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The factorization of the Legendre polynomial of degree (p − e)/4,
where p is an odd prime, is studied over the finite field Fp . It
is shown that this factorization encodes information about the
supersingular elliptic curves in Legendre normal form which admit
the endomorphism

√−2p, by proving an analogue of Deuring’s
theorem on supersingular curves with multiplier

√−p. This is used
to count the number of irreducible binomial quadratic factors of
P (p−e)/4(x) over Fp in terms of the class number h(−2p).
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1. Introduction

In this paper I continue the investigation begun in [brm] on the relationship between the factor-
ization of certain Legendre polynomials Pn(x) (mod p), multipliers (or endomorphisms) on elliptic
curves, and class numbers of special quadratic fields. It turns out that the existence of special multi-
pliers on supersingular elliptic curves is reflected by relationships involving class numbers in modular
factorizations of Pn(x).

The investigation of this paper was motivated by the empirical discovery of the following fact. It
concerns the number of binomial quadratic factors (bqf ’s), or irreducible factors of the form x2 + a,
of the Legendre polynomial P (p−e)/4(x) over the finite field of p elements, where p is an odd prime
with p ≡ e (mod 4) and e = 1 or 3.
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Theorem 1.1. If p is an odd prime, then the number of distinct, irreducible, binomial quadratic factors of
P (p−e)/4(x) (mod p), is (h(−2p) − dp)/4, where h(−2p) is the class number of the field Q(

√−2p ) and

dp = 2 −
(−4

p

)
−

(−8

p

)
= 0,2,2,4

according as p ≡ 1,3,5,7 (mod 8).

In [brm] the number of binomial quadratic factors of the Legendre polynomial P (p−1)/2(x) (mod p)
was calculated to be

N2
(

p, (p − 1)/2
) =

{
h(−p)/2, if p ≡ 1 (mod 4),

(mh(−p) − 1)/2, if p ≡ 3 (mod 4);
where m = 3 or 1 according as p is 3 or 7 (mod 8). The occurrence of the class number h(−p) in this
formula was seen to be a consequence of the fact that P (p−1)/2(x) is related to the Hasse invariant of
the elliptic curve

Eλ: Y 2 = X(X − 1)(X − λ). (1.1)

The expression for N2(p, (p − 1)/2) reflects two aspects of the arithmetic on this curve, when Eλ is
supersingular: 1) a criterion in terms of λ for the existence of a multiplier μ in End(Eλ) for which
μ2 = −p; and 2) a complete factorization of the class equations H−p(t) and H−4p(t) modulo p.

As in [brm], the proof of Theorem 1.1 relies on a criterion, expressed in terms of λ, for the curve Eλ

to have a special multiplier; and a factorization of the class equation H−8p(t) (mod p).
I use the term multiplier for what Hasse [h1] and Deuring [d] call a normalized meromorphism,

which is any isomorphism μ : z → zμ of the function field K = F̄p(x, y) of the curve (1.1) into itself
which leaves all constants fixed and for which the prime divisor o at infinity on (1.1) is a pole divisor
of xμ and yμ . Such a meromorphism determines an endomorphism on the curve, and every endo-
morphism of Eλ gives rise to a meromorphism of K , so that the meromorphism ring of K and the
endomorphism ring of Eλ can be naturally identified (see [d] and [brm, Section 2]).

The multiplier criterion which is needed for the proof of Theorem 1.1 will be proved in the follow-
ing form. For its statement recall the definition of the polynomial

Wn(t) = (1 − t)n Pn

(
1 + t

1 − t

)
=

n∑
k=0

(
n

k

)2

tk.

As is well known, the roots of W (p−1)/2(t) over Fp are the λ’s for which the curve Eλ is supersingular.
We know from [brm, Proposition 1] that these values of λ all lie in Fp2 , so that irreducible factors of
W (p−1)/2(t) over Fp are exclusively linear or quadratic.

Theorem 1.2. Let the elliptic curve Eλ be supersingular, where λ is a root of the polynomial t2 +ut + v over Fp ,
which is either an irreducible factor of W (p−1)/2(t) (mod p) or (t − λ)2 , when λ is in Fp . Then there exists a
multiplier μ in End(Eλ) satisfying μ2 = −2p if and only if one of the following three congruences holds:

(u + v + 1)2 ≡ 16v (mod p),

v2 ≡ 16(u + v + 1) (mod p),

16(u + v + 1)v ≡ 1 (mod p).

When it exists, this multiplier μ is always defined over the field Fp2 .
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This theorem is a natural analogue of Deuring’s theorem that
√−p is a multiplier for the curve if

and only if its j-invariant lies in Fp . To see this, we use the fact, proved in [brm, Proposition 6], that
j lies in Fp if and only if the corresponding values of λ, which can be computed from the formula

j = 28 (λ2 − λ + 1)3

(λ2 − λ)2
, (1.2)

either lie in Fp themselves, or satisfy irreducible quadratics over Fp of one of the forms t2 − t + v ,
t2 + ut + 1, t2 + ut − u. If we consider a λ in Fp to satisfy the polynomial (t − λ)2, we obtain the
following restatement of Deuring’s result:

√−p is a multiplier on the supersingular curve Eλ if and only if λ satisfies t2 +ut + v = 0 over Fp ,
where (u + 1)(v − 1)(u + v)(u2 − 4v) ≡ 0 (mod p).

