0. There holds r(p)

0 (n) = r3(n/p2)
with 0 = (0, 0, 0), whereas r3(n) = r3(22n) and r(p)

α (n) = r
(p)
2α(22n). We make the similar 

definition for vectors in F3
p. Let

r
(p)
3 (n) := #{x ∈ F3

p | |x|2 = n, x �= 0},

r(p)
α (n) := #{x ∈ F3

p | xi = ±αi (i = 1, 2, 3), |x|2 = n in Fp}

for α ∈ F3
p, �= 0, where the former is always positive (see (6) later).
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Suppose that α ∈ Z3 is not congruent to 0 modulo p. We show for a square-free or 
for a = 1,

r(p)
α (an2)

= 12 r(p)
α (an2)L(0, χ−4a)

r
(p)
3 (a)

∑
d|n

μ(d)χ−4a(d)σ
1p

1,12
(n/d) + O((an2)13/28+ε) (1)

where ε is any fixed positive number (Theorem 8.1). As a consequence of the formula, it 
follows that for a fixed odd prime p, sufficiently large n not of the shape 4l(8m +7) with 
bounded 2-adic valuation and with α2

1 + α2
2 + α2

3 ≡ n (mod p) has the integral solution 
of

xi ≡ αi (mod p), x2
1 + x2

2 + x2
3 = n (2)

(Corollary 8.2). In the case α ≡ 0 (mod p), the equations (2) have the solution if and 
only if p2|n.

Let S(n) := {x ∈ Z3 | |x|2 = n} be the integral points on the sphere with radius √
n, and let Sp(n) := {x ∈ F3

p | |x|2 = n} be the sphere in F3
p. If πp denotes the 

natural reduction map of S(n) to Sp(n), then our result shows that πp is surjective 
for a sufficiently large n not of the shape 4l(8m + 7) with bounded 2-adic valuation. 
Moreover for any two nonsingular points P , P ′ on Sp(n), the ratio #π−1

p (P )/#π−1
p (P ′)

of the numbers of elements of fibres is tending to 1 as n −→ ∞, which we are calling 
the equidistribution property modulo p. The similar assertion holds also when the mod-
ulus is 8. Further assuming the weak Birch–Swinnerton–Dyer conjecture, we give some 
criterion that a square free natural number be a congruent number in connection with 
numbers of lattice points on a sphere under congruence conditions modulo 8.

In Hsia and Jöchner [7], or in Jöchner and Kitaoka [10], the representations of positive 
definite integral quadratic forms with congruence condition are discussed in much more 
general context. To have desired integral solutions, it is required in [7,10], that the 
quadratic forms also satisfy appropriate local conditions at primes. The present paper 
shows that the local conditions are not necessary about (2), and the condition that n is 
large enough in terms of p, is only required.

Let N be the natural number, and let (Z/N)∗ denote the group of the Dirichlet 
characters modulo N . We define the 0-th power ρ0 of ρ ∈ (Z/N)∗, to be 1N . A character 
ρ is called even or odd according as ρ(−1) is 1 or −1. We denote by fρ, the conductor 
of ρ. A theta series θ(z) is defined by

θ(z) :=
∞∑

n=−∞
e(n2z), (3)

and a theta series θρ(z) with an even Dirichlet character ρ is defined by
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θρ(z) :=
∞∑

n=−∞
ρ(n)e(n2z). (4)

The outline of the argument proving (1) is as follows. Let an2 be any natural num-
ber satisfying α2

1 + α2
2 + α2

3 ≡ an2 (mod p) where a is 1 or a square free integer. 
Then r(p)

α (an2) is equal to the an2-th Fourier coefficient of θ(z) 
∑

m≡±α2(mod p) e(m2z)
× 
∑

m≡±α3(mod p) e(m2z). Let ω be a generator of the cyclic group (Z/p)∗. Then the 
equality

∑
m≡±α(mod p)

e(m2z) = 2
p− 1

p−2∑
i=0

ω(α)2iθω2i(z) (5)

holds true, and our problem is reduced to evaluating the an2-th Fourier coefficient of 
θ(z)θω2i(z)θω2j (z) (0 ≤ i, j < p). There is the Shimura lift f associated with a, of 
θ(z)θω2i(z)θω2j (z), whose n/d-th Fourier coefficients with d|n give the an2-th Fourier 
coefficient of θ(z)θω2i(z)θω2j (z) (see [20], or (20) of the present paper). The modular 
form f is expressed as a sum of an Eisenstein series and a cusp form, where the former 
is dominant with respect to the magnitude of Fourier coefficients. The values of the 
Shimura lift f at cusps are worked out with the aid of Hilbert modular forms, by which 
the Eisenstein series is completely determined.

The authors would like to thank the referee for the valuable comments and for the 
helpful suggestion.

2. Jacobi sum

In this section, we derive some fundamental properties of the Jacobi sum for later use.
For a ∈ Z, a∗ denotes a or 4a according as a ≡ 0, 1 (mod 4) or not. If a is square-free, 

then a∗ is a discriminant of a quadratic field except for the case a = 1. If a is odd, then 
a∨ denotes a or −a according as a ≡ 1 (mod 4) or not. If a is odd and square-free, then 
χa∨( ) =

(
a

)
where 

(
a

)
is the Legendre symbol. Further χ−4(d) = (−1)d−1 for d odd, 

and χ−4(d) = 0 for d even.
Let χ be a primitive Dirichlet character with conductor fχ. Then the Gauss sum τ(χ)

is define by

τ(χ) =
fχ∑
i=1

χ(i)e(i/p)

where e(z) stands for e2π
√
−1z. We have τ(χ−4) = 2

√
−1, τ(χ±8) = 2

√
2
√
±1 and 

τ(χp∨) = ιp
√
p for an odd prime p by the Gauss theorem, where ιd =

√
χ−4(d) for 

an odd d, namely ιd denotes 1 or 
√
−1 according as d ≡ 1 (mod 4) or d ≡ 3 (mod 4).
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Let χ, φ, ψ ∈ (Z/p)∗ for an odd prime p. Then we define the Jacobi sum by

J(χ, φ) :=
∑
α∈Fp

χ(α)φ(1 − α),

J(χ, φ, ψ) :=
∑

α,β∈Fp

χ(α)φ(β)ψ(1 − α− β).

If any of χ, φ, χφ is not equal to 1p, then J(χ, φ) = τ(χ)τ(φ)/τ(χφ). If any of χ, φ, ψ, 
χφψ is not equal to 1p, then J(χ, φ, ψ) = τ(χ)τ(φ)τ(ψ)/τ(χφψ). The following lemma 
is easy to see, and we skip the proof.

Lemma 2.1. Let p be an odd prime.
(i) We have J(1p, 1p) = p − 2, and if χ �= 1p, then J(χ, 1p) = −1 and J(χ, χ) =

−χ(−1).
(ii) We have J(1p, 1p, 1p) = p2 − 3p + 3, and J(χ, ψ, 1p) = −J(χ, ψ) for χ, ψ �= 1p, 

and J(χ, ψ, ρ) = −p−1τ(χ)τ(ψ)τ(ρ) for χ, ψ, ρ �= 1p with χψρ = 1p, and J(χ, ψ, χp∨) =
−χ−4(p)J(χ, ψ) for χ, ψ �= 1p with χψ = χp∨ .

As one of the typical application of Jacobi sums, the number of solutions of α2
1 +

α2
2 + α2

3 = n in Fp for an odd p is obtained (cf. Ireland and Rosen [8], Chap. 8, §6, or 
Berndt, Evans and Williams [2], Chap. 10). From this the number r(p)

3 (n) of nontrivial 
representation is given as

r
(p)
3 (n) =

{
p(p + χ−4(p)χp∨(n)) (p � n)
p2 − 1 (p|n) . (6)

On the other hand, r(p)
α (n) for α ∈ F3

p is simply obtained by r(p)
α (n) = 2t where t is the 

number of nonzero elements of the vector α when r(p)
α (n) is positive.

Proposition 2.2. Let p be an odd prime. Let ω be a generator of the cyclic group (Z/p)∗. 
Let α1, α2, m ∈ Fp with α1α2 �= 0.

(i) Let χp∨(m) = 1. Then

(p−1)/2−1∑
i,j=0

ω(α2
1)iω(α2

2)jω(22m)i+j{J(ωi, ωj , ωi+j) + J(χp∨ωi, χp∨ωj , ωi+j)

+ J(χp∨ωi, ωj , χp∨ωi+j) + J(ωi, χp∨ωj , χp∨ωi+j)} (7)

is equal to 0 if there is no α3 with α2
1 +α2

2 +α2
3 = m. Suppose that such α3 exists. Then 

it is equal to 2(p − 1)2 if α2
1 +α2

2 �= 0 and α3 �= 0, and it is equal to (p − 1)2 if otherwise.
(ii) Let χp∨(m) = −1. Then
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(p−1)/2−1∑
i,j=0

ω(α2
1)iω(α2

2)jω(22m)i+j{−J(ωi, ωj , ωi+j) − J(χp∨ωi, χp∨ωj , ωi+j)

+ J(χp∨ωi, ωj , χp∨ωi+j) + J(ωi, χp∨ωj , χp∨ωi+j)} (8)

is equal to −2(p − 1)2 if there is no α3 with α2
1 + α2

2 + α2
3 = m. Suppose that such α3

exists. Then it is equal to 0 if α2
1 + α2

2 �= 0 and α3 �= 0, and it is equal to −(p − 1)2
otherwise.

(iii) Let χp∨(m) = 1. Then

(p−1)/2−1∑
i=0

ω(α2
1)iω(22m)i{J(ωi, ωi) + J(χp∨ωi, χp∨ωi)}

is equal to 0 if there is no α3 ∈ Fp with α2
1 +α2

3 = m. Suppose that such α3 exists. Then 
it is equal to 2(p − 1) if α3 �= 0, and it is equal to p − 1 if α3 = 0.

(iv) Let χp∨(m) = −1. Then

(p−1)/2−1∑
i=0

ω(α2
1)iω(22m)i{−J(ωi, ωi) + J(χp∨ωi, χp∨ωi)}

is equal to −2(p − 1) if there is no α3 ∈ Fp with α2
1 + α2

3 = m. Suppose that such α3
exists. Then it is equal to 0 if α3 �= 0, and it is equal to −(p − 1) if α3 = 0.

(v) There holds

(p−1)/2−1∑
i=0

ω(α2
1)iω(α2

2)i{J(ωi, χp∨ωi) + J(χp∨ωi, ωi)} = (p− 1)χp∨(α2
1 + α2

2).

Proof. (i) The summation (7) is equal to

p−2∑
i,j=0

ω(α1)2iω(α2)2jω(22m)i+j
∑

α,β∈Fp

ω(α(1 − α− β))iω(β(1 − α− β))j

=
∑

α,β∈Fp

p−2∑
i=0

ωi(22mα−2
1 α(1 − α− β))

p−2∑
j=0

ωj(22mα−2
2 β(1 − α− β)).

Put w = m2 −mα2
1 −mα2

2. Then the equations over Fp for α, β

{
22mα−2

1 α(1 − α− β) = 1,
22mα−2

2 β(1 − α− β) = 1
(9)

have common solutions in Fp if and only if w is square. In such a case, the solution is
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⎧⎨⎩α = α2
1(m+s

√
w)

2m(α2
1+α2

2)

β = α2
2(m+s

√
w)

2m(α2
1+α2

2)

(α2
1 + α2

2 �= 0, s = ±1),
{
α = α2

1
4m

β = α2
2

4m

(α2
1 + α2

2 = 0).

Since χp∨(m) = 1, there is 
√
m ∈ Fp and hence there is α3 ∈ Fp satisfying 

√
w =

√
mα3. 

This shows (i).
(ii) The right hand side of (8) is equal to

−
∑

α,β∈Fp

p−2∑
i=0

ωi(22mα−2
1 α(1 − α− β))

p−2∑
j=0

ωj(22mα−2
2 β(1 − α− β)). (10)

If α2
1 + α2

2 = 0 or α2
1 + α2

2 = m, then (9) has only one solution, and hence the value of 
(10) is −(p − 1)2. Suppose α2

1 + α2
2 �= 0 and α2

1 + α2
2 �= m. By the argument of (i), the 

values of (10) is −2(p − 1)2 (resp. 0) if w ∈ {F×
p }2 (resp. w /∈ {F×

p }2). Since m is not 
square, this is equivalent to m −α2

1 −α2
2 /∈ {F×

p }2 (resp. m −α2
1 −α2

2 ∈ {F×
p }2), namely, 

there is no α3 with α2
1 + α2

2 + α2
3 = m (resp. there is α3 with α2

1 + α2
2 + α2

3 = m). This 
shows (ii).

We omit the proof of (iii), (iv), (v), since the argument is similar. �
3. Elliptic modular forms

In this section we obtain the values at cusps, of Eisenstein series and theta series.
Let H be the complex upper half-plane {z ∈ C | 	z > 0} where 	z denotes the 

imaginary part of z. The group SL2(Z) acts on H by the modular substitution z −→
Mz = (az + b)/(cz + d) for

M =
(
a b

c d

)
∈ SL2(Z). (11)

For N ∈ N, let Γ0(N) := {M ∈ SL2(Z) | c ≡ 0 (mod n)}, which is a subgroup of SL2(Z). 
Let k ∈ N, and let χ0 be a Dirichlet character modulo a divisor of N with the same 
parity as k. A holomorphic function on H is an elliptic modular form (or simply a modular 
form) for Γ0(N) of weight k with character χ0 if it satisfies f(Mz) = χ0(d)(cz+d)kf(z)
for any M ∈ Γ0(N), and it is holomorphic also at cusps. We denote by Mk(N, χ0)
(resp. Sk(N, χ0)), the vector space of such modular forms (resp. cusp forms).

