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In this paper, we prove that if f(x) =
∑n

k=0
(
n
k

)
akxk is a 

polynomial with real zeros only, then the sequence {ak}nk=0
satisfies the following inequalities a2

k+1(1 −
√

1 − ck)2/a2
k ≤

(a2
k+1 − akak+2)/(a2

k − ak−1ak+1) ≤ a2
k+1(1 +

√
1 − ck)2/a2

k, 
where ck = akak+2/a2

k+1. This inequality is equivalent to 
the higher order Turán inequality. It holds for the coefficients 
of the Riemann ξ-function, the ultraspherical, Laguerre and 
Hermite polynomials, and the partition function. Moreover, 
as a corollary, for the partition function p(n), we prove that 
p(n)2 − p(n − 1)p(n + 1) is increasing for n ≥ 55. We also 
find that for a positive and log-concave sequence {ak}k≥0, 
the inequality ak+2/ak ≤ (a2

k+1−akak+2)/(a2
k−ak−1ak+1) ≤

ak+1/ak−1 is the sufficient condition for both the 2-log-
concavity and the higher order Turán inequalities of {ak}k≥0. 
It is easy to verify that if a2

k ≥ rak+1ak−1, where r ≥ 2, then 
the sequence {ak}k≥0 satisfies this inequality.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we give an inequality for the coefficients of real-rooted polynomials, 
which is equivalent to the higher order Turán inequality.
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Theorem 1.1. For a real-rooted polynomial f(x) =
∑n

k=0
(
n
k

)
akx

k, if akak+1(a2
k −

ak−1ak+1) �= 0, then the inequality

a2
k+1
a2
k

(1 −
√

1 − ck)2 ≤
a2
k+1 − akak+2

a2
k − ak−1ak+1

≤
a2
k+1
a2
k

(1 +
√

1 − ck)2 (1.1)

holds for 1 ≤ k ≤ n − 2, where ck = akak+2
a2
k+1

. This inequality is equivalent to the higher 
order Turán inequality as follows

4(a2
k − ak−1ak+1)(a2

k+1 − akak+2) − (akak+1 − ak−1ak+2)2 ≥ 0. (1.2)

We say a polynomial f(x) =
∑n

k=0 akx
k is real-rooted, if all its zeros are real. The 

inequality (1.1) gives an upper and lower bound for the ratio 
a2
k+1−akak+2

a2
k−ak−1ak+1

.
Recall that a sequence {ak}k≥0 is said to be log-concave if for all k ≥ 1,

a2
k − ak−1ak+1 ≥ 0. (1.3)

Note that for a positive sequence {ak}k≥0, it is log-concave if and only if the ratio ak+1/ak
is decreasing. We also say that the sequence {ak}k≥0 satisfies the Turán inequalities, if 
it satisfies the inequality (1.3).

For the sequence {ak}k≥0 satisfying the Turán inequalities, we consider the higher 
order Turán inequalities as follows. A sequence {ak}k≥0 is said to satisfy the higher 
order Turán inequalities if for k ≥ 1,

4(a2
k − ak−1ak+1)(a2

k+1 − akak+2) − (akak+1 − ak−1ak+2)2 ≥ 0. (1.4)

Recall that a real entire function

ψ(x) =
∞∑
k=0

γk
xk

k! (1.5)

is said to be in the Laguerre-Pólya class, denoted ψ(x) ∈ LP, if it can be represented in 
the form

ψ(x) = cxme−αx2+βx
∞∏
k=1

(1 + x/xk)e−x/xk , (1.6)

where c, β, xk are real numbers, α ≥ 0, m is a nonnegative integer and 
∑

x−2
k < ∞. 

These functions are only ones which are uniform limits of polynomials whose zeros are 
real. We refer to [13] and [18] for the background on the theory of the LP class.

For a real entire function ψ(x) =
∑∞

k=0 γk
xk

k! in the LP class, the Maclaurin coeffi-
cients γk satisfy both the Turán inequalities, proved by Pólya and Schur [17], and the 
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higher order Turán inequalities, proved by Dimitrov [8]. As a corollary, the ultraspheri-
cal, Laguerre and Hermite polynomials satisfy both the Turán inequalities and the higher 
order Turán inequalities, see [8].