In Section 2 I give a simple proof of Deuring’s criterion from the formulas for the multiplier
√−p

developed in [brm, Section 3], without using Deuring’s theory [d]. In Section 3, the analogous idea is
used to prove Theorem 1.2 for the multiplier

√−2p in place of
√−p.

In Section 4 the proof of Theorem 1.1 is completed by showing that (for p > 13) the binomial
quadratic factors of P (p−e)/4(x) (mod p) are in 1–1 correspondence with the pairs of irreducible
quadratic factors (mod p) of W (p−1)/2(t) of the form t2 + ut + v , t2 + (u/v)t + 1/v with v �= 1
(mod p), which satisfy the first condition in Theorem 1.2. In other words, the binomial quadratic
factors of P (p−e)/4(x) correspond 1–1 to pairs of reciprocal quadratic factors of W (p−1)/2(t) (mod p)
whose corresponding curves Eλ admit the multiplier

√−2p. Then we show that these pairs of recip-
rocal factors of W (p−1)/2(t) are in 1–1 correspondence with the quartic factors of the class equation
H−8p(t) (mod p) which are powers of irreducibles. This fact yields the count of bqf ’s given in Theo-
rem 1.1.

In [m3] a similar formula is proved for the number of bqf ’s in the factorization of P (p−e)/3(x)
(mod p) which involves the class number h(−3p) and an interesting connection to the elliptic curve
Y 2 + αXY + Y = X3.

2. Another proof of Deuring’s theorem

We begin by giving a proof of Deuring’s theorem that will generalize to other situations. In our
proof we use several facts from [brm]: 1) that the values of λ for which the curve E: Y 2 = X(X −
1)(X − λ) is supersingular lie in the field Fp2 ; and 2) that the multiplier (x, y)μ = (xp2

, yp2
) is equal

to ±1 times the multiplier p in End(E). (See [brm, pp. 87–88]; beware the misprint in the last line
of Proposition 2.)

Theorem 2.1. (See Deuring [d].) For p > 3, the j-invariant of the supersingular curve Eλ: Y 2 = X(X − 1)(X −
λ) lies in Fp if and only if End(Eλ) contains a multiplier μ for which μ2 = −p.

We have given a proof of this theorem in Proposition 5 of [brm] which uses facts from the theory
of ideals in the quaternion algebra D p , where

D p = {
a + bi + cj + dk; i2 = −r, j2 = −p, i j = − ji = k; a,b, c,d ∈ Q

}
,

and r is either 1, if p ≡ 3 (mod 4); or r is a prime quadratic non-residue of p of the form r = 4k + 3,
when p ≡ 1 (mod 4). (In [h2] and [brm] r is erroneously taken to be the smallest quadratic non-
residue of p ≡ 1 (mod 4); see [ro, p. 144]. This does not affect the validity of the proof in [brm].) The
endomorphism rings of supersingular elliptic curves in characteristic p are always maximal orders
in D p . The following proof does not use the ideal theory of D p .
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We draw on the computations of [brm, pp. 92–93]. As in [brm], we let (x, y) be indeterminates
which satisfy the equation for E = Eλ and K = F̄p(x, y) the function field for E . We assume μ is
an element of End(E) for which μ2 = −p. Since p is odd, μ2 = −p is the identity map on the
subgroup E[2] of points of order 2 on E . We denote these points by

q0 = (0,0), q1 = (1,0), qλ = (λ,0),

where points on E are identified with the corresponding prime divisors of K . It follows that μ is an
automorphism on E[2], and therefore permutes the three points of order 2.

Case 1. μ interchanges q1 and qλ . Comparing zero divisors, it is easy to see that xμ = axp , (x − 1)μ =
b(x − λ)p , and (x − λ)μ = c(x − 1)p . Putting these equations together, using the fact that μ fixes
constants, we see that a = b = c = λ and λp = 1/λ, so the norm of λ to Fp is 1 when λ does not lie
in Fp . If λ does lie in Fp , then λ = −1. In either case, xμ = λxp , which gives that

(
yμ

)2 = λxp(
λxp − 1

)(
λxp − λ

) = λ3xp(
xp − λp)(

xp − 1
) = λ3 y2p.

Hence, yμ = ±λ
√

λyp so we have

(x, y)μ = (
λxp,±λ

√
λyp)

. (2.1)

Case 2. μ interchanges q0 and q1. In this case we have xμ = a(x − 1)p , (x − 1)μ = bxp , and (x −λ)μ =
c(x −λ)p . Putting these equations together gives a = b = c = −1 and λp = 1 −λ, so that the trace of λ

to Fp is 1 when λ does not lie in Fp . (If λ ∈ Fp , then λ = 1/2.) Hence xμ = −xp + 1. This implies that

(
yμ

)2 = (−xp + 1
)(−xp)(−xp + 1 − λ

) = −xp(
xp − 1

)(
xp − λp) = −y2p,

so that yμ = ±√−1yp , and

(x, y)μ = (−xp + 1,±√−1yp)
. (2.2)

Case 3. μ interchanges q0 and qλ . Here we have xμ = a(x − λ)p , (x − 1)μ = b(x − 1)p , and (x − λ)μ =
cxp . These equations imply easily that a = b = c = 1 − λ and λp = λ/(λ − 1), so that the norm and
trace of λ to Fp are equal when λ does not lie in Fp , i.e., Norm(1 − λ) = 1. (If λ ∈ Fp , then λ = 2.)
Hence xμ = (1 − λ)xp + λ, which implies

(
yμ

)2 = (
(1 − λ)xp + λ

)(
(1 − λ)xp + λ − 1

)
(1 − λ)xp

= (1 − λ)3(xp − λp)(
xp − 1

)
xp = (1 − λ)3 y2p.