The Riemann zeta function ζ(s) and the Dirichlet L-function L(s, χ) for a character 
χ ∈ (Z/N)∗ is defined by

ζ(s) :=
∞∑

n=1

1
ns

, L(s, χ) :=
∞∑

n=1

χ(n)
ns

.

By analytic continuation, these functions can be extended meromorphically to the whole 
complex plane. If χ̃ denotes the primitive Dirichlet character associated with χ, then
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L(s, χ) = L(s, χ̃)
∏

p|N,p�fχ

(1 − χ̃(p)
ps

).

In particular, for a ≡ 3 (mod 4) square-free, we have L(0, χ−4a) = L(0, χ−a)(1 −χ−a(2)), 
which is 2L(0, χ−a) or 0 according as a ≡ 3 (mod 8) or a ≡ 7 (mod 8).

Let M, N ∈ N with M |N . We define the Eisenstein series by setting for c0, d0 ∈ Z,

Gk(z, c0, d0;M,N) := (
∑′

c≡c0(mod N/M)
d∈M−1d0+Z

(cz + d)−k|cz + d|−s)|s=0

where 
∑′ means that the term for (c, d) = (0, 0) is omitted in the summation and where 

|s=0 denotes the values at s = 0 of the analytic function of s. Let χ, χ′ be primitive 
Dirichlet characters with conductor fχ, fχ′ respectively. We assume that χχ′ has the 
same parity as k. We define

Gχ′

k,χ(z) := (k − 1)!
(−2

√
−1π)kτ(χ)

∑
c0:Z/fχ′

∑
d0:Z/fχ

χ(d0)χ′(c0)Gk(z, c0, d0; fχ, fχfχ′)

where 
∑

c0:Z/fχ′ means that c0 runs over a complete set of representatives of Z modulo fχ′ . 

We omit χ or χ′ from the notation Gχ′

k,χ if it is the trivial character. It has the Fourier 
expansion

Gχ′

k,χ(z) = C + 2
∞∑

n=1
σχ′

k−1,χ(n)e(nz) (12)

where C = L(1 − k, χ) for χ′ = 1, C = L(0, χ′) for k = 1 and χ = 1, and C = 0
for all other cases, and where there is the additional term 

√
−1/(4π	z) if k = 2

and χ = χ′ = 1. Let m be square-free. Then Gχ′

k,χ1m
(z) is defined by Gχ′

k,χ1m
(z) :=∑

d|m μ(d)χ(d)dk−1Gχ′

k,χ(dz). Thus Gχ′

k,χ(z) is defined also when χ is not primitive. Sim-
ilarly we define Gχ′1m

k,χ (z) :=
∑

d|m μ(d)χ′(d)Gχ′

k,χ(dz). If χ, χ′ are Dirichlet characters 
modulo M/N , M respectively which are not necessarily primitive, then the Eisenstein 
series Gχ′

k,χ(z) is a modular form in Mk(N, χχ′) and has the Fourier expansion (12)
with the constant term C except for the case that k = 2, χ = 1 and fχ′ = 1, where 
C = L(1 − k, χ) for χ′ = 1, C = L(0, χ′) for k = 1 and χ = 1, and C = 0 for all other 
cases.

The theta series defined in (3), is a modular form of weight 1/2 for Γ0(4). We have 
θ(Mz) = j(M, z)θ(z) for M ∈ Γ0(4) where j(M, γ) is the automorphy factor satisfying 
j(M, z)2 = χ−4(d)(cz + d) for c, d as in (11). Let 4|N . Suppose that k and a character 
χ0 modulo N have the same parity. Then Mk+1/2(N, χ0) (resp. Sk+1/2(N, χ0)) denotes 
the space of modular forms (resp. cusp forms) of weight k + 1/2 satisfying

f(Mz) = χ0(d)j(M, z)(cz + d)kf(z) (M ∈ Γ0(N)).
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If q ∈ N, then θ(qz) is in M1/2(4q, χq∗). Let ρ be an even Dirichlet character modulo 
m. Then θρ(z) defined in (4), is in M1/2(4m2, ρ). If ρ is totally even, namely, the p-part 
of ρ is even for any prime p, then θρ(z) is not a cusp form (Serre and Stark [16]).

We define the value at a cusp, of a modular form f with character, of integral or 
half-integral weight l. Let a/c be a cusp where c > 0. For such a, c, there is a matrix M
as in (11). We define the value of f at the cusp a/c by

lim
z→

√
−1∞

(cz + d)−lf(Mz)

where 0 < arg(cz + d)1/2 < π/2.
Let

C(N) :=
{

i
jM | 0 < M |N, (i, j) : {(Z/M)× × (Z/(N/M))×}/{±1}, g.c.d(i, j) = 1

}
be the set of the representatives of inequivalent cusps of Γ1(N), and let

C0(N) := {i/M | 0 < M |N, (i,M) = 1, i : (Z/(M,N/M))×}

be the set of representatives of inequivalent cusps of Γ0(N). Let χ0 be a Dirichlet char-
acter modulo a divisor of N . Suppose that there is a positive divisor M of N and a 
Dirichlet character χ modulo a divisor of M satisfying

χ = χ0 on 1 + (N/M)Z. (13)

Then if we put χ′ = χ0χ, then χ′ is a character whose conductor is a divisor of N/M , 
in other words, χ0 is written as a product of χ and χ′. Under the condition, we consider 
the function κχ0,N (χ, M) on C(N) which satisfies

κχ0,N (χ,M)(i′/j′M) = χ0(ξ)κχ0,N (χ,M)(i/jM) (14)

for any integer ξ with i′ ≡ ξi (mod M), ξj′ ≡ j (mod N/M). This property is satis-
fied by the restriction f |C(N) to C(N), of a modular form for Γ0(N) of integral weight 
with character χ0 ([20], Lemma 1). Then the restriction κχ0,N (χ, M)|C0(N) determines 
κχ0,N (χ, M). Then we defines κχ0,N (χ, M) to be a function satisfying both (14) and

κχ0,N (χ,M)(i/L) =
{
χ(i) (L = M)
0 (L �= M) (i/L ∈ C0(N)). (15)

The condition (13) assures that the conditions (14) and (15) are compatible. The restric-
tion of Eisenstein series to the set of cusps is computed in [20] as follows:

Proposition 3.1. Let χ, χ′ be primitive Dirichlet characters with conductor fχ, fχ′ respec-
tively where χ0 = χχ′ has the same parity as k. Suppose tfχfχ′ |N with t ∈ N.
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(i) Let k > 1. Then

Gχ′

k,χ(tz)|C(N) = (−
√
−1π−1)k2−k+1(k − 1)!fk−1

χ τ(χ)L(k, χχ′)

×
∑
M |N

(M/(M,t),fχfχ′ )=fχ

(M,t)k
tk

χ′
(

M
fχ(M,t)

)
χ
(

t
(M,t)

)
κχ0,N (χ,M).

In particular if χ′ = 1, then

Gk,χ(tz)|C(N) = L(1 − k, χ)
∑

fχ(M,t)|M |N

(M,t)k
tk

χ
(

t
(M,t)

)
κχ0,N (χ,M).

(ii) Let k = 1. Then

Gχ′

1,χ(tz)|C(N)

= −
√
−1π−1{τ(χ)L(1, χχ′)

∑
M |N

(M/(M,t),fχfχ′ )=fχ

(M,t)
t χ′

(
M

fχ(M,t)

)
χ
(

t
(M,t)

)
κχ0,N (χ,M)

+ τ(χ′)L(1, χχ′)
∑
M |N

(M/(M,t),fχfχ′ )=fχ′

(M,t)
t χ

(
M

fχ′ (M,t)

)
χ′

(
t

(M,t)

)
κχ0,N (χ′,M)}.

We define another function κθ on Q by setting κθ(i/M) := 2−1/2e(−1
8 )ιMχM∨(i) for 

M odd, κθ(i/M) := 2−1/2e(−1
8)ιM/2χ(M/2)∨(i) for M just divisible by 2, and κθ(i/M) :=

ιiχM∗(i) for M divisible by 4 where ιM :=
√
χ−4(M). The following proposition is proved 

in [20], Section 5.

Proposition 3.2. (i) Let t be odd with 4t|N . If M is odd, then we put εM,t :=(
(M,t)

t

)1/2
ιM/(M,t)ιMχ(M/(M,t))∨( t

(M,t) ) and χM,t := χ(M,t)∨ , and if 4|M , then we put 

εM,t :=
(

(M,t)
t

)1/2
ιt/(M,t)χ(M/(M,t))∗( t

(M,t) ) and χM,t := χ
(t/(M,t)−1)/2
−4 χ(M,t)∗ . Then

θ(tz)|C(N) = κθ

∑
2∦M |N

εM,tκχt∗ ,N (χM,t,M). (16)

(ii) Let ρ be an even primitive character with an odd prime p as its conductor. Let ρ′
denote a fixed primitive character with ρ′ 2 = ρ. Let N be a multiple of 4p. Then

θρ(z)|C(N) = ιpp
−1/2κθ

∑
p|M |N,2∦M

(χp∨ρ′)(M/p){τ(ρ′)κρ,N (χp∨ρ′,M)

+ χp∨(M/p)τ(χp∨ρ′)κρ,N (ρ′,M)}. (17)

As an application of the above two propositions, we have the following:
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Proposition 3.3. We have the identity

θ(z)2 = 2G1,χ−4(z).

Further

θ(z)4k+2(z) − L(−2k, χ−4)−1{G2k+1,χ−4(z) + (−1)k22kG
χ−4
2k+1(z)} ∈ S2k+1(4, χ−4),

θ(z)4k − (22k − 1)−1(22k−1 − 1)−1ζ(1 − 2k)−1

× [{(−1)k22k−1+1−(−1)k}G12
2k(z) −G2k,12(z) − 2(22k−1−1)G2k,12(2z)] ∈ S2k(4)

for k ∈ N.

Proof. By Proposition 3.1 and by Proposition 3.2 (i), the equality θ(z)2|C(4) =
2G1,χ−4(z)|C(4) holds and hence θ(z)2−2G1,χ−4(z) is a cusp form. Since S1(4, χ−4) = {0}, 
the identity of the proposition follows. We can apply this argument also to other modular 
forms. �

Since S2(4), S3(4, χ−4) and S4(4) are a null space, the above proposition gives the 
equality among the powers of theta series and Eisenstein series in these cases.

Corollary 3.4. Let n be a natural number. Let ε > 0. Then

r4k+2(n) = 2L(−2k, χ−4)−1{σ2k,χ−4(n) + (−4)kσχ−4
2k (n)} + O(nk+ε)

for k ≥ 0, where the error term vanishes when k = 0, 1, and

r4k(n) = 2
(22k−1)ζ(1−2k) [(−1)kσ2k−1(n)

− {1 + (−1)k}σ2k−1(n/2) + 22kσ2k−1(n/4)] + O(nk−1/2+ε)

for k ≥ 1, where the error term vanishes when k = 1, 2.

4. Hilbert modular forms

Shimura lifting map of modular forms of half-integral weight is constructed by making 
use of Hilbert modular forms [18,20]. In this section we give a summary of the part of 
Hilbert modular forms in [20] and in [19].

Let K be a real quadratic number field. Let OK , dK , DK denote the ring of integers 
in K, the different, the discriminant respectively. We denote by tr and N, the trace map 
of K over Q and the norm map respectively. The group SL2(OK) acts on H2 by sending

z = (z1, z2) ∈ H2 �−→ Mz =
(
α(1)z1 + β(1)

(1) (1) ,
α(2)z2 + β(2)

(2) (2)

)
(M =

(
α β

)
)

γ z1 + δ γ z2 + δ γ δ
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where α = α(1), α(2) denote the conjugates of α. Let N be an integral ideal. Then EN
denotes the group of totally positive units congruent to 1 modulo N, and let CN denote 
the ideal class group modulo N in the narrow sense. We denote by C∗

N, the group of 
characters of CN, whose identity element is 1N for which 1N(M) takes the value 1 or 0
according as (M, N) = OK or not. Let ψ ∈ C∗

N. It is even or odd according as ψ(ξ)
equals 1 or sgn(N(ξ)) for ξ ≡ 1 (mod N). Let eψ denote 0 or 1 according as ψ is even or 
odd. Then ψ(ξ) = sgn(N(ξ))eψ for ξ ≡ 1 (mod N). Let fψ denote the conductor of ψ and 
let eψ := fψ

∏
P�fψ,ψ(P) P, P denoting a prime ideal. We denote by ψM, the product of 

characters ψ̃1M where ψ̃ is the primitive character associated with ψ. As in the case of 
Dirichlet characters, the value of characters of non-integral ideals is defined to be 0.

If ψ is a primitive character of the ideal class group of K with the conductor fψ, then 
we define its Gauss sum τK(ψ) by

τK(ψ) := ψ(ρfψdK)
∑
ξ
0

ξ:OK/fψ

ψ(ξ)e(tr(ρξ))

with ρ ∈ K, � 0, (ρfψdK , fψ) = OK where ρ � 0 means that ρ is totally positive. The 
value τK(ψ) is determined up to the choices of ρ.

Let N, N′ be integral ideals. Let A be an integral ideal relatively prime to NN′. Let 
k be a natural number. We define the Eisenstein series by setting for γ0 ∈ AdK and 
δ0 ∈ N−1AdK ,

Gk,A(z, γ0, δ0;N,N′) := N(A)k(
∑′

γ≡γ0(N′
Ad

−1
K )

δ≡δ0(Ad
−1
K )

(γ,δ)/ENN′

N(γz + δ)−k|N(γz + δ)|−s)|s=0

where N(γz + δ) denotes 
∏2

i=1(γ(i)zi + δ(i)) and where 
∑′ means that the term for 

(γ, δ) = (0, 0) is omitted in the summation. It is a Hilbert modular form for Γ1(NN′)K
of weight k.

