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We consider the first moment of the value of automorphic L-
functions at an arbitrary point on the critical line, a sum over
primitive forms weighted by their Petersson’s norm. In this paper,
we obtain an asymptotic formula for it when weight k is an even
integer satisfying 0 < k < 12 or k = 14 and level is pα , where p is
a prime number. This formula yields a lower bound of the number
of primitive forms, whose L-functions do not vanish at that point.
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1. Introduction

In 1995, Duke studied the non-vanishing of the value L f (1/2,χ) (see [5]), where this L-function
is associated with a cusp form f . He obtained a lower bound of the number of orthogonal cusp forms
for which L f (1/2,χ) does not vanish, where cusp forms f are weight 2 for Γ0(N) and N is a prime
number. He studied the first and second moments of the value L f (1/2,χ) when f varies among an
orthogonal basis of cusp forms. He obtained an asymptotic formula for the first moment and an upper
bound of the second moment. These yield the above lower bound by using Cauchy’s inequality. In the
case considered by Duke, the space of cusp forms does not include old forms. (In this case, Kowalski
and Michel expressed the above lower bound by the dimension of the space of cusp forms (see [12]).)

In 1999, Akbary extended Duke’s results to more general situation (see [1]). He considered
the space of cusp forms of weight k for Γ0(N), where N is a prime number. In his case, the space
of cusp forms includes old forms and the level of them is 1. He obtained the lower bound of the num-
ber of new forms for which L f (1/2,χ) does not vanish by using Duke’s method and Pizer’s results
(see [15]).
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In 2000, Kamiya considered such type of lower bounds in general (see [11]). He was interested in
the non-vanishing of L f (s,χ) at a point on the central line for an orthogonal basis of the space of
cusp forms of even weight k for Γ0(N), where N is a positive integer.

When N varies among a family of square-free integers satisfying φ(N) ∼ N , where φ is the Euler
function, Iwaniec and Sarnak showed that at least 50% of the value L f (1/2) are positive among the
set of even primitive forms of even weight and conductor N (see [10]).

In this paper, we are interested in an asymptotic formula for the first moment of the value of
L f (s,χ) at a point on the central line, where f runs over the primitive forms (normalized Hecke
eigen new forms) of weight k for Γ0(N). We obtain it when k is an even integer satisfying 0 < k < 12,
or k = 14 and N = pα , where p is a prime number and α is a positive integer.

First of all, we define some notations. Let Sk(N) be the space of cusp forms of weight k for Γ0(N).
We denote the set of primitive forms of weight k for Γ0(N) by Hk(N), which is an orthogonal basis
of the space of new forms in Sk(N). The inner product of the space Sk(N) is defined by

〈 f , g〉N =
∫

Γ0(N)\H

f (z)g(z)yk−2 dx dy,

where z = x + iy. Let f be a cusp form and we write

f (z) =
∞∑

n=1

a f ,∞(n)e2π inz.

This is the Fourier expansion at the cusp ∞. We put

a f ,∞(n) = λ f ,∞(n)n(k−1)/2.

If f ∈ Hk(N), we know that |λ f ,∞(n)| � d(n) by Deligne [4], where d(n) is the divisor function, i.e.
the number of positive divisors of n. Let χ be a primitive character of modulus q with (q, N) = 1. The
L-function L f (s,χ) is defined by

L f (s,χ) =
∞∑

n=1

λ f ,∞(n)χ(n)

ns

for σ > 1, where s = σ + it . This L-function can be analytically continued on the whole complex plane
as a holomorphic function. The main result of this paper is as follows.

Theorem 1. Let k be an even integer satisfying 0 < k < 12 or k = 14, p a prime number and α a positive
integer. Let χ be a primitive character of modulus q with (q, p) = 1. For any fixed real number y, we have

Γ (k − 1)

(4π)k−1

∑
f ∈Hk(pα)

L f (
1
2 + iy,χ)

〈 f , f 〉pα

= 1 − cp(α) +

⎧⎪⎨
⎪⎩

O (p− k
2 + 1

4 q
k
2 (1 + |y|) k

2 ) if α = 1,

O (p− 5
4 q

k
2 (1 + |y|) k

2 ) if α = 2,

O ((α + 1)p− (α−1)k
2 + (α−1)

4 + k
4 −1q

k
2 (1 + |y|) k

2 ) if α � 3,

where the implied constants are absolute. Here
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cp(α) =
⎧⎨
⎩

0 if α = 1,

p(p2 − 1)−1 if α = 2,

p−1 if α � 3.

Remark 1. For the proof of this theorem, we construct an orthogonal basis of the space of old forms
in Section 2. But the technique does not apply to the old forms which come from the cusp forms of
level 1. That is why we need to impose 0 < k < 12 or k = 14 in Theorem 1. In the above asymptotic
formula, the implied constants would a priori depend on k, if the limitation on k were removed, but
not on any other parameter.

Remark 2. When k = 2 and N = p, Duke obtained an asymptotic formula which is same as Theorem 1
(see [5]). In [10], Iwaniec and Sarnak considered a first moment of the value L f (1/2,χ) weighted by

ζN (2)L(1,
∨2 f )−1, when k is an even positive integer and N is a square-free positive integer. They

obtained that the main term of it is same order as N , as N goes to infinity with φ(N) ∼ N . When
φ(N) ∼ N , their weight ζN (2)L(1,

∨2 f )−1 is similar to N/〈 f , f 〉 because of (2.36) in [9]. Therefore
their result means that the main term of the first moment of the value L f (1/2,χ) weighted by
Petersson’s norm is same order as 1, as square-free integer N goes to infinity with φ(N) ∼ N . In
Theorem 1, the main term of the asymptotic formula is 1 − cp(α) which is also same order as 1
for any prime p and α. Kamiya obtained an asymptotic formula of the first moment of the value
L f (1/2 + it,χ) over orthogonal basis whose norm is 1. In Theorem 1, since k is less than 12 or
k = 14, there are no old forms if α = 1. In this case, Proposition 1 in [11] is similar to our result. In
fact, we can put y = x−1N(qτ )2 and x = N1−1/2kqτ in the proof of Proposition 1 in [11]. This yields
that the error term of (15) in [11] is estimated by

O
(
d(N)N− k

2 + 1
4 (qτ )

k
2
)
.

