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Recently by using the theory of modular forms and the Riemann
zeta-function, Lü improved the estimates for the error term in a
divisor problem related to the Epstein zeta-function established
by Sankaranarayanan. In this short note, we are able to further
sharpen some results of Sankaranarayanan and of Lü, and to
establish corresponding Ω-estimates.
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1. Introduction

For a positive definite quadratic form Q (y) = Q (y1, . . . , y�) in � � 2 variables with integral coeffi-
cients, we can write it in Siegel’s notation as
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Q (y) = 1

2
A[y] = 1

2
ytAy =

∑
i< j

ai j yi y j + 1

2

∑
i

aii y2
i ,

where yt is the transpose of y, and the matrix A = (aij) has integral entries which are even on the
diagonal, i.e., aii ≡ 0 (mod 2) for 0 � i � �. Then the corresponding Epstein zeta-function is initially
defined by the Dirichlet series

Z Q (s) :=
∑
y1∈Z

· · ·
∑
y�∈Z

(y1,...,y�) �=(0,...,0)

Q (y1, . . . , y�)
−s (1.1)

for �e s > �/2. We can also rewrite it, in the same region, as

Z Q (s) =
∑
n�1

ann−s,

where an is the number of the solutions of the equation Q (y) = n with y ∈ Z
� . It is known that Z Q (s)

has an analytic continuation to the whole complex plane C with only a simple pole at s = �/2, and
satisfies the functional equation of Riemann type

(
d1/�/2π

)s
Γ (s)Z Q (s) = (

d1−1/�/2π
)�/2−s

Γ (�/2 − s)Z �Q (�/2 − s) (s ∈ C),

where d is the discriminant of Q and �Q (y) := 1
2 yt(dA−1)y (cf. [9]).

If we write for any integer k � 1,

Z Q (s)k =
∑
n�1

ak(n)n−s,

then

ak(n) =
∑

n1···nk=n

an1 · · ·ank .

In particular a1(n) = an . It seems interesting to study the asymptotic behavior of the sum
∑

n�x ak(n).
It is easy to show that its main term is

Res
s=�/2

(
Z Q (s)kxss−1) = x�/2 Pk(log x),

where Pk(t) is a polynomial in t of degree k − 1. Then the real hard work is to study the error term

�∗
k (Q , x) :=

∑
n�x

ak(n) − x�/2 Pk(log x). (1.2)

In 1912, Landau [7] proved that for � = 2, �∗
1(Q , x) � x1/3+ε , where and throughout this paper ε

denotes an arbitrarily small positive constant. Landau’s method can also be applied to treat the general
case. In fact his method implies that for k � 1 and � � 2,

�∗
k (Q , x) � x�/2−�/(k�+1)+ε.
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Later Chandrasekharan and Narasimhan [1] were able to delete the ε in the exponent of x. In [9],
Sankaranarayanan improved these classical results by showing that for k � 2 and � � 3,

�∗
k (Q , x) � x�/2−1/k+ε. (1.3)

Recently inspired by Iwaniec’s book [5], Lü [8] was able to improve (1.3) for the quadratic forms
of level one (see [5, Chapter 11]). These quadratic forms are defined by Q (y) = 1

2 A[y] with diag(A) =
diag(A−1) ≡ 0 (mod 2), where diag(A) denotes the set of entries on the diagonal of the matrix A.
Moreover we have that det(A) = 1, A is equivalent to A−1, and the number of variables satisfies
� ≡ 0 (mod 8). Denote by Q� the set of quadratic forms of level one with � variables. For Q ∈ Q� , we
have (see [5, (11.32)] or [8, Lemma 2.1])

an = A�σ�/2−1(n) + a f (n, Q ) (n � 1),

where

A� := (2π)�/2

ζ(�/2)Γ (�/2)
, σk(n) =

∑
d|n

dk,

ζ(s) is the Riemann zeta-function, Γ (s) is the Gamma function and a f (n, Q ) is the nth Fourier coef-
ficient of a cusp form f (z, Q ) of weight �/2 with respect to the full modular group SL(2,Z). Thus

Z Q (s) = A�ζ(s − �/2 + 1)ζ(s) + L(s, f ) (�e s > �/2), (1.4)

where L(s, f ) is the Hecke L-function associated with f (z, Q ). According to the well known Deligne’s
work [2], we have

∣∣a f (n, Q )
∣∣ � n(�/2−1)/2τ (n), (1.5)

where τ (n) is the divisor function. With the help of these properties, Lü proved, by complex inte-
gration method, a better estimate than Sankaranarayanan’s (1.3) for all k � 3 and 8 | �. For r � 0, the
r-dimensional divisor function τr(n) is defined by

ζ(s)r =
∑
n�1

τr(n)n−s (�e s > 1).