Let ψ ∈ C∗
N, ψ′ ∈ C∗

N′ which are even or odd. Let k ∈ N be so that k has the same 
parity as ψψ′. Then we put

λ̂ψ′

k,ψ(z;N,N′)

:=
(

(k − 1)!
(−2

√
−1π)k

)2

D
−1/2
K [EOK

: ENN′ ]−1τK(ψ̃)−1
∑

A∈CN

∑
γ0:e−1

ψ′ N
′
Ad

−1
K /N′

Ad
−1
K ,
0

δ0:N−1
Ad

−1
K /Ad

−1
K ,
0

ψ(δ0NA−1dK)ψ′(γ0eψ′N′ −1A−1dK)Ek,A(z, γ0, δ0;N,N′)

where 
∑

γ0:e−1
ψ′ N′Ad

−1
K /N′Ad

−1
K ,
0 implies that γ0 runs over a complete set of totally 

positive representatives of e−1
ψ′ N

′Ad−1
K modulo N′Ad−1

K , which is a Hilbert modu-
lar form of weight k for Γ0(NN

′)K with character ψψ′. The Fourier expansions of 
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Gk,A(z, γ0, δ0; N, N′) are essentially obtained in Hecke [6] (see also [18]), and the Fourier 
expansion of λ̂ψ′

k,ψ(z; N, N′) is obtained as their linear combination. Further we define the 
function suitable for our purpose as

λ̃ψ′

k,Ne
−1
ψ N′e−1

ψ′ ,ψ
(z) := μK(eψf−1

ψ )ψ̃(eψf−1
ψ )N(eψf−1

ψ )−1N(Ne
−1
ψ )−k

×
∑
M|N

(M,fψ)=OK

⎛⎝∏
P|M

(1 − N(P))

⎞⎠ ψ̃(M)λ̂ψ′

k,ψ
NM−1

(z;NM
−1,N′).

We denote by μK , ϕK , the Möbius function on K, the Euler function on K respectively. 
In [19], we have shown the following:

Proposition 4.1. We assume

(N,N′e−1
ψ′ ) = OK . (18)

Let α/γ be a cusp with α, γ ∈ OK , (α, γ) = OK . The value of λ̃ψ′

k,Ne
−1
ψ N′e−1

ψ′ ,ψ
(z) at the 

cusp α/γ is 0 if there are not integral ideals M, M′
γ with M|N, (M, fψ) = OK , M′

γ |N′e−1
ψ′

and with (γ, NM−1N′) = NM−1e−1
ψ′ M

′ −1
γ N′. Suppose otherwise and let M be the largest 

such ideal. The value of λ̃ψ′

k,Ne
−1
ψ N′e−1

ψ′ ,ψ
(z) at the cusp α/γ is given by

sgn(N(α))eψψ(α) sgn(N(γ))eψ′μK((eψf−1
ψ ,MN

′))ψ̃(MM′
γ)ψ̃((eψf−1

ψ ,MN
′))

× ψ′(γN−1Meψf
−1
ψ (eψf−1

ψ ,MN
′)−1N′ −1eψ′M′

γ)N(M−1(eψf−1
ψ ,MN′)fψf−1

ψψ′)k−1

× N(M′
γ)−kN(fψf−1

ψψ′)τK(ψ̃)−1τK(ψ̃ψ′)N(M)−1
∏
P|M

(1 − N(P))

× LK(1 − k, (ψψ′)
eψf

−1
ψ (eψf

−1
ψ ,MN′)−1)

∏
P|N′,P�fψψ′

(1 − ψ̃ψ′(P)
N(P)k ).

Put Mγ := γN−1eψN
′ −1eψ′ f

−1
ψ′ , Lγ := (γN′ −1eψ′f

−1
ψ′ ∩OK , eψ′f

−1
ψ′ (eψ′f

−1
ψ′ , N)−1). If k = 1

and if there is the divisor R of eψ′f
−1
ψ′ such that the numerator of MγR

−1 is coprime to 

N and the denominator is coprime to fψ′R, then there is the additional term. Let R̃γ be 
the divisor of (N, eψ′f

−1
ψ′ ) satisfying vP(MγR̃

−1
γ ) = 0 for any prime P|(N, eψ′f

−1
ψ′ ). Then 

the additional term is

sgn(N(α))eψ′ψ′(α) sgn(N(γ))eψμK(R̃γ)ψ(MγR̃
−1
γ ∩ OK)ψ̃′(R̃γ)

× ψ′ ˜ ((MγR̃
−1
γ ,OK)−1)ϕK(eψ′f

−1
ψ′ R̃

−1
γ L−1

γ )N(e−1
ψ′ fψ′(Mγ , R̃γ)Lγ)N(fψ′ f

−1
′)
Rγ ψψ
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× τK(ψ̃′)−1τK(ψ̃ψ′)LK(0, (ψψ′)Lγ
)

∏
P|N,P�fψψ′

(1 − ψ̃ψ′(P)
N(P) ).

Let χ, χ′ be Dirichlet characters. Let

ψ = χ ◦ N, ψ′ = χ′ ◦ N. (19)

Then we have LK(s, ψ) = L(s, χ)L(s, χχDK
) for s ∈ C. The parity of ψ (resp. ψ′) 

coincides with that of χ (resp. χ′).
For a prime p, {χ}p denotes the p-part of χ. If p is ramified in K, let Pp denote the 

ramified ideal with p = P2
p. If p is decomposed in K, let Pp, Pp denote the prime ideals 

with p = PpPp.

Lemma 4.2. Let χ be a Dirichlet character with prime power conductor fχ. Let ψ be as 
in (19).

(i) Suppose that (fχ, DK) = 1. Then fψ = fχ.
(ii) Suppose that 2 is ramified in K, namely, DK is even. If χ = χ−4, then fψ|(2), 

and fψ = OK only if 4‖DK . If χ = χ±8, then fψ = (4) for DK with 4‖DK , and fψ = (2)
for DK with DK/8 ≡ ∓1 (mod 4), and fψ = OK if DK/8 ≡ ±1 (mod 4).

(iii) Suppose that fχ is an odd prime p and suppose that p|DK . Let Pp be the ideal 
of K with Pp

2 = p. If χ = χp∨ , then fψ = OK . If otherwise, then fψ = Pp.

Lemma 4.3. Let χ, ψ be as in (19). Let ψ̃ denote the primitive character associated 
with ψ.

(i) Let χ = χ−4. Then τK(ψ) = −4 if DK ≡ 1 (mod 4). Assume that DK �≡ 1 (mod 4). 
Then τK(ψ̃) is equal to −1 or −2 according as DK ≡ 3 (mod 4) or DK ≡ 0 (mod 8).

(ii) Let χ = χ±8. Then τK(ψ) = ±8 if DK ≡ 1 (mod 4). Assume that DK �≡ 1 (mod 4). 
Then τK(ψ̃) is equal to ±4 if DK ≡ 3 (mod 4), and it is equal to ±1 or ±2 according as 
DK/8 ≡ ±1 (mod 4) or DK/8 ≡ ∓1 (mod 4).

(iii) Let χ be a primitive character with odd prime conductor p. If p|DK and χ = χp∨ , 
then τK(ψ̃) = χ−4(p). If otherwise, τK(ψ) = (χχp∨)(DK)τ(χ)2.

Let χ, ψ be as in (19). Then Lemma 4.2 implies that eψ is the product of fψ and of 
the following ideals with multiplicity 1:

P2 if 4‖DK and {χ}2 = χ−4, orDK/8 ≡ smod 4 and {χ}2 = χ8s with s = ±1,

Pp if 2 � p|DK andχ(p) = 0 and if {χ}p = χp∨ or p � fχ,

(p) if 2 � p � DKfχ andχ(p) = 0.

Let us fix an integral ideal T whose prime factors are divisors of eψeψ′ . Then there 
are ideals N, N′ satisfying the condition (18) with (i) eψ|N, eψ′ |N′ and (ii) T =
Nf

−1
ψ R̃

−1
N,ψN

′f−1
ψ′ R̃N′ , which are uniquely determined. We define
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λχ′

2k,T,χ(z) := λ̃ψ′

k,Ne
−1
ψ N′e−1

ψ′ ,ψ
(z, z)

which is an elliptic modular for of weight 2k with character (χχ′)2. If i/M is a 
rational number. The value of λχ′

2k,T,χ(z) at the cusp i/M coincide with that of 
λ̃ψ′

k,Nf
−1
ψ R̃

−1
N,ψN′f−1

ψ′ R̃
−1
N′,ψ′ ,ψ

(z) at the cusp i/M . Hence Proposition 4.1 gives the values 

of λχ′

2k,T,χ(z) at all the cusps.

5. Shimura lifts

In this section we explain the Shimura lifting map. As its application, we obtain 
approximate formulas for the number of representation as a sum of any odd number of 
squares, which may provide a good illustration of our method.

Let 4|N and k ≥ 1. The Shimura lifting map Sa∗,χ01N
associated with a square-free 

natural number a, of Mk+1/2(N, χ0) to M2k(N/2, χ2
0) is defined by

Sa∗,χ01N
(f)(z) := C +

∞∑
n=1

⎛⎝ ∑
0<d|n

(χa∗χ01N )(d)dk−1can2/d2

⎞⎠ e(nz) (20)

for f(z) =
∑∞

n=0 cne(nz) provided that there is a constant C so that Sa∗,χ01N
(f) is a 

modular form of weight 2k. Shimura [17] and Niwa [13] showed that Sa∗,χ01N
is well-

defined map of S3/2(N, χ0) to M2(N/2, χ2
0), and is a well-defined map of Sk+1/2(N, χ0) to 

S2k(N/2, χ2
0) for k ≥ 2. In Pei [14,15], the domain of the map extends to Mk+1/2(N, χ0)

under the condition that N/4 is square-free and χ0 is real, and in Tsuyumine [18,20]
unconditionally. If we put g(z) := Sa∗,χ01N

(f)(z) in (20) and if g(z) =
∑∞

n=0 bne(nz), 
then

can2 =
∑
d|n

(μχa∗χ01N )(d)dk−1bn/d. (21)

Let Tp, Tp2 denote, as usual, the Hecke operators on M2k(N/2, χ2
0) and on 

Mk+1/2(N, χ0) respectively for a prime p with p �N . Then Sa∗,χ01N
◦Tp2 = Tp◦Sa∗,χ01N

. 
Let m be a positive integer whose prime factors all divide N . We define an operator Um

by Um(
∑∞

n=0 cne(nz)) =
∑∞

n=0 cmne(nz). Then Sa∗,χ01N
◦Up2 = Up ◦Sa∗,χ01N

for p|N .
We define a notation

f ∼ g (22)

which means that f −g is a cusp form when f, g ∈ Mk(N, χ0), and that Sa∗,χ01N
(f −g)

is a cusp form for any square-free natural number a when f, g ∈ Mk+1/2(N, χ0). In the 
half-integral weight case, f ∼ g is equivalent to f − g ∈ Sk+1/2(N, χ0) if the weight 
k + 1/2 is at least 5/2. If the weight is 3/2, then there are cusp forms lifted to non-cusp 
forms. All of them are written as linear combinations of the cusp forms
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Θφ(tz) :=
∑
n∈Z

φ(n)ne(n2tz) ∈ S3/2(4tf2φ, φχt∗) (23)

for an odd Dirichlet character φ and for t ∈ N (Duke and Schulze-Pillot [4]). Let p
be an odd prime. If χ ∈ (Z/p)∗ is even, then M3/2(4p2, χ−4χ) does not contain any 
cusps form such as (23). Hence f ∼ g for f, g ∈ M3/2(4p2, χ−4χ) if and only if f − g ∈
S3/2(4p2, χ−4χ). As far as we are concerned in the present paper, the notation (22) is 
equivalent to that the difference of the both sides is a cusp form.

In [20] Section 18, we have proved the following:

Lemma 5.1. Let N and let χ0 be a Dirichlet character modulo a divisor of N . Suppose 
that there is a prime p with p2|N and fχ0 |N/p. Let f ∈ Mk(N, χ0) and put g := Up(f) ∈
Mk(N/p, χ0). We denote by κ( j

M , f), the value of f at the cusp j/M . Then the value of 
g(z) at a cusp j/M ∈ C0(N/p) is p−1 ∑p

i=1 κ( j
pM + i

p , f) if p|M , and it is pk−1κ(p
′j
M , f) +

p−1 ∑
1≤i≤p

Mi �≡−j (p)
κ( j

pM + i
p , f) if (p, M) = 1, where p′ denote the inverse of p modulo M .

Let a > 1 be a square-free natural number. Let K = Q(
√
a). Then DK = a∗. For 

t ∈ N, IK(t) denotes the set of integral ideals of K whose norms equal t. Let

t = t0t1t−1

be the decomposition such that prime factors p of ti satisfy χa∗(p) = i (i = 0, ±1). The 
set IK(t) is not empty if and only if t−1 is square. We denote by t′−1, the product of 
prime factors p of t−1 where t−1 has p in odd power. Then IK(tt′−1) �= ∅. We define 
mIK(t) := {mT | T ∈ IK(t)} for m ∈ Z.

We have proved in [18,20], the following result:

Theorem 5.2. Let χ, χ′ be a Dirichlet character. Put χ0 := χχ′. We assume that k ∈ N
and χ0 have the same parity. Let t be a natural number all of whose prime factors p
satisfy χ0(p) = 0. Let N be a natural number divisible by 4 with Gχ′

k,χ(tz) ∈ Mk(N, χ0). 
Then if χ(p) = χ′(p) = 0 for some p with p|t′1, then Sa∗,χ01N

(θ(z)Gχ′

k,χ(tz)) = 0. If 
otherwise, Sa∗,χ01N

(θ(z)Gχ′

k,χ(tz)) equals 2−1U2(λχ′

2k,χ(z; a∗, t)) ∈ M2k(N/2, (χχ′)2) for 
a ≡ 1 (mod 4), 2−1λχ′

2k,χ(z; a∗, t) ∈ M2k(N/2, (χχ′)2) for a �≡ 1 (mod 4) where

λχ′

2k,χ(z; a∗, t)

:=
∏
p|t′−1

(χ(p)pk−1+χ′(p))−1
∑
m|t1

μ(m)
∏
p|m

(χ(p)pk−1+χ′(p))
∑

T∈mIK(tt′−1/m)

λχ′

k,T,χ(z).