In the error terms of the asymptotic formula in Theorem 1, the exponents of p are negative. And
we know

1

〈 f , f 〉N
�k

log(kN + 1)

N

for any new form f ∈ Hk(N) (see [3] and [6]), where the implied constant can be explicitly written
in terms of k. By using Theorem 1, Cauchy’s inequality and Corollary 12 in [11] (Kamiya’s results are
obtained for the orthogonal basis F whose norm is 1), we can get the following result.

Corollary 1. Let 0 < k < 12 or k = 14 be an even integer, q be a fixed positive integer, p a prime number not
dividing q, and α a positive integer. Then there exists a positive real number C such that:

• when α is fixed:

lim inf
p→∞

|{ f ∈ Hk(pα) | L f (1/2 + iy,χ) 	= 0}|
(1 − c(α))2 pα(log pα)−2

� C,

• when p is fixed:

lim inf
α→∞

|{ f ∈ Hk(pα) | L f (1/2 + iy,χ) 	= 0}|
pα(log pα)−2

� Cp−2.

We also see that there exists a positive integer M such that for p + α > M, one has

∣∣{ f ∈ Hk
(

pα
) ∣∣ L f (1/2 + iy,χ) 	= 0

}∣∣ > C
(
1 − c(α)

)2 pα

α 2
.

(log p )
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Remark 3. In Corollary 1, positive constants C are absolute (i.e. doesn’t depend on q, p, α), but would
a priori depend on k if the restriction of k were removed.

Theorem 1 is obtained by the following consideration. By using the ‘approximate functional equa-
tion’ (see (11) below), we see that it is sufficient to study the following two sums

∑
f ∈Hk(pα)

λ f ,∞(n)

〈 f , f 〉pα
=

∑
f ∈Hk(pα)

λ f ,∞(n)λ f ,∞(1)

〈 f , f 〉pα
,

∑
f ∈Hk(pα)

λ f ,0(n)

〈 f , f 〉pα
=

∑
f ∈Hk(pα)

λ f ,0(n)λ f ,∞(1)

〈 f , f 〉pα

for the proof of Theorem 1. Here λ f ,0(n) is not defined yet, but it means the nth-Fourier coefficient
at the cusp 0 (see Section 3). Firstly we construct an orthogonal basis of the space of old forms in
Sk(pα) by using the method of Iwaniec, Luo and Sarnak (see [9]). Secondly we show that the above
sums are expressed by certain sums over the orthogonal bases of some spaces of cusp forms. Finally,
we apply Petersson’s formula (see (10) below) to them and obtain Theorem 1.

2. Orthogonal basis

Let k be an even positive integer and N a positive integer. In general we have a decomposition
into a direct sum:

Sk(N) =
⊕

N=ML

⊕
f ∈Hk(M)

Sk(L; f ),

where Sk(L; f ) is a linear space spanned by { f |�} which is defined by

f |�(z) = �
k
2 f (�z)

and � runs over all positive divisors of L. We know dim Sk(L; f ) = d(L). These facts are mentioned
in [9] and we can also see them by using the result of Atkin and Lehner [2] and of Ogg [14]. This
basis { f |�} is not always orthogonal. Let’s mention some useful properties of Fourier coefficients of
primitive form f ∈ Hk(N). The λ f ,∞(n)s are known to be real numbers for all n. We also have

{
λ2

f ,∞(p) = p−1 if p | N and p2 � N,

λ f ,∞(p) = 0 if p2 | N
(1)

and

{
λ f ,∞

(
pn

) = λ f ,∞(p)n if p | N,

λ f ,∞(mn) = λ f ,∞(m)λ f ,∞(n) if (m,n) = 1,
(2)

where n and m are any integers and p is a prime number (see Lemma 4.5.7, 4.5.8 and Theorem 4.6.17
in [13]).

In the case when k is less than 12 or k = 14, since the set Sk(1) is empty, we have

Sk
(

pα
) =

α⊕
m=1

⊕
f ∈H (pm)

Sk
(

pα−m; f
)
.

k
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We start by constructing an orthogonal basis of Sk(pα−m; f ) for f ∈ Hk(pm). The method is similar
to the one of Iwaniec, Luo and Sarnak (see [9]). They made an orthogonal basis of Sk(L; f ) when
N = ML is a square-free positive integer.

Put �i | L (i = 1,2) and consider the function

F (s) = 〈
E(z, s) f (�1z), f (�2z)

〉
pα ,

where E(z, s) is the Eisenstein series defined by

E(z, s) = ys−k+1
∑

γ ∈Γ0(pα)∞\Γ0(pα)

∣∣ j(γ , z)
∣∣−2(s−k+1)

and

j(γ , z) = cz + d for γ =
(

a b
c d

)

(see (7.2.60) in [13]). We consider the residue of F (s) by two methods, one uses the residue of E(z, s)
and the other uses the residue of the Rankin–Selberg L-function associated with f . The comparison
of them yields the following lemma.

Lemma 1. Let α and m be positive integers satisfying 1 � m � α, k an even integer and p a prime number. For
positive integer �i dividing pα−m and a primitive form f of weight k for Γ0(pm), we have

〈 f |�1 , f |�2〉pα = λ f ,∞(�)�− 1
2 〈 f , f 〉pα ,

where � = �1�2(�1, �2)
−2 .