The r-dimensional divisor problem concerns the estimate of the error term

�r(x) :=
∑
n�x

τr(n) − Res
s=1

(
ζ(s)r xss−1) =

∑
n�x

τr(n) − xGr(log x), (1.6)

where Gr(t) is a polynomial of degree r − 1 if r � 1 and G0(t) ≡ 0. It is known that

�r(x) � xθr+ε (x � 2) (1.7)

where

θ0 = 0, θ1 = 0, θ2 = 131/416, θ3 = 43/96 (1.8)

and
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θr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3r − 4)/(4r), if 4 � r � 8,

35/54, if r = 9,

41/60, if r = 10,

7/10, if r = 11,

(r − 2)/(r + 2), if 12 � r � 25,

(r − 1)/(r + 4), if 26 � r � 50,

(31r − 98)/(32r), if 51 � r � 57,

(7r − 34)/(7r), if r � 58.

(1.9)

(The case of r = 0,1 is trivial. See [3] for r = 2, [6] for r = 3 and [4, Theorem 13.2] for r � 4.) Lü’s
result (see [8, Theorem 1.2]) can be stated as follows

�∗
k (Q , x) �

{
x�/2−1/2+ε, if k = 3,

x�/2−1+θk+ε, if k � 4.
(1.10)

In this short note, we can further improve Sankaranarayanan’s (1.3) with k = 2 and Lü’s (1.10) with
k = 3.

Theorem 1. Let k � 2 and 8 | �. Then for any quadratic form Q (y) ∈ Q� , we have

�∗
k (Q , x) � x�/2−1+θk+ε,

where θk is the exponent in (1.7).

For comparison, we note that

�/2 − 1 + θk =
{

�/2 − 1/2 − 0.185 . . . if k = 2,

�/2 − 1/2 − 0.052 . . . if k = 3,

which are better than (1.3) with k = 2 and (1.10), respectively.
For k = 2 or 3, we also can establish Ω-type result.

Theorem 2. Let 2 � k � 8 and 8 | �. If there is a positive constant δ such that

θr � (k − 1)/(2k) − δ (0 � r � k − 1), (1.11)

then for any quadratic form Q (y) ∈ Q� and ε > 0, we have

�∗
k(Q , x) = Ω

(
x�/2−1+(k−1)/(2k)(log x)(k−1)/(2k)(log2 x)βk (log3 x)−γk−ε

)
(1.12)

where βk := (k(2k)/(k+1) − 1)(k + 1)/(2k) and γk := (3k − 1)/(4k).
In particular (1.12) holds unconditionally for k = 2 or 3.

Our method is different from [8]. First we shall establish relations between �k(x) and �∗
k (Q , x)

and then deduce Theorems 1 and 2 from known O -type and Ω-type estimates for �k(x).



1738 G.S. Lü et al. / Journal of Number Theory 131 (2011) 1734–1742
2. Preliminary lemmas

This section is devoted to establish three preliminary lemmas, which will be needed in the proof
of Theorems 1 and 2.

Lemma 2.1. For any ε > 0, we have

x∫
1

�r(t)dt �r,ε x1+δr+ε (x � 1),

where

δr :=
{

1/2 − 1/r, if r = 2,4,6,8,

1/2 − 1/(r + 1), if r = 1,3,5,7.
(2.1)

Proof. By Perron’s formula [11, Theorem II.2.3], we obtain, with b := 1 + 1/ log x,

x∫
0

�r(u)du = 1

2π i

b+i∞∫
b−i∞

Fr(s; x)ds −
x∫

0

uGr(log u)du, (2.2)

where b := 1 + 1/ log x and Fr(s; x) := ζ(s)r xs+1/{s(s + 1)}.
Let max{1 − 6/r,0} < a < 1. By using the classical estimate

ζ(s) � (|t| + 2
)max{(1−σ )/3,0}

log
(|t| + 2

)
,

we deduce that for all ε > 0 and T > 0,∫
a�σ�b, |τ |=T

∣∣Fr(s; x)
∣∣|ds| � (

x2T −2 + x1+a T −2+max{(1−a)r/3,0})(log T )r,

and ∫
σ=b, |t|�T

∣∣Fr(s; x)
∣∣|ds| � x2T −1(log T )r .