When a = 1, we define

λχ′

2k,χ(z; 1, t) :=
∑
s|t

μ(s)
∏
p|s̃

{χ(p)pk−1 + χ′(p)}
∑

s1s2=ts
s|s1,s|s2

Gχ′

k,χ(s1z)Gχ′

k,χ(s2z).

Then the assertion of Theorem 5.2 holds also for a = 1.



S. Tsuyumine / Journal of Number Theory 159 (2016) 123–159 139
As an application, we obtain approximate formulas for the number of representa-
tion as a sum of any odd number of squares. Let F be a positive integral quadratic 
forms with 2k + 1 (k ≥ 1) variables, and let F1 = F, F2, · · · , Fg be representa-
tives of equivalence classes of quadratic forms in the genus G to which F belongs. 
Let Aut(Fi) := {P ∈ GL2k+1(Z) | PFi

tP = Fi}. The mass m(G) of G is de-
fined by m(G) :=

∑g
i=1(#Aut(Fi))−1. Let θFi

∈ Mk+1/2(N, χ0) be the theta series 
associated with Fi, and let θ(z; G) the theta series of the genus G which is given 
by θ(z; G) := 1

m(G)
∑g

i=1
1

#Aut(Fi)θFi
(z). Then θ(z; G) ∼ θF (z) provided that any 

cusp form such as (23), is not contained in Mk+1/2(N, χ0) [4]. In such a case if 
θF (z) − θ(z; G) =

∑∞
n=1 cne(nz), then cn = O(nk/2−1/28+ε) for any fixed ε > 0 by 

Iwaniec [9] and by Duke and Schulze-Pillot [4]. The Shimura lift of θ(z; G) is an Eisen-
stein series [20]. If the Eisenstein series is obtained, then the Fourier coefficients of θ(z; G)
are obtained by (21), to which the corresponding Fourier coefficients of θF (z) are close, 
up to O(nk/2−1/28+ε). We consider the case that F is the identity matrix.

If k ≥ 1 is odd, then Sa∗,χ−4(θ(z)Gk,χ−4(z)) is 2−1U2(λ2k,OK ,χ−4(z)) or 2−1×
λ2k,OK ,χ−4(z) according as a ≡ 1 (mod 4) or not, and Sa∗,χ−4(θ(z)G

χ−4
k (z)) is 

2−1U2(λχ−4
2k,OK

(z)) or 2−1λ
χ−4
2k,OK

(z) according as a ≡ 1 (mod 4) or not. If k is even, then 
Sa∗,12(θ(z)G

12
k (z)) is 2−1U2(λ12

2k,OK
(z)) or 2−1λ12

2k,OK
(z) according as a ≡ 1 (mod 4) or 

not, and Sa∗,12(θ(z)Gk,12(2z)) is 2−1U2(λ2k,P2,12(z) +λ2k,P2,12
(z) −λ2k,(2),12(z)) (resp. 

2−1U2(λ2k,(2),12(z)), resp. 2−1λ2k,P2,12(z) for a ≡ 1 (mod 8) (resp. a ≡ 5 (mod 8), resp. 
a �≡ 1 (mod 4)). By Proposition 4.1 and by Lemma 5.1, we have

Sa∗,χ−4(θ(z)G1,χ−4(z))|C(2) = 2−2L(0, χ−4a){2κ12,2(1, 2) − κ12,2(1, 1)}. (24)

Let k > 1 be odd and put la := L(1 − k, χ−4)L(1 − k, χ−4a) for a �≡ 3 (mod 4)
and la := L(1 − k, χ−4)L(1 − k, χ−a) for a ≡ 3 (mod 4). Then by Proposi-
tion 4.1 and Lemma 5.1, Sa∗,χ−4(θ(z)Gk,χ−4(z))|C(2) is equal to 2−1laκ12,2(1, 2) for 
a �≡ 3 (mod 4), and 2−2la{2(1 − χ8(a)2k−1)κ12,2(1, 2) + κ12,2(1, 1)} for a ≡ 3 (mod 4)), 
and Sa∗,χ−4(θ(z)G

χ−4
k (z))|C(2) is equal to −2−2klaκ12,2(1, 1) for a �≡ 3 (mod 4), and 

−2−1(1 − χ8(a)2−k)laκ12,2(1, 1) for a ≡ 3 (mod 4).
Let k be even and put l′a := ζ(1 − k)L(1 − k, χa) for a ≡ 1 (mod 4) and 

l′a := ζ(1 − k)L(1 − k, χ4a) for a �≡ 1 (mod 4). Then Sa∗,12(θ(z)G
12
k (z))|C(2) is equal to 

2−2(2k−1)(2k−χ8(a))l′aκ12,2(1, 1)} for a ≡ 1 (mod 4), and 2−1(1 −2−k)l′aκ12,2(1, 1) for 
a �≡ 1 (mod 4), and Sa∗,12(θ(z)Gk,12(z))|C(2) is equal to l′a[2−1(1 −2k−1)2×κ12,2(1, 2) +
2−2{1 −2k+22k−1}κ12,2(1, 1)] for a ≡ 1 (mod 8), l′a{2−1(1 −22k−2) ×κ12,2(1, 2) +2−2(1 +
22k−1)κ12,2(1, 1)} for a ≡ 5 (mod 8), l′a{2−1(1 − 2k−1)κ12,2(1, 2) + 2−2κ12,2(1, 1)} for 
a �≡ 1 (mod 4), and Sa∗,12(θ(z)Gk,12(2z))|C(2) is equal to l′a{2−1(1 − 2k−1)2κ12,2(1, 2) +
2−3κ12,2(1, 1)} for a ≡ 1 (mod 8), l′a{2−1(1 − 22k−2) × κ12,2(1, 2) + 2−33κ12,2(1, 1)} for 
a ≡ 5 (mod 8), l′a{2−1(1 − 2k−1)κ12,2(1, 2) + 2−k−2κ12,2(1, 1)} for a �≡ 1 (mod 4).
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Corollary 5.3. Let a be a square-free natural number.
(i) Let k ≥ 0. Then r4k+3(an2) is given up to O({an2}k+13/28+ε) by

L(−2k,χ−4a)
{1+(−1)k−122k+1}ζ(−4k−1)

∑
d|n(μχ−4a)(d)d2k{σ4k+1(n) + (−1)k−122k+1σ4k+1(n/2)} for 

a �≡ 3 (mod 4), and L(−2k,χ−a)
{1+(−1)k−122k+1}ζ(−4k−1)

∑
d|n(μχ−a12)(d)d2k[{24k+1+(−1)k−122k+1

+1 −22kχ8(a)}σ4k+1(n/d) −24k+1{(−1)k−1χ8(a) +1}σ4k+1(n/(2d))] for a ≡ 3 (mod 4), 
where the error term is 0 if k = 0, 1.

(ii) Let k ≥ 1. Then r4k+1(an2) is given up to O({an2}k+13/28+ε) by
(22k−1−1)L(1−2k,χa)

(24k−1)ζ(1−4k)
∑

d|n(μχa12)(d)d2k−1[{24k−1 + 1 + (−1)k24k−1(22k − 1)}σ4k−1(n) −
24k{(−1)k(22k−1)+3}σ4k−1(n/2)] for a ≡ 1 (mod 8), and L(1−2k,χa)

(22k−1)ζ(1−4k) ×∑
d|n(μχa12)(d)d2k−1[{22k−1−1 +(−1)k24k−1}σ4k−1(n) +24k−1{1−(−1)k} ×σ4k−1(n/2)]

for a ≡ 5 (mod 8), and L(1−2k,χ4a)
(24k−1)ζ(1−4k)

∑
d|n(μχ4a)(d)d2k−1[−{1 − (−1)k22k}σ4k−1(n) +

22k{22k − (−1)k}σ4k−1(n/2)] for a �≡ 1 (mod 4), where the error term is 0 if k = 1.

Proof. We write κ12,2(1, 2), κ12,2(1, 1) as κ(1), κ(2) respectively for short.
(i) If k ≥ 1, then

θ(z)4k+3(z) ∼ L(−2k, χ−4)−1{θ(z)G2k+1,χ−4(z) + (−1)k22kθ(z)Gχ−4
2k+1(z)}

by Proposition 3.3. Let us suppose a �≡ 3 (mod 4). Then by the calculation before 
Corollary 5.3, Sa∗,χ−4(θ(z)4k+3(z))|C(2) = L(−2k, χ−4a){2−1κ(2) +(−1)k−12−2k−2κ(1)}, 
which holds also in the case k = 0 by (24). Hence by Proposition 3.1(i), we have

Sa∗,χ−4(θ(z)4k+3(z))

∼ L(−2k,χ−4a)
(1+(−1)k−122k+1)ζ(−4k−1){2

−1G4k+2(z) + (−1)k−122kG4k+2(2z)}.

The Fourier expansion of the right hand side is obtained from (12). The formula for the 
case a �≡ 3 (mod 4) follows from this. Since S3/2(4, χ−4) = {0} and S7/2(4, χ−4) = {0}, 
the error term vanishes if k = 0, 1. The estimate of error terms comes from the estimate 
of the Fourier coefficients of a cusp form of weight 2k + 3/2 by Iwaniec [9]. Suppose 
a ≡ 3 (mod 4). By the calculation before Corollary 5.3,

Sa∗,χ−4(θ(z)4k+3(z))|C(2)

= L(−2k, χ−a)[2−1(1 − χ8(a)22k)κ(2) + 2−2{1 + (−1)kχ8(a) + (−1)k−122k+1}κ(1)],

which holds including the case k = 0. By Proposition 3.1(i),

Sa∗,χ−4(θ(z)4k+3(z))

∼ L(−2k,χ−a)
(1+(−1)k−122k+1)ζ(−4k−1) [2

−1{24k+1 + (−1)k−122k+1 + 1 − 22kχ8(a)}G4k+2(z)

− 24k{(−1)k−1χ8(a) + 1}G4k+2(2z)].

This proves the formula in the case a ≡ 3 (mod 4).
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(ii) By Proposition 3.3, we have

θ(z)4k+1(z) ∼ 1
(22k−1)(22k−1−1)ζ(1−2k) [{(−1)k22k−1 + 1 − (−1)k}θ(z)G12

2k(z)

− θ(z)G2k,12(z) − 2(22k−1−1)θ(z)G2k,12(2z)].

If a ≡ 1 (mod 8), then

Sa,12(θ(z)4k+1(z))|C(2)

= 2−2(22k−1 − 1)L(1 − 2k, χa){−2κ(2) + {(−1)k(2(2k) − 1) + 1}κ(1)

by the calculation before Corollary 5.3. Then by Proposition 3.1(i),

Sa,12(θ(z)4k+1(z)) ∼ (22k−1−1)L(1−2k,χa)
22(24k−1)ζ(1−4k) [{2(24k−1 + 1) + (−1)k24k(22k − 1)}G4k(z)

− 24k((−1)k(22k − 1) + 3)G4k(2z)].

The formula for a ≡ 1 (mod 8) follows from this. If a ≡ 5 (mod 8), then

Sa,12(θ(z)4k+1(z))|C(2)

= 2−2L(1 − 2k, χa)[2(22k−1 + 1)κ(2) + {1 + (−1)k(22k + 1)}κ(1)].

Then by Proposition 3.1 (i),

Sa,12(θ(z)4k+1(z))

∼ L(1−2k,χa)
2(22k−1)ζ(1−4k) [{(2

2k−1 − 1) + (−1)k24k−1}G4k(z) + 24k−1{1 − (−1)k}G4k(2z)].

The formula for a ≡ 5 (mod 8) follows from this. If a �≡ 1 (mod 4), then 
S4a,12(θ(z)4k+1(z))|C(2) = 2−2k−1L(1 − 2k, χ4a){22kκ(2) + (−1)kκ(1)}. Then

S4a,12(θ(z)4k+1(z))

∼ L(1−2k,χ4a)
2(24k−1)ζ(1−4k) [{−1 + (−1)k22k}G4k(z) + 22k{22k − (−1)k}G4k(2z)].

We have proved the formula. �
6. Theta series on Γ0(4p2)

Let p be an odd prime. The generating function of r
(p)
(α1,α2,α3) is given by∏3

i=1
∑

n≡±αi (mod p) e(n2z) =
∑∞

n=0 r
(p)
(α1,α2,α3)(n)e(nz). However if 

∑3
i=1 α

2
i ≡ m

(mod p), then the m-th Fourier coefficient of θ(z) 
∏2

i=1
∑

n≡±αi (mod p) e(n2z) equals 
r
(p)
(α1,α2,α3)(m). Let ω be a generator of the group (Z/p)∗. We have χp∨ = ω(p−1)/2. 

All even characters in (Z/p)∗ are written in the form ω2i. From (5), it follows that if 
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α2, α3 �≡ 0 (mod p) and if 
∑3

i=1 α
2
i ≡ n (mod p), then r(p)

(α1,α2,α3)(n) is equal to the n-th 
Fourier coefficient of

(
2

p− 1

)2

θ(z)
p−2∑
i=0

ω(α2)2iθω2i(z)
p−2∑
j=0

ω(α3)2jθω2j (z).

If α2 �≡ 0 (mod p) and if α2
1 + α2

2 ≡ n (mod p), then r(p)
(α1,α2,0)(n) is equal to the n-th 

Fourier coefficient of

2
p− 1θ(z)

p−2∑
i=0

ω(α2)2iθω2i(z)θ(p2z).

