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1. Introduction and statement of the main results

In 1944, Yuri Linnik [11,12] showed that for every sufficiently large q and coprime a, 
there exists a constant � such that the least prime p in the prime residue class a mod q

satisfies p ≤ cq�, where c is another absolute constant; the best bound so far for the 
appearing constant in the exponent is � ≤ 5 due to Triantafyllos Xylouris [21]. This 
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question dates back to Savardaman Chowla [5] who conjectured in 1934 that one may 
even take � = 1 + ε. Two years later, Pál Turán [15] proved that this is true for almost 
all q and that it holds in general under the assumption of the generalized Riemann 
hypothesis. In this note we shall investigate the corresponding question about the least 
prime in a Beatty sequence.

Given a positive real number α and a non-negative real β, the associated (generalized) 
Beatty sequence is defined by

B(α, β) = {�nα + β� : n ∈ N},

where �x� denotes the largest integer less than or equal to x. If α is rational, then 
B(α, β) is a union of residue classes and, if at least one of them is a prime residue 
class, we may apply Linnik’s theorem to bound the least prime (see the concluding 
remarks, § 5). Otherwise, if α is irrational, B(α, β) does not contain an entire residue 
class. It follows from a classical exponential sum estimate due to Ivan M. Vinogradov [17]
that there exist infinitely many prime numbers in such a Beatty sequence (details in 
§ 2), hence, in particular there exists a least prime number. However, the problem of 
estimating the size of the least prime is clearly different as compared to the rational 
case. In fact, for an integer m ≥ 2 consider αm = 4 +

√
2/m. Since �nαm� = 4n for 

n = 1, 2, . . . , �m/
√

2� =: M , there is no prime amongst the first M elements of B(αm, 0). 
It turns out that the diophantine character of α has an impact on a non-trivial bound 
for the least prime in the associated Beatty sequence:

Theorem 1. For every positive ε there exists a computable positive integer � such that 
for every irrational α > 1 the least prime p in the Beatty sequence B(α, β) satisfies the 
inequality

p ≤ L35−16εα2(1−ε)Bp1+ε
m+�, (1)

where B = max{1, β}, L = log(2αB), pn denotes the numerator of the n-th convergent 
to the regular continued fraction expansion of α = [a0, a1, . . .] and m is the unique integer 
such that

pm ≤ L16α2 < pm+1. (2)

Since the sequence of numerators pn is recursively given by

p−1 = 1, p0 = a0 = �α�, and pn+1 = an+1pn + pn−1 (3)

with partial quotients an ∈ N for n ∈ N, the pn’s are strictly increasing integers and the 
integer m satisfying (2) is uniquely determined. In view of the explicit exponents and 
absolute constants m and �, Theorem 1 may be regarded as the analogue of Linnik’s the-
orem on the least prime in an arithmetic progression. A careful analysis of the reasoning 
allows to assign the quantity k from Theorem 1 an explicit (possibly not optimal) value:
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Theorem 2. On the hypothesis of Theorem 1, and assuming ε < 44
2025 , the least prime p

in the Beatty sequence B(α, β) satisfies the inequality (1), where for � one may take the 
least positive integer satisfying

� ≥ 3 + 9ε−1
(
41 + log

(
1 + ε−1) + log

(
3711 + 2 · 17−3M 5

4 ε

))
, (4)

where Mε is a constant such that (13) holds.