Proof. The method of the calculations in this proof is similar to [9]. We know that the residue of
Eisenstein series E(z, s) at s = k is 3(π pα(1 + 1/p))−1 (see Theorem 7.2.17 in [13]) and we see that

Res
s=k

F (s) = 3

π pα

(
1 + 1

p

)−1

(�1�2)
− k

2 〈 f |�1 , f |�2〉pα (3)

from the definition of F (s). Here the left-hand side of (3) means the residue of F (s) at s = k. Next we
calculate the residue of F (s) by another method. Since f is a primitive form, we know that a f ,∞(n)

is a real number and obtain

F (s) =
∞∫

0

ys−1

1
2∫

− 1
2

f (�1z) f (�2z)dx dy

= (4π)−sΓ (s)
∑

1�n1,n2�∞
n � =n �

a f ,∞(n1)a f ,∞(n2)

(�1n1)s
.

1 1 2 2
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Put �′ = �1(�1, �2)
−1 and �′′ = �2(�1, �2)

−1. We know (�′, �′′) = 1 and n1�
′ = n2�

′′ . Therefore we can
put n1 = n�′′ , n2 = n�′ (1 � n � ∞) and obtain

F (s) = (4π)−sΓ (s)
∞∑

n=1

λ f ,∞(n�′′)λ f ,∞(n�′)
ns−k+1

(�′�′′) k−1
2

(�1�′′)s
.

We recall that �′ and �′′ are 1 or power of p. We have

F (s) = (4π)−sΓ (s)
∞∑

n=1

λ2
f ,∞(n)

ns−k+1
λ f ,∞

(
�′�′′)(�′�′′) k−1

2

(
�1�2

(�1, �2)

)−s

(4)

from (2). We have the relation (2.31) in [9]. Iwaniec, Luo and Sarnak suppose that N is square-free
before (2.31). But this relation holds in general, because of Ogg’s result (see (4′) in [14]). Therefore
we obtain

Res
s=k

( ∞∑
n=1

λ2
f ,∞(n)

ns−k+1

)
= (4π)k

Γ (k)

3

pmπ

(
1 + 1

p

)−1

〈 f , f 〉pm . (5)

And we know

〈 f , f 〉M = M
∏

p|M(1 + 1
p )

N
∏

p|N (1 + 1
p )

〈 f , f 〉N (6)

for f ∈ Sk(M), where M | N (see Theorem 7.2.17 in [13]). We can obtain Lemma 1 from (3), (4), (5)
and (6). �
Remark 4. In order to obtain Eq. (4), we have to produce λ2

f ,∞(n) from λ f ,∞(n�′)λ f ,∞(n�′′) for any n.
When �′ and �′′ are power of p, we can do this if p divide the level of f ∈ Hk(pm). This explains why
we need the condition m � 1 in this lemma. From this lemma, we construct an orthogonal basis of
Sk(pα−m; f ) by f ∈ Hk(pm). Since we cannot use this construction when m = 0, we have to impose
the limitation 0 < k < 12 or k = 14, which implies that Sk(1) is {0}.

Remark 5. Iwaniec, Luo and Sarnak obtained the relation between 〈 f |�1 , f |�2 〉 and 〈 f , f 〉, when N is a
square-free integer (see [9]).

Remark 6. When N = pα with α � 1, for f ∈ Hk(1) we can prove that

〈 f�1 , f�2〉pα = �− 1
2

∞∑
j=0

λ f ,∞(p j�′′)λ f ,∞(p j�′)
p j

× p − 1

p + 1

(
1 − α2

f ,∞(p)

p

)(
1 − β2

f ,∞(p)

p

)
〈 f , f 〉pα , (7)

instead of Lemma 1, by the similar way to the above proof. Here

�′ = �1(�1, �2)
−1, �′′ = �2(�1, �2)

−1 and � = �1�2(�1, �2)
−2.
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The complex numbers α f ,∞(p) and β f ,∞(p) appear in the Euler product of L f (s), which satisfy

{
α f ,∞(p) + β f ,∞(p) = λ f ,∞(p),

α f ,∞(p)β f ,∞(p) = 1.

We want to obtain an orthogonal basis { f pd } (0 � d � α) which satisfies 〈 f pd , f pd 〉pα = 〈 f , f 〉pα . We
consider a matrix T = (ta,b) (0 � a,b � α), where

ta,b = 〈 f |pa , f |pb 〉pα

〈 f , f 〉pα
.

This is a real symmetric matrix and ta,a = 1. We denote a map { f pd } → { f |pd } (0 � d � α) by a

matrix Z . Since { f pd } and { f |pd } are basis of Sk(pα; f ), T = Z t Z is regular. Therefore there exists an
orthogonal matrix Q which satisfies

t Q T Q = diag
(
Λ(0),Λ(1), . . . ,Λ(α)

)
and Λ(d)s are non-zero real numbers. We denote {i, j}-entry of Q by qi, j . Since Q is an orthogonal
matrix, we know

α∑
h=0

qh,iqh, j =
α∑

h=0

qi,hq j,h =
{

1, i = j,
0, i 	= j.

Then we can write

f pd = Λ(d)−1/2
α∑

m=0

qm,d f |pm .

It is difficult to find qm,d explicitly, however we can estimate eigenvalues. We consider Λ( j) for
fixed j. There exists an index i satisfying

|qi, j| = max
0�h�α

{|qh, j|
}
.

Since T Q = Q diag(Λ(0),Λ(1), . . . ,Λ(d)), we have

qi, j +
α∑

h=0
h 	=i

ti,hqh, j = qi, jΛ( j)

thus

∣∣Λ( j) − 1
∣∣ �

α∑
h=0
h 	=i

|ti,h| � αC f (p,α), (8)

where |ti,h| < C f (p,α) (i 	= h) and
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C f (p,α) = p−1/2
(

(α + 1) + 4p3 − 3p + 1 + α(2p2 − 3p + 1)

(p − 1)3 log p

)

× p − 1

p + 1

(
1 − α2

f ,∞(p)

p

)(
1 − β2

f ,∞(p)

p

)
.