The space M(4p2, χ−4χ) does not contain cusp forms such as (23) for χ even, and hence 
f ∈ M(4p2, χ−4χ) is written as f(z) = E3/2(z) + g(z) where E3/2(z) is an Eisenstein 
series of weight 3/2, and g is a cusp form any of whose Shimura lift is a cusp form. By 
Duke and Schulze-Pillot [4], the n-th Fourier coefficients of f(z) agree with that of E3/2(z)
up to O(n13/28+ε) for ε > 0. Since all the Shimura lifting maps are Hecke equivariant, the 
Shimura lifts of E3/2(z) are Eisenstein series of weight 2. If all such Eisenstein series of 
weight 2 are obtained, then the Fourier coefficients of E3/2(z) are obtained by (21), and 
hence the Fourier coefficients of f(z) up to O(n13/28+ε). We need to write the Shimura 
lifts of θ(z)θω2i(z)θω2j (z) (0 ≤ i, j < (p −1)/2) and θ(z)θω2i(z)θ(p2z) (0 ≤ i < (p −1)/2)
by Eisenstein series up to cusp forms.

We express θω2i(z)θω2j (z), θω2i(z)θ(p2z) as a linear combination of Eisenstein se-
ries up to a cusp form to make use of Theorem 5.2. By (17), θω2i(z)|C(4p2) =
ιpp

−1/2κθ{τ(ωi)κω2i,4p2(χp∨ω−i, p) + τ(χp∨ωi)κω2i,4p2(ω−i, p) + ω(2)2iτ(ωi) ×
κω2i,4p2(χp∨ω−i, 4p) + ω(2)2iτ(χp∨ωi)κω2i,4p2(ω−i, 4p)} for 1 ≤ i < (p − 1)/2. By (16), 
θ(p2z)|C0(4p2) = κθ{κ1,4p2(1, p2) + κ1,4p2(1, 4p2) + p−1/2ιpκ1,4p2(χp∨ , p) +
p−1/2ιpκ1,4p2(χp∨ , 4p) + p−1κ1,4p2(1, 4) + p−1κ1,4p2(1, 1)}. Since θ1p

(z) = θ(z) − θ(p2z), 
θ1p

(z)|C(4p2) = κθ{κ1,4p2(1, 4p) − p−1/2ιpκ1,4p2(χp∨ , 4p) + κ1,4p2(1, p) −
p−1/2ιpκ1,4p2(χp∨ , p) + (1 − p−1)κ1,4p2(1, 4) + (1 − p−1)κ1,4p2(1, 1)}. Multiplying these 
and applying J(χ, φ) = τ(χ)τ(φ)/τ(χφ) for χ, ψ with χ, ψ, χφ �= 1p, we obtain the 
following lemma:

Lemma 6.1. Let 1 ≤ i, j < (p − 1)/2.
(i) Suppose i + j �= (p − 1)/2. Then θω2i(z)θω2j (z)|C(4p2) is equal to

χ−4(p)p−1[τ(ωi+j){J(ωi, ωj) + J(χp∨ωi, χp∨ωj)}{−2−1√−1χ−4(p)

× κχ−4ω2i+2j ,4p2(ω−i−j , p) + ω(2)2i+2jκχ−4ω2i+2j ,4p2(χ−4ω
−i−j , 4p)} + τ(χp∨ωi+j)

× {J(χp∨ωi, ωj) + J(ωi, χp∨ωj)}{−2−1√−1χ−4(p)κχ−4ω2i+2j ,4p2(χp∨ω−i−j , p)

+ ω(2)2i+2jκχ−4ω2i+2j ,4p2(χ−4χp∨ω−i−j , 4p)}].
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(ii) Suppose that i + j = (p − 1)/2. Then θω2i(z)θω2j (z)|C(4p2) is equal to

χ−4(p)p−1[ιpp1/2{J(ωi, ωj) + J(χp∨ωi, χp∨ωj)}{−2−1√−1χ−4(p)κχ−4,4p2(χp∨ , p)

+ κχ−4,4p2(χ−4χp∨ , 4p)} + ω(−1)i(χp∨(−1) + 1)p{−2−1√−1χ−4(p)κχ−4,4p2(1p, p)

+ κχ−4,4p2(χ−41p, 4p)}].

(iii) Then θ1p
(z)θω2i(z)|C(4p2) is equal to

χ−4(p)p−1τ(ωi){−2−1√−1χ−4(p)κω2i,p(ωi, p) + ω(2)2iκω2i,4p2(χ−4ω
i, 4p)}

+ χ−4(p)p−1τ(χp∨ωi){−2−1√−1χ−4(p)κω2i,p(χp∨ωi, p)

+ ω(2)2iκω2i,4p2(χ−4χp∨ωi, 4p)}.

(iv) The function θ1p
(z)2|C(4p2) on C(4p2) is equal to

p−1/2ιpκ1,4p2(χ−4χp∨ , 4p) − χ−4(p)p−1κ1,4p2(χ−4, 4p) − 2−1√−1χ−4(p)

× {p−1/2ιpκ1,4p2(χp∨ , p) − χ−4(p)p−1κ1,4p2(1, p)} + p−1(1 − p−1)κ1,4p2(χ−4, 4)

− 2−1√−1p−1(1 − p−1)κ1,4p2(1, 1).

(v) The function θω2i(z)θ(p2z)|C0(4p2) is equal to

χ−4(p)p−1τ(ωi){ω(2)2iκω2i,4p2(χ−4ω
i, 4p) − 2−1√−1χ−4(p)κω2i,4p2(ωi, p)}

+ χ−4(p)p−1τ(χp∨ωi){ω(2)2iκω2i,4p2(χ−4χp∨ωi, 4p) − 2−1√−1χ−4(p)

× κω2i,4p2(χp∨ωi, p)}.

(vi) The function θ1p
(z)θ(p2z)|C(4p2) is equal to

p−1/2ιpκ1,4p2(χ−4χp∨ , 4p) − χ−4(p)p−1κ1,4p2(χ−4, 4p) − 2−1√−1χ−4(p)

× {p−1/2ιpκ1,4p2(χp∨ , p) − χ−4(p)p−1κ1,4p2(1, p)} + p−1(1 − p−1)κ1,4p2(χ−4, 4)

− 2−1√−1p−1(1 − p−1)κ1,4p2(1, 1).

By Proposition 3.1, we have

⎛⎝ G1,χ−4(z)|C(4p2)
G1,χ−4(pz)|C(4p2)
G1,χ−4(p2z)|C(4p2)

⎞⎠ =

⎛⎜⎝
1
2 −

√
−1
4

1
2 −

√
−1χ−4(p)

4
1
2 −

√
−1
4

1
2 −

√
−1χ−4(p)

4
1
2 −

√
−1
4

χ−4(p)
2p −

√
−1
4p

1
2 −

√
−1
4

χ−4(p)
2p −

√
−1
4p

1
2p2 −

√
−1

4p2

⎞⎟⎠v

with v = t(κχ−4,4p2(χ−4, 4p2), κχ−4,4p2(1, p2), κχ−4,4p2(χ−4, 4p), κχ−4,4p2(1, p),
κχ−4,4p2(χ−4, 4), κχ−4,4p2(1, 1)), and
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Gω
1,χ−4ω(z)|C(4p2)

= χ−4(p)τ(ω)(p−χ−4(p))
2p {−

√
−1χ−4(p)

2 κχ−4ω2,4p2(ω, p) + ω(2)2κχ−4ω2,4p2(χ−4ω, 4p)}.

From Lemma 6.1 and from these equalities we obtain the following proposition:

Proposition 6.2. Let p be an odd prime, and let ω be a generator of (Z/p)∗. Let 1 ≤ i, j <
(p − 1)/2.

(i) Suppose i + j �= (p − 1)/2. Then

θω2i(z)θω2j (z) ∼ 2(p− χ−4(p))−1[{J(ωi, ωj) + J(χp∨ωi, χp∨ωj)}Gωi+j

1,χ−4ωi+j (z)

+ {J(χp∨ωi, ωj) + J(ωi, χp∨ωj)}Gχp∨ωi+j

1,χ−4χp∨ωi+j (z)].

(ii) Suppose i + j = (p − 1)/2. Then

θω2i(z)θω2j (z) ∼ 2(p− χ−4(p))−1[{J(ωi, ωj) + J(χp∨ωi, χp∨ωj)}Gχp∨
1,χ−4χp∨

(z)

− ω(−1)i(1 + χ−4(p)){G1p

1,χ−4
(z) − pG

1p

1,χ−4
(pz)}].

(iii) There hold

θ1p
(z)θω2i(z) ∼ 2(p− χ−4(p))−1[{−1 + J(χp∨ωi, χp∨)}Gωi

1,χ−4ωi(z)

+ {−1 + J(ωi, χp∨)}Gχp∨ωi

1,χ−4χp∨ωi(z)],

θ1p
(z)2 ∼ 2(p− χ−4(p))−1{(p− 2 − χ−4(p))G

1p

1,χ−4
(z)

+ (p + χ−4(p))G
1p

1,χ−4
(pz) − 2Gχp∨

1,χ−4p∨
(z)},

θω2i(z)θ(p2z) ∼ 2(p− χ−4(p))−1{Gωi

1,χ−4ωi(z) + G
χp∨ωi

1,χ−4χp∨ωi(z)},

and

θ1p
(z)θ(p2z) ∼ 2(p− χ−4(p))−1{Gχp∨

1,χ−4χp∨
(z) + G

1p

1,χ−4
(z) − χ−4(p)G

1p

1,χ−4
(pz)}.

7. Shimura lifts of products of theta series

Let a be a square-free natural number. It is necessary to express

Sa∗,ω2(i+j)χ−4(θ(z)θω2i(z)θω2j (z)), Sa∗,χ−4ω2i(θ(z)θ1p
(z)θω2i(z)),

Sa∗,χ−41p
(θ(z)θ1p

(z)2), Sa∗,χ−41p
(θ(z)θω−2i(z)θ(p2z)),

Sa∗,χ−41p
(θ(z)θ1p

(z)θ(p2z)) (25)
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as linear combinations of Eisenstein series up to cusps forms. We present how to ob-
tain the expressions. From Proposition 6.2 and from what we stated before Lemma 5.1, 
this argument is reduced to express Sa∗,ω2iχ−4(θ(z)Gωi

1,χ−4ωi(z)) (1 ≤ i < p − 1), 
Sa∗,χ−41p

(θ(z)G1p

1,χ−4
(z)) and Sa∗,χ−41p

(θ(z)G1p

1,χ−4
(pz)).

Let K = Q(
√
a), and let N be as in Section 4. Put

ρ = ω ◦ N, ψ−4 = χ−4 ◦ N. (26)

Then by Theorem 5.2, Sa∗,ω2iχ−4(θ(z)Gωi

1,χ−4ωi(z)) = 2−1U2(λωi

2k,ωi(z; a∗, 1)) (1 ≤ i <

p − 1) for a ≡ 1 (mod 4), Sa∗,ω2iχ−4(θ(z)Gωi

1,χ−4ωi(z)) = 2−1λωi

2k,ωi(z; a∗, 1) (1 ≤ i <

p − 1) for a �≡ 1 (mod 4), Sa∗,χ−41p
(θ(z)G1p

1,χ−4
(z)) = 2−1U2(λ

1p

2k,χ−4
(z; a∗, 1)) for 

a ≡ 1 (mod 4), Sa∗,χ−41p
(θ(z)G1p

1,χ−4
(z)) = 2−1λ

1p

2k,χ−4
(z; a∗, 1) for a �≡ 1 (mod 4), 

Sa∗,χ−41p
(θ(z)G1p

1,χ−4
(pz)) = 2−1U2(λ

1p

2k,χ−4
(z; a∗, p)) for a ≡ 1 (mod 4) and

Sa∗,χ−41p
(θ(z)G1p

1,χ−4
(pz)) = 2−1λ

1p

2k,χ−4
(z; a∗, p) for a �≡ 1 (mod 4) where λωi

2k,ωi(z; a∗, 1)
= λ̃ρi

k,OK ,ψ−4ρi(z, z) and λ1p

2k,χ−4
(z; a∗, 1) = λ̃

1p

k,OK ,ψ−4
(z, z), and where λ1p

2k,χ−4
(z; a∗, p) =

λ̃
1p

k,Pp,ψ−4
(z, z) +λ̃

1p

k,Pp,ψ−4
(z, z) −χ−4(p)λ̃

1p

k,(p),ψ−4
(z, z) if (χa∗(p) = 1), λ1p

2k,χ−4
(z; a∗, p) =

λ̃
1p

k,(p),ψ−4
(z, z) if χa∗(p) = −1 and λ1p

2k,χ−4
(z; a∗, p) = λ̃

1p

k,Pp,ψ−4
(z, z) if χa∗(p) = 0, Pp, 

Pp being as in Section 4. Proposition 4.1 gives the values at cusps of these functions. 
If the restrictions to C(2p2), of functions of (25) are obtained, then the functions are 
represented as linear combinations of Eisenstein series up to cusps forms, indeed, from 
Proposition 3.1 there hold⎛⎜⎜⎜⎜⎜⎜⎜⎝

κ1,2p2(1, 2p2)
κ1,2p2(1, p2)
κ1,2p2(1, 2p)
κ1,2p2(1, p)
κ1,2p2(1, 2)
κ1,2p2(1, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= A

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G2(z)|C(2p2)
G2(2z)|C(2p2)
G2(pz)|C(2p2)
G2(2pz)|C(2p2)
G2(p2z)|C(2p2)
G2(2p2z)|C(2p2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(
κω2i,2p2(ωi, 2p)
κω2i,2p2(ωi, p)

)
= B

(
Gωi

2,ωi(z)|C(2p2)