Since the inequality (1.1) is equivalent to the higher order Turán inequality, then we 
get that for a real entire function ψ(x) in the LP class, the Maclaurin coefficients satisfy 
the inequality (1.1). Consequently, the ultraspherical, Laguerre and Hermite polynomials 
satisfy the inequality (1.1).

To prove the higher order Turán inequalities for the Maclaurin coefficients, Dimitrov 
applied a theorem of Mar̆ík [14] as follows.

Theorem 1.2. If the real polynomial f(x) =
∑n

k=0 akx
k/(k!(n − k)!) of degree n ≥ 3 has 

only real zeros, then the inequality

4(a2
k − ak−1ak+1)(a2

k+1 − akak+2) − (akak+1 − ak−1ak+2)2 ≥ 0

holds for 1 ≤ k ≤ n − 1.

It is well known that the Riemann hypothesis holds if and only if the Riemann ξ-
function belongs to the LP class. Let ζ denote the Riemann zeta-function and Γ be the 
gamma-function. The Riemman ξ-function is defined by

ξ(iz) = 1
2(z2 − 1

2)π−z/2−1/4Γ(z2 + 1
4)ζ(z + 1

2), (1.7)

see, for example, Boas [1]. Hence, if the Riemann hypothesis is true, then the Maclaurin 
coefficients of the Riemann ξ-function satisfy both the Turán inequalities and the higher 
order Turán inequalities. Csordas, Norfolk and Varga [7] proved that the coefficients of 
the Riemann ξ-function satisfy the Turán inequalities, confirming a conjecture of Póly 
[16]. Dimitrov and Lucas [9] showed that the coefficients of the Riemann ξ-function 
satisfy the higher order Turán inequalities without resorting to the Riemann hypothesis. 
As a corollary, we conclude that the coefficients of the Riemann ξ-function satisfy the 
inequality (1.1).

For the partition function p(n), Chen, Jia and Wang [4] proved that it satisfies the 
higher order Turán inequalities for n ≥ 95. As a corollary, the inequality (1.1) holds for 
partition function p(n) for n ≥ 95.

Through the discussion about the lower bound a2
k+1(1 −

√
1 − ck)2/a2

k in the inequality 
(1.1), we prove that for the partition function p(n), p(n)2−p(n −1)p(n +1) is increasing 
for n ≥ 55.

Go back to the log-concavity of the sequence {ak}k≥0. We consider the 2-log-concavity, 
which is equivalent to the decreasing property of the ratio 

a2
k+1−akak+2

a2
k−ak−1ak+1

. Moreover, we 
could define the infinitely log-concave sequence as follows.

Define an operator L on a sequence {ak}k≥0 by L({ak}k≥0) = {bk}k≥0, where b0 = a2
0

and bk = a2
k − ak−1ak+1. This definition makes sense for finite sequences by regarding 
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these as infinite sequences with finitely many nonzero entries. Hence a sequence {ak}k≥0
is log-concave if and only if L({ak}k≥0) is a nonnegative sequence. We say that a sequence 
{ak}k≥0 is k-log-concave if Lj({ak}k≥0) is nonnegative for all 0 ≤ j ≤ k. A sequence 
{ak}k≥0 is infinitely log-concave if it is k-log-concave for all k ≥ 1.

The notion of infinite log-concavity was introduced by Boros and Moll [2]. For the 
sequence {

(
n
k

)
}nk=0, they asked whether it is infinitely log-concave. The following result 

was independently conjectured by Fisk [10], McNamara-Sagan [15] and Stanley [19], and 
proved by Brändén [3].

Theorem 1.3. If f(x) =
∑n

k=0 akx
k is a polynomial with real- and nonpositive zeros only, 

then so is

L(f) =
n∑

k=0

(a2
k − ak+1ak−1)xk.

In particular, the sequence {ak}nk=0 is infinitely log-concave.

It follows immediately that the sequence {
(
n
k

)
}nk=0 is infinitely log-concave.

