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that both of the shifted sequences Va ± k are simultaneously 
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a conjecture of Ismailescu and Shim. Moreover, we show that 
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both of the shifted sequences Va ± k has at least two distinct 
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1. Introduction

For a given sequence S = (sn)n≥0, and k ∈ Z, we let S + k denote the k-shifted 
sequence (sn + k)n≥0. We say that S+k is primefree if |sn + k| is not prime for all n ≥ 0
and, to rule out trivial situations, we require that no single prime divides all terms of 
S + k. Recently, the second author [8] showed that there exist infinitely many integers 
k such that both of the shifted sequences Ua ± k are simultaneously primefree, where 
Ua = (un)n≥0 is the Lucas sequence of the first kind defined by

u0 = 0, u1 = 1, and un = aun−1 + un−2, for n ≥ 2, (1.1)

with a a fixed integer. The second author also showed in [8] that infinitely many values of 
k exist such that each term of both primefree shifted sequences has at least two distinct 
prime divisors.

In this article, using techniques similar to the methods used in [8], we establish an 
analogous result for certain Lucas sequences of the second kind. In particular, we prove

Theorem 1.1. For any a ∈ Z, there exist infinitely many integers k, such that both of the 
shifted sequences Va ± k are primefree, where Va is the Lucas sequence (vn)n≥0 of the 
second kind, defined by

v0 = 2, v1 = a, and vn = avn−1 + vn−2, for n ≥ 2.

Moreover, there exist infinitely many values of k such that every term in both of the 
primefree shifted sequences Va ± k has at least two distinct prime factors.

We should point out that Theorem 1.1 provides additional evidence to support the 
following conjecture of Ismailescu and Shim [6].

Conjecture 1.2. Let (xn)n≥0 be an integer sequence defined by a second order recur-
rence relation xn+2 = axn+1 + bxn, where a and b are integers. Further assume that 
lim
n→∞

|xn| = ∞. Then there exist integers k that cannot be written in the form ±xn ± p

for any n and any prime p.

Maple and Magma were used to perform some of the calculations in this article.

2. Preliminaries

Our main focus in this article is on certain Lucas sequences of the second kind.

Definition 2.1. Let a ∈ Z, and let Va = (vn)n≥0 denote the Lucas sequence of the second 
kind defined by

v0 = 2, v1 = a, and vn = avn−1 + vn−2, for n ≥ 2.
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Remark 2.2. We note two items:

(1) For a > 0, we have that

vn(−a) = (−1)nvn(a),

where vn(−a) is the nth term of V−a and vn(a) is the nth term of Va. Thus, we need 
only consider the situations with a ≥ 0

(2) For all n ≥ 1, the sequence Va is related to the sequence Ua, defined in (1.1), by the 
relationship vn = u2n/un.

We require several key ingredients in our process. The first ingredient is the notion of 
a primitive divisor. For the sequence Va, we define a primitive divisor of the term vn to 
be a prime number p such that vn ≡ 0 (mod p) but vm �≡ 0 (mod p) for all m < n. The 
following theorem concerning primitive divisors of Lucas sequences of the first kind, as 
defined in (1.1), is a special case of a much more general theorem that is the culmination 
of work initiated by Carmichael [3] and completed by others [2].

Theorem 2.3. Let a ≥ 1 be an integer. Then every term un of Ua has a primitive divisor 
with the following exceptions, which are indicated as ordered pairs [a, n]:

[a, 0], [a, 1], [1, 2], [1, 6], [1, 12], [3, 6].

Because of item (2) in Remark 2.2, the primitive divisors of Va are intimately related 
to the primitive divisors of Ua, and therefore we have the following.

Corollary 2.4. Let a ≥ 1 be an integer. Then every term vn of Va has a primitive divisor 
with the following exceptions, which are indicated as ordered pairs [a, n]:

[2c, 1], [1, 3], [1, 6], [3, 3]

where c ≥ 0 is an integer.

Remark 2.5. Unlike Ua, it is not always true that a particular prime will appear as the 
primitive divisor of some term in Va. See, for example, [9].

A second ingredient needed for our methods is the concept of periodicity of Va. It is 
well known that the sequence Va is purely periodic modulo a prime p [5]. The period of 
Va modulo p, which we denote Pp := Pp(a), is the smallest positive integer h such that 
vh ≡ 2 (mod p) and vh+1 ≡ a (mod p). We refer to the actual list of residues that occur 
modulo p from index 0 to index h − 1 as the cycle of Va modulo p. For example, if a = 1
and p = 3, then P3 = 8 and the cycle of V1 modulo 3 is [2, 1, 0, 1, 1, 2, 0, 2]. We label the 
positions in the cycle starting at 0, so that the residue at position 6 is 0 in our example.
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To facilitate our approach in this article, it is convenient to make the following defi-
nitions.

Definition 2.6. Let x be a variable and let V̂x = (v̂n)n≥0 be the sequence of polynomials 
in x defined by

v̂0 = 2, v̂1 = x, and v̂n = xv̂n−1 + v̂n−2, for n ≥ 2.