Thus we have yμ = ±(1 − λ)
√

1 − λyp , and therefore

(x, y)μ = (
(1 − λ)xp + λ,±(1 − λ)

√
1 − λyp)

. (2.3)

Case 4. In the last case the multiplier μ is the identity on E[2]. Then we have xμ = axp , (x − 1)μ =
b(x − 1)p , and (x − λ)μ = c(x − λ)p . We conclude in this case that a = b = c = 1 and λp = λ, so that
λ ∈ Fp and xμ = xp . This implies that

(x, y)μ = (
xp,±yp)

. (2.4)

Note that in Cases 1–3, λ ∈ Fp implies j = 1728.
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These calculations show: if there is an element μ ∈ End(E) for which μ2 = −p, then either λ ∈ Fp
or λ ∈ Fp2 − Fp with Norm(λ) = 1, Trace(λ) = 1, or Trace(λ) = Norm(λ), the last condition being
equivalent to Norm(1 − λ) = 1.

Conversely, if one of these conditions holds for λ, then using the corresponding equation (2.1)–
(2.4), it is easy to check directly that (x, y) → (x, y)μ is an element of End(E), meaning simply that
μ maps the point (x, y) to a point on E; and that xμ2 = xp2

and therefore yμ2 = ±yp2
. (One needs

also to check that the pole divisor of x divides the pole divisors of xμ and yμ , so that the mero-
morphism μ is normalized, but this verification is trivial here.) By the second fact mentioned above,
this implies that μ2 = ±p in End(E). But End(E) is a definite quaternion algebra, so only μ2 = −p
is possible. Therefore, the above conditions on λ are equivalent to the existence of a multiplier μ for
which μ2 = −p.

Now if λ satisfies one of the above conditions, respectively

λp = 1/λ, 1 − λ, λ/(λ − 1), or λ (2.5)

in the above 4 cases, then the mapping λ → λp fixes the j-invariant of the curve E , since

2−7 j − 3 = 2
(λ2 − λ + 1)3

(λ2 − λ)2
− 3

= λ2 + 1

λ2
+ (1 − λ)2 + 1

(1 − λ)2
+

(
1 − 1

λ

)2

+
(

λ

λ − 1

)2

,

so that jp = j and j = j(E) ∈ Fp .
Conversely, if jp = j, then the set S = {λ,1−λ,1/λ,1/(1−λ),λ/(λ−1),1−1/λ} is invariant under

the Frobenius mapping a → ap . Hence λp is an element of S . Either λp = 1/(1 − λ) or λp = 1 − 1/λ,
in which case λ satisfies λp3 = λ; or λp is equal to one of the expressions in (2.5). In the former case,
λ is quadratic over Fp , so λp3 = λp gives λp = λ. Thus, condition (2.5) is still satisfied.

Hence, condition (2.5) is equivalent to j ∈ Fp , on the one hand, and to the existence of an injection
of

√−p into End(E), on the other. This proves Deuring’s theorem.

3. Curves with
√−2p as multiplier

In this section we derive conditions on the coefficients of an irreducible quadratic factor t2 +ut + v
of W (p−1)/2(t) mod p so that

√−2p injects into the endomorphism ring End(E) of the supersingular
elliptic curve E = Eλ and λ is a root of t2 + ut + v over Fp .

With the same notation as in Section 2, we assume that μ is an element of End(Eλ) for which
μ2 = −2p. Since Norm(μ) = 2p in End(Eλ), it follows that the kernel of μ is {o,p}, where p has
order 2. Furthermore, [K : K μ] = Norm(μ) = 2p (see [h1]), so the degree of inseparability of K/K μ

is p.
Now μ is an endomorphism on the subgroup of points of order 2, so μ maps the points of order 2

different from p to p itself. Thus, if

(x) = q2
0/o2, (x − 1) = q2

1/o2, (x − λ) = q2
λ/o2,

there are three cases.

Case 1. p = q0. The formula (μp)μ = Nμ(p), where Nμ is the norm function from K to K μ (see [d,
p. 205]), shows that qμ

0 = Nμ(q1) = Nμ(qλ). The prime divisor qμ
0 of K μ is divisible by at most two

distinct prime divisors of K , so we must have qμ
0 = qp

1 qp
λ as divisors in K . Similarly, oμ = opqp

0 .
Therefore,

(
xμ

) = (qμ
0 )2

μ 2
= (q1qλ)

2p

2p
.