Gωi

2,ωi(2z)|C(2p2)

)
(1 ≤ i < p− 1) (27)

with

A = 4
p2 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 4 p2 −4p2

0 0 4 −4 −4p2 4p2

−1 4 p2 + 1 −4(p2 + 1) −p2 4p2

4 −4 −4(p2 + 1) 4(p2 + 1) 4p2 −4p2

p2 −4p2 −p2 4p2 0 0
−4p2 4p2 4p2 −4p2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

B = 4p
2 i

(
ω(2)2i −4

2i

)
.
(p − 1)τ(ω ) −4 4ω(2)
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Suppose that a ≡ 1 (mod 4) and χp∨(a) = 1. Then by Proposition 4.1 and Lemma 5.1, 
we have

U2(λ̃ρi

1,OK ,ψ−4ρi(z, z))|C(2p2)

= 2−2ω(22a)iτ(ωi)2(1 − χ−4(p)p−1)2L(0, χ−4a)

× {2ω(2)2iκω4i,2p2(ω2i, 2p) − κω4i,2p2(ω2i, p)} (1 ≤ i < (p− 1)/2),

U2(λ̃
1p

1,OK ,ψ−4
(z, z))|C(2p2)

= −2−2L(0, χ−4a)[(1 − χ−4(p))2κ1,2p2(1, p2) + (1 − χ−4(p))2κ1,2p2(1, p)

− 2(p− χ−4(p))2

p2 κ1,2p2(1, 2) + (p− 1)2

p2 κ1,2p2(1, 1)]

and

U2(λ̃
1p

1,Pp,ψ−4
(z, z) + λ̃

1p

1,Pp,ψ−4
(z, z) − χ−4(p)λ̃

1p

1,(p),ψ−4
(z, z))|C(2p2)

= −2−2L(0, χ−4a)[χ−4(p)(1−χ−4(p))2κ1,2p2(1, p2) + 2χ−4(p)(p−χ−4(p))2
p2 κ1,2p2(1, 2p)

− χ−4(p)(p−1){(2χ−4(p)−1)p−1}
p2 κ1,2p2(1, p) − 2χ−4(p)(2p−1)(p−χ−4(p))2

p4 κ1,2p2(1, 2)

+ (p−1)2(2p−χ−4(p))
p4 κ1,2p2(1, 1)],

the halves of which are equal to Sa∗,ω2iχ−4(θ(z)Gωi

1,χ−4ωi(z))|C(2p2), Sa∗,χ−41p
(θ(z) ×

G
1p

1,χ−4
(z))|C(2p2) and Sa∗,χ−41p

(θ(z)G1p

1,χ−4
(pz))|C(2p2) respectively by calculation after 

(26). Then Sa,χ−4ω2i+2j (θ(z)θω2i(z)θω2j (z))|C(2p2), Sa,χ−4ω2i(θ(z)θ1p
(z) ×θω2i(z))|C(2p2), 

Sa,χ−4ω2i(θ(z)θω2i(z)θ(p2z))|C(2p2) and Sa,χ−4(θ(z)θ1p
(z)θ(p2z))|C(2p2) are written as 

linear combinations of κ’s by Proposition 6.2 and by what we stated before Lemma 5.1. 
Modular forms whose values at cusps are known, are written as linear combination of 
Eisenstein series up to cusp forms by using (27). Then we have

Sa,χ−4ω2i+2j (θ(z)θω2i(z)θω2j (z))

∼ 12ω(22a)i+jL(0, χ−4a)
p(p + χ−4(p))

{J(ωi, ωj , ωi+j) + J(χp∨ωi, χp∨ωj , ωi+j)

+ J(χp∨ωi, ωj , χp∨ωi+j) + J(ωi, χp∨ωj , χp∨ωi+j)}Gω2(i+j)

2,12ω2(i+j)(z)

(i + j �= (p− 1)/2),

Sa,χ−4ω2i+2j (θ(z)θω2i(z)θω2j (z))

∼ 12L(0, χ−4a)
p(p + χ−4(p))

[{−χ−4(p)J(ωi, ωj) − χ−4(p)J(χp∨ωi, χp∨ωj)}

× {G1p

2,12p
(z) − p(p− 1)G1p

2,12
(pz)} + ω(−1)i(1 + χ−4(p))pG

1p

2,12p
(z)]

(i + j = (p− 1)/2),
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Sa,χ−4ω2i(θ(z)θ1p
(z)θω2i(z))

∼ 6ω(22a)i(p− χ−4(p))L(0, χ−4a)
p(p2 − 1) {2J(ωi, χp∨ , χp∨ωi) − J(ωi, ωi)

− J(χp∨ωi, χp∨ωi)}Gω2i

2,12ω2i(z),

Sa,χ−41p
(θ(z)θ1p

(z)2)

∼
{ 6L(0,χ−4a)

p(p+1) {(p2 − p + 4)G1p

2,12
(z) − p(3p + 1)G1p

2,12
(pz)} (χ−4(p) = 1)

6L(0,χ−4a)
p−1 {(p− 3)G1p

2,12
(z) + (3p− 1)G1p

2,12
(pz)} (χ−4(p) = −1)

,

Sa,χ−4ω2i(θ(z)θω2i(z)θ(p2z))

∼ 6ω(22a)i(p− χ−4(p))L(0, χ−4a)
p(p2 − 1) {J(ωi, ωi) + J(χp∨ωi, χp∨ωi)}Gω2i

2,12ω2i(z)

and

Sa,χ−4(θ(z)θ1p
(z)θ(p2z))

∼
{ 6L(0,χ−4a)

p(p+1) {(p− 3)G1p

2,12
(z) + p(p + 1)G1p

2,12
(pz)} (χ−4(p) = 1)

6L(0,χ−4a)
p G

1p

2,12p
(z) (χ−4(p) = −1)

where 1 ≤ i, j < (p − 1)/2.
We are done in the case that a ≡ 1 (mod 4) and χp∨(a) = 1. The similar method 

works also for other cases.

8. Sums of three squares under the congruence condition

For a square free natural number a, we define an operator Pa on the set of Fourier 
series by

Pa(
∞∑

n=0
cne(nz)) =

∞∑
n=1

can2e(an2z).

As stated at the beginning of Section 6, we have

Pa(θ(z)
∑

n2≡α2
2(mod p)

e(n2z)
∑

n2≡α2
3(mod p)

e(n2z))

=
∞∑

n=1
r(α(an2),α2,α3)(an

2)e(an2) (28)

where α(an2) denotes integer between 0 and p − 1 satisfying α(an2)2 + α2
2 + α2

3 ≡
an2 (mod p).
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From the previous section, we can obtain the Fourier coefficient of Shimura lifts 
Sa∗,χ−4ω2i+2j (θ(z)θω2i(z)θω2j (z)) (0 ≤ i, j < (p − 1)/2), Sa∗,χ−4ω2i(θ(z)θω2i(z)θ(p2z))
(0 ≤ i < (p − 1)/2) with the error terms coming Fourier coefficients of cusp forms, and 
hence those of θ(z)θω2i(z)θω2j (z), θ(z)θω2i(z)θ(p2z) by (21).

(i) The case χp∨(a) = 1.
From the computation of the preceding section and from Lemma 2.1 we have for 

0 ≤ i, j < (p − 1)/2,

Pa(θ(z)θω2i(z)θω2j (z))

∼ 12ω(22a)i+jL(0, χ−4a)
p(p + χ−4(p))

{J(ωi, ωj , ωi+j) + J(χp∨ωi, χp∨ωj , ωi+j)

+ J(χp∨ωi, ωj , χp∨ωi+j) + J(ωi, χp∨ωj , χp∨ωi+j)}

×
∞∑

n=1
ω(n)2(i+j)

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12p
(n/d)e(an2z)

+ δωi+j ,χp∨
Xa(i) + δ(i,j),(0,0)Ya

with

Xa(i) = 12L(0, χ−4a)
p(p + 1) [χ−4(p)p(p− χ−4(p)){J(ωi, χp∨ωi) + J(χp∨ωi, ωi)}

×
∞∑

n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/(pd))e(an2z) + (1 + χ−4(p))ω(−1)i(p− 1)

×
∞∑

n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12p
(n/d)e(an2z)],

Ya = 12(p− 1)2L(0, χ−4a)
p + χ−4(p)

∞∑
n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/(pd))e(an2z)

where δωi+j ,χp∨
(resp. δ(i,j),(0,0)) denotes 1 if ωi+j = χp∨ (resp. (i, j) = (0, 0)) and it 

denotes 0 if otherwise. Further

Pa(θ(z)θω2i(z)θ(p2z))

∼ 12L(0, χ−4a)
p(p + χ−4(p))

[ω(22a)i{J(ωi, ωi) + J(χp∨ωi, χp∨ωi)}
∞∑

n=1
ω(n)2i

×
∑
d|n

(μχ−4a1p)(d)σ
1p

1,12p
(n/d)e(an2z)

+ δi,0(1 + χ−4(p))p(p− 1)
∞∑∑

(μχ−4a1p)(d){σ1p

1,12
(n/(pd))}e(an2z)]
n=1 d|n
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for 0 ≤ i < (p − 1), where δi,0 denotes the Kronecker delta. We assume that 
α2 �≡ 0 (mod p). By (5) and by Proposition 2.2, we have, including the case α3 ≡
0 (mod p),

Pa(θ(z)
∑

n2≡α2
2(mod p)

e(n2z)
∑

n2≡α2
3(mod p)

e(n2z))

∼ 12L(0, χ−4a)
p(p + χ−4(p))

∞∑
n=1

r
(p)
(α(an2),α2,α3)(an

2)
∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z),

where we note that σ1p

1,12
(n/(pd)) = p−1σ

1p

1,12
(n/p) for n with p|n. Hence if |α|2 ≡

an2 (mod p) and α �≡ 0 (mod p), then

rα(an2)

= 12L(0, χ−4a)
p(p + χ−4(p))

r(p)
α (an2)

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d) + O((an2)13/28+ε) (29)

by (28).

(ii) The case χp∨(a) = −1.
We have

Pa(θ(z)θω2i(z)θω2j (z))

∼ 12ω(22a)i+jL(0, χ−4a)
p(p− χ−4(p))

{−J(ωi, ωj , ωi+j) − J(χp∨ωi, χp∨ωj , ωi+j)

+ J(χp∨ωi, ωj , χp∨ωi+j) + J(ωi, χp∨ωj , χp∨ωi+j)}

×
∞∑

n=1
ω(n)2(i+j)

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12p
(n/d)e(an2z)

+ δωi+j ,χp∨
Xa(i) + δ(i,j),(0,0)Ya

for 0 ≤, i, j < (p − 1)/2 with

Xa(i) = 12(p−1)L(0,χ−4a)
p(p−χ−4(p)) [−ω(−1)i(1+χ−4(p))

∞∑
n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12p
(n/d)e(an2z)

+ χ−4(p){J(ωi, χp∨ωi) + J(χp∨ωi, ωi)}p

×
∞∑

n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/(pd))e(an2z)],

Ya = 24(p−1)2L(0,χ−4a)
p(p−χ−4(p))

∑
(μχ−4a1p)(d){σ1p

1,12p
(n/d) + p

2σ
1p

1,12
(n/(pd))}e(an2z).
d|n
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Further for 0 ≤ i < (p − 1)/2,

Pa(θ(z)θω2i(z)θ(p2z))

∼ 12ω(22a)iL(0, χ−4a)
p(p− χ−4(p))

{−J(ωi, ωi) + J(χp∨ωi, χp∨ωi)}

×
∞∑

n=1
ω(n)2i

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z)

with the additional term

24δi,0L(0, χ−4a)
p

∞∑
n=1

∑
d|n

(μχ−4a1p)(d){σ1p

1,12p
(n/d) + pσ

1p

1,12p
(n/(pd))}e(an2z)

if χ−4(p) = 1, and

24(p− 1)δi,0L(0, χ−4a)
p(p + 1)

∞∑
n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12p
(n/d)e(an2z)

if χ−4(p) = −1. By (5) and by Proposition 2.2,

Pa(θ(z)
∑

n2≡α2
2(mod p)

e(n2z)
∑

n2≡α2
3(mod p)

e(n2z))

∼ 12L(0, χ−4a)
p(p− χ−4(p))

∞∑
n=1

r
(p)
(α(an2),α2,α3)(an

2)
∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z).

If |α|2 ≡ an2 (mod p) and α �≡ 0 (mod p), then

rα(an2)

= 12L(0, χ−4a)
p(p− χ−4(p))

r(p)
α (an2)

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d) + O((an2)13/28+ε) (30)

by (28).

(iii) The case χp∨(a) = 0.
We have

Pa(θ(z)θω2i(z)θω2j (z))

∼ δωi+j ,χp∨
12χ−4(p)L(0, χ4a)

p + 1 {J(ωi, χp∨ωi) + J(χp∨ωi, ωi)}

×
∞∑∑

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z)
n=1 d|n
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+ δ(i,j),(0,0)
12(p− 1)L(0, χ−4a)

p + 1

∞∑
n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z)

for 0 ≤, i, j < (p − 1)/2. Further

Pa(θ(z)θω2i(z)θ(p2z)) ∼ 48L(0, χ−4a)
p2 − 1

∞∑
n=1

∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z)

for 0 ≤ i < (p − 1)/2 if χ−4(p) = 1, and Pa(θ(z)θω2i(z)θ(p2z)) ∼ 0 if χ−4(p) = −1. By 
(5) and by Proposition 2.2,

Pa(θ(z)
∑

n2≡α2
2(mod p)

e(n2z)
∑

n2≡α2
3(mod p)

e(n2z))

∼ 12L(0, χ−4a)
p2 − 1

∞∑
n=1

r
(p)
(α(an2),α2,α3)(an

2)
∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d)e(an2z).