2. Proof of Theorem 1

In the process of proving the ternary Goldbach conjecture for sufficiently large odd 
integers Vinogradov [17] obtained the estimate

∑
p≤N

exp(2πimap) �ε N
1+ε

(
1

N1/2 + q

N
+ m

q
+ m4

q2

)1/2

,

where m, q, N are positive integers, the exponential sum is taken over all prime numbers 
p less than or equal to N , and q is related to a by the existence of an integer a such that

∣∣∣∣a− a

q

∣∣∣∣ < 1
q2 . (5)

For irrational a Vinogradov’s bound is o(π(N)), where π(N) denotes the number of 
primes p ≤ N . Letting a = 1

α , this implies that the sequence of numbers αp, where p
runs through the prime numbers in ascending order, is uniformly distributed modulo one, 
answering a question of the young Paul Erdős (cf. Turán [15], p. 227). This means that 
the proportion of fractional parts {αp} := αp −�αp� which fall in an interval [a, b) ⊂ [0, 1)
is equal to b −a (the length of the interval) as follows from a well-known criterion due to 
Hermann Weyl [20] stating that a sequence of real numbers xn is uniformly distributed 
modulo one if and only if, for every integer h 
= 0,

lim
N→∞

1
N

∑
n≤N

exp(2πihxn) = 0.

Notice that an integer m lies in B(α, β) if and only if m = �nα + β� for some n ∈ N. 
Equivalently, the inequalities

nα + β − 1 < m ≤ nα + β (6)

hold. In order to find a prime number p in B(α, β) we thus need

p ∈
(
β − 1

,
β
]

mod 1, and p > α + β − 1. (7)

α α α
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Here the right hand-side is to be interpreted modulo one, and if there lies an integer in 
(β−1

α , βα ) the set consists of two disjoint intervals; in any case the Lebesgue measure of the 
set on the right equals 1

α . In view of Vinogradov’s aforementioned uniform distribution 
result the number πB(α,β)(N) of primes p ∈ B(α, β) with p ≤ N satisfies

πB(α,β)(x) ∼ 1
α
π(x).

Already Vinogradov provided an error term estimate here. However, for our purpose we 
shall use the following theorem of Robert C. Vaughan [16]: Let a ∈ R and suppose that 
a and q are coprime integers satisfying (5). Moreover, for 0 < δ < 1

2 , define

χδ(θ) =
{

1 if − δ < θ ≤ δ,

0 if either − 1
2 ≤ θ ≤ −δ or δ < θ ≤ 1

2 ,
(8)

and to be periodic with period 1. Then, for arbitrary real b, every positive integer N , and 
any real ε > 0,

∑
n≤N

Λ(n) (χδ(na + b) − 2δ) �ε L 8
(
N

q
1
2

+ N
3
4 + (Nqδ) 1

2 + δ
2
5N

4
5

(
Nq

δ

)ε)

with L := log(Nq
δ ). Here Λ(n) is the von Mangoldt-function counting prime powers pν

with weight log p. In view of (7) we shall use this with a = 1
α , b = 2β−1

2α and δ = 1
2α . 

This leads to

∑
pν≤N

pν∈B(α,β)

log p +
∑

pν<α+β−1
pν∈B(α,β−�α+β�)

log p = 1
α

∑
pν≤N

log p + Eα(N, q), (9)

where

|Eα(N, q)| ≤ cL 8

(
N

q
1
2

+ N
3
4 +

(
Nq

2α

) 1
2

+ N
4
5

(2α) 2
5
(2Nqα)ε

)
(10)

with L = log(2Nqα) and appropriate absolute constant c depending only on ε, but not 
on α. The second sum on the left hand side of (10) may be estimated using a classical 
inequality due to John B. Rosser & Lowell Schoenfeld [13] (see Lemma 5 below). The 
number of prime powers pν ≤ N with ν ≥ 2 is less than or equal to π(N 1

2 ), hence we 
may replace (9) by

∑
p≤N

log p ≥ 1
α

∑
p≤N

log p + Eα(N, q) − 1.04(α + β − 1) +
(

1
α
− 1

) ∑
pν≤N

log p.
p∈B(α,β) ν≥2
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Notice that the last term is negative; it is obviously bounded by

(
1 − 1

α

) ∑
pν≤N
ν≥2

log p <

(
1 − 1

α

)
π(N 1

2 ) logN <

(
1 + 3

logN

)
N

1
2 ,

where we have used a classical inequality for the prime counting function π(x) valid for 
all x also due to Rosser & Schoenfeld [13]. Using another one of their explicit inequalities, 
namely

∑
p≤N

log p > N − N

logN for N ≥ 41,

we thus find a prime p ≤ N in B(α, β) if we can show that

N

α

(
1 − 1

logN

)
> |Eα(N, q)| +

(
1 + 3

logN

)
N

1
2 + 1.04(α + β − 1),

which we may also replace by

0.73N
α

> |Eα(N, q)| + 1.81N 1
2 + 1.04(α + β − 1).