We can obtain C f (p,α) by elementary calculation. From (7), when a 	= b, we have

ta,b � p−1/2
∞∑
j=0

|λ f ,∞(p j�′′)λ f ,∞(p j�′)|
p j

(
1 − α2

f ,∞(p)

p

)(
1 − β2

f ,∞(p)

p

)
.

If a > b, we know

∞∑
j=0

|λ f ,∞(p j�′′)λ f ,∞(p j�′)|
p j

= ∣∣λ f
(

pa−b)∣∣ +
∞∑
j=1

|λ f ,∞(p j�′′)λ f ,∞(p j�′)|
p j

< d
(

pa−b) +
∞∑
j=1

d(p j�′′)d(p j�′)
p j

< (a − b + 1) +
∞∑
j=1

( j + 1)(a − b + j)

p j

< (α + 1) + 4p3 − 3p + 1 + α(2p2 − 3p + 1)

(p − 1)3 log p
.

For sufficiently large p, all eigenvalues are positive since T tends to identity matrix as p → ∞,
min{Λ(d)} � 1 since Tr(T ) = α + 1, and αC f (p,α) < 1. Therefore we have 1 − αC f (p,α) � min Λ(d)

from (8).

Lemma 1 yields the following lemma.

Lemma 2. Let k be an even integer satisfying 0 < k < 12 or k = 14, p a prime number and α a positive integer.
Then we have an orthogonal decomposition

Sk
(

pα
) =

α⊕
m=1

⊕
f ∈Hk(pm)

⊕
d|pα−m

〈 fd〉,

where f1 = f and

fd =
{

d
k
2 f (dz) if m � 2,

p
√

p2 − 1
−1

(d
k
2 f (dz) − p− 1

2 λ f (p)( d
p )

k
2 f (dz

p )) if m = 1

for d 	= 1 and f ∈ Hk(pm). We also have

λ fd,∞(n) =
{

d
1
2 λ f ,∞(n

d ) if m � 2,

d
1
2 p

√
p2 − 1

−1
(λ (n ) − p−1λ (p)λ (

np
)) if m = 1
f ,∞ d f ,∞ f ,∞ d
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for d 	= 1 and f ∈ Hk(pm). Here if x is not an integer, we put λ f ,∞(x) = 0. Moreover this orthogonal basis
satisfies

〈 fd, fd〉pα = 〈 f , f 〉pα .

Proof. In this proof, the method is also the same as in [9]. We want to find an orthogonal basis { fd}
of Sk(pα−m; f ) for f ∈ Hk(pm). Since the space Sk(pα−m; f ) is spanned by { f |�}, let’s define fd by

fd =
∑

�|pα−m

xd(�) f |�.

Consider

δ f (d1,d2)pα = 〈 fd1 , fd2〉pα

〈 f , f 〉pα

for di | pα−m . We want to find xd(�) which yields

δ f (d1,d2)pα =
{

1 if d1 = d2,

0 if d1 	= d2.

In this proof, we put L = pα−m and N = pα for simplicity. We can see that

δ f (d1,d2)N =
∑
�1|L

∑
�2|L

xd1(�1)xd2(�2)
〈 f |�1 , f |�2〉N

〈 f , f 〉N

=
∑
a|L

∑
d| L

a

(∑
�| L

ad

xd1(ad�)λ f ,∞(d�)�− 1
2

)(∑
�| L

ad

xd2(ad�)λ f ,∞(d�)�− 1
2

)
μ(d)

d

by using Lemma 1 and the calculations similar to [9]. We recall that the only prime factor of L is p.
By using (1) and (2), we have

δ f (d1,d2)N =
{∑

a|L xd1(a)xd2(a) if m � 2,∑
c|L

∑
d|c μ(d)d−1λ f ,∞(d)2 Yd1(c)Yd2(c) if m = 1

=
{∑

a|L xd1(a)xd2(a) if m � 2,∑
c|L(

√
ρ f (c)Yd1(c))(

√
ρ f (c)Yd2(c)) if m = 1

where

Yd(c) =
∑
�| L

c

xd(c�)λ f ,∞(�)�− 1
2

and

ρ f (c) =
∑
d|c

μ(c)

d
λ f ,∞(d)2 =

∏
p|c

(
1 − λ f ,∞(p)2

p

)
=

{
1 if c = 1,

1 − p−2 if c 	= 1.
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Let’s impose:

{
xd(a) = δd,a if m � 2,√

ρ f (d)Yd(c) = δd,c if m = 1,

where δ∗,† is Kronecker’s delta symbol. This constraint is fulfilled by the choice

xd(∗) =
⎧⎨
⎩

δd,∗ if m � 2,√
ρ f (d)

−1
λ f ,∞( d

∗ )( d
∗ )− 1

2 μ( d
∗ ) if ∗ | d, m = 1,

0 if ∗ � d, m = 1.

This ends the proof of Lemma 2. �
Remark 7. Iwaniec, Luo and Sarnak obtained an orthogonal basis of Sk(M; f ), which is a space of old
forms in Sk(N), when M | N are square-free integers (see [9]). But it is difficult to obtain an asymptotic
formula of the first moment of L f (1/2 + it,χ) over primitive forms by using their orthogonal basis
and the method in this paper, because we do not know the value of (2.40) in [9] which appear in
their basis.

3. Petersson’s formula

We recall Petersson’s formula when k is a positive even integer and N is a positive integer. The
facts in this section are explained in [8]. For a cusp form f in Sk(N), we have the Fourier expansion
of f at a cusp a and we denote its nth-Fourier coefficient by λ f ,a(n)n(k−1)/2. In this paper, we only
consider two cusps ∞ and 0. For f ∈ Sk(N), we denote

( f |kγ )(z) = (detγ )
k
2 j(γ , z)−k f

(
az + b

cz + d

)
, γ =

(
a b
c d

)
∈ GL2(R).

