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Vernescu’s sequence and Mortici’s sequences, some numerical
computations are also given.
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1. Introduction

It is well known that we often need to establish some new sequences to converge to
some fundamental constants with increasingly higher speed. These convergent sequences
and constants play a key role in many areas of mathematics and science in general, as
theory of probability, applied statistics, physics, special functions, number theory, or
analysis.

To the best of our knowledge, the most useful convergent sequence is

γn =
n∑

k=1

1
k
− lnn, (1.1)
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which converge towards the well-known Euler’s constant

γ = 0.57721566490115328 . . . .

Up to now, many researchers made great efforts in the area of concerning the rate
of convergence of the sequence (γn)n�1 and establishing faster sequences to converge
to Euler’s constant and had a lot of inspiring results. For example, in [3,4,13,14], the
following estimates are established

1
2n + 1 < γn − γ <

1
2n, (1.2)

using interesting geometric interpretations. In [1,2], DeTemple introduced a faster con-
vergent sequence (Rn)n�1 to γ as follows:

Rn = 1 + 1
2 + 1

3 + · · · + 1
n
− ln

(
n + 1

2

)
, (1.3)

which decreases to γ with the rate of convergence n−2, since

1
24(n + 1)2 < Rn − γ <

1
24n2 . (1.4)

In [12], Vernescu provided the sequence

Vn = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

2n − lnn, (1.5)

for which

1
12(n + 1)2 < γ − Vn <

1
12n2 . (1.6)

Both (1.3) and (1.5) are slight modifications of Euler’s sequences (1.1), but significantly
improve the rate of convergence from n−1 to n−2.

Recently, Mortici researched Euler’s constant again, and provided some convergent
sequences which are faster than (1.1), (1.3) and (1.5).

In [5], Mortici provided the following two sequences

un = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

(6 − 2
√

6)n
− ln

(
n + 1√

6

)
(1.7)

and

vn = 1 + 1
2 + 1

3 + · · · + 1
n− 1 + 1

(6 + 2
√

6)n
− ln

(
n− 1√

6

)
. (1.8)

Both sequences (1.7) and (1.8) were shown to converge to γ as n−3.



322 D. Lu / Journal of Number Theory 136 (2014) 320–329
Next, in [7], Mortici introduced the following class of sequences of the form

μn(a, b) =
n∑

k=1

1
k

+ ln
(
ea/(n+b) − 1

)
− ln a, (1.9)

where a, b are real parameters, a > 0. Furthermore, they proved that among the sequences
(μn(a, b))n�1, the privileged one

μn

(√
2

2 ,
2 +

√
2

4

)

offers the best approximations of γ, since

lim
n→∞

n3
(
μn

(√
2

2 ,
2 +

√
2

4

)
− γ

)
=

√
2

96 . (1.10)

It is their works that motivate our study. In this paper, starting from the well-known
sequence γn and DeTemple’s sequence (Rn)n�1, based on the early works of Mortici and
DeTemple, we provide some new classes of convergent sequence for Euler’s constant as
follows:

Theorem 1.1. For Euler’s constant, we have the following convergent sequence,

rn = 1 + 1
2 + 1

3 + · · · + 1
n
− lnn− a1

n + a2n
n+ a3n

n+ a4n

n+
. . .

, (1.11)

where

a1 = 1
2 , a2 = 1

6 , a3 = −1
6 , a4 = 3

5 , . . . .

Let

r(1)
n = rn = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− a1

n
; (1.12)

r(2)
n = rn = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− a1

n + a2
; (1.13)

r(3)
n = rn = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn− a1

n + a2n
n+a3

. (1.14)

We also have

lim n2(r(1)
n − γ

)
= − 1 ; (1.15)
n→∞ 12
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lim
n→∞

n3(r(2)
n − γ

)
= − 1

72 ; (1.16)

lim
n→∞

n4(r(3)
n − γ

)
= 1

120 . (1.17)

It is easy to see that r
(1)
n = Vn and (1.12) is equivalent to (1.5). Comparing with De-

Temple’s sequence (Rn)n�1, Vernescu’s sequence (Vn)n�2, Mortici’s sequences (un)n�1,
(vn)n�1 and μn(

√
2

2 , 2+
√

2
4 ), (r(3)

n )n�1 improves the rate of convergence from n−2 and n−3

to n−4. In fact, if we need, using Theorem 1.1, we can obtain other convergent sequences
which are faster than r

(3)
n .