By (10) this inequality is satisfied if

0.73 > 1.81 α

N
1
2

+ 1.04α
2 + αβ − α

N

+ cL 8

(
α

q
1
2

+ α

N
1
4

+
( qα

2N

) 1
2 + α

3
5

N
1
5
(2Nqα)ε

)
.

Obviously, N needs to be larger than max{α4, β} and q larger than α2. Since L depends 
on α and β and we would like to eliminate this dependency, we shall take both N and q
somewhat larger. Therefore, we make the ansatz N = L35α2Bqηε and q = L16α2η with 
some large parameter η, to be specified later, and B = max{1, β}. (The exponent 35
was chosen with hindsight from both this proof and the proof of Theorem 2; from the 
above inequality we see that it should be at least 16 and the further increase is due to 
the positive contribution from the ε-term.) Then, the latter inequality can be rewritten 
as

0.73 > 1.81L− 51
2 α−1B− 1

2 η−
1+ε
2 + 1.04L−51(α + β − 1)α−3B−1η−(1+ε)

+ cL 8
(
L−8η−

1
2 + L− 51

4 B− 1
4 η−

1+ε
4 + 2− 1

2L− 35
2 α− 1

2B− 1
2 η−

ε
2

+ 2εL− 51
5 +67εα− 1

5+7εB− 1
5+εη−

1+ε
5 +(2+ε)ε

)
,

(11)
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where L = log(2L67α7Bη2+ε). Assuming ε < 1
35 , as we may, all exponents belonging 

to α, B and η are negative. Since LL−1 �κ η−κ for any κ > 0, the above inequality is 
fulfilled for all sufficiently large η, say η ≥ η0.

Since η is intertwined with q a little care needs to be taken. In order to find a suitable 
η recall that α is irrational. Hence, by Dirichlet’s approximation theorem, there are 
infinitely many solutions a

q to inequality (5); in view of a = 1
α we may take for a

q the 
reciprocals of the convergents pn

qn
to the continued fraction expansion of α. (For this and 

further fundamental results about diophantine approximation and continued fractions 
we refer to Hardy & Wright [8].) We shall choose � such that η0 ≤ pm+�

pm
, where m is 

defined by (2), for then the choice q = pm+� will yield an η ≥ η0. In fact, if Fn denotes 
the n-th Fibonacci number (defined by the recursion Fn+1 = Fn + Fn−1 and the initial 
values F0 = 0 and F1 = 1), we observe by (3) and induction that

pm+� ≥ pm+�−1 + pm+�−2 ≥ . . . ≥ Fj+1pm+�−j + Fjpm+�−(j+1)

for j ≤ m + � − 1. In view of Binet’s formula,

Fn = 1√
5(Gn + (−G)−n),

where G = 1
2(
√

5 + 1) is the golden ratio, we thus find

η ≥ pm+�

pm+1
≥ F� ≥ 1√

5G
�−1. (12)

For sufficiently large � the right hand side of this inequality will exceed η0 and, hence, 
we obtain the desired choices to satisfy (11). This completes the proof of Theorem 1.