And from definitions we can write

( f |kσ0)(z) = ( f |kωN)(z) =
∞∑

n=1

λ f ,0(n)n
k−1

2 e2π inz,

where

σ0 = σ0,N =
(

0 −√
N

−1
√

N 0

)
and ωN =

(
0 −1
N 0

)
.

The cusp form f |kωN appears in the functional equation of L f (s,χ), which is

ΛN(s; f ,χ) = ikCχΛN(1 − s; f |kωN ,χ), (9)

where

ΛN(s; f ,χ) =
(

q
√

N

2π

)s

Γ

(
s + k − 1

2

)
L f (s,χ)

and Cχ depend on χ with |Cχ | = 1 (see Theorem 4.3.11 in [13]). If f is a primitive form, we know
that f |kωN = C f f and C f = ±1 depending on the form f (see Theorem 4.6.15 in [13]). In Section 2
we mentioned that λ f ,∞(n) is a real number when f ∈ Hk(N), so λ f ,0(n) is also a real number.
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In the proof of Theorem 1 below, we use Petersson’s formula (see Theorem 3.6 in [8] and Proposi-
tion 2.1 in [9]). Let’s define:

�k,N(m,n;a,b) = Γ (k − 1)

(4π)k−1

∑
f

λ f ,a(m)λ f ,b(n)

〈 f , f 〉N

for a and b as ∞ or 0, where the sum is over an orthogonal basis { f } of Sk(N). This definition is
independent of the choice of the orthogonal basis. Petersson’s formula is as follows

�k,N(m,n;a,b) = δm,nδa,b + 2π i−k
∑

c∈C(a,b)

c−1 Sa,b(m,n; c) Jk−1

(
4π

√
mn

c

)
, (10)

where a and b are ∞ or 0. This formula is showed in Chapter 3 in [8]. We explain the notations in
this formula. In the right-hand side of (10), δ∗,† is Kronecker’s delta symbol and the sum is over

C(a,b) =
{ {c = �N: � ∈ N} if a = b,

{c = �
√

N: � ∈ N and (�, N) = 1} if a 	= b

(see Section 4.2 in [8]). The function Jk−1 is a Bessel function and Sa,b means the Kloosterman sum
as

Sa,b(m,n; c) =
{

S(m,n, �N) if a = b,

S(mN,n, �) if a 	= b,

where N means N N ≡ 1 mod � (see Section 4.2 in [8]).

4. An approximate functional equation

In this section, we prove what is called an ‘approximate functional equation’ (11) when k and N
are positive. From now on we define s = σ + it . Let ε be a small positive number. For any primitive
form f in Hk(N) and X > 0, we can obtain

L f

(
1

2
+ iy,χ

)
=

∞∑
n=1

λ f ,∞(n)χ(n)

n
1
2 +iy

e−( n
X )h − I, (11)

where

I = ikCχ

2π i

∫
(c1)

(
4π2

q2N

)s+iy

Gk

(
s + 1

2
+ iy

)
Xs Γ (1 + s

h )

s

∞∑
n=1

λ f ,0(n)χ(n)

n
1
2 −s−iy

ds,

h = (k + 1)/2 and c1 = −k/2 − ε. Here the path of integration (c) in the above integral is the vertical
line {z ∈ C | σ = c}. The function Gk(s) is defined by

Gk(s) = Γ ( k+1
2 − s)

Γ (s + k−1
2 )

.

Since the method to obtain (11) is known, we recall it briefly (see Section 4.4 in [7]). For c > 0 we
know
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e−Xh = 1

2π i

∫
(c)

Γ (1 + s
h )

s
X−s ds (12)

and see

1

2π i

∫
( 1

2 +ε)

L f

(
s + 1

2
+ iy,χ

)
Xs Γ (1 + s

h )

s
ds =

∞∑
n=1

λ f ,∞(n)χ(n)

n
1
2 +iy

e−( n
X )h

.

On the left-hand side of this equation, we move the path of integration from the line σ = 1/2 + ε to
the line σ = −k/2 − ε by using the residue theorem, and we can obtain (11) by using the functional
equation (9). To achieve that, we need estimates for Γ (s) and L f (s,χ) for −k/2−ε � σ � 1+k/2+ε
and any t . For the gamma function, we know Stirling’s formula

logΓ (s) =
(

s − 1

2

)
log s − s + 1

2
log 2π + O δ

(|s|−1) (13)

for −π + δ < arg s < π − δ. By using this, we can see

∣∣Γ (s)
∣∣ = √

2π |t|σ− 1
2 e− π

2 |t|(1 + O
(|t|−1))

for −π + δ < arg s < π − δ, |σ/t| � c0 and c1 � σ � c2, where ci are absolute constants. We apply
this estimate to Γ (1 + s/h). Next let’s give an estimate for L f (s). From Stirling’s formula (13) we see

Gk(s) =
k/2−1∏

j=0

s + (k − 1)/2 + j

(k + 1)/2 − s + j
× Γ (k − 1/2 − s)

Γ (s + k + 1/2)
(k − 1/2 − s)(s + k − 1/2)

�k

∣∣∣∣Γ (k − 1/2 − s)

Γ (s + k + 1/2)

∣∣∣∣|k + it|2 �k
(
1 + |t|)1−2σ

(14)

for −k/2 − 1/4 � σ � 1/2. And we know

∣∣L f (1 + a + it,χ)
∣∣ �

∞∑
n=1

d(n)

n1+a
= ζ 2(1 + a) � (

1 + a−1)2
.