There is also a simple criterion [6,15] that if

a2
k ≥ rak−1ak+1, for all k ≥ 1,

where r ≥ (3 +
√

5)/2 ≈ 2.62, then the sequence {ak}k≥0 is infinitely log-concave.
We are interested in the connection between the 2-log-concavity and the higher order 

Turán inequalities. Based on the inequality (1.1), if we can find sharper bounds l(n) and 

u(n) for the ratio 
a2
k+1−akak+2

a2
k−ak−1ak+1

such that

a2
k+1
a2
k

(1 −
√

1 − ck)2 ≤ l(k) ≤
a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ u(k) ≤
a2
k+1
a2
k

(1 +
√

1 − ck)2,

and for each k ≥ 1, either a2
k+1−akak+2

a2
k−ak−1ak+1

≥ u(k + 1) or a2
k+2−ak+1ak+3
a2
k+1−akak+2

≤ l(k), then the 

sequence {ak}k≥0 is 2-log-concave, as well as satisfies the higher order Turán inequalities.
In Section 3, we will prove the following theorem.

Theorem 1.4. For a log-concave positive sequence {ak}k≥0, if it satisfies the following 
inequalities

ak+2

ak
≤

a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ ak+1

ak−1
, (1.8)

for k ≥ 1. Then {ak}k≥0 is 2-log-concave and satisfies the higher order Turán inequalities 
for k ≥ 1.
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It is easy to verify that the sequence {
(
n
k

)
}nk=0 satisfies inequality (1.8), as well as the 

sequence {ak}k≥0, which satisfies a2
k ≥ rak+1ak−1, where r ≥ 2.

Finally, in Section 4, we will discuss a problem we will consider in the further work.

2. Main theorem

In this section, we will give the proof of the Theorem 1.1.

Proof. Applying Theorem 1.2, we have

4(a2
k − ak−1ak+1)(a2

k+1 − akak+2) ≥ (akak+1 − ak−1ak+2)2. (2.9)

Multiplying both sides of 1/a2
ka

2
k+1 and simplifying, we obtain

4(1 − ak−1ak+1

a2
k

)(1 − akak+2

a2
k+1

) ≥ (1 − ak−1ak+1

a2
k

akak+2

a2
k+1

)2. (2.10)

Substitute cn = anan+2
a2
n+1

for n = k and n = k − 1, and we get

4(1 − ck−1)(1 − ck) ≥ (1 − ck−1ck)2. (2.11)

Observe that

1 − ck−1ck = 1 − ck + ck − ck−1ck = 1 − ck + ck(1 − ck−1). (2.12)

It follows that

4(1 − ck−1)(1 − ck) ≥ (1 − ck + ck(1 − ck−1))2. (2.13)

Since a2
k − ak−1ak+1 �= 0, 1 − ck−1 �= 0. Multiply both sides of 1/(1 − ck−1)2, and we get

4 1 − ck
1 − ck−1

≥ ( 1 − ck
1 − ck−1

+ ck)2. (2.14)

Set x = (1 − ck)/(1 − ck−1). Then we obtain

x2 − (4 − 2ck)x + c2k ≤ 0. (2.15)

Immediately we conclude that

4 − 2ck −
√

(4 − 2ck)2 − 4c2k
2 ≤ x ≤ 4 − 2ck +

√
(4 − 2ck)2 − 4c2k
2 . (2.16)

It leads to the following inequality after simplified

(1 −
√

1 − ck)2 ≤ x ≤ (1 +
√

1 − ck)2. (2.17)
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Since

a2
k+1 − akak+2

a2
k − ak−1ak+1

=
a2
k+1
a2
k

1 − ck
1 − ck−1

=
a2
k+1
a2
k

· x, (2.18)

we reach the inequality (1.1) as we want.
Through the proof above, we can easily get that if akak+1(a2

k − ak−1ak+1) �= 0, the 
inequality (1.1) is equivalent to the higher order Turán inequality. �

As corollaries, we get the following results.

Corollary 2.1. The inequality (1.1) holds for the ultraspherical, Laguerre and Hermite 
polynomials

Corollary 2.2. The inequality (1.1) holds for the coefficients of the Riemann ξ-function.