(o ) (oq0)
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It follows that

xμ = a
(x − 1)p(x − λ)p

xp
= a

(
x2 − (1 + λ)x + λ

x

)p

, (3.1)

for some nonzero constant a in F̄p . On the other hand, μ2 = −2p and Proposition 2 of [brm] imply

that xμ2
is the x-coordinate of the point 2(xp2

,±yp2
) on the curve Eλ/K . Hence,

xμ2 = (x2p2 − λ)2

4xp2
(xp2 − 1)(xp2 − λ)

. (3.2)

Iterating the formula in (3.1) gives

xμ2 = a

(
b2(x + λ/x − λ − 1)2 − b(1 + λp)(x + λ/x − λ − 1) + λp

b(x + λ/x − λ − 1)

)p2

,

with a = bp , where we have used the fact that λ is an element of Fp2 . Simplifying and factoring the
resulting numerator gives

xμ2 = a

(
(bλ − (1 + b + bλ)x + bx2)(bλ − (b + bλ + λp)x + bx2)

bx(x − 1)(x − λ)

)p2

. (3.3)

Comparing leading coefficients with (3.2) shows that abp2 = 1/4, or ap+1 = 1/4. Hence ap2−1 = 1, so
that a lies in Fp2 . Setting the right-hand sides of (3.2) and (3.3) equal, taking p2-th roots on both

sides, and using ap2 = a gives the necessary equation

4a
(
bλ − (1 + b + bλ)x + bx2)(bλ − (

b + bλ + λp)
x + bx2) = b

(
x2 − λ

)2
. (3.4)

The coefficient of x on the left side of this equation is −4abλ(2b + 1 + 2bλ + λp) = 0, so that b =
−(λp + 1)/(2λ + 2), if λ �= −1. Hence,

a = bp = − λ + 1

2(λp + 1)
, λ �= −1. (3.5)

If λ = −1, then (3.4) and 4ab = 1 easily give that a = −b, whence a2 = −1/4.
We now equate coefficients of x2 on both sides of (3.4):

4a
(
2b2λ + (bλ + b + 1)

(
bλ + b + λp)) = −2bλ.

Multiplying out and using 4ab = 1 gives

b
(
λ2 + 6λ + 1

) + 4aλp + (
λp + 1

)
(λ + 1) = 0.

Substituting for a and b using (3.5) gives

−(
λp + 1

)2(
λ2 + 6λ + 1

) + 2
(
λp + 1

)2
(λ + 1)2 − 4(λ + 1)2λp = 0, (3.6)

which holds whether or not λ = −1. Writing (3.6) in the form

(
λp + 1

)2
(λ + 1)2 − 4λ

(
λp + 1

)2 − 4λp(λ + 1)2 = 0,
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we see that the left-hand side is a symmetric polynomial in λ and λp , and so may be written as a
polynomial in the elementary symmetric functions u = −λ−λp and v = λp+1. This gives the condition

u2 + 2uv + v2 + 2u − 14v + 1 = (u + v + 1)2 − 16v ≡ 0 (mod p). (3.7)

Conclusion. If μ ∈ End(Eλ) satisfies μ2 = −2p and μq0 = o in the group Eλ , then λ is a root of
t2 + ut + v over Fp , where u and v satisfy (3.7). In that case the mapping μ satisfies (3.1), where a is
given by (3.5) when λ �= −1, and a2 = −1/4 otherwise.

Case 2. p = q1. We reduce this case to Case 1 by setting λ′ = 1 − λ and x′ = 1 − x. Then x′ , y satisfy
the equation

−y2 = x′(x′ − 1
)(

x′ − λ′).
Since (x′) = q2

1/o2 in K = F̄p(x, y) = F̄p(x′, y), this curve satisfies the conditions of Case 1. If λ satisfies
the equation t2 + ut + v = 0, then λ′ = 1 − λ satisfies the equation t2 − (u + 2)t + u + v + 1 = 0. From
Case 1 we get that v2 ≡ 16(u + v + 1) (mod p).

Case 3. p = qλ . We reduce this case to Case 1 by setting λ′′ = 1 − 1/λ and x′′ = 1 − x/λ. Then x′′ , y
satisfy the equation

y2 = (−λ)3x′′(x′′ − 1
)(

x′′ − λ′′).
Since (x′′) = q2

λ/o2 in K = F̄p(x, y) = F̄p(x′′, y), this curve also satisfies the conditions of Case 1. If λ

satisfies the equation t2 + ut + v = 0, then λ′′ = 1 − 1/λ satisfies the equation t2 − (u + 2v)t/v +
(u + v + 1)/v = 0. From Case 1 we get that 1/v2 ≡ 16(u + v + 1)/v (mod p), or 1 ≡ 16(u + v + 1)v
(mod p).

We note that the above argument only uses the fact that λ is a root of the “characteristic” poly-
nomial t2 + ut + v = (t − λ)(t − λp) over Fp , not that this polynomial is irreducible over Fp . Thus we
have proved the following proposition.

Proposition 3.1. Assume that μ satisfies μ2 = −2p in the endomorphism ring End(Eλ) of the supersingular
elliptic curve Eλ: Y 2 = X(X − 1)(X − λ), where λ is a root of t2 + ut + v over Fp , the latter polynomial being
irreducible or a perfect square (with v �= 0). Then the kernel of μ in Eλ is {p,o}, where p = q0,q1 , or qλ , and
we have

(u + v + 1)2 ≡ 16v (mod p), if μq0 = o in Eλ;
v2 ≡ 16(u + v + 1) (mod p), if μq1 = o in Eλ;
16(u + v + 1)v ≡ 1 (mod p), if μqλ = o in Eλ.

Notice that the only values of λ in the prime field Fp for which (t − λ)2 satisfies one of the three
conditions of this proposition are those which are roots over Fp of the respective polynomials

(
λ2 − 6λ + 1

)
(λ + 1)2,

(
λ2 + 4λ − 4

)
(λ − 2)2,

(
4λ2 − 4λ − 1

)
(2λ − 1)2. (3.8)

In that case either λ = −1,2, or 1/2, and the corresponding j-invariant is j = 1728; or one of the
three quadratics in (3.8) is reducible (mod p), so that the Legendre symbol (2/p) = +1, and j = 8000.
These j-invariants are easily verified by factoring the polynomial 28(λ2 − λ + 1)3 − j(λ2 − λ)2, for
j = 1728 and j = 8000.

