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Let K be a complete discrete valued field of characteristic zero with
residue field kK of characteristic p > 0. Let L/K be a finite Galois
extension with Galois group G such that the induced extension of
residue fields kL/kK is separable. Hesselholt (2004) [2] conjectured
that the pro-abelian group {H1(G, Wn(OL))}n∈N is zero, where OL

is the ring of integers of L and W (OL) is the ring of Witt vectors
in OL w.r.t. the prime p. He partially proved this conjecture for
a large class of extensions. In this paper, we prove Hesselholt’s
conjecture for all Galois extensions.

© 2011 Published by Elsevier Inc.

1. Introduction

Let p be a prime number and K be a complete discrete valued field of characteristic zero
with residue field kK of characteristic p. Let L/K be a finite Galois extension with Galois group
G , such that the induced extension of residue fields kK /kL is separable. Let Wn(OL) denote the
ring of Witt vectors of length n in OL . In [2], Hesselholt conjectured that the pro-abelian group
{H1(G, Wn(OL))}n∈N vanishes, which means that for every integer n, there exists m > n such that
the map H1(G, Wm(OL)) → H1(G, Wn(OL)) is zero. As explained in [2], this can be viewed as an
analogue of Hilbert theorem 90 for the ring of Witt vectors W (OL).

In order to prove the above conjecture, one easily reduces to the case where L/K is a totally
ramified Galois extension of degree p (see Lemma 3.1). For such an extension, let s = s(L/K ) be the
ramification break (see [4, IV, Remark 1]) in the ramification filtration of G . This is the largest integer
such that G acts trivially on OL/P

s+1
L , where PL is the maximal ideal of OL . Hesselholt proved his

* Corresponding author.
E-mail addresses: amit@math.tifr.res.in (A. Hogadi), supriya@math.tifr.res.in (S. Pisolkar).
0022-314X/$ – see front matter © 2011 Published by Elsevier Inc.
doi:10.1016/j.jnt.2011.03.004

http://dx.doi.org/10.1016/j.jnt.2011.03.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:amit@math.tifr.res.in
mailto:supriya@math.tifr.res.in
http://dx.doi.org/10.1016/j.jnt.2011.03.004


1798 A. Hogadi, S. Pisolkar / Journal of Number Theory 131 (2011) 1797–1807
conjecture for extensions with s > eK /p − 1. The following theorem, which is the main result of this
paper, proves Hesselholt’s conjecture for all Galois extensions.

Theorem 1.1. Let L/K be a finite Galois extension of complete discrete valued fields of mixed characteristic
with Galois group G, such that the induced extension of residue fields kL/kK is separable. Then the pro-abelian
group {H1(G, Wn(OL))}n∈N is zero.

As a corollary of the above result we will show the following.

Corollary 1.2. Let L/K be as in Theorem 1.1. Then

H1(G, W (OL)
) = lim←− H1(G, Wn(OL)

) = 0

We thank the referee for pointing out to us the difference between the vanishing of the pro-
abelian group {H1(G, Wn(OL))}n∈N and the vanishing of lim←− H1(G, Wn(OL)). The former means that
for every n ∈ N, there exists an integer m > n such that the map

H1(G, Wm(OL)
) → H1(G, Wn(OL)

)
is zero and is stronger than saying that lim←− H1(G, Wn(OL)) vanishes. For generalities on pro-abelian
groups, we refer the reader to [3, Section 1].

Although the proof of Hesselholt’s result does not generalize (for instance due to use of [2, 2.2]),
our proof, which is based on an observation on addition in the ring of Witt vectors (see Lemma 2.2)
relies on several ideas developed in [2]. One of these ideas which we use is the following.

Lemma 1.3. (See [2, 1.1].) Let L/K be as in Theorem 1.1. Let m � 1 be an integer and suppose that the induced
map

H1(G, Wm+n(OL)
) → H1(G, Wn(OL)

)
is zero for n = 1. Then the same is true, for all n � 1. In particular the pro-abelian group {H1(G, Wn(OL))}n∈N

vanishes.

Thus, in view of the above lemma and Lemma 3.1, to prove Theorem 1.1, it is enough to prove the
following.

Theorem 1.4. Let K be as above and L/K be degree-p totally ramified cyclic extension with Galois group G.
Then there exists a positive integer m ∈ N such that the homomorphism H1(G, Wm(OL)) → H1(G, OL) is
equal to zero.