Using the preceding estimates and shifting the line of integration from σ = b to σ = a, the residue
theorem implies that

1

2π i

b+i∞∫
b−i∞

Fr(s; x)ds = 1

2π i

b+iT∫
b−iT

Fr(s; x)ds + O

(
x2

T
(log T )r

)

=
x∫

0

uGr(u)du + 1

2π i

a+iT∫
a−iT

Fr(s; x)ds

+ O

(
x2

T
(log T )r + x1+a

T 2−max{(1−a)r/3,0} (log T )r
)

,
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where we have used the relation

Res
s=1

(
Fr(s; x)

) =
x∫

0

uGr(u)du.

Making T → ∞ and inserting the obtained formula into (2.2), we find that

x∫
1

�r(u)du = 1

2π i

a+i∞∫
a−i∞

Fr(s; x)ds

� x1+a

+∞∫
−∞

|ζ(a + it)|r
(|t| + 1)2

dt.

When r = 2,4,6,8, the last integral is convergent for any a > 1/2 − 1/r � max{1 − 6/r,0} (see [4,
Lemma 13.1 and Theorem 13.4]). For r = 2k − 1 (1 � k � 4), we have

+∞∫
−∞

|ζ(a + it)|r
(|t| + 1)2

dt �
{ +∞∫

−∞

|ζ(a + it)|2(k−1)

(|t| + 1)2
dt

}1/2{ +∞∫
−∞

|ζ(a + it)|2k

(|t| + 1)2
dt

}1/2

< ∞

provided a > 1/2 − 1/(2k) = 1/2 − 1/(r + 1) � max{1 − 6/r,0}. This completes the proof. �
Lemma 2.2. For r � 0, we have

∑
n�x

τr(n)n�/2−1 = x�/2G∗
r (log x) + x�/2−1�r(x) + O

(
x�/2−1+δr

)
, (2.3)

where G∗
r (t) is a polynomial of degree r − 1 with the convention that G∗

0(t) ≡ 0 and the constant δr � 0 is
given by (2.1). In particular

∑
n�x

τr(n)n�/2−1 = x�/2G∗
r (log x) + O

(
x�/2−1+θr

)
. (2.4)

Proof. With the help of (1.6) and Lemma 2.1, a simple partial summation yields

∑
n�x

τr(n)n�/2−1 =
x∫

1

t�/2−1(tGr(log t)
)′

dt +
x∫

1−
t�/2−1 d�r(t)

= x�/2G∗
r (log x) + x�/2−1�r(x) + O

(
x�/2−1+δr

)
.

This completes the proof. �
In order to state our third lemma, it is necessary to introduce some notation.
By (1.4), we can write, for �e s > �/2,
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Z Q (s)k =
∑

0�r�k

Ar
�Cr

kζ(s)r L(s, f )k−rζ(s − �/2 + 1)r,

ζ(s − �/2 + 1)k =
∑

0�r�k

A−k
� Cr

k(−1)k−rζ(s)−k L(s, f )k−r Z Q (s)r .

These imply that

ak(n) =
∑

0�r�k

Ar
�Cr

k

∑
dm=n

bk,r(d)τr(m)m�/2−1, (2.5)

τk(n)n�/2−1 =
∑

0�r�k

(−1)k−r A−k
� Cr

k

∑
dm=n

ck,r(d)ar(m), (2.6)

where bk,r and ck,r are defined by the relations

ζ(s)r L(s, f )k−r =
∑
n�1

bk,r(n)n−s, ζ(s)−k L(s, f )k−r =
∑
n�1

ck,r(n)n−s,

for �e s > �/2.