Furthermore, for r
(2)
n and r

(3)
n , we also have the following conclusion:

Theorem 1.2. For all natural numbers n,

1
72(n + 1)3 < γ − r(2)

n <
1

72n3 ; (1.18)

1
120(n + 1)4 < r(3)

n − γ <
1

120(n− 1)4 . (1.19)

For obtaining Theorem 1.1, we need the following lemma which was used in [6–11]
and very useful for construction of convergent sequence.

Lemma 1.1. If (xn)n�1 is convergent to zero and there exists the limit

lim
n→∞

ns(xn − xn+1) = l ∈ [−∞,+∞], (1.20)

with s > 1, then

lim
n→∞

ns−1xn = l

s− 1 . (1.21)

Lemma 1.1 was firstly proved by Mortici in [9]. From Lemma 1.1, we can see that
the speed of convergence of the sequence (xn)n�1 increases together with the value s

satisfying (1.20).
The rest of this paper is arranged as follow. In Section 2, we provide the proof of

Theorem 1.1. In Section 3, the proof of Theorem 1.2 is given. In Section 4, we give
some numerical computations which demonstrate the superiority of our new convergent
sequences over DeTemple’s sequence, Vernescu’s sequence and Mortici’s sequences.

2. Proof of Theorem 1.1

Based on the argument of Theorem 2.1 in [10] or Theorem 5 in [11], we need to find
the value a1 ∈ R which produces the most accurate approximation of the form

r(1)
n = 1 + 1 + 1 + · · · + 1 − lnn− a1

. (2.1)
2 3 n n
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To measure the accuracy of this approximation, a method is to say that an approximation
(2.1) is better as r

(1)
n − γ faster converges to zero. Using (2.1), we have

r(1)
n − r

(1)
n+1 = ln

(
1 + 1

n

)
− 1

n + 1 + a1

n + 1 − a1

n
. (2.2)

Developing in power series in 1/n, we have

r(1)
n − r

(1)
n+1 =

(
1
2 − a1

)
1
n2 +

(
a1 −

2
3

)
1
n3 +

(
3
4 − a1

)
1
n4 + O

(
1
n5

)
. (2.3)

From Lemma 1.1, we know that the speed of convergence of the sequence (r(1)
n − γ)n�1

is even higher as the value s satisfying (1.20). Thus, using Lemma 1.1, we have:

(i) If a1 �= 1/2, then the rate of convergence of the sequence (r(1)
n − γ)n�1 is n−1, since

lim
n→∞

n
(
r(1)
n − γ

)
= 1

2 − a1 �= 0.

(ii) If a1 = 1/2, then from (2.3), we have

r(1)
n − r

(1)
n+1 = −1

6
1
n3 + O

(
1
n4

)

and the rate of convergence of the sequence (r(1)
n − γ)n�1 is n−2, since

lim
n→∞

n2(r(1)
n − γ

)
= − 1

12 .

We know that the fastest possible sequence (r(1)
n )n�1 is obtained only for a1 = 1/2.

Next, we define the sequence (r(2)
n )n�1 by the relation

r(2)
n = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn−

1
2

n + a2
. (2.4)

Using the similar method from (2.1) to (2.3), we have

r(2)
n − r

(2)
n+1 =

(
a2 −

1
6

)
1
n3 +

(
1
4 − 3

2a2 −
3
2a

2
2

)
1
n4

+
(

2a3
2 + 3a2

2 + 2a2 −
3
10

)
1
n5 + O

(
1
n6

)
. (2.5)

The fastest possible sequence (r(2)
n )n�1 is obtained only for a2 = 1/6. Then, from (2.5),

we have
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r(2)
n, − r

(2)
n+1 = − 1

24
1
n4 + O

(
1
n5

)

and the rate of convergence of the sequence (r(2)
n − γ)n�1 is n−3, since

lim
n→∞

n3(r(2)
n − γ

)
= − 1

72 .