2. Remarks on addition of Witt vectors

The main observation of this section is Lemma 2.2, which lies at the heart of the proof of Theo-
rem 1.1. We first recall from [4, II] how addition of Witt vectors is defined. For every positive integer n,
define ghost polynomials wn ∈ Z[X0, . . . , Xn] by

wn(X0, . . . , Xn) = X pn

0 + p X pn−1

1 + p2 X pn−2

2 + · · · + pn Xn

One now defines addition of Witt vectors (thanks to Theorem 2.1) in such a way that if

(X0, . . . , Xn) + (Y0, . . . , Yn) = (Z0, . . . , Zn) (1)
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then

wi(X0, . . . , Xi) + wi(Y0, . . . , Yi) = wi(Z0, . . . , Zi) ∀0 � i � n

Theorem 2.1. (See [4, II, §6].) For every positive integer n, there exists a unique φn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn]
such that

wn(X0, . . . , Xn) + wn(Y0, . . . , Yn) = wn(φ1, . . . , φn)

In other words, in Eq. (1) above

Zi = φi(X0, . . . , Xi, Y0, . . . , Yi)

Since φi ’s are polynomials with integral coefficients, the expression makes sense in all characteristics.
We now consider addition of p-many Witt vectors. Let

(x10, . . . , x1n) + · · · + (xp0, . . . , xpn) = (z0, . . . , zn)

By the above discussion, for every 0 � i � n, there exist polynomials in p(i + 1) variables, gi ∈
Z[X10, . . . , X1i, . . . , X p0, . . . , X pi] such that

zi = gi(x10, . . . , x1i, . . . , xp0, . . . , xpi)

The following observation is about the nature of these polynomials. In order to state this observations,
without loss of generality we work over the polynomial ring

Rn = Z
[{xij | 1 � i � p, 0 � j � n − 1}].

Lemma 2.2. Let p be a prime number, and let Rn be the polynomial ring as above. For every i � n, the polyno-
mial ring Ri is a subring of Rn. Let xi = (xi0, . . . , xi(n−1)) ∈ Wn(Rn) for 1 � i � p.

(z0, z2, . . . , z(n−1)) :=
p∑

i=1

(xi0, xi1, . . . , xi(n−1))

(1) For all 0 � � � n − 1 there exists a polynomial f� ∈ R� such that

z� =
p∑

i=1

xi� + f�

where each monomial of f� has degree � p. We set f0 = 0.
(2) For � � 2, there exists a polynomial h�−2 ∈ R�−1 such that

f� =
∑p

i=1 xp
i,�−1 − (

∑p
i=1 xi,�−1)

p

p
− 1

p

[p−1∑
j=1

(
p

j

)( p∑
i=1

xi,�−1

)p− j

f j
�−1

]
+ h�−2

and each monomial appearing in h�−2 has degree � p2 . For � = 1, the above expression remains valid by
setting h−1 = 0.
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Proof. (1) By the definition of addition of Witt vectors by using ghost polynomials we have, for
0 � � � (n − 1),

p∑
i=1

w�(xi0, . . . , xi�) = w�(z0, . . . , z�)

Using the expression for the polynomials w� and rearranging, we get

z� =
p∑

i=1

xi� + f�

where

f� = 1

p�

( p∑
i=1

xp�

i0 − zp�

0

)
+ · · · + 1

p

( p∑
i=1

xp
i(�−1)

− zp
�−1

)

The claim that f� has integral coefficients follows from Theorem 2.1. All the terms above involving
the variables xij , 1 � i � p, 0 � j � � − 1 will have monomials of degree � p. This shows that every
monomial appearing in the expression of f� has degree � p.

(2) Substitute z�−1 = ∑p
i=1 xi(�−1) + f�−1 in the expression of f� and rewrite f� as

f� = (
∑p

i=1 xp
i(�−1)

) − (
∑p

i=1 xi(�−1))
p

p
− 1

p

p−1∑
j=1

(
p

j

)( p∑
i=1

xi(�−1)

)p− j

· f j
�−1 + h�−2

where

h�−2 = − 1

p
f p
�−1 + 1

p2

(
xp2

1(�−2) + xp2

2(�−2) + · · · + xp2

p(�−2) − zp2

�−2

) + · · ·

+ 1

p�

(
xp�

10 + xp�

20 + · · · + xp�

p0 − zp�

0

)

As p is a prime number, every binomial coefficient
(p

j

)
with 1 � j < p is divisible by p. Thus the

first two terms in the above expressions of f� have integral coefficients. Since we know that f� has
integral coefficients, it follows that h�−2 has integral coefficients too. Moreover, since all monomials
appearing in f�−1 have degree � p, all monomials appearing in f p

�−1 have degree � p2. Since each zt

for 0 � t � � − 2, is again a polynomial without a constant term in the variables xij , all monomials

appearing in the polynomial zp�−t

t will have at least p2. This shows that all monomials appearing in
the expression of h�−2 have degree � p2. �
3. Proof of the main theorem

In this section, we prove Theorem 1.4. As mentioned before, the main theorem, Theorem 1.1, fol-
lows immediately from Theorem 1.4 and Lemma 1.3. Throughout this section v K (resp. v L ) will denote
normalized valuation on K (resp. on L) so that their values at the respective uniformizers are equal
to 1.