Lemma 2.3. Let j � 0, k � 2, 0 � r � k, 8 | � and θ > (� + 2)/4. Then for any quadratic form Q (y) ∈ Q� and
dk,r = bk,r or ck,r , we have

∑
n�x

|dk,r(n)|
nθ

� j,�,θ 1 (x � 2), (2.7)

∑
n�x

dk,r(n)(log n) j

nθ
= C f ( j,k, r, θ) + O

(
x−θ+(�+2)/4+ε

)
(x � 2), (2.8)

where C f ( j,k, r, θ) is a constant.

Proof. By the definition of bk,r and ck,r , we have

bk,r(n) =
∑

d1···drm1···mk−r=n

a f (Q ,m1) · · ·a f (Q ,mk−r),

ck,r(n) =
∑

d1···dkm1···mk−r=n

μ(d1) · · ·μ(dk)a f (Q ,m1) · · ·a f (Q ,mk−r).

We treat only the case of bk,r and the latter is completely similar. With the help of the Deligne
inequality (1.5), we have

∑
n�x

∣∣bk,r(n)
∣∣ �

∑
d�x

τr(d)
∑

m�x/d

τ2(k−r)(m)m(�−2)/4

�
∑
d�x

τr(d)(x/d)�/4+1/2(log x)2k−2r−1

� j,�x(�+2)/4(log x)2k−2r−1 (0 � r � k).

From this, a simple partial integration allows us to deduce (2.7) and (2.8). �
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3. Proof of Theorem 1

By (2.5), (2.4) of Lemma 2.2 and (2.7) of Lemma 2.3, it follows that

∑
n�x

ak(n) = x�/2
∑

0�r�k

Cr
k Ar

�

∑
d�x

bk,r(d)

d�/2
G∗

r

(
log(x/d)

) + O
(
x�/2−1+θk+ε

)
.

Since �/2 > (� + 2)/4, (2.8) of Lemma 2.3 implies that

∑
0�r�k

Cr
k Ar

�

∑
d�x

bk,r(d)

d�/2
G∗

r

(
log(x/d)

) = Pk(log x) + O
(
x1/2−�/4+ε

)
.

Inserting it into the preceding formula, we get the required result. �
4. Proof of Theorem 2

From (2.6) and (1.2), we can deduce that

∑
n�x

τk(n)n�/2−1 = x�/2G∗
k (log x) + O

(
x(�+2)/4+ε

)

+
∑

0�r�k

(−1)k− j A−k
� Cr

k

∑
d�x

ck,r(d)�∗
r (Q , x/d),

where we have used the following estimate

∑
0�r�k

(−1)k− j A−k
� Cr

k

∑
d�x

ck,r(d)(x/d)�/2 Pr
(
log(x/d)

) = x�/2G∗
k (log x) + O

(
x(�+2)/4+ε

)
.

Comparing with (2.3) of Lemma 2.2 yields

x�/2−1�k(x) =
∑

0�r�k

(−1)k−r A−k
� Cr

k

∑
d�x

ck,r(d)�∗
r (Q , x/d) + O

(
x�/2−1+δk

)
.

Under hypothesis (1.11), by (2.5), (2.3) of Lemma 2.2 and (2.7) of Lemma 2.3 we have

�∗
r (Q , x) � x�/2−1+r/{2(r+1)}−δ+ε

� x�/2−1+(k−1)/(2k)−δ/2

for 0 � r � k − 1. Inserting into the preceding formula and using (2.7), we can deduce

x�/2−1�k(x) = A−k
�

∑
d�x

ck,k(d)�∗
k (Q , x/d) + O

(
x�/2−1+(k−1)/(2k)−δ/2). (4.1)

On the other hand, according to Soundararajan [10], we have, for any k � 2,

�k(x) = Ω
(
(x log x)(k−1)/(2k)(log2 x)βk (log3 x)−γk

)
. (4.2)

Now on noting (2.7) of Lemma 2.3, the first assertion of Theorem 2 follows from (4.1) and (4.2).
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Finally in view of (1.8), it is easy check that the hypothesis (1.11) is satisfied when k = 2 or 3.
Therefore (1.12) holds unconditionally for these two values of k.

This completes the proof of Theorem 2. �
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