Thirdly, we define the sequence (r(3)
n )n�1 by the relation

r(3)
n = 1 + 1

2 + 1
3 + · · · + 1

n
− lnn−

1
2

n +
1
6n

n+a3

. (2.6)

Using the similar method from (2.1) to (2.3), we have

r(3)
n − r

(3)
n+1 = −

(
1
4a3 + 1

24

)
1
n4 +

(
11
18a3 + 1

3a
2
3 + 17

135

)
1
n5 + O

(
1
n6

)
. (2.7)

The fastest possible sequence (r(3)
n )n�1 is obtained only for a3 = −1/6. Then, from (2.7),

we have

r(3)
n − r

(3)
n+1 = 1

30
1
n5 + O

(
1
n6

)

and the rate of convergence of the sequence (r(3)
n − γ)n�1 is n−4, since

lim
n→∞

n4(r(3)
n − γ

)
= 1

120 .

By induction, we have a4 = 3/5, . . . , the new sequence (1.11) can be obtained.

3. Proof of Theorem 1.2

Based on the argument of Theorem in [1] or the method in [2], first, we prove (1.18).
It is easy to have

γ − r(2)
n =

∞∑
k=n

(
r
(2)
k+1 − r

(2)
k

)
=

∞∑
k=n

f(k), (3.1)

where

f(k) = 1 − 3 + 3 − ln
(

1 + 1
)
.

k + 1 6k + 7 6k + 1 k
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Next, we have

f ′(x) = −
x2 + 8

9x− 49
216

6(x + 7
6 )2(x + 1)2(x + 1

6)2x
. (3.2)

For the upper bound in (1.18), we have

−f ′(x) �
x + 8

9
6(x + 7

6 )2(x + 1)2(x + 1
6 )2

� 1
6(x + 7

6 )2(x + 1)(x + 1
6 )2

. (3.3)

Combining (3.3) and

(
x + 7

6

)2

(x + 1)
(
x + 1

6

)2

−
(
x + 1

2

)5

= 7
6x

4 + 7
3x

3 + 155
108x

2 + 79
324x + 17

2592 > 0,

we have

−f ′(x) � 1
6(x + 1

2)5
. (3.4)

Since f(∞) = 0, we have

f(k) = −
∞∫
k

f ′(x) dx � 1
6

∞∫
k

(
x + 1

2

)−5

dx

= 1
24

(
k + 1

2

)−4

� 1
24

k+1∫
k

x−4 dx, (3.5)

where we use the following fact

k+1∫
k

x−4 dx−
(
k + 1

2

)−4

= 40k4 + 80k3 + 51k2 + 11k + 1
3k3(k + 1)3(2k + 1)4 > 0,

in the last inequality in (3.5). Combining (3.1) and (3.5), we have

γ − r(2)
n �

∞∑
k=n

1
24

k+1∫
k

x−4 dx = 1
24

∞∫
n

x−4 dx = 1
72n3 . (3.6)

For the lower bound, combining (3.2), we have

−f ′(x) � 1
6(x + 1)5 , (3.7)

where we use the following fact, for x � 1,
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(
x2 + 8

9x− 49
216

)
(x + 1)3 −

(
x + 7

6

)2(
x + 1

6

)2

x

= 11
9 x4 + 707

216x
3 + 533

216x
2 + 221

1296x− 49
216 � 0.