3. Proof of Theorem 2

In order to make the inequalities from the previous section effective, we require an 
effective version of Vaughan’s theorem. In order to state this we first introduce some 
notation: let dk(x) denote the number of representations of the positive integer x as a 
product of exactly k positive integers. When k = 2 we also write d(x) = d2(x). It is 
well-known that for every ε > 0 there is a constant Mε > 0 such that

d(x) ≤ Mεx
ε. (13)

Indeed, one may take

Mε =
(

2
e log 2

)e1/ε

(14)

(see, e.g., [18, p. 38]). Now we state:
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Theorem 3 ([16]). Let a ∈ R and suppose that a and q are coprime integers satisfying (5). 
Suppose that 0 < δ < 1

2 , L := log(Nq/δ) and let χδ be given by (8). Then, for any ε > 0
and Mε satisfying (13),

∣∣∣∣∑
n≤N

Λ(n)(χδ(an− b) − 2δ)
∣∣∣∣ ≤ 103L 8

(
3422Nq−

1
2 + 251N 3

4 + 38(δNq) 1
2 (15)

+
(
11 + 17−3M 5

4 ε

)
(Nqδ−1) 3

4 εδ
2
5N

4
5+ε

)
.

We postpone the proof to the next section and proceed with the proof of Theorem 2. 
In order to not be too repetitive we only sketch briefly what modifications are to be 
made. We continue with the notation introduced in the previous section. First observe 
that the exponents belonging to the last term in (15) have changed slightly. After making 
the implied changes, assuming ε < 44

2025 , and estimating the arising exponents, (15) may 
be replaced by

0.73 > 1.81L− 51
2 α−1B− 1

2 η−
1+ε
2 + 1.04L−51(α + β − 1)α−3B−1η−(1+ε)

+ 103L 8L−8η−
ε
2

(
3711 + 2 · 17−3M 5

4 ε

)
,

which, if satisfied, ensures the existence of a prime p ≤ N in B(α, β). Since

L 8L−8η−
ε
4 < 658 (1 + ε−1)8

this is surely satisfied if

η
ε
4 > 2 · 103658 (1 + ε−1)8 (3711 + 2 · 17−3M 5

4 ε

)
.

Recalling (12) we thus find any choice of � ∈ N, such that (4) holds, to be admissible. 
This concludes the proof of Theorem 2.

4. Proof of Theorem 3

The present section is devoted to a proof of Theorem 3. To this end, we follow 
Vaughan [16] and replace his estimates with effective inequalities.

4.1. Outline of the argument

The basic idea is to use a finite Fourier expansion of the function χδ given by (8)
(see Lemma 6). The main term 2δ

∑
n≤N Λ(n) arises from the zeroth coefficient in this 

expansion, whereas all other terms are handled as error, which reduces the problem to 
estimating sums of the type
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∑
h

∣∣∣∣∑
n

Λ(n)e(αhn)
∣∣∣∣,

with variables varying in between suitable ranges. This is achieved by applying Vaughan’s 
identity to Λ(n), yielding sums of the type

∑
h

∣∣∣∣∑
x

∑
y

∑
z

axbye(αhxyz)
∣∣∣∣.

These are handled by combining variables in a suitable way and applying some estimates 
on exponential sums.

4.2. The Piltz divisor function

Since combining variables naturally introduces divisor functions to the coefficients 
in the new sums we shall need explicit bounds for these. Concerning bounds of the 
type (13), we have already noted that the choice (14) is admissible for every ε > 0. 
However, for most arguments in the present section we need three special instances, 
namely ε ∈ {1

2 , 
1
4 , 

1
6}. Therefore we would like to do somewhat better in these cases.

Indeed, following a well-known argument, if x =
∏

j p
νj

j with distinct primes pj then 
it holds that

d(x)
xε

=
{ ∏

pj≥e1/ε

·
∏

pj<e1/ε

}
νj + 1
p
ενj

j

=: Π1 · Π2, say.