Lemma 3.1. Let p be a prime number and L/K be a finite Galois extension of complete discrete fields with
G = Gal(L/K ). Suppose that kL/kK is separable. Then the following two statements are equivalent.
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(i) The pro-abelian group {H1(G, Wn(OL))}n∈N vanishes for all extensions L/K as above.
(ii) The pro-abelian group {H1(G, Wn(OL))}n∈N vanishes for all L/K as above which are ramified and of

degree p.

Proof. (i) �⇒ (ii) is obvious. Now we prove (i) assuming (ii).
Let L/K be any Galois extension of complete discrete valued fields. Let Lt be the maximal subfield

of L which is tamely ramified over K . The extension Lt/K is Galois and let H = Gal(L/Lt). Since Lt/K
is tame, OLt is a projective O K [G/H] module (see [1, I, Theorem 3]) which can be used to show
the vanishing of the pro-abelian group {H1(G/H, Wn(OLt ))}n∈N . Moreover, because of the following
inflation–restriction exact sequence of pro-abelian groups

0 → {
H1(G/H, Wn(OLt )

)}
n∈N

inf−→ {
H1(G, Wn(OL)

)}
n∈N

res−→ {
H1(H, Wn(OL)

)}
n∈N

vanishing of {H1(G, W (OL))}n∈N is implied by that of {H1(H, Wn(OL))}n∈N . Thus without loss of
generality, we may replace K by Lt and assume that our extension L/K is totally wildly ramified
Galois extension. Thus G is a p-group. Since any p-group has a normal subgroup of index p, again by
induction and inflation–restriction exact sequence, we reduce ourselves to the case when L/K is of
degree p. But in this case the vanishing of {H1(G, Wn(OL))}n∈N is guaranteed by (ii). This proves the
lemma. �

Let G be any finite cyclic group with a generator σ . Let M be a G-module. Then the cohomology
group Hi(G, M) is isomorphic to the ith cohomology group of the complex

M
1−σ−→ M

tr−→ M
1−σ−→ M

tr−→ M → ·· ·
where for a ∈ M , tr(a) = ∑

g∈G ga. Thus in the case at hand, where L/K is a cyclic Galois extension,
we have a canonical isomorphism

H1(G, Wm(OL)
) ∼= Wm(OL)

tr=0/(σ − 1)Wm(OL)

Henceforth, for K as before, we assume L/K is a totally ramified cyclic extension of degree p. For such
an extension we will denote by s the ramification break. To prove Theorem 1.4 we need following
lemmas and results from [2].

Lemma 3.2. (See [2, 2.4].) Let L/K be as above. Suppose that x ∈ Otr=0
L represents a non-zero class in

H1(G, OL). Then v L(x) � s − 1.

Lemma 3.3. (See [2, 2.1].) Let L/K be as above. For all a ∈ OL ,

v K
(
tr(a)

)
�

(
v L(a) + s(p − 1)

)
/p

Lemma 3.4. (See [2, 2.2].) Let L/K be as above. For all a ∈ OL ,

v K
(
tr

(
ap) − tr(a)p) = eK + v L(a)

Lemma 3.5. For L/K be as above, let x = (x0, x1, . . . , xn−1) ∈ Wn(OL)
tr=0 . Then tr(x0) = 0 and for all 1 �

� � n − 1

−tr(x�) = tr(xp
�−1) − tr(x�−1)

p

− C .tr(x�−1)
p + h�−2
p
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where C is the integer defined by

C = 1

p

p−1∑
j=1

(−1) j
(

p

j

)

and h�−2 is a polynomial in x0, . . . , x�−2 and its conjugates. Further each monomial appearing in h�−2 is of
degree � p2 .