If |α|2 ≡ an2 (mod p) and α �≡ 0 (mod p), then

rα(an2)

= 12L(0, χ−4a)
p2 − 1 r(p)

α (an2)
∑
d|n

(μχ−4a1p)(d)σ
1p

1,12
(n/d) + O((an2)13/28+ε) (31)

by (28).
From (29), (30) and (31), the following theorem is proved.

Theorem 8.1. Let a, n be natural numbers where a is square-free. Let p be an odd prime. 
Then r(p)

0 (an2) = r3(an2/p2), and if α ∈ Z3 is not congruent to (0, 0, 0) modulo p, then

r(p)
α (an2) = 12 r(p)

α (an2)L(0, χ−4a)
r
(p)
3 (a)

∑
d|n

μ(d)χ−4a(d)σ
1p

1,12
(n/d) + O((an2)13/28+ε)

for any ε > 0.

Let h(a) denote the class number of the imaginary quadratic field Q(
√
−a). If a > 3, 

then L(0, χ−4a) equals h(a), 2h(a) or 0 according as a ≡ 1, 2 (mod 4), a ≡ 3 (mod ) or 
a ≡ 7 (mod 8). Siegel’s celebrated theorem on the class numbers shows that h(a) > a1/2−ε

as a −→ ∞. Let a �≡ 7 (mod 8). Then L(0, χ−4a)/a13/28+ε −→ ∞ as a −→ ∞ for 
a sufficiently small ε > 0. Theorem 8.1 implies that if r(p)

α (an2) > 0 and if an2 is 
sufficiently large with bounded 2-adic valuation, then r(p)

α (an2) is positive.
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Corollary 8.2. Let n be either an odd number not congruent to 7 modulo 8, or 2‖n. Let 
p be an odd prime. Then there is a constant Cp depending only on p which satisfies 
the following. If n > Cp and if α2

1 + α2
2 + α2

3 ≡ n (mod p) has a solution in F3
p with 

(α1, α2, α3) �≡ (0, 0, 0) (mod p), then

xi ≡ αi (mod p) (i = 1, 2, 3), x2
1 + x2

2 + x2
3 = n

has an integral solution.

It is easy to see that we can take 0 as C3. However Cp might be very large in general. 
It has been verified by using computer, that up to 2 · 106, the result of the corollary 
holds for p = 5 (resp. p = 7) if n > 42 211 (resp. n > 308 995). Hence C5 ≥ 42 211 and 
C7 ≥ 308 995, where there are possibilities that the equalities hold. We have checked also 
that C11 > 2 · 106.

9. Sums of three squares under congruence condition modulo 8

Let η(z) be the Dedekind eta function. We put

f3/2(z) := η(8z)η(16z)θ(2z) ∈ S3/2(128, χ−4),

f ′
3/2(z) := η(8z)η(16z)θ(8z) ∈ S3/2(128, χ−4).

Let cf3/2(n), cf ′
3/2

(n) be the n-th Fourier coefficients of f3/2(z), f ′
3/2(z) respectively. We 

have cf3/2(n) = cf ′
3/2

(n) = 0 for n ≡ 5, 6, 7 (mod 8), and cf ′
3/2

(n) = 0 for n ≡ 3 (mod 8). 
The coefficients cf3/2(n) and cf ′

3/2
(n) coincide except for n ≡ 3 (mod 8). Both of f3/2(z), 

f ′
3/2(z) are Hecke eigen forms. Tunnell [21] (see also Koblitz [11]) showed under the 

weak Birch–Swinnerton–Dyer conjecture, that an odd natural number n is a congruent 
number if and only if cf3/2(n) = 0.

Let

r(8)
α (n) := #{x ∈ Z3 | xi ≡ ±αi (mod 8) (i = 1, 2, 3), |x|2 = n}

for α = (α1, α2, α3) ∈ Z3, and

r
(8)
(α1,α2,4∗)(n) := #{x ∈ Z3 | xi ≡ ±αi (mod 8) (i = 1, 2), 4|x3, |x|2 = n}.

We define also r(8)
(α1,4∗,4∗)(n) in the similar way. If all of α1, α2, α3 are even, then we can 

reduce the argument to the case at least one of them is odd. For example, if all αi’s are 
odd, then r(8)

2α(n) = r
(8)
α (n/22) and r(8)

(2α1,2α2,4∗)(n) = r
(8)
(α1,α2,2)(n/2

2) +r
(8)
(α1,α2,6)(n/2

2) +
r
(8) (n/22).
(α1,α2,4∗)



S. Tsuyumine / Journal of Number Theory 159 (2016) 123–159 153
Theorem 9.1. Let a be a square-free natural number and let n be an odd natural number. 
Put

ξ(a, n) := L(0, χ−4a)
∑

0<d|n
μ(d)χ−4a(d)σ1(n/d).

(i) Then r(8)
(1,4∗,4∗)(n

2) (resp. r(8)
(3,2,2)(n

2)) is 2ξ(1, n) + χ−4(n)n (resp. 2ξ(1, n) −
χ−4(n)n) or 0 according as n ≡ ±1 (mod 8) or not. Further r(8)

(3,4∗,4∗)(n
2) (resp. 

r
(8)
(1,2,2)(n

2)) is 2ξ(1, n) + χ−4(n)n (resp. 2ξ(1, n) − χ−4(n)n) or 0 according as n ≡
±3 (mod 8) or not.

(ii) Let a ≡ 1 (mod 8), > 1. Then r(8)
(1,4∗,4∗)(an

2) = r
(8)
(3,2,2)(an

2), and this is equal 
to 2ξ(a, n) or 0 according as an2 ≡ 1 (mod 16) or not. Further r(8)

(3,4∗,4∗)(an
2) =

r
(8)
(1,2,2)(an

2), and this is equal to 2ξ(a, n) or 0 according as an2 ≡ 9 (mod 16) or not.
(iii) Let a ≡ 5 (mod 8). Then r(8)

(1,2,4∗)(an
2) (resp. r(8)

(3,2,4∗)(an
2)) is 2ξ(a, n) or 0

according as an2 ≡ 5 (mod 16) (resp. an2 ≡ 13 (mod 16)) or not.
(iv) Let a ≡ 3 (mod 8). Then r(8)

(1,1,1)(an
2) (resp. r(8)

(1,3,3)(an
2)) is 3ξ(a, n) +3cf3/2(an2)

(resp. 3ξ(a, n) − cf3/2(an2)) or 0 according as an2 ≡ 3 (mod 16) or not. Further 
r
(8)
(1,1,3)(an

2) (resp. r(8)
(3,3,3)(an

2)) is 3ξ(a, n) − cf3/2(an2) (resp. 3ξ(a, n) + 3cf3/2(an2)) 
or 0 according as an2 ≡ 11 (mod 16) or not.

(v) Let a ≡ 2 (mod 8). Then r(8)
(1,1,4∗)(an

2) (resp. r(8)
(3,3,4∗)(an

2)) is 2ξ(a, n) +
2cf3/2(an2/2) (resp. 2ξ(a, n) − 2cf3/2(an2/2)) or 0 according as an2 ≡ 2 (mod 16) or 
not. Further r(8)

(1,3,4∗)(an
2) is 2ξ(a, n) or 0 according as an2 ≡ 10 (mod 16) or not.

(vi) Let a ≡ 6 (mod 8). Then r(8)
(1,1,2)(an

2) (resp. r(8)
(3,3,2)(an

2)) is 2ξ(a, n) +
2cf3/2(an2/2) (resp. 2ξ(a, n) − 2cf3/2(an2/2)) or 0 according as an2 ≡ 6 (mod 16) or 
not. Further r(8)

(1,3,2)(an
2) is 2ξ(a, n) or 0 according as an2 ≡ 14 (mod 16) or not.

We give the proof of the theorem in the next section.
From (i) of the theorem we see in particular that r(3,2,2)(p2) = 0 (resp. r(1,2,2)(p2) = 0) 

if p is a prime with p ≡ 1 (mod 8) (resp. p ≡ 5 (mod 8)), while the congruence relation 
32 + 22 + 22 ≡ p2 (mod 8) (resp. 12 + 22 + 22 ≡ p2 (mod 8)) holds. Since cf3/2(an2) =
O((an2)13/28+ε) by Duke and Schulze-Pillot [4], we have the following:

Corollary 9.2. There is a constant C which satisfies the following. Let n be either an odd 
non-square number not congruent to 7 modulo 8, or 2‖n. Let α1, α2, α3 be any integer 
with α2

1 + α2
2 + α2

3 ≡ n (mod 8). Then if n > C, then there are integers x1, x2, x3 with 
xi ≡ αi (mod 8) for αi not divisible by 4 and with xi ≡ αi (mod 4) for αi divisible by 4
which satisfy x2

1 + x2
2 + x2

3 = n.

It is checked by computer, that up to 2 · 106, the result of the corollary holds if 
n > 83 227. The constant C in the corollary is at least 83 227, and there is a possibility 
that C = 83 227.
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By Theorem 9.1 (iv), we see for square-free n ≡ 1 (mod 8), > 1, that cf3/2(n) van-
ishes if and only if r(8)

(1,1,4∗)(2n) = r
(8)
(3,3,4∗)(2n). By (v), for square-free n ≡ 3 (mod 8), 

cf3/2(n) vanishes if and only if r(8)
(1,1,2)(2n) = r

(8)
(3,3,2)(2n). By (vi), for square-free n

with n ≡ 3 (mod 16) (resp. n ≡ 3 (mod 16)), cf3/2(n) vanishes if and only if 
r
(8)
(1,1,2)(2n) = r

(8)
(3,3,2)(2n), and cf3/2(n) vanishes if and only if r(8)

(1,1,1)(n) = r
(8)
(1,3,3)(n)

(resp. r(8)
(1,1,3)(n) = r

(8)
(3,3,3)(n)). As a consequence of Tunnell’s result we obtain the fol-

lowing:

Corollary 9.3. Let n ≥ 1 be a square-free odd natural number. We assume that the weak 
Birch–Swinnerton–Dyer conjecture is true.

(i) Let n ≡ 1 (mod 8). Then n is a congruent number if and only if r(8)
(1,1,4∗)(2n) =

r
(8)
(3,3,4∗)(2n).

(ii) Let n ≡ 3 (mod 8). Then n is a congruent number if and only if r(8)
(1,1,2)(2n) =

r
(8)
(3,3,2)(2n).

(iii) Let n ≡ 3 (mod 16) (resp. n ≡ 11 (mod 16)). Then n is a congruent number if 
and only if r(8)

(1,1,1)(n) = r
(8)
(1,3,3)(n) (resp. r(8)

(1,1,3)(n) = r
(8)
(3,3,3)(n)).

10. The proof of Theorem 9.1

The method proving Proposition 6.2 is effective also for products of theta series of 
level powers of 2. In the following case, even the equalities hold. We omit the proofs of 
the following two lemmas.

Lemma 10.1. There hold the equalities

θ(z)2 = 2G1,χ−4(z),

θ(z)θ(4z) = G1,χ−4(z) −G1,χ−4(2z) + 2G1,χ−4(4z),

θ(z)θ(16z) = 1
2G1,χ−4(z) −

1
2G1,χ−4(2z) + G1,χ−4(4z) −G1,χ−4(8z)

+ 2G1,χ−4(16z) + 1
2G

χ8
1,χ−8

(z),

and

θχ8(z)2 = 2Gχ8
1,χ−8

(2z).

We denote by Bm, an operator on the set of Fourier series so that Bm(
∑∞

n=0 cne(nz))
=

∑∞
n=0 cne(nmz).
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Lemma 10.2. There hold the equalities

θ(z)Gχ8
1,χ−8

(2z) −B2(U2(θ(z)Gχ8
1,χ−8

(2z))) = 2(f3/2(z) − f ′
3/2(z)),

U2(θ(z)θ(16z)θχ8(z)) = 4f ′
3/2(z)

and

U2(θ(z)θ(4z)θχ8(z)) = 4f3/2(z).

Let a be a square-free natural number. We investigate the numbers of representations 
of an2 as sum of three squares when n is odd. Let K, P2, ψ−4 be as in Section 7.

(I) The case a ≡ 1 (mod 8).
If |x|2 = an2 for n odd, then we may assume that x1 is odd. Then both of x2, x3 are 

just divisible by 2, or both of them are divisible by 4.

(I-i) The case x2 ≡ x3 ≡ 0 (mod 4).
We investigate the Fourier coefficients of θ(z)θ(16z)2 ∈ M3/2(64, χ−4). There is a 

cusp form Θχ−4(z) of (23) in M3/2(64, χ−4). If a �= 1, then Sa,χ−4(Θχ−4(z)) = 0 since 
the n-th Fourier coefficients of Θχ−4(z) is 0 for n not square. At first we consider the 
case a > 1. Since θ(z)θ(16z)2 = 2θ(z)G1χ−4(16z) by Lemma 10.1, Sa,χ−4(θ(z)θ(16z)2) =
U2(λ2,χ−4(z; a, 16)) = λ2,χ−4(z; a, 4). By Theorem 5.2, λ2,χ−4(z; a, 4) = λ̃1,P22,ψ−4(z, z) +
λ̃1,P2

2
,ψ−4

(z, z) + λ̃1,(2),ψ−4(z) − λ̃1,2P2,ψ−4(z, z) − λ̃1,2P2,ψ−4
(z, z) ∈ M2(16). By Propo-

sition 3.1, we have

λ̃1,P22,ψ−4(z, z)|C(16) = λ̃1,P2
2
,ψ−4

(z, z)|C(16)

= 2−5L(0, χ−4a){24κ1,16(1, 16) − κ1,16(1, 1)},
λ̃1,(2),ψ−4(z, z)|C(16)

= 2−5L(0, χ−4a){24κ1,16(1, 16) + 24κ1,16(1, 8) − 22κ1,16(1, 2) − κ1,16(1, 1)},
λ̃1,2P22,ψ−4(z, z)|C(16) = λ̃1,2P2

2
,ψ−4

(z, z)|C(16)

= 2−6L(0, χ−4a){25κ1,16(1, 16) − 24κ1,16(1, 2) − κ1,16(1, 1)},

and

λ2,χ−4(z; a, 4, 1)|C(16) = 2−4L(0, χ−4a){23κ1,16(1, 16) + 23κ1,16(1, 8) − κ1,16(1, 1)}.