If pj ≥ e1/ε then pενj

j ≥ 1 + νj and therefore Π1 ≤ 1. As for Π2 just note that

Π2 ≤
∏

p≤e1/ε

max
ν∈N0

ν + 1
pενj

,

where the last product is obviously finite and, consequently, bounded. Calculating the 
above product for our three choices of ε yields

d(x) ≤ min
{

139x 1
6 , 9x 1

4 , 2x 1
2

}
. (16)

We also need the following

Lemma 4. Suppose that X ≥ 2. Then∑
x≤X

d3(x)2 ≤ 3000X(logX)8,

∑
x≤X

d(x)2 ≤ 7X(logX)3.
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Proof. We follow the approach presented in [10, sec. 1.6]. We start with the inequality

∑
x≤X

d3(x)2 ≤ X
∏
p≤X

(
1 − 1

p

)∑
ν≥0

d3(pν)2

pν
.

The sum on the right hand side can be calculated explicitly and, together with p ≥ 2, 
we obtain

∑
ν≥0

d3(pν)2

pν
=

(
1 − 1

p

)−5
p2 + 4p + 1

p2 ≤
(

1 + 1
p

)9 (
1 + 1

p2

)5

.

By [13, inequality (3.20)],

∏
p≤X

(
1 + 1

p

)
< exp

(
1

(logX)2 + 1
2 + 0.26149 . . .

)
logX,

so that

∑
x≤X

d3(x)2 ≤ X
∏
p≤X

(
1 + 1

p

)8

exp
(∑

p

−1
p2

)
exp

(∑
p

5
p2

)
,

which is ≤ 3000X(logX)8 for X ≥ 6100. For smaller values the bound can be easily 
verified by a computer.

Similarly,

∑
x≤X

d(x)2 ≤ X
∏
p≤X

(
1 + 1

p

)(
1 − 1

p

)4

≤ X exp
(∑

p

−1
p2

) ∏
p≤X

(
1 − 1

p

)3

,

which is ≤ 7X(logX)3 for X ≥ 171. Again, for smaller X the bound is verified by a 
computer. �
4.3. Miscellany

Lemma 5 ([13]). It holds that

∑
n≤N

Λ(n) ≤ c0N,

for some constant c0, where one may take c0 = 1.03883.

Lemma 6. Let 0 < δ < 1
2 and let L ∈ N. Suppose that χδ is given by (8). Then there are 

coefficients c±� such that
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|c±� | ≤ min
{

2δ + 1
L + 1

,
3
2�

}

and

χδ(y) � 2δ ± 1
L + 1 +

∑
0<|�|≤L

c±� e(�y).

Proof. See [9, Lemma 2.1], resp. [1, pp. 18–21]. �
4.4. Bounds on some exponential sums

Lemma 7 ([16]). Suppose that X ≥ 1, Y ≥ 1 and let β ∈ R. Then

∑
x≤X

min
{
Y,

1
2 ‖αx− β‖

}
< 4XY q−1 + 4Y + (X + q) log q, (17)

∑
x≤X

min
{
XY

x
,

1
2 ‖αx‖

}
<

(
10XY q−1 + X + 7

2q
)

log(2XY q), (18)

Proof. The case when X ≤ q is treated in [19, Lemma 8a and 8b]. Splitting the sum 
in (17) into �X/q� + 1 sums of length at most q and applying [19, Lemma 8a] yields the 
first inequality. The second inequality can be obtained by splitting the sum in (18) in 
essentially the same way as in the proof of [19, Lemma 8b]. �
Lemma 8 ([16]). Let a1, . . . , aX , b1, . . . , bY be complex numbers and write l = log(2XY q). 
Then

∑
x≤X

max
Z≤XY/x

∣∣∣∣∑
y≤Z

axe(αxy)
∣∣∣∣ ≤ l

(
10XY q−1 + X + 7

2q
)

max
x≤X

|ax|. (19)

∑
x≤X

max
Z≤Y

∣∣∣∣∑
y≤Z

axbye(αxy)
∣∣∣∣ ≤ l

3
2

(∑
x≤X

|ax|2
∑
y≤Y

|by|2
) 1

2

(20)