Proof. Since x ∈ Wn(OL)
tr=0 we have

p∑
i=1

(
σ i−1x0, . . . , σ

i−1xn−1
) = (0, . . . ,0)

Since zi = 0 for all 0 � i � n − 1, the above claim follows directly from Lemma 2.2(2) by making the
substitutions

xij = σ i−1x j 1 � i � p, 0 � j � n − 1 and f i = −tr(xi) 0 � i � n − 1 �
Lemma 3.6. Notation as in Lemma 3.5. For � � 2, h�−2 ∈ O K . Further

v K (h�−2) � p · min
{

v L(xi)
∣∣ 0 � i � � − 2

}
Proof. The claim that h�−2 ∈ O K follows from the following equation (see Lemma 3.5)

−tr(x�) = tr(xp
�−1) − tr(x�−1)

p

p
− C .tr(x�−1)

p + h�−2

and the fact that tr(a) ∈ O K for any element a ∈ OL . Further since h�−2 is a sum of monomials in
x0, . . . , x�−2 and their conjugates, each of degree � p2 (see Lemma 3.5), we have

v L(h�−2) � p2 · min
{

v L(xi)
∣∣ 0 � i � � − 2

}
The lemma now follows from the fact that v L(h�−2) = p · v K (h�−2). �
Proof of Theorem 1.4. By Lemma 3.2, to prove Theorem 1.4 it is sufficient to find M ∈ N such that,
for all x = (x0, . . . , xM−1) ∈ W M(OL)

tr=0, v L(x0) � s.
Step (1): Let n be a positive integer and (x0, . . . , xn−1) ∈ Wn(OL)

tr=0. We will prove by induction
on � that v L(x�) � s(p−1)

p for 0 � � � n − 2.
By Lemma 3.5, and using the fact that h0 = 0, tr(x0) = 0 we have

−tr(x1) = 1

p

(
tr

(
xp

0

) − tr(x0)
p)

But by Lemma 3.3, v K (tr(x1)) � s(p−1)
p . Thus

v K
(
tr

(
xp

0

) − tr(x0)
p) − eK = v K

(
tr(x1)

)
� s(p − 1)
p
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By Lemma 3.4, v K (tr(xp
0 ) − tr(x0)

p) = v L(x0) + eK . Therefore v L(x0) � s(p−1)
p . This proves the claim

for � = 0.
Now we assume that � � 1 and that for all i � �−1, v L(xi) � s(p−1)

p . We will prove v L(x�) � s(p−1)
p .

By Lemma 3.5, we have

−tr(x�+1) = tr(xp
� ) − tr(x�)

p

p
− C · tr(x�)

p + h�−1

Thus, using Lemma 3.4 we get

v L(x�) = v K

(
tr(xp

� ) − tr(x�)
p

p

)
� inf

{
v K

(
tr(x�+1)

)
, v K

(
C · tr(x�)

p)
, v K (h�−1)

}
Using Lemma 3.3, we have

v K
(
tr(x�+1)

)
� s(p − 1)/p

and

v K
(
C · tr(x�)

p)
� s(p − 1)

By Lemma 3.6, and by induction hypothesis v K (h�−1) � s(p − 1). Combining the above, we get

v L(x�) � s(p − 1)

p

Step (2): We will now see that the lower bound for v L(x0) approaches s as the length of a Witt
vector with first term x0 goes to infinity. The argument that this implies the existence of an integer M
such that for all x ∈ W M(OL), v L(x0) � s is at the end of the proof.

For any positive integer n and (x0, . . . , xn−1) ∈ Wn(OL)
tr=0, by Step (1) we have

v L(xi) � s(p − 1)

p
∀0 � i � n − 2

For a fixed n, and 2 � i � n, we claim that

v L(xn−i) � s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pi−2

)

We prove this by induction on i. For i = 2, this is the claim that

v L(xn−2) � s(p − 1)

p

which follows from Step (1). Now let i be an integer such that 2 � i � n − 1. Assuming the claim for
i we will prove it for i + 1. By induction hypothesis

v L(xn−i) � s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pi−2

)

Therefore by using Lemma 3.3 we get
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v K
(
tr(xn−i)

)
� v L(xn−i) + s(p − 1)

p
� s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pi−1

)

By Lemma 3.5

−tr(xn−i) = tr(xp
n−(i+1)

) − tr(xn−(i+1))
p

p
− C · tr(xn−(i+1))

p + hn−(i+2)

By Lemma 3.3, v K (C · tr(xn−(i+1))
p) � s(p − 1). By Step (1) and Lemma 3.6, v K (hn−(i+2)) � s(p − 1).