Therefore the functional equation (9) yields

L f (−k/2 − ε + it,χ) �k
(
q
√

N
(
1 + |t|))1+k+2ε

for fixed small positive constant ε. By using these facts and the Phragmén–Lindelöf theorem or the
maximum modulus principle, for −k/2 − ε � σ � 1 + k/2 + ε we have

L f (s,χ) �k
(
q
√

N
(
1 + |t|))1+ k

2 +ε−σ
.
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5. The key lemma

In what follows we consider only the special case where k is an even positive integer satisfying
0 < k < 12 or k = 14, p is a prime number with (q, p) = 1 and N = pα . We define:

Sk
(

pα
) =

∑
f ∈Hk(pα)

L f (
1
2 + iy,χ)

ω f (pα)
,

where

ω f
(

pα
) = (4π)k−1

Γ (k − 1)
〈 f , f 〉pα .

By using the approximate functional equation (11), we have

Sk
(

pα
) =

∞∑
n=1

χ(n)e−( n
X )h

n
1
2 +iy

∑
f ∈Hk(pα)

λ f ,∞(n)

ω f (pα)
− ikCχ

2π i

∫
(c1)

(
4π2

q2 pα

)s+iy

Xs

× Γ (1 + s
h )

s
Gk

(
s + 1

2
+ iy

) ∞∑
n=1

χ(n)

n
1
2 −s−iy

∑
f ∈Hk(pα)

λ f ,0(n)

ω f (pα)
ds,

where h = (k + 1)/2. We put

sa
k,pα (n) =

∑
f ∈Hk(pα)

λ f ,a(n)

ω f (pα)

for a = ∞, 0 and we can write

Sk
(

pα
) =

∞∑
n=1

χ(n)e−( n
X )h

n
1
2 +iy

s∞
k,pα (n) − ikCχ

2π i

∫
(c1)

(
4π2

q2 pα

)s+iy

Xs

× Γ (1 + s
h )

s
Gk

(
s + 1

2
+ iy

) ∞∑
n=1

χ(n)

n
1
2 −s−iy

s0
k,pα (n)ds. (15)

It is important to study sa
k,pα (n) for our aim.

For an integer β satisfying 0 < β � α, we put

Bk
(

pβ
) =

β⋃
m=1

⋃
f ∈Hk(pm)

⋃
d|pβ−m

{ fd}.

From Lemma 2 we can see that Bk(pβ) is an orthogonal basis of Sk(pβ).
In the case of sk,p , since Hk(p) = Bk(p), we obtain

sa
k,p(n) =

∑
f ∈B (p)

λ f ,a(n)λ f ,∞(1)

ω f (p)
= �k,p(n,1;a,∞). (16)
k
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In the case of sk,p2 , we have

sa

k,p2(n) =
∑

f ∈Hk(p2)

λ f ,a(n)

ω f (p2)
=

∑
f ∈Hk(p2)

λ f ,a(n)λ f ,∞(1)

ω f (p2)

=
∑

f ∈Bk(p2)

λ f ,a(n)λ f ,∞(1)

ω f (p2)

−
∑

f ∈Hk(p)

λ f ,a(n)λ f ,∞(1)

ω f (p2)
−

∑
f ∈Hk(p)

λ f p ,a(n)λ f p,∞(1)

ω f (p2)
. (17)

From Lemma 2, for f p ∈ Sk(p2) which is related to f ∈ Hk(p), we have

λ f p ,∞(n) = p√
p2 − 1

(
p

1
2 λ f ,∞

(
n

p

)
− λ f ,∞(pn)p− 1

2

)

and also see that

λ f p,∞(1) = p√
p2 − 1

(−λ f ,∞(p)p− 1
2
)
.

By (1) and (2) we obtain

λ f p ,∞(n)λ f p,∞(1) = 1

p2 − 1
λ f ,∞(n)λ f ,∞(1) ×

{
1 if p � n,

(1 − p2) if p | n.

When a = ∞, we apply these relations to (17), and recall (6), then we obtain

s∞
k,p2(n) = �k,p2(n,1;∞,∞) −

∑
f ∈Bk(p)

λ f ,∞(n)λ f ,∞(1)

ω f (p2)

−
∑

f ∈Bk(p)

λ f ,∞(n)λ f ,∞(1)

ω f (p2)

1

(p2 − 1)
×

{
1, p � n,

(1 − p2), p | n

= �k,p2(n,1;∞,∞) −
{ p

p2−1
�k,p(n,1;∞,∞), p � n,

0, p | n.
(18)

This is because Hk(p) = Bk(p) and (6). We consider (17) when a = 0. We have proven

f p(z) = p√
p2 − 1

((
f
∣∣∣( p 0

0 1

))
(z) − p− 1

2 λ f ,∞(p) f (z)

)

for f ∈ Hk(p) from Lemma 2. We can see that

( f p|σ0,p2)(z) = p√
p2 − 1

(
C f f (z) − p

k−1
2 λ f ,∞(p)C f f (pz)

)
.
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This implies

λ f p ,0(n) =
{

p√
p2−1

C f λ f ,∞(n), p � n,

0, p | n.

From (2) we obtain

λ f p ,0(n)λ f p,∞(1) =
{

− p2−1/2

p2−1
λ f ,0(np), p � n,

0, p | n

since λ f ,∞(n) are real and C f λ f ,∞(n) = λ f ,0(n) for f ∈ Hk(p). From (17) we have

s0
k,p2(n) = �k,p2(n,1;0,∞) −

∑
f ∈Bk(p)

λ f ,0(n)λ f ,∞(1)

ω f (p2)

+
∑

f ∈Bk(p)

λ f ,0(pn)λ f ,∞(1)

ω f (p2)

p2−1/2

(p2 − 1)
×

{
1, p � n,

0, p | n

= �k,p2(n,1;0,∞) − 1

p
�k,p(n,1;0,∞)

+
{

p1/2

p2−1
�k,p(pn,1;0,∞), p � n,

0, p | n
(19)

by using Hk(p) = Bk(p) and (6). From (18) and (19) we have

sa

k,p2(n) = �k,p2(n,1;a,∞)

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− p
p2−1

�k,p(n,1;∞,∞), p � n, a = ∞,

0, p | n, a = ∞,

− 1
p �k,p(n,1;0,∞) + p1/2

p2−1
�k,p(pn,1;0,∞), p � n, a = 0,

− 1
p �k,p(n,1;0,∞), p | n, a = 0.