Combining (3.7), we have

f(k) = −
∞∫
k

f ′(x) dx � 1
6

∞∫
k

(x + 1)−5 dx = 1
24(k + 1)−4 � 1

24

k+2∫
k+1

x−4 dx. (3.8)

Combining (3.1) and (3.8), we have

γ − r(2)
n �

∞∑
k=n

1
24

k+2∫
k+1

x−4 dx = 1
24

∞∫
n+1

x−4 dx = 1
72(n + 1)3 . (3.9)

Combining (3.6) and (3.9), we complete the proof of (1.18).
Next, we prove (1.19). It is easy to have

r(3)
n − γ =

∞∑
k=n

(
r
(3)
k − r

(3)
k+1

)
=

∞∑
k=n

g(k), (3.10)

where

g(k) = ln
(

1 + 1
k

)
− 1

k + 1 + 6k + 5
12(k + 1)2 − 6k − 1

12k2 .

Next, we have

g′(x) = − 1
6x3(x + 1)3 . (3.11)

For the upper bound in (1.19), we have

−g′(x) � 1
6x6 . (3.12)

Since g(∞) = 0, combining (3.12), we have

g(k) = −
∞∫
g′(x) dx � 1

6

∞∫
x−6 dx = 1

30k
−5 � 1

30

k∫
x−5 dx. (3.13)
k k k−1



328 D. Lu / Journal of Number Theory 136 (2014) 320–329
Table 1
Simulations for Rn, Vn, un and vn.

n Rn − γ Vn − γ un − γ vn − γ

10 3.7733 × 10−4 −8.3250 × 10−4 −2.1179 × 10−5 2.4228 × 10−5

25 6.4061 × 10−5 −1.3331 × 10−4 −1.4127 × 10−6 1.4909 × 10−6

50 1.6337 × 10−5 −3.3332 × 10−5 −1.7901 × 10−7 1.8390 × 10−7

100 4.1252 × 10−6 −8.3333 × 10−6 −2.2528 × 10−8 2.2833 × 10−8

250 6.6401 × 10−7 −1.3333 × 10−6 −1.4476 × 10−9 1.4555 × 10−9

1000 4.1625 × 10−8 −8.3333 × 10−8 −2.2665 × 10−11 2.2696 × 10−11

Combining (3.10) and (3.13), we have

r(3)
n − γ �

∞∑
k=n

1
30

k∫
k−1

x−5 dx = 1
30

∞∫
n−1

x−5 dx = 1
120(n− 1)4 . (3.14)

For the lower bound, we have

−g′(x) � 1
6(x + 1)6 . (3.15)

Combining (3.15), we have

g(k) = −
∞∫
k

g′(x) dx � 1
6

∞∫
k

(x + 1)−6 dx = 1
30(k + 1)−5 � 1

30

k+2∫
k+1

x−5 dx. (3.16)

Combining (3.10) and (3.16), we have

r(3)
n − γ �

∞∑
k=n

1
30

k+2∫
k+1

x−5 dx = 1
30

∞∫
n+1

x−5 dx = 1
120(n + 1)4 . (3.17)

Combining (3.14) and (3.17), we complete the proof of (1.19).

4. Numerical computation

In this section, we give two tables to demonstrate the superiority of our new conver-
gent sequences (γ(2)

n )n�1 and (γ(3)
n )n�1 over DeTemple’s sequence (Rn)n�1, Vernescu’s

sequence (Vn)n�1 and Mortici’s sequences (μn(
√

2
2 , 2+

√
2

4 ))n�1, (un)n�1 and (vn)n�1, re-
spectively.

Combining Theorem 1.1 and Theorem 1.2, we have Tables 1 and 2.
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Table 2
Simulations for μn, r(2)

n , r(3)
n .

n μn(
√

2
2 , 2+

√
2

4 ) − γ r(2)
n − γ r(3)

n − γ

10 1.1807 × 10−5 −1.2832 × 10−5 8.2941 × 10−7

25 8.6183 × 10−7 −8.6169 × 10−7 2.1317 × 10−8

50 1.1265 × 10−7 −1.0941 × 10−7 1.3331 × 10−9

100 1.4402 × 10−8 −1.3782 × 10−8 8.3329 × 10−11

250 9.3431 × 10−10 −8.8616 × 10−10 2.1333 × 10−12

1000 1.4698 × 10−11 −1.3878 × 10−11 8.3333 × 10−15
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