Thus, using Lemma 3.4,

v L(xn−(i+1)) = v K

( tr(xp
n−(i+1)

) − tr(xn−(i+1))
p

p

)

� min
{

v K
(
tr(xn−i)

)
, v K

(
C · tr(xn−(i+1))

p)
, v K

(
hn−(i+2)

)}
� min

{
s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pi−1

)
, s(p − 1), s(p − 1)

}

= s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pi−1

)

This proves the claim. Hence

v L(x0) � s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pn−2

)

The right-hand side approaches s as n goes to ∞.
Step (3): There exists an integer M , such that

s(p − 1)

p

(
1 + 1

p
+ · · · + 1

pM−2

)
> s − 1

Since v L is a discrete valuation, for such M and for any (x0, . . . , xM−1) ∈ W M(OL)
tr=0, we have shown

that

v L(x0) � s �
4. Proof of Corollary 1.2

In this section we prove Corollary 1.2. In view of Theorem 1.1, in order to prove this it is suffi-
cient to show that lim←− H1(G, Wn(OL)) coincides with H1(G, W (OL)) for all Galois extensions L/K of
complete discrete valued fields (see Corollary 4.2). Note that in general group cohomology does not
commute with inverse limits.

Proposition 4.1. Let G be a finite group and {Ai}i∈N be an inverse system of G modules indexed by N. For
j > i, let φ ji : A j → Ai denote the given maps. Then the following two statements hold.

(i) If φ ji is surjective for all j > i then

H1(G, lim←− Ai) → lim←− H1(G, Ai)

is surjective.
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(ii) If the induced maps φG
ji : AG

j → AG
i are surjective for all j > i, then

H1(G, lim←− Ai) → lim←− H1(G, Ai)

is injective.

Corollary 4.2. Let L/K be a finite Galois extension of complete discrete valued fields. Then the natural map

Φ : H1(G, W (OL)
) → lim←− H1(G, Wn(OL)

)
is an isomorphism.

Proof. By construction of Witt vectors, the projection maps

Wn+1(OL) → Wn(OL)

are surjective. Thus by the above proposition, Φ is surjective. In order to prove injectivity of Φ we
need to prove surjectivity of

Wn+1(OL)
G → Wn(OL)

G

This follows from the fact that W i(OL)
G = W i(O K ) for all i and from the surjectivity of the projection

maps Wn+1(O K ) → Wn(O K ). �
Proof of Proposition 4.1. (i) Suppose we are given an element α ∈ lim←− H1(G, Ai). This is equivalent
to giving datum αi ∈ H1(G, Ai) for all i such that αi+1 �→ αi . We now inductively construct cocycles
ai

g representing the class αi as follows. For i = 1, choose a1
g arbitrarily. Now, suppose an

g has been

constructed. Then construct an+1
g as follows. First start with any cocycle bn+1

g which represents αn+1.

For an element b ∈ An+1, let b denote its image in An . Thus bn+1
g is a cocycle in An which represents

the same class as that represented by an
g . Thus, there exists c ∈ An such that

bn+1
g − an

g = gc − c

Since by assumption, An+1 → An is surjective, there exists an element d ∈ An+1 such that d = c. Now
define

an+1
g = bn+1

g − (gd − d)

This completes the inductive construction of the cocycles ai
g . The cocycles have the property that

for all i and g ,

ai+1
g �→ ai

g

and thus they define a cocycles with values in lim←− Ai whose class obviously maps to the element α
we started with.

(ii) Suppose α is a class in H1(G, lim←− Ai) which maps to zero in lim←− H1(G, Ai), or equivalently
maps to zero in H1(G, Ai) for each i. Under the given assumption we will show that α = 0. Choose a
cocycle ag representing α. By abuse of notation, we will denote the image of ag in An by ag . The n
will be clear from context.
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For each n, we will now inductively construct an element bn ∈ An such that

ag = gbn − bn ∀g ∈ G

and for all n, bn+1 maps to bn . For n = 1, we know that the image of ag in A1 is a coboundary. Thus
there exists an element b1 ∈ A1 such that

ag = gb1 − b1 ∀g ∈ G

Now suppose we have defined bn . To define bn+1 we first choose an element cn+1 ∈ An+1 such that

ag = gcn+1 − cn+1 ∀g ∈ G

However the image of cn+1 in An , denoted by cn+1 satisfies

gcn+1 − cn+1 = gbn − bn

which means, there exists a d ∈ AG
n such that

bn = cn+1 + d

Since the map AG
n+1 → AG

n is assumed to be surjective, we can lift d to an element d̃ ∈ AG
n+1. Now

define

bn+1 = cn+1 + d̃

The elements bn defined above are compatible elements and hence define an element b of lim←− Ai .
Also, from the construction it is clear that

ag = gb − b ∀g ∈ G

holds, since it holds after taking image in Ai for all i. Thus the cocycle ag is actually a coboundary
and hence the class α we started with is trivial. �
Proof of Corollary 1.2. In view of Theorem 1.1, the proof now follows immediately from Corol-
lary 4.2. �
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