(20)

In the case of sk,pα for α � 3, we have

sa
k,pα (n) =

∑
f ∈Hk(pα)

λ f ,a(n)

ω f (pα)
=

∑
f ∈Hk(pα)

λ f ,a(n)λ f ,∞(1)

ω f (pα)

=
∑

f ∈Bk(pα)

λ f ,a(n)λ f ,∞(1)

ω f (pα)
−

∑
f ∈Bk(pα−1)

λ f ,a(n)λ f ,∞(1)

ω f (pα)

−
α−1∑
m=1

∑
f ∈H (pm)

λ f pα−m ,a(n)λ f pα−m ,∞(1)

ω f (pα)
. (21)
k
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From Lemma 2, for f ∈ Hk(pm) we have

λ f pα−m ,∞(n) =
⎧⎨
⎩

p
α−m

2 λ f ,∞( n
pα−m ), α > m � 2,

p(α+1)/2√
p2−1

(λ f ,∞( n
pα−1 ) − λ f ,∞(p)λ f ,∞(

np
pα−1 )p−1), m = 1

and also see that

λ f pα−m ,∞(1) = 0.

From (21) and (6) we obtain

sa
k,pα (n) = �k,pα (n,1;a,∞) − 1

p
�k,pα−1(n,1;a,∞). (22)

In order to estimate (16), (20) and (22), we consider �k,M(n,1;a,∞), where k and M are positive
integers. Recall Weil’s bound on Kloosterman’s sums

∣∣S(m,n; c)
∣∣ � (m,n, c)

1
2 c

1
2 d(c)

(see [17]) and we have

Jk−1(x) �k xk−1

for x > 0 (see (3) in [16, Section 2.3]). By using these estimates, we can see that

∞∑
�=1

S(n,1;�M)

�M
Jk−1

(
4π

√
n

�M

)
�k d(M)n

k−1
2 M−k+ 1

2

and

∞∑
�=1

S(nM,1;�)
�
√

M
Jk−1

(
4π

√
n

�
√

M

)
�k n

k−1
2 M− k

2 .

From these estimates and Petersson’s formula (10), we have

�k,M(n,1;a,∞) = δn,1δa,∞ +
{

O k(d(M)n
k−1

2 M−k+ 1
2 ), a = ∞,

O k(n
k−1

2 M− k
2 ), a = 0.

By applying this to (16), (20) and (22), we obtain the following lemma.

Lemma 3. Let k be an even integer satisfying 0 < k < 12 or k = 14, p a prime number and α a positive integer.
We denote the set of primitive forms of weight k for Γ0(pα) by Hk(pα) and put

sa
k,pα (n) = Γ (k − 1)

(4π)k−1

∑
f ∈Hk(pα)

λ f ,a(n)

〈 f , f 〉pα

for a = ∞,0. Then we have
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sa
k,pα (n) = δn,1δa,∞

(
1 − cp(α)

)

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O (n
k−1

2 p−k+ 1
2 ), α = 1, a = ∞,

O (n
k−1

2 p− k
2 ), α = 1, a = 0,

O (n
k−1

2 p−2), α = 2, a = 0,

O ((α + 1)n
k−1

2 p−1−(α−1)k+ (α−1)
2 ), α � 2, a = ∞,

O (n
k−1

2 p−1−(α−1) k
2 ), α � 3, a = 0,

where the implied constants are absolute and

cp(α) =
⎧⎨
⎩

0, α = 1,

p(p2 − 1)−1, α = 2,

p−1, α � 3.

Remark 8. The implied constants in Lemma 3 would a priori depend on k, if the limitation on k were
removed, but not on any other parameter.

6. Proof of the theorem

By using Lemma 3, we can estimate the right-hand side of (15). We divide the right-hand side of
(15) into three parts,

Sk
(

pα
) = E pα (X) − I1,pα (X, Y ) − I2,pα (X, Y ),

where

E pα (X) =
∞∑

n=1

χ(n)e−( n
X )h

n
1
2 +iy

s∞
k,pα (n),

I1,pα (X, Y ) = ikCχ

2π i

∫
(c1)

(
4π2

q2 pα

)s+iy XsΓ (1 + s
h )

s
Gk

(
s + 1

2
+ iy

) ∑
n>Y

χ(n)s0
k,pα (n)

n
1
2 −s−iy

ds,

I2,pα (X, Y ) = ikCχ

2π i

∫
(c1)

(
4π2

q2 pα

)s+iy XsΓ (1 + s
h )

s
Gk

(
s + 1

2
+ iy

) ∑
n�Y

χ(n)s0
k,pα (n)

n
1
2 −s−iy

ds.

Here h = (k + 1)/2 and Y � 1. We can move the path of integration in I2,pα from the line σ =
−k/2 − ε to the line σ = ε. By using (13) and (14), we have

I2,pα (X, Y ) = ikCχ

2π i

∫
(ε)

(
4π2

q2 pα

)s+iy XsΓ (1 + s
h )

s
Gk

(
s + 1

2
+ iy

) ∑
n�Y

χ(n)s0
k,pα (n)

n
1
2 −s−iy

ds.

From Lemma 3 we can see that

E pα (X) =
∞∑

n=1

χ(n)e−( n
X )h

n
1
2 +iy

s∞
k,pα (n)

= e−( 1
X )h (

1 − cp(α)
) +

{
O (p−k+ 1

2
∑∞

n=1 e−( n
X )h

n
k
2 −1), α = 1,

O ((α + 1)p−1−(α−1)(k− 1
2 )

∑∞ e−( n
X )h

n
k
2 −1), α � 2.
n=1
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And we have

∞∑
n=1

e−( n
X )h

n
k
2 −1 =

∑
n�X

e−( n
X )h

n
k
2 −1 +

∑
n>X

e−( n
X )h

n
k
2 −1 � X

k
2 .