· (167XY q−1 + 70X + 6Y + 10q) 1
2 ,

Proof. The inequality (19) follows directly from (18).
For the proof of (20) we refer the reader to [16]. There is only one Vinogradov symbol 

in the proof and it is hiding only a factor 2 and a factor 1
2 in the second argument of 

min(X, ‖αh‖−1). The application of (6) is to be replaced by an application of (17). �
Lemma 9. Suppose that 0 ≤ δ < 1

2 , L := log(Nq/δ) and

J ≤ J ′ ≤ H ≤ q ≤ N, J ′ < 2J. (21)

Then
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∑
J≤j<J ′

∣∣∣∣∣
∑
n≤N

Λ(n)e(αjn)

∣∣∣∣∣ ≤ 103L 7
(

560JNq−
1
2 + 41JN 3

4 + 86(JNq) 1
2

+
(
21 + 10−7M 5

4 ε

)
J

3
5+ 3

4 εN
4
5+ε

)
.

Proof. We let

u := min
{
N

2
5 J− 1

5 , q,Nq−1
}

(22)

and use Vaughan’s identity,

∑
n≤N

Λ(n)e(αjn) = S1,j − S2,j + S3,j − S4,j ,

where

S1,j =
∑
n≤u

Λ(n)e(αjn),

S2,j =
∑∑
d,n≤u

∑
r≤N/dn

μ(d)Λ(n)e(αjdrn),

S3,j =
∑
d≤u

∑
n≤N/d

∑
r≤N/dn

μ(d)Λ(n)e(αjdrn),

S4,j =
∑

u<m<N/u

∑
u<n≤N/m

∑
d|m
d≤u

μ(d)Λ(n)e(αjmn),

so that it remains to bound the contribution from 
∑

J≤j<J ′ |Sk,j | for k = 1, 2, 3, 4. For 
k = 1 this contribution is ≤ c0N

1
2 .

To treat the case k = 2 we combine the variables jdn = x and employ (19), getting

∑
J≤j<J ′

|S2,j | ≤ L 2
(

8J ′Nq−1 + 4
5J

′u2 + 14
5 q

)
max

x≤J ′u2

∑
j|x

j≤J ′

1.

In view of (21), (22) and (16),

max
x≤J ′u2

∑
j|x

j≤J ′

1 ≤ min
{

139q 1
2 , 3M 5

4 ε
(J 3

4N)ε, 11(JNq−1) 1
2

}
,

so that
∑

′

|S2,j | ≤ L 2
(
2224JNq−

1
2 + 3M 5

4 ε
J

3
5+ 3

4 εN
4
5+ε + 31(JNq) 1

2

)
.

J≤j<J
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The case k = 3 is handled by combining jd = x and rn = y to obtain
∑

J≤j<J ′

|S3,j | ≤
∑

x<J ′u

( ∑
j|x

j≤J ′

1
)

max
Z≤J ′N/x

∣∣∣∣∑
y≤Z

(log y)e(αxrn)
∣∣∣∣

and partial summation to remove the log-factor together with (18) and (21) yield∑
J≤j<J ′

|S3,j | ≤ L 2 (20J ′Nq−1 + 2J ′u + 7q
)

max
x≤J ′u

∑
j|x

j≤J ′

1

≤ L 2
(
360JNq−

1
2 + 44JN 1

2 + 21(JNq) 1
2

)
,

where for the last inequality we have used that

max
x≤J ′u

∑
j|x

j≤J ′

1 ≤ min
{

9q 1
2 , 11(J2N) 1

10 , 3(JNq−1) 1
2

}
.

For the previous two cases we did combine j with small variables (≤ u), which does 
not immediately work in case k = 4. If m � N

1
2 we combine j and m for otherwise we 

have n � N
1
2 and combine j with n instead. In either case we run into the problem that 

the range of n is dependent on m. This can be resolved by restricting the range of m to 
short intervals.