Hence Sa,χ−4(θ(z)θ(16z)2) = L(0, χ−4a){G2(z) − G2(2z) + 2G2(4z) − 8G2(8z)}, and 

from this we obtain r(8)
(1,4∗,4∗)(an

2) = 2ξ(a, n) for an2 ≡ 1 (mod 16), and r(8)
(3,4∗,4∗)(an

2) =
2ξ(a, n) for an2 ≡ 9 (mod 16).

Suppose a = 1. Then S1,χ−4(θ(z)θ(16z)2 − Θχ−4(z)) = L(0, χ−4){G2(z) − G2(2z) +
2G2(4z) − 8G2(8z)}. From this we obtain r(8) (n2) = 2ξ(1, n) + χ−4(n)n.
(1,4∗,4∗)
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(I-ii) The case 2‖x2, 2‖x3.
Let a > 1. Since θ(z)θ(4z)2 = 2θ(z)G1χ−4(4z) by Lemma 10.1, Sa,χ−4(θ(z)θ(4z)2) =

U2(λ2,χ−4(z; a, 4)) = λ2,χ−4(z; a, 1) ∈ M2(4). By Theorem 5.2, λ2,χ−4(z; a, 1) =
λ̃1,OK ,ψ−4(z, z). By Proposition 3.1, we have λ̃1,OK ,ψ−4(z, z)|C(4) = 2−3L(0, χ−4a) ×
{22κ1,4(1, 4) − κ1,4(1, 1)}. Hence Sa,χ−4(θ(z)θ(4z)2) = 2L(0, χ−4){G2(z) − 4G2(4z)}. 
Since r(8)

(3,2,2)(an
2) = #{(x1, 2x2, 2x3) ∈ Z3 | x2

1 + 4x2
2 + 4x2

3 = an2} −#{(x1, 4x2, 4x3) ∈
Z3 | x2

1+16x2
2+16x2

3 = an2} for an2 ≡ 1 (mod 16), we can obtain r(8)
(3,2,2)(an

2) = 2ξ(a, n)
from Sa,χ−4(θ(z)θ(4z)2 − θ(z)θ(16z)2) = L(0, χ−4a){G2(z) + G2(2z) − 10G2(4z) +
8G2(8z)}. The equality r(8)

(1,2,2)(an
2) = 2ξ(a, n) for an2 ≡ 9 (mod 16) is proved simi-

larly.
Let a = 1, From the last part of the case (I-i), we have

S1,χ−4(θ(z)θ(4z)2 − θ(z)θ(16z)2 − Θχ−4(z))

= L(0, χ−4){G2(z) + G2(2z) − 10G2(4z) + 8G2(8z)}.

The equalities r(8)
(3,2,2)(n

2) = 2ξ(1, n) − χ−4(n)n for n ≡ ±1 (mod 8) and r(8)
(1,2,2)(n

2) =
2ξ(1, n) − χ−4(n)n for n ≡ ±3 (mod 8) follow from this.

(II) The case a ≡ 5 (mod 8).
We investigate the Fourier expansion of θ(z)θ(4z)θ(16z) = θ(z){G1,χ−4(4z) −

G1,χ−4(8z) + 2G1,χ−4(16z)}. By Theorem 5.2,

Sa,χ−4(θ(z)θ(4z)θ(16z))

= 2−1U2(λ2,χ−4(z; a, 4) + λ2,χ−4(z; a, 16))

= 2−1{λ̃1,OK ,ψ−4(z, z) + λ̃1,(2),ψ−4(z, z)} ∈ M2(8),

and by Proposition 3.1,

λ̃1,OK ,ψ−4(z, z)|C(8) = 2−3L(0, χ−4a){22κ1,8(1, 8) + 22κ1,8(1, 4) − κ1,8(1, 1)},

λ̃1,(2),ψ−4(z, z)|C(8) = 2−5L(0, χ−4a){24κ1,8(1, 8) − 22κ1,8(1, 2) − κ1,8(1, 1)}.

Then

Sa,χ−4(θ(z)θ(4z)θ(16z))|C(8)

= 2−6L(0, χ−4a){25κ1,8(1, 8) + 24κ1,8(1, 4) − 22κ1,8(1, 2) − 5κ1,8(1, 1)},

and

Sa,χ−4(θ(z)θ(4z)θ(16z)) = L(0, χ−4a){G2(z) + G2(2z) − 4G2(4z) − 4G2(8z)}.

Then r(8)
(1,2,4∗)(an

2) = 2ξ(a, n) (resp. r(8)
(3,2,4∗)(an

2) = 2ξ(a, n)) for an2 ≡ 5 (mod 16)
(resp. an2 ≡ 13 (mod 16)).
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(III) The case a ≡ 3 (mod 8).
We have θ(z) − θ(4z) + sθχ8(z) = 2 

∑
−∞<n<∞
χ8(n)=s

e(n2z) for s = ±1, and hence

θ(z){θ(z) − θ(4z) + θχ8(z)}{θ(z) − θ(4z) − θχ8(z)}

= 4
∞∑

n=1
#{x ∈ Z3 | x2 ≡ ±1, x3 ≡ ±3 (mod 8), |x|2 = n} e(nz). (32)

If n ≡ 3 (mod 16) (resp. n ≡ 11 (mod 16)), then n-th Fourier coefficient of (32)
gives r(8)

(1,3,3)(n) (resp. r(8)
(1,1,3)(n)). The product (32) is equal to 2θ(z)G1,χ−4(2z) −

2θ(z)G1,χ−4(4z) −2θ(z)Gχ8
1,χ−8

(2z) by Lemma 10.1. By Lemma 10.2 the n-th Fourier coef-
ficient of θ(z)Gχ8

1,χ−8
(2z) is equal to 2cf3/2(n) if n is odd and n ≡ 3 (mod 8). We compute 

S4a,χ−4(2θ(z)G1,χ−4(2z) −2θ(z)G1,χ−4(4z)) ∈ M2(4). We have S4a,χ−4(θ(z)G1,χ−4(2z))
= λ2,χ−4(z; 4a, 2) = λ̃1,P2,ψ−4(z, z) and S4a,χ−4(θ(z) ×G1,χ−4(4z)) = λ2,χ−4(z; 4a, 4) =
λ̃1,(2),ψ−4(z, z) by Theorem 5.2, and

S4a,χ−4(2θ(z)G1,χ−4(2z) − 2θ(z)G1,χ−4(4z))|C(4)

= 2−3L(0, χ−a){24κ1,4(1, 4) + 22κ1,4(1, 2) − 5κ1,4(1, 1)}

by Proposition 3.1. Hence

S4a,χ−4(2θ(z)G1,χ−4(2z) − 2θ(z)G1,χ−4(4z)) = 12L(0, χ−a){G2(z) −G2(2z) − 2G2(4z)}

and the an2-th Fourier coefficient of 2θ(z)G1,χ−4(2z) − 2θ(z)G1,χ−4(4z) is 12ξ(a, n)
for n odd. Since this is equal to an2-th Fourier coefficient of θ(z){θ(z) − θ(4z) +
θχ8(z)}{θ(z) − θ(4z) − θχ8(z)} + 4f3/2(z), we have r(8)

(1,3,3)(an
2) = 3ξ(a, n) − cf3/2(an2)

(resp. r(8)
(1,1,3)(an

2) = 3ξ(a, n) − cf3/2(an2)) for an2 ≡ 3 (mod 16) (resp. an2 ≡
11 (mod 16)). Because r(1,1,1)(an2) + 3r(1,3,3)(an2) = r3(an2) = 12ξ(a, n) for an2 ≡
3 (mod 16) and r(3,3,3)(an2) + 3r(1,1,3)(an2) = 12ξ(a, n) for an2 ≡ 11 (mod 16), we 
obtain also the formulas for r(1,1,1)(an2) and r(3,3,3)(an2).

(IV) The case a ≡ 2 (mod 8).
The number r(1,1,4∗)(an2) (resp. r(1,3,4∗)(an2)) equals the an2-th Fourier coeffi-

cient of 2−1θ(z)θ(16z){θ(z) − θ(4z) + θχ8(z)} for an2 ≡ 2 (mod 16) (resp. an2 ≡
10 (mod 16)). By Lemma 10.2, the an2-th Fourier coefficient of θ(z)θ(16z)θχ8(z)
is equal to 4cf ′

3/2
(an2/2) = 4cf3/2(an2/2). We consider the Fourier coefficients of 

2−1θ(z)θ(16z){θ(z) − θ(4z)}.
By Lemma 10.1, we have

θ(z)2θ(16z) = 2−1θ(z){G1,χ−4(z) −G1,χ−4(2z) + 2G1,χ−4(4z)

− 2G1,χ−4(8z) + 4G1,χ−4(16z) + Gχ8
1,χ−8

(z)},

and hence
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Sa∗,χ−4(θ(z)2θ(16z))

= 2−2{λ2,χ−4(z; a, 1) − λ2,χ−4(z; a, 2) + 2λ2,χ−4(z; a, 4) − 2λ2,χ−4(z; a, 8)

+ 4λ2,χ−4(z; a, 16) + λχ8
2,χ−8

(z; a, 1)}

= 2−2{λ̃1,OK ,ψ−4(z, z) − λ̃1,P2,ψ−4(z, z) + 2λ̃1,(2),ψ−4(z, z) − 2λ̃1,2P2,ψ−4(z, z)

+ 4λ̃1,(4),ψ−4(z, z) + λ̃ψ8
1,OK ,ψ−8

(z, z)} ∈ M(8).

Similarly we have Sa∗,χ−4(θ(z)θ(4z)θ(16z)) = 2−1{λ2,χ−4(z; a, 4) − λ2,χ−4(z; a, 8) +
2λ2,χ−4(z; a, 16)}. By Proposition 3.1,⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ̃1,OK ,ψ−4(z, z)|C(8)
λ̃1,P2,ψ−4(z, z)|C(8)
λ̃1,(2),ψ−4(z, z)|C(8)
λ̃1,2P2,ψ−4(z, z)|C(8)
λ̃1,(4),ψ−4(z, z)|C(8)
λ̃ψ8

1,OK ,ψ−8
(z, z)|C(8)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= L(0, χ−4a)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2−1 2−1 2−1 −2−2

2−1 2−1 0 −2−3

2−1 2−1 −2−2 −2−4

2−1 0 −2−3 −2−5

2−1 −2−2 −2−4 −2−6

0 0 2−1 −2−3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

κ1,8(1, 8)
κ1,8(1, 4)
κ1,8(1, 2)
κ1,8(1, 1)

⎞⎟⎟⎠ ,

and hence Sa∗,χ−4(θ(z)2θ(16z))|C(8) = 2−5L(0, χ−4a){24κ1,8(1, 8) + 22κ1,8(1, 2) −
3κ1,8(1, 1)} and Sa∗,χ−4(θ(z)θ(4z)θ(16z))|C(8) = 2−5L(0, χ−4a){24κ1,8(1, 8) −
22κ1,8(1, 2) − κ1,8(1, 1)}. Then

S4a,χ−4(2−1θ(z)θ(16z){θ(z) − θ(4z)}) = L(0, χ−4a){G2(z) − 3G2(2z) + 2G2(4z)}.

From this we obtain r(1,1,4∗)(an2) − 2cf3/2(an2/2) = 2ξ(a, n) for an2 ≡ 2 (mod 16) and 
r(1,3,4∗)(an2) = 2ξ(a, n) for an2 ≡ 10 (mod 16), where we note that cf3/2(n) = 0 if 
n ≡ 5 (mod 16). Since 3r(1,1,4∗)(an2) + 3r(3,3,4∗)(an2) = r3(an2) for an2 ≡ 2 (mod 16), 
the formula for r(3,3,4∗)(an2) is also obtained.

(V) The case a ≡ 6 (mod 8).
The number r(1,1,2)(an2) (resp. r(1,3,2)(an2)) equals the an2-th Fourier coefficient of 

2−1θ(z)θ(4z){θ(z) −θ(4z) +θχ8(z)} for an2 ≡ 6 (mod 16) (resp. an2 ≡ 14 (mod 16)). By 
Lemma 10.2, the an2-th Fourier coefficient of θ(z)θ(4z)θχ8(z) is equal to 4cf3/2(an2/2). 
We consider the Fourier coefficients of 2−1θ(z)θ(4z){θ(z) − θ(4z)}. We already know 
that S4a,χ−4(θ(z)2θ(4z)) = 2L(0, χ−4a){G2(z) − 4G2(4z)}, S4a,χ−4(θ(z)θ(4z)2) =
6L(0, χ−4a){G2(2z) − 2G2(4z)} and hence

S4a,χ−4(2−1θ(z)θ(4z){θ(z) − θ(4z)}) = L(0, χ−4a){G2(z) − 3G2(2z) + 2G2(4z)}.

Then we have r(8)
(1,1,2)(an

2) − 2cf3/2(an2/2) = 2ξ(a, n) for an2 ≡ 6 (mod 8) and 

r
(8)
(3,3,2)(an

2) = 2ξ(a, n) for an2 ≡ 14 (mod 8) where we note that cf3/2(n) = 0 for 
n ≡ 7 (mod 8). Since 3r(8)

(1,1,2)(an
2) + 3r(8)

(3,3,2)(an
2) = r3(an2) for an2 ≡ 6 (mod 8), we 

obtain also the formula for r(8) (an2).
(3,3,2)
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