Then we obtain

E pα (X) = e−( 1
X )h (

1 − cp(α)
) +

{
O (p−k+ 1

2 X
k
2 ), α = 1,

O ((α + 1)p−1−(α−1)(k− 1
2 ) X

k
2 ), α � 2.

(23)

We estimate I1,pα and I2,pα for Y > 1. From Lemma 3 we have

I1,pα (X, Y ) �
(

qp
α
2

2π

)k+2ε

X− k
2 −ε

∑
n>Y

1

n
1
2 + k

2 +ε
×

⎧⎪⎨
⎪⎩

n
k−1

2 p− k
2 , α = 1,

n
k−1

2 p−2, α = 2,

n
k−1

2 p− k(α−1)
2 −1, α � 3

×
∫

(c1)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |dt|

� qk+2ε pαε X− k
2 −εY −ε ×

⎧⎨
⎩

1, α = 1,

pk−2, α = 2,

pk/2−1, α � 3

×
∫

(c1)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |ds|,

I2,pα (X, Y ) �
(

qp
α
2

2π

)2ε

X−ε
∑
n�Y

1

n
1
2 +ε

×

⎧⎪⎨
⎪⎩

n
k−1

2 p− k
2 , α = 1,

n
k−1

2 p−2, α = 2,

n
k−1

2 p− k(α−1)
2 −1, α � 3

×
∫
(ε)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |ds|

� q2ε pα(− k
2 +ε) X−εY

k
2 −ε ×

⎧⎨
⎩

1, α = 1,

pk−2, α = 2,

pk/2−1, α � 3

×
∫
(ε)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |ds|.

From (14) we have

∫
(c1)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |ds|

�
∞∫ (

1 + |t + y|)k+2ε |Γ ( 1−2ε
2h + i t

h )|
| k

2 + ε + i t
h | |dt|
−∞
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�
∞∫

−∞

(
1 + |t + y|)k+2ε

∣∣∣∣Γ
(

1 + 1 − 2ε

2h
+ i

t

h

)∣∣∣∣ |dt|. (24)

To estimate this integral, we use (13) and

∣∣logΓ (s)
∣∣ = √

2π |t|σ− 1
2 e− π

2 |t|(1 + O
(|t|−1)) (25)

for −π + δ < arg s < π − δ, | σit | < 1 and |σ | < C , where C is an absolute constant. We have (25) by
using Stirling’s formula (13). On the right-hand side of (24), we apply (13) to the integral (24) for
|t| � 2h and (25) to the integral (24) for |t| > 2h. Then we have

∫
(c1)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |ds| � (
1 + |y|)k+2ε

.

By the same type of calculations we have

∫
(ε)

∣∣Gk(s + 1/2 + iy)
∣∣∣∣Γ (1 + s/h)s−1

∣∣ |ds| �
∞∫

−∞

(
1 + |t + y|)2ε

∣∣∣∣Γ
(

1 − ε

h
+ i

t

h

)∣∣∣∣ |dt|

� (
1 + |y|)2ε

.

Therefore we obtain

I1,pα (X, Y ) � qk+2ε pαε X− k
2 −εY −ε

(
1 + |y|)k+2ε ×

⎧⎨
⎩

1, α = 1,

pk−2, α = 2,

pk/2−1, α � 3

and

I2,pα (X, Y ) � q2ε pα(− k
2 +ε) X−εY

k
2 −ε

(
1 + |y|)2ε ×

⎧⎨
⎩

1, α = 1,

pk−2, α = 2,

pk/2−1, α � 3.

We put Y = pα X−1q2(1 + |y|)2 and obtain

I1,pα (X, Y ) + I2,pα (X, Y ) � X− k
2 qk(1 + |y|)k ×

⎧⎨
⎩

1, α = 1,

pk−2, α = 2,

p
k
2 −1, α � 3.

(26)

From the estimates (23) and (26) we have

E pα (X) + I1,pα (X, Y ) + I2,pα (X, Y )

= e−( 1
X )h (

1 − cp(α)
) +

⎧⎪⎨
⎪⎩

O (p−k+ 1
2 X

k
2 + X− k

2 qk(1 + |y|)k), α = 1,

O (p−1/2−k X
k
2 + X− k

2 qk(1 + |y|)k pk−2), α = 2,

−1−(α−1)k+ (α−1)
2

k
2 − k

2 k k k
2 −1
O ((α + 1)p X + X q (1 + |y|) p ), α � 3.
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We put

X =

⎧⎪⎨
⎪⎩

p1− 1
2k q(1 + |y|), α = 1,

p2− 3
2k q(1 + |y|), α = 2,

pα− 1
2 − α−1

2k q(1 + |y|), α � 3,

so that Y > 1, as needed, and we obtain

Sk
(

pα
) = E pα (X) + I1,pα (X, Y ) + I2,pα (X, Y )

= e−( 1
X )h (

1 − cp(α)
) +

⎧⎪⎨
⎪⎩

O (p− k
2 + 1

4 q
k
2 (1 + |y|) k

2 ), α = 1,

O (p− 5
4 q

k
2 (1 + |y|) k

2 ), α = 2,

O ((α + 1)p−1− α−1
2 k+ α−1

4 + k
4 q

k
2 (1 + |y|) k

2 ), α � 3.

From (12) we see

e−( 1
X )h = 1

2π i

∫
(1)

Xs Γ (1 + s
h )

s
ds = 1 + 1

2π i

∫
(− k

2 )

Xs Γ (1 + s
h )

s
ds

= 1 + O
(

X− k
2
)

and we obtain Theorem 1.
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