Choose complex coefficients c̃j of modulus 1 such that c̃jS4,j ∈ R≥0. Then∑
J≤j≤J ′

|S4,j | =
∑

J≤j≤J ′

∑
u<m<N/u

∑
u<n≤N/m

c̃j

(∑
d|m
d≤u

μ(d)
)

Λ(n)e(αjmn)

=
∑♦

u≤M<N/u

SM ,

where 
∑♦

M means that M only takes values of the form 2ku (k ∈ N0) and

SM :=
∑

J≤j≤J ′

∑
m∼M
m<N/u

∑
u<n≤N/m

c̃j

(∑
d|m
d≤u

μ(d)
)

Λ(n)e(αjmn),

where m ∼ M is to be understood as M < m ≤ 2M . When u ≤ M < N
1
2 , by (20) and 

Lemma 4

|SM | ≤
∑

x∼J ′M

max
Z≤N/M

∣∣∣∣ ∑
u<n≤Z

d3(x)Λ(n)e(αxn)
∣∣∣∣

≤ 128c
1
2
0 L 6

(
2844JNq−

1
2 + 1841JM 1

2N
1
2

+ 270J 1
2M− 1

2N + 348(JNq) 1
2

)
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so that by summing over M we get

∑♦

u≤M<N1/2

|SM | ≤ L 7
(

535414JNq−
1
2 + 480360

log(4N)JN
3
4

+ 240532
log(4N)J

1
2Nu− 1

2 + 65753(JNq) 1
2

)

≤ L 7
((

535414 + 240532
log(4N)

)
JNq−

1
2 + 480360

log(4N)JN
3
4

+ 240532
log(4N)J

3
5N

4
5 +

(
65753 + 240532

log(4N)

)
(JNq) 1

2

)

When N
1
2 ≤ M < N/u,

|SM | ≤
∑

m∼M

max
Z≤J ′N/M

∣∣∣∣ ∑
Ju<y≤Z

d(m)
( ∑

jn=y
J≤j≤J ′

u<n≤N/m

c̃jΛ(n)
)
e(αmy)

∣∣∣∣

≤ 11L 5
(
147JNq−

1
2 + 67(JMN) 1

2 + 20JNM− 1
2 + 18(JNq) 1

2

)
.

Hence,

∑♦

N1/2≤M<N/u

|SM | ≤ 11L 5
(

107JNq−
1
2 + 229

log(4N)J
1
2Nu− 1

2

+ 69
log(4N)JN

3
4 + 13(JNq) 1

2

)

≤ L 5
((

1177 + 2519
log(4N)

)
JNq−

1
2 + 2519

log(4N)J
3
5N

4
5

+ 759
log(4N)JN

3
4 +

(
143 + 2519

log(4N)

)
(JNq) 1

2

)
.

The trivial bound

∑
J≤j<J ′

∣∣∣∣∣
∑
n≤N

Λ(n)e(αjn)

∣∣∣∣∣ ≤ c0N
1
4 · JN 3

4

implies the theorem for N ≤ 40000, say. When N > 40000 we deduce the theorem from

∑
J≤j<J ′

∣∣∣∣∑
n≤N

Λ(n)e(αjn)
∣∣∣∣ ≤ ∑

J≤j<J ′

∑
k≤3

|S1,k| +
{ ∑♦

u≤M<N1/2

+
∑♦

N1/2≤M<N/u

}
SM

and all the bounds from above. �
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4.5. Proof of Theorem 3

When N ≤ 28 · 1022 we obtain (15) by the trivial estimate

∣∣∣∣∑
n≤N

Λ(n)(χδ(αn− β) − 2δ)
∣∣∣∣ ≤ 3c0N

1
4 ·N 3

4 .

Subsequently we shall assume that N > 28 · 1022. We apply Lemma 6 with L = �Rδ−1�, 
R to be specified later, and obtain

∑
n≤N

Λ(n)(χδ(αn− β) − 2δ) � ±c0
δ

R
N +

∑
0<|�|≤L

c±� e(−�β)
∑
n≤N

Λ(n)e(�αn).