We shall now prove the converse of Proposition 3.1, which says that any one of these quadratic
conditions on the coefficients of the polynomial t2 + ut + v satisfied by λ implies the existence of a
multiplier μ in End(Eλ) with μ2 = −2p.



P. Morton / Journal of Number Theory 130 (2010) 1718–1731 1725
By transforming the equation for Eλ as in Cases 2 and 3 above, it is enough to consider the
first condition in Proposition 3.1: (u + v + 1)2 ≡ 16v (mod p). Assuming this congruence holds, we
must show that there is a multiplier μ of K for which μ2 = −2p. Assume first that λ �= −1. As our
candidate we take the map μ : (x, y) → (xμ, yμ) defined on x by

xμ = − λ + 1

2(λp + 1)

(
x2 − (λ + 1)x + λ

x

)p

= − λ + 1

2(λp + 1)

y2p

x2p
.

The argument in Case 1 may be reversed, with a given by (3.5), to show that Eq. (3.4) holds, since the
coefficient of x3 on the left side of (3.4) is 1/λ times the coefficient of x, and is therefore zero. It fol-
lows from (3.2) and (3.3) that xμ2

is the x-coordinate of 2(xp2
,±yp2

) = ±2p(x, y) on the curve Eλ/K .
We must compute yμ and show that in fact (x, y)μ

2 = −2p(x, y).
By definition of μ, yμ must satisfy the equation (yμ)2 = xμ(xμ − 1)(xμ − λ), so after some sim-

plification we have

(
yμ

)2 = − λ + 1

8(λp + 1)3

y2p

x6p
· ([(λp + 1

)
y2 + 2(λ + 1)x2][(λp + 1

)
y2 + 2λp(λ + 1)x2])p

. (3.9)

Calling the term inside the large parentheses in the last equation A, we have

A = x2((λp + 1
)
(x − 1)(x − λ) + 2(λ + 1)x

)((
λp + 1

)
(x − 1)(x − λ) + 2λp(λ + 1)x

)
= x2((λp + 1

)
x2 + (

1 − λp)
(1 + λ)x + λ

(
λp + 1

))((
λp + 1

)
x2 + (

λp − 1
)
(1 + λ)x + λ

(
λp + 1

))
.

The two quadratics in the last equation have the same discriminant, namely

(
1 − λp)2

(1 + λ)2 − 4λ
(
λp + 1

)2 = (
1 + λp)2

(1 + λ)2 − 4λp(1 + λ)2 − 4λ
(
λp + 1

)2
. (3.10)

But this is the symmetric expression in λ and λp that we discovered in Case 1 to be equal to the
left-hand side of (3.7), which is zero by assumption. Hence A is a perfect square in K :

A/x2 = [(
λp + 1

)
x2 + λ

(
λp + 1

)]2 − (
λp − 1

)2
(λ + 1)2x2

= (
λp + 1

)2
x4 + [

2λ
(
λp + 1

)2 − (
λp − 1

)2
(λ + 1)2]x2 + λ2(λp + 1

)2

= [(
λp + 1

)
x2 − λ

(
λp + 1

)]2 = (
λp + 1

)2(
x2 − λ

)2
,

where the penultimate equality follows from the fact that the left side of (3.10) is zero. Thus we take

yμ = ±
√

−(λ + 1)

2(λp + 1)

(λ + 1)

2(λp + 1)

yp

x2p

(
x2 − λ

)p
, λ �= −1.

Setting γ equal to the square-root in this expression, we have

γ 2 = − (λ + 1)

2(λp + 1)
= −1

2

(λ + 1)2

v − u + 1
,

assuming λ �= −1, so that γ lies in Fp2 . In case λ = −1, we easily compute in the same way that

xμ = 1√ x2p − 1

xp
, yμ = ±1√ yp

x2p

(
x2 + 1

)p
, λ = −1.
2 −1 2(−1 + −1 )
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This shows that the mapping μ : K → K is an isomorphism which is defined over Fp2 . In order to
know that μ corresponds to an endomorphism of Eλ , or in other words, that μ is a normalized
meromorphism, we must check that the prime divisor o at infinity divides the denominators of xμ

and yμ . But this is easily done. Hence, μ is a multiplier of the elliptic function field K .
Now we know already that xμ2 = x(−2p) , where (−2p) denotes the meromorphism −2p and not

an ordinary exponent. Since (xμ2
, yμ2

) and (x(−2p), y(−2p)) both satisfy the equation for Eλ , it follows
that yμ2 = ±y(−2p) , and therefore μ2 = ±2p. But, μ2 = +2p is impossible, since the quaternion
algebra End(Eλ) is definite, so we must have μ2 = −2p. This completes the proof of Theorem 1.2.

The result of Theorem 1.2 at the λ-level corresponds to the following criterion at the j-level:√−2p injects into End(Eλ) if and only if Φ2( j, jp) ≡ 0 (mod p), where Φ2(x, y) is the transfor-
mation polynomial or modular equation [co, p. 229]. This can be proved using Deuring’s theory as
in [m2, Theorem 3.1] or can be deduced directly by a somewhat elaborate calculation from Theo-
rem 1.2 and the formula (1.2) for j in terms of λ. It is interesting that the extremely simple criterion
in Theorem 1.2 translates to the much more complex criterion (in terms of the size of the coeffi-
cients) involving Φ2(x, y). The fact that Φ2(x, y) is symmetric in x and y leads to the equivalent
criterion (4.2) in Theorem 4.1 below.