For a monic polynomial f(x) ∈ Z[x], we define the generic period modulo f(x) of V̂x, 
denoted P̂f , to be the smallest positive integer m, if it exists, such that

v̂m ≡ 2 (mod f(x)) and v̂m+1 ≡ x (mod f(x)).

If such an integer m does not exist, we define P̂f = ∞. When P̂f is finite, we call the list 
of residues modulo f(x) that appear, in order starting at index 0 up to index P̂f −1, the 
generic cycle of V̂x modulo f(x), and we denote it as Γf . For a given positive integer a, 
we also let Γf |x=a denote this generic cycle specialized at x = a.

Remark 2.7. The polynomials v̂n in Definition 2.6 are known as the Lucas polynomials.

Definition 2.8. A generic primitive divisor of v̂n is a monic irreducible polynomial f(x)
of positive degree such that v̂n ≡ 0 (mod f(x)) but v̂m �≡ 0 (mod f(x)) for all indices 
m < n.

Note that Corollary 2.4 guarantees the existence of a primitive divisor of v̂n, other 
than the possible exceptions listed there. In reality, there are no exceptions in the generic 
situation since we see that x, x2 +3, and x4 +4x2 +1 are generic primitive divisors of v̂1, 
v̂3 and v̂6 respectively. It can also be shown that each term v̂n has exactly one generic 
primitive divisor [10], and so we denote it as fn(x). Consequently, the primitive divisors 
of Va occur as prime divisors of fn(a). Also, if we let p be a prime divisor of fn(a), then 
Pp is a divisor of P̂f .

A third ingredient we require is a concept originally due to Erdős [4].

Definition 2.9. A (finite) covering system C, or simply a covering, of the integers is a 
system of t < ∞ congruences x ≡ ri (mod mi), with mi > 1 for all 1 ≤ i ≤ t, such that 
every integer n satisfies at least one of these congruences.

In this article, we represent a covering C as a set of ordered pairs {(ri, mi)}, where 
x ≡ ri (mod mi) is a congruence in C. Additionally, associated to each congruence 
(ri, mi) ∈ C is a corresponding prime pi, where mi is the period of the particular Lucas 
sequence Va modulo pi.

Finally, in this section we present, without proof, a lower bound on linear forms in 
logarithms, due to Baker [1]. This result is necessary to establish the existence of infinitely 
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many values of k in Theorem 1.1, such that every term in both of the shifted sequences 
Va ± k has at least two distinct prime factors.

Theorem 2.10. Let ξ1, . . . , ξt ∈ C \ {0, 1} be algebraic numbers, and let b1, . . . , bt be 
rational integers such that ξb11 · · · ξbtt �= 1. Then

∣∣∣ξb11 · · · ξbtt − 1
∣∣∣ ≥ B−C ,

where B = max (|b1| , . . . , |bt|) and C is an effectively computable constant depending on 
t and the heights of ξ1, . . . , ξt.

3. The proof of Theorem 1.1

Before we begin the proof of Theorem 1.1, we first describe, for any fixed integer a ≥ 1, 
a general process that can be used in the situation of finding infinitely many integers 
k such that the single sequence Va + k is primefree. The idea is to build a covering 
C = {(ri,mi)}, where mi = Pp for some prime p, and ri is a position in the cycle of 
residues modulo p. Then, when n ≡ ri (mod mi), we have that

vn + k ≡ vri + k (mod p).

Solving the congruence vri +k ≡ 0 (mod p) for k gives us a value of k such that the term 
vn+k in Va+k is divisible by p whenever n ≡ ri (mod mi). For k sufficiently large, un+k

will be larger than p, and hence composite. If the residue ρ that appears at location ri is 
repeated at another location, say si, in a single cycle modulo p, then we can also use the 
congruence (si,mi) in our covering since the resulting congruences for k modulo p will 
be consistent. In fact, we can repeat the particular modulus mi in our covering as many 
times as ρ appears in a single cycle modulo p. Note, however, that the repeated use of 
a single modulus in this manner might not always be beneficial in building the covering 
if the new locations produce congruences that are redundant with other congruences 
arising from other moduli. If we are fortunate enough to be able to build a covering 
using these ideas, then we can use the Chinese remainder theorem to piece together the 
values of k found for each prime to get an infinite arithmetic progression of values of 
k modulo the product of all primes in Da, the finite set of primes used to build the 
covering. Thus, for each of these values of k in the arithmetic progression, we have that 
every term in Va +k is divisible by at least one prime in Da. Since for k sufficiently large 
in the arithmetic progression, every term of Va+k is larger than the largest prime in Da, 
we have successfully found infinitely many integers k such that the sequence Va + k is 
primefree. These methods were employed in [7,8], and in [6] for a = 1, where all the 
primes used were, in fact, primitive divisors. In light of Remark 2.5, building a covering 
in the situation of Va appears potentially more difficult than for