Corollary 2.3. The inequality (1.1) holds for the partition function p(n) for n ≥ 95.

Recall that a sequence {ak}k≥0 is said to be convex if for k ≥ 1,

ak+1 − ak ≥ ak − ak−1. (2.19)

For the lower bound function l(n) = a2
n+1
a2
n

(1 −
√

1 − cn)2 in the inequality (1.1), we have 
the following result.

Lemma 2.4. For the log-concave, increasing, positive sequence {ak}k≥0 which satisfies 
the inequality (1.1), if {ak}k≥0 is convex, then

a2
k+1
a2
k

(1 −
√

1 − ck)2 ≥ 1. (2.20)

Proof. Since

a2
k+1
a2
k

(1 −
√

1 − ck)2 = 1
a2
k

(ak+1 − ak+1
√

1 − ck)2 = 1
a2
k

(ak+1 −
√
a2
k+1 − akak+2)2,

we only need to prove that

(ak+1 −
√

a2
k+1 − akak+2)2 ≥ a2

k. (2.21)

For {ak}k≥0 is an increasing, positive sequence, it is sufficient to prove that

a2
k+1 − akak+2 ≤ (ak+1 − ak)2. (2.22)

Since {ak}k≥0 is convex, for k ≥ 0
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ak+2 − ak+1 ≥ ak+1 − ak. (2.23)

Thus

ak+2 ≥ 2ak+1 − ak. (2.24)

It follows that

akak+2 ≥ ak(2ak+1 − ak). (2.25)

Since

a2
k+1 − ak(2ak+1 − ak) = (ak+1 − ak)2, (2.26)

immediately we get the inequality (2.22). �
Combining the Theorem 1.1 and the Lemma 2.4, we get the following theorem.

Theorem 2.5. For the log-concave, increasing, positive sequence {ak}k≥0 which satisfies 
the inequality (1.1), if {ak}k≥0 is convex, then the sequence {a2

k+1 − akak+2}k≥0 is in-
creasing.

For the partition function p(n), p(n) satisfies the inequality as follows [11]

2p(n) ≤ p(n + 1) + p(n− 1). (2.27)

Hence we have the corollary as follows.

Corollary 2.6. For the partition function p(n), p(n)2 − p(n − 1)p(n + 1) is increasing for 
n ≥ 55.

Proof. Applying the Theorem 2.5 and the Corollary 2.3, we get that for n ≥ 95, p(n)2 −
p(n − 1)p(n + 1) is increasing. For 55 ≤ n ≤ 95, we can easily verify that p(n)2 − p(n −
1)p(n + 1) is also increasing. �
3. 2-log-concavity

In this section, we will give the proof of the Theorem 1.4.

Proof. Applying the inequalities (1.8), it follows immediately that

a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ ak+1

ak−1
≤ a2

k − ak−1ak+1

a2
k−1 − ak−2ak

(3.28)

for k ≥ 1. Hence {ak}k≥0 is 2-log-concave.
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On the other hand, for k ≥ 1, consider the right inequality of (1.8) and we have

0 ≤
a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ ak+1

ak−1
. (3.29)

Hence

ak−1(a2
k+1 − akak+2) ≤ ak+1(a2

k − ak−1ak+1). (3.30)

Since ak+1 > 0, multiply both sides of ak+1, and we obtain

ak−1ak+1(a2
k+1 − akak+2) ≤ a2

k+1(a2
k − ak−1ak+1). (3.31)

It leads to

−ak−1akak+1ak+2 ≤ a2
ka

2
k+1 − 2a3

k+1ak−1. (3.32)

Thus

−ak−1akak+1ak+2 + a2
ka

2
k+1 ≤ a2

ka
2
k+1 − 2a3

k+1ak−1 + a2
ka

2
k+1,

i.e.

akak+1(akak+1 − ak−1ak+2) ≤ 2a2
k+1(a2

k − ak−1ak+1). (3.33)