This criterion for
√−2p at the j-level can easily be generalized, using Deuring’s theory [d]: if

d is positive, square-free, and relatively prime to p, then
√−dp injects into End(Eλ) if and only

if Φd( j, jp) ≡ 0 (mod p). See [m2, Theorem 3.1]. When d = 1 this is just Deuring’s theorem, since
Φ1(x, y) = x − y. See [m3] for the case d = 3, where the Legendre normal form is replaced by the
Deuring normal form (or Hessian) Y 2 + αXY + Y = X3.

4. Binomial quadratic factors of P (p−e)/4(x)

The second ingredient in the proof of Theorem 1.1 is the following factorization. To state this the-
orem let ssp(t) denote the supersingular polynomial in characteristic p. This is the monic polynomial
in t over Fp whose roots are the distinct j-invariants of supersingular elliptic curves in characteris-
tic p. (See [m1,kaz,brm].) Recall also that the class equation H D(t) of discriminant D is the monic,
irreducible polynomial in Z[t] whose roots are the j-invariants of elliptic curves with complex multi-
plication by the quadratic order of discriminant D .

Theorem 4.1. (See [m2].) For p > 13, the class equation H−8p(t) of discriminant −8p satisfies the congruence:

H−8p(t) ≡ (t − 1728)2ε1(t − 8000)2ε2(t + 3375)4ε3

× (
t2 + 191025t − 121287375

)4ε4
∏

i

(
t2 + ait + bi

)2
(mod p), (4.1)

where

ε1 = 1

2

(
1 −

(−4

p

))
,

ε2 = 1

2

(
1 −

(−8

p

))
,

ε3 = 1

2

(
1 −

(−7

p

))
,

ε4 = 1

4

(
1 −

(−15

p

))(
1 −

(
5

p

))
;
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and the product is over all the irreducible quadratic factors t2 +at + b of ssp(t) distinct from (t2 + 191025t −
121287375) = H−15(t) which satisfy

(2b + 1485a − 41097375)2 ≡ −(4a − 29025)(a − 191025)2 (mod p). (4.2)

Explicit formulas for ssp(t) are given in [brm,m1,kaz,bgns], so that Theorem 4.1 gives a completely
explicit factorization of H−8p(t) (mod p). The proof of Theorem 4.1 can be found in [m2].

In order to count binomial quadratic factors of P (p−e)/4(t), we have to relate these factors first of
all to factors of W (p−1)/2(t), and then we must relate the latter factors to the class number h(−2p),
using the factorization in Theorem 4.1.

We shall show that for p > 13 the binomial quadratic factors of P (p−e)/4(x) (mod p) are in 1–1
correspondence with the quartic factors in H−8p(t) which are powers of irreducibles (mod p). In
other words, each factor (t + 3375)4, (t2 + ait + bi)

2 in Theorem 4.1 contributes 1 binomial quadratic
to the count in Theorem 1.1, while (t2 + 191025t − 121287375)4 contributes 2 to that count. This
yields (h(−2p) − dp)/4 binomial quadratics in all, where dp = 2ε1 + 2ε2 = 0,2,2,4 according as
p ≡ 1,3,5,7 (mod 8).

To do this, we use the following identity (4.3) (see [psz, VI, Problem 85]) and congruence (4.4)
(see [brm, p. 85]):

Wn(x) = (1 − x)n Pn

(
1 + x

1 − x

)
, (4.3)

z(e−1)/2W (p−e)/4
(
1 − z2) ≡ P (p−1)/2(z) (mod p). (4.4)

Let x2 + a be an irreducible, binomial quadratic factor of P (p−e)/4(x) (mod p). Then W (p−e)/4(x) has
(1 + x)2 + a(1 − x)2 as an irreducible factor (mod p), which is a constant multiple of the factor

x2 + 2
1 − a

1 + a
x + 1.

Thus, bqf ’s of P (p−e)/4(x) correspond to irreducible palindromic factors of W (p−e)/4(x) (mod p), i.e.,
those with constant term 1. By (4.4) these palindromic factors correspond to certain quartic factors of
P (p−1)/2(z) which must factor as a product of quadratics (mod p):

z4 − 4

1 + a
z2 + 4

1 + a
= (

z2 + rz + s
)(

z2 − rz + s
)
. (4.5)

These quadratics are 1) irreducible and 2) distinct, because: 1) by (4.4) roots of the irreducible palin-
dromic factors we’re considering are expressible as 1 − z2 for roots of z2 ± rz + s ≡ 0 (mod p);
and 2) P (p−1)/2(z) has distinct roots (mod p). Thus r �= 0 (mod p). Furthermore, the product
(z2 + rz + s)(z2 − rz + s) has the form (4.5) if and only if s2 + 2s ≡ r2 (mod p).

This shows that bqf ’s of P (p−e)/4(x) are in 1–1 correspondence with pairs (z2 + rz + s)(z2 − rz + s)
of irreducible quadratic factors of P (p−1)/2(z) for which r �= 0 and s2 + 2s ≡ r2 (mod p).