By Abel’s method of partial summation the sum on the right hand side is found to 
be

≤ 2
∑
�≤L

min
{

2δ + 1
L + 1 ,

3
2�

} ∣∣∣∣∑
n≤N

Λ(n)e(�αn)
∣∣∣∣ = 3S(L)

L
+ 3

L∫
	

S(u)
u2 du, (23)

where

S(u) :=
∑
h≤u

∣∣∣∣∑
n≤N

Λ(n)e(αhn)
∣∣∣∣ and 
 := 3

4δ + 2
L+1

≥ 3
4δ .

Suppose for the moment that we already had a suitable bound for S(H), 3
4δ ≤ H ≤ L, 

e.g.,

S(H) ≤ 103L 7
(

1120HNq−
1
2 + 82HN

3
4 + 294(HNq) 1

2 (24)

+
(
62 + 10−6M 5

4 ε

)
H

3
5+ 3

4 εN
4
5+ε

)
.

Employing (23), taking R = Nq, and using the estimate above gives (15) as 
well.

In order to establish (24) we note that (20) together with Lemma 8 implies that

S(H) ≤
∑
h≤H

max
Z≤N

∣∣∣∣∣
∑
n≤Z

Λ(n)e(αhn)

∣∣∣∣∣
≤ (log(2HNq)) 3

2 (logN) 1
2 c

1
2
0

·
(√

167HNq−
1
2 +

√
70HN

1
2 +

√
6H 1

2N +
√

10(HNq) 1
2

)
.
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It then suffices to show (24) under the assumption (21) of Lemma 9. Applying said 
lemma to the right hand side of

S(H) ≤
∑

0≤k<log2 H

∑
2k≤j<2k+1

j≤H

∣∣∣∣∑
n≤N

Λ(n)e(αjn)
∣∣∣∣

yields (24).

5. Concluding remarks

We begin with an historical remark. Beatty sequences of the form B(α, 12) appear first 
in 1772 in astronomical studies of Johann Bernoulli III [4]. Elwin Bruno Christoffel [6]
studied homogeneous Beatty sequences B(α, 0) in 1874; those appear as well in the 
treatise [14] by the physicist and Nobel laureate John William Strutt (Lord Rayleigh), 
published in 1894. The name, however, is with respect to Samuel Beatty who popularized 
the topic by a problem he posed in 1926 in the American Mathematical Monthly [2,3]. 
The proposed problem was to show that B(α, 0) ∪ B(α′, 0) = N is a disjoint union for 
irrational α and α′ related to one another by 1

α + 1
α′ = 1; this is now well-known as 

both, Beatty’s theorem and Rayleigh’s theorem. The generalization of this statement to 
generalized Beatty sequences has been established by Aviezri S. Fraenkel [7]; already its 
formulation is much more complicated than in the homogeneous case β = β′ = 0.

The case of Beatty sequences B(α, β) with α < 1 is trivial. Since then 0 ≤
�(n + 1)α + 1β� − �nα + β� < 2 consecutive elements differ by at most 1, whence 
B(α, β) = N ∩ [�α+ β�, +∞). The case of integral α is trivial as well. However, we shall 
discuss briefly the case of rational non-integral α > 1. Given α = a

q with coprime a and 
q ≥ 2, it follows that B(α, β) is a disjoint union of residue classes

B(aq , β) =
⋃

1≤b≤q

(⌊
ab

q
+ β

⌋
+ aN0

)
. (25)

We observe that for some values of aq and β there is no prime residue class and even no 
prime number contained, e.g., B(15

2 , 3) = {10, 18} + 15N0. It seems to be an interesting 
question to characterize for which parameters α ∈ Q and β real there appears at least one 
prime residue class in B(α, β). In the homogeneous case, however, there is always at least 
one prime residue class contained in B(aq , 0) which results from the choice b = a−1 mod q

in (25).
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