Similarly, for k ≥ 1, consider the left inequality of (1.8) and we get the following inequal-
ity

akak+1(akak+1 − ak−1ak+2) ≤ 2a2
k(a2

k+1 − akak+2). (3.34)

Note that {ak}k≥0 is log-concave. It is easy to verify that

akak+1 − ak−1ak+2 ≥ 0. (3.35)

Consequently, combine inequalities (3.33) and (3.34), and we get

a2
ka

2
k+1(akak+1 − ak−1ak+2)2 ≤ 4a2

ka
2
k+1(a2

k − ak−1ak+1)(a2
k+1 − akak+2). (3.36)

Hence {ak}k≥0 satisfies the higher order Turán inequalities. �
For a log-concave positive sequence {ak}k≥0, to prove the inequality (1.8), we need 

the following two lemmas.
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Lemma 3.1. For a log-concave positive sequence {ak}k≥0, if the sequence {ak+1
ak

}k≥0 is 
convex, then

a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ ak+1

ak−1

for k ≥ 1.

Proof. Since {ak}k≥0 is log-concave, {ak+1
ak

}k≥0 is decreasing. Then the convexity of 
{ak+1

ak
}k≥0 leads to

0 ≥ ak+2

ak+1
− ak+1

ak
≥ ak+1

ak
− ak

ak−1
,

i.e.

0 ≤ ak+1

ak
− ak+2

ak+1
≤ ak

ak−1
− ak+1

ak
. (3.37)

Observe that

a2
k+1 − akak+2 = ak+1ak(

ak+1

ak
− ak+2

ak+1
), (3.38)

and

a2
k − ak−1ak+1 = akak−1(

ak
ak−1

− ak+1

ak
). (3.39)

It follows immediately that

a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ ak+1

ak−1
. �

Similarly, we have the following lemma.

Lemma 3.2. For a log-concave positive sequence {ak}k≥0, if the sequence { ak

ak+1
}k≥0 is 

convex, then

a2
k+1 − akak+2

a2
k − ak−1ak+1

≥ ak+2

ak

for k ≥ 1.

Now we are ready to prove that the sequence {
(
n
k

)
}nk=0 satisfies the inequality (1.8).

Theorem 3.3. The sequence {
(
n
)
}nk=0 satisfies the inequality (1.8).
k
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Proof. It’s easy to prove that (
n

k + 1

)
= n− k

k + 1

(
n

k

)
. (3.40)

Since

n− k

k + 1 − n− k + 1
k

= − n + 1
k(k + 1) ≥ − n + 1

(k − 1)k = n− k + 1
k

− n− k + 2
k − 1 , (3.41)

and

k + 1
n− k

− k

n− k + 1 = n + 1
(n− k)(n− k + 1) ≥ n + 1

(n− k + 1)(n− k + 2)

= k

n− k + 1 − k − 1
n− k + 2 ,

(3.42)

we conclude that the sequences {n−k
k+1 }nk≥0 and { k+1

n−k}nk≥0 are both convex. Hence the 
sequence {

(
n
k

)
}nk=0 satisfies the inequality (1.8). �

Consequently, we have found a sufficient condition for both the 2-log-concavity and 
the higher order Turán inequalities of the sequence {

(
n
k

)
}nk=0.

Recall that there is a simple criterion on a nonnegative sequence {ak}∞k=0 that guar-
antees infinite log-concavity. Namely

a2
k ≥ rak−1ak+1,

where r ≥ (3 +
√

5)/2, for all k ≥ 1.
For the inequality (1.8), we have the following result.

Theorem 3.4. The positive sequence {ak}∞k=0 satisfies the inequality (1.8), if

a2
k ≥ rak−1ak+1, (3.43)

where r ≥ 2, for all k ≥ 1.

Proof. Applying the inequality (3.43), we have

ak
ak−1

≥ 2ak+1

ak
. (3.44)

Since ak ≥ 0 for k ≥ 0, we easily get

ak+2

ak+1
+ ak

ak−1
≥ 2ak+1

k
, (3.45)

which means the sequence {ak+1
ak

}k≥0 is convex.
Similarly, we can prove that the sequence { ak }k≥0 is also convex. �
ak+1
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Notice that in the proof of Theorem 1.4, we did not apply the Theorem 1.1. In the 
last part of this section, we will prove the following result.

Theorem 3.5. For a log-concave positive sequence {ak}k≥0, if it satisfies the following 
inequalities

ak+2

ak
≤

a2
k+1 − akak+2

a2
k − ak−1ak+1

≤ ak+1

ak−1
, (3.46)

for k ≥ 1. Then

a2
k+1
a2
k

(1 −
√

1 − ck)2 ≤ ak+2

ak
≤

a2
k+1 − akak+2

a2
k − ak−1ak+1

≤
a2
k+1
a2
k

(1 +
√

1 − ck)2 (3.47)

where ck = akak+2/a
2
k+1, for k ≥ 1.

Proof. Since

a2
k+1 − akak+2 = a2

k+1(1 − ck) (3.48)

and {ak}k≥0 is a positive sequence, the inequality (3.46) is equivalent to

ak+2

ak
≤

a2
k+1(1 − ck)

a2
k(1 − ck−1)

≤ ak+1

ak−1
,

i.e.

ck ≤ 1 − ck
1 − ck−1

≤ 1
ck−1

. (3.49)

And the inequality (3.47) is equivalent to

(1 −
√

1 − ck)2 ≤ ck ≤ 1 − ck
1 − ck−1

≤ (1 +
√

1 − ck)2. (3.50)

We aim to prove the inequality (3.50).
First we will prove that

(1 −
√

1 − ck)2 ≤ ck. (3.51)

Since {ak}k≥0 is a log-concave positive sequence, we have 0 ≤ ck ≤ 1. Hence

0 ≤
√

1 − ck ≤ 1. (3.52)

Multiplying 
√

1 − ck, we get

0 ≤ 1 − ck ≤
√

1 − ck. (3.53)
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Note that ck = 1 − (1 − ck) and we obtain

ck ≥ 1 −
√

1 − ck ≥ (1 −
√

1 − ck)2. (3.54)

Now we proceed to prove that

1 − ck
1 − ck−1

≤ (1 +
√

1 − ck)2. (3.55)

For 0 ≤ ck ≤
√

5−1
2 , we have 1 − ck ≥ 3−

√
5

2 . Applying the right inequality of (3.49), we 
get

3 −
√

5
2(1 − ck−1)

≤ 1
ck−1

. (3.56)

Hence ck−1 ≤ 2
5−

√
5 . And 1 − ck−1 ≥ 3−

√
5

5−
√

5 . It follows that

1 − ck
1 − ck−1

≤ 5 −
√

5
3 −

√
5
(1 − ck). (3.57)

Therefore, it is sufficient to prove

5 −
√

5
3 −

√
5
(1 − ck) ≤ (1 +

√
1 − ck)2. (3.58)

Set t =
√

1 − ck. Then 
√

5−1
2 ≤ t ≤ 1, ck = 1 − t2, and inequality (3.58) is equivalent to

5 −
√

5
3 −

√
5
t2 ≤ (1 + t)2. (3.59)

It is easy to verify that the inequality (3.59) holds for

1
2(3 −

√
5 −

√
20 − 8

√
5) ≤ t ≤ 1

2(3 −
√

5 +
√

20 − 8
√

5). (3.60)

And we can verify that

1
2(3 −

√
5 −

√
20 − 8

√
5) ≤

√
5 − 1
2 ≤ 1 ≤ 1

2(3 −
√

5 +
√

20 − 8
√

5). (3.61)

Consequently, we have finished the proof for the inequality (3.55) for 0 ≤ ck ≤
√

5−1
2 .

For 
√

5−1
2 < ck ≤ 1, actually we could prove that

1 − ck ≤ 1 ≤ (1 +
√

1 − ck)2. (3.62)
1 − ck−1 ck−1
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Apply the left inequality of (3.49), multiply 1−ck−1
ck

, and we get

1 − ck−1 ≤ 1 − ck
ck

. (3.63)

It follows that

ck−1 ≥ 2ck − 1
ck

, (3.64)

Thus

1
ck−1

≤ ck
2ck − 1 . (3.65)

We aim to prove that for 
√

5−1
2 < ck ≤ 1,

ck
2ck − 1 ≤ (1 +

√
1 − ck)2. (3.66)

Set t =
√

1 − ck. Then 0 ≤ t ≤
√

5−1
2 , ck = 1 − t2, and inequality (3.66) is equivalent to

1 − t2

1 − 2t2 ≤ (1 + t)2. (3.67)

Multiplying 1−2t2
1+t with both sides, we get

1 − t ≤ (1 + t)(1 − 2t2),

i.e.

t(t2 + t− 1) ≤ 0. (3.68)

Obviously, the inequality (3.68) holds for t ≤ −1+
√

5
2 or 0 ≤ t ≤

√
5−1
2 . Hence we 

complete the proof. �
Remarks. In fact, based on the Theorem 3.5, the Theorem 1.4 is a corollary of Theo-
rem 1.1. And in the proof above, for 0 ≤ ck ≤

√
5−1
2 , we could not determine whether 

1
ck−1

≤ (1 +
√

1 − ck)2 is true. We ask for an answer to this question.

4. Further work

In this section, we want to discuss a problem we will concern in the future work.
For the partition function p(n), Hou and Zhang [12] proved that p(n) is 2-log-concave 

for n ≥ 221. The fact inspires us to consider the problem whether we can find a sufficient 
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condition, similar to the inequality (1.8), for both the 2-log-concavity and the higher 
order Turán inequalities for p(n) for n ≥ 221.

Actually, Chen, Wang and Xie [5] proved that {p(n + 1)/p(n)}n≥116 is log-convex. 
Hence {p(n + 1)/p(n)}n≥116 is convex. Applying Lemma 3.1, then we get that

p(k + 1)2 − p(k)p(k + 2)
p(k)2 − p(k − 1)p(k + 1) ≤ p(k + 1)

p(k − 1) (4.69)

holds for k ≥ 116. However, it seems that we can not find an integer N ≥ 0 to make sure 
that the inequality

a2
k+1 − akak+2

a2
k − ak−1ak+1

≥ ak+2

ak

holds for p(k) for k ≥ N .
In deed, set

f(n) = p(n + 1)2 − p(n)p(n + 2)
p(n)2 − p(n− 1)p(n + 1) , (4.70)

and

gk(n) = p(n + k + 2)
p(n + k) , (4.71)

then we can verify that, for 224 ≤ n ≤ 225,

g20(n) ≤ f(n) ≤ g20(n− 1),

for 244 ≤ n ≤ 261,

g21(n) ≤ f(n) ≤ g21(n− 1),

for 268 ≤ n ≤ 291,

g22(n) ≤ f(n) ≤ g22(n− 1),

for 296 ≤ n ≤ 323,

g23(n) ≤ f(n) ≤ g23(n− 1),

for 326 ≤ n ≤ 355,

g24(n) ≤ f(n) ≤ g24(n− 1),

for 356 ≤ n ≤ 389,
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g25(n) ≤ f(n) ≤ g25(n− 1),

and for 390 ≤ n ≤ 425,

g26(n) ≤ f(n) ≤ g26(n− 1).

Based on the verification above, we guess for any integer n ≥ 326, we can find the 
k = k(n) to satisfies the inequality

p(n + k + 2)
p(n + k) ≤ p(n + 1)2 − p(n)p(n + 2)

p(n)2 − p(n− 1)p(n + 1) ≤ p(n + k + 1)
p(n + k − 1) . (4.72)

For k ≥ 3, we can easily prove that

p(n + k + 1)
p(n + k − 1) ≤ p(n + 1)2

p(n)2

(
1 −

√
1 + p(n)p(n + 2)

p(n + 1)2

)2

. (4.73)

Then if we can prove that

p(n + k + 2)
p(n + k) ≥ p(n + 1)2

p(n)2

(
1 −

√
1 − p(n)p(n + 2)

p(n + 1)2

)2

, (4.74)

we will find the sufficient condition for both the 2-log-concavity and the higher order 
Turán inequalities for p(n) for n ≥ 326.
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