Now we use (4.3) again to translate this condition in terms of irreducible factors of W (p−1)/2(t).
The transformation t → z = (1 + t)/(1 − t) associates the factor z2 + rz + s of P (p−1)/2(z) with the
factor

t2 + ut + v = t2 + 2(1 − s)

1 − r + s
t + 1 + r + s

1 − r + s

of W (p−1)/2(t); and the factor t2 + ut + v of W (p−1)/2(t) with the factor

z2 + rz + s = z2 + 2(v − 1)
z + 1 − u + v
1 + u + v 1 + u + v
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of P (p−1)/2(z). Thus, the above conditions for r and s translate to the conditions:

v �= 1; (2v − 2)2 = (1 − u + v)2 + 2(1 − u + v)(1 + u + v) (mod p).

Simplifying the last condition gives (u + v + 1)2 ≡ 16v (mod p), the first of the three conditions in
Theorem 1.2! Furthermore, replacing r by −r in the above formulas for u and v takes the pair (u, v)

to (u/v,1/v). Thus we have the following

Proposition 4.2. The irreducible, binomial quadratic factors of P (p−e)/4(x) (mod p) are in 1–1 correspon-
dence with the pairs of irreducible quadratic factors of W (p−1)/2(t) of the form t2 + ut + v, t2 + ut/v + 1/v,
where v �= 1 and (u + v + 1)2 ≡ 16v (mod p).

Thus, binomial quadratic factors of P (p−e)/4(x) over Fp correspond 1–1 to certain pairs of reciprocal
quadratic factors of W (p−1)/2(t).

In order to prove Theorem 1.1, we must see how these factors are related to the quartics occurring
in the factorization of H−8p(t) (mod p), as described above. We know that the curves Eλ , for λ a root
of one of the polynomials t2 + ut + v in Proposition 4.2, all have multipliers μ with μ2 = −2p, by
Theorem 1.2. Hence their j-invariants are roots of H−8p(t) (mod p). We must show that one pair
of quadratics t2 + ut + v , t2 + ut/v + 1/v from Proposition 4.2 corresponds to each of the terms
(t + 3375)4 and (t2 + ait + bi)

2, while two pairs correspond to the factor H−15(t)4 = (t2 + 191025t −
121287375)4; and that this exhausts all pairs of irreducible factors in Proposition 4.2.

The parameter λ and the j-invariant j of Eλ are related by the equation f (λ, j) = 0 in Fp , where

f (t, j) = (
t2 − t + 1

)3 − j

28

(
t2 − t

)2
.

It is easy to see that j = 1728 and j = 8000 contribute no pairs of reciprocal factors in Proposition 4.2,
since

f (t,1728) = (t − 2)2(t + 1)2(t − 1/2)2,

and

f (t,8000) = (
t2 − 6t + 1

)(
t2 + 4t − 4

)(
t2 − t − 1/4

)
.

For j = 8000 note that the middle quadratic satisfies the congruence of Proposition 4.2 only when
p = 5 or 13. Furthermore, j = −3375 accounts for exactly one pair of reciprocal quadratics satisfying
(u + v + 1)2 ≡ 16v , since

f (t,−3375) = (
t2 − 31t/16 + 1

)(
t2 − t + 16

)(
t2 − t/16 + 1/16

)
,

and t2 − t + 16 is irreducible (mod p) exactly when (−32·7
p ) = −1, i.e., exactly when ε3 = 1 in (4.1).

Next, consider the factor H−15(t) = t2 + 191025t − 121287375 = (t − α+)(t − α−), when (−15
p ) =

( 5
p ) = −1. We form the polynomial

216 f (t,α+) f (t,α−) = (
256t4 − 272t3 + 33t2 − 272t + 256

)
× (

t4 − 2t3 + 753t2 − 752t + 256
)(

256t4 − 752t3 + 753t2 − 2t + 1
)

= g1(t)g2(t)g3(t), (4.6)



P. Morton / Journal of Number Theory 130 (2010) 1718–1731 1729
in which the 3 quartics on the right are irreducible over Q. The values of λ corresponding to the roots
of H−15(t) are the roots of the polynomials gi(t), where g2(t) and g3(t) are reciprocal polynomials.
The roots of g2(t) are easily computed to be

λ = 1 ± 16
√−3 ± 7

√−15

2
,

and disc(g2(t)) = 216 · 36 · 52 · 74 · 112. Using the fact that (−3
p ) = +1, we consider the factor

t2 + ut + v = (t − λ1)(t − λ2), where λ1, λ2 = 1 + 16
√−3 ± 7

√−15

2
.

This factor is irreducible over Fp and its coefficients u = −1 − 16
√−3, v = −8 + 8

√−3 satisfy (u +
v + 1)2 − 16v = 0 for all p. Furthermore, its constant term v is congruent to 1 (mod p) at most
when p = 3,7,13. Thus, this factor and its reciprocal, which is a factor of g3(t), are a reciprocal
pair in Proposition 4.2. Another reciprocal pair of factors is obtained by replacing

√−3 by −√−3.
This gives at least two reciprocal pairs corresponding to the factor H−15(t), and the product of these
4 polynomials is a constant times g2(t)g3(t).

To see that the remaining factor g1(t) contributes no reciprocal pairs, all we have to do is apply
the inverse map of z = (1 + t)/(1 − t) to this factor and compare its form to (4.5). This gives

(z + 1)4 g1

(
z − 1

z + 1

)
= z4 + 3006z2 + 1089;

but the sum of the last two coefficients 3006+1089 = 32 ·5 ·7 ·13 is never zero (mod p) when p > 13.
Hence, the factors of g1(t) never yield a reciprocal pair for p > 13. Therefore, the factor H−15(t)4 does
in fact contribute two pairs of reciprocal factors in Proposition 4.2, for all primes p > 13 for which
ε4 = 1.

To complete the proof of Theorem 1.1, we must show that any irreducible factor h(t) = t2 +ait +bi
of H−8p(t) distinct from H−15(t) (mod p) contributes just one pair of reciprocal factors in Proposi-
tion 4.2. Let j be a root in Fp2 of h(t) = 0. Then f (t, j) f (t, jp) factors as a product of 6 quadratics
over Fp , similar to the factorization in (4.6):

f (t, j) f
(
t, jp) = q1(t)q̃1(t) · q2(t)q̃2(t) · q3(t)q̃3(t), (4.7)

where q̃(t) denotes the reciprocal polynomial of q(t). This follows from the arguments of Section 2,
according to which λ and 1/λ are conjugate over Fp only if j ∈ Fp . By the arguments in Cases 2
and 3 of Section 3, mappings of λ by the anharmonic group permute the three congruences in Propo-
sition 3.1. By those arguments, there is always at least one factor in (4.7), say q1(t), which satisfies
the first congruence in Proposition 3.1. Then its reciprocal q̃1(t) satisfies the same congruence, while
q2(t) and q3(t), say, will satisfy the second and third congruences, respectively. The nature of these
congruences implies that q̃2(t) then satisfies the third congruence, while q̃3(t) satisfies the second.

Now q1(t), q̃1(t) are a reciprocal pair for Proposition 4.2. Suppose that one of the other pairs qi(t),
q̃i(t) is a second reciprocal pair in Proposition 4.2. Then, wlog, the factor qi(t) = t2 + ut + v satisfies
the first and second congruences of Proposition 3.1, while q̃i(t) = t2 + ut/v + 1/v satisfies the first
and third. To find all such factors, compute the resultants

Resultantu
(
(u + v + 1)2 − 16v, v2 − 16(u + v + 1)

) = v(v − 16)
(

v2 + 16v + 256
)
,

Resultantv
(
(u + v + 1)2 − 16v, v2 − 16(u + v + 1)

) = (u + 1)2(u2 + 2u + 769
)
.

If v = 0, then u = −1, giving a reducible qi(t); while if v = 16, then u = −1 and qi(t) = t2 −
t + 16, which, by the above computations, corresponds to j = −3375. On the other hand, if
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v2 + 16v + 256 = 0, then v = −8 ± 8
√−3 yields u = −1 ∓ 16

√−3, giving as j-invariants the roots of
H−15(t) (mod p). This proves that h(t) = t2 + ait + bi contributes only one pair of reciprocal polyno-
mials satisfying Proposition 4.2.

Finally, every pair of reciprocal factors of W (p−1)/2(t) in Proposition 4.2 yields a j which is a root
of H−8p(t) (mod p), by Theorem 1.2 and Deuring’s theory [d], and so comes from one of the factors
we have already considered. This completes the proof of Theorem 1.1 for primes p > 13. For p � 13
it can be checked directly.

The above argument also makes it clear that (for p > 13) the number of pairs of reciprocal
quadratic factors of W (p−1)/2(t), one of which satisfies the second congruence, while the other sat-
isfies the third congruence, in Theorem 1.2, is twice the number given in Theorem 1.1, as long as:
the factor t2 − 31t/16 + 1 is counted as one pair whenever it occurs (since it is palindromic and
satisfies both congruences); and the factors of g1(t) in (4.6) are counted as two pairs when they oc-
cur. The factors of g1(t) always satisfy the second and third congruences in Theorem 1.2, whenever
(−15/p) = (5/p) = −1, because these factors will be reductions (mod p) of the two quadratics

x2 − 17(1 ± √−3 )/32 · x + (−1 ± √−3 )/2.

Concluding Remarks. It follows from results of [brm] that P (p−e)/4(x) always factors into linear and
quadratic polynomials (mod p). For example, taking p = 97 and e = 1, we have

P24(x) ≡ 79(x + 39)(x + 58)
(
x2 + 5

)(
x2 + 23

)(
x2 + 46

)(
x2 + 80

)(
x2 + 90

)
· (x2 + 19x + 29

)(
x2 + 78x + 29

)(
x2 + 46x + 54

)(
x2 + 51x + 54

)
· (x2 + 3x + 96

)(
x2 + 94x + 96

)
(mod 97).

In this case, P24(x) has 5 = (h(−2 · 97) − 0)/4 = 20/4 binomial quadratic factors (mod 97), in agree-
ment with Theorem 1.1.

The linear factors of P (p−e)/4(x) (mod p) were counted in [brm], in terms of the class number
h(−p) of the quadratic field Q(

√−p ). (See [brm, Theorem 1(c)].) The number of linear factors turns
out to be

h(−p)/2, if p ≡ 1 (mod 4);
3h(−p) − 1, if p ≡ 3 (mod 8);
2h(−p) − 1, if p ≡ 7 (mod 8).

This result, together with Theorem 1.1, shows that both class numbers h(−p) and h(−2p) are encoded
in the factorization of the polynomial P (p−e)/4(x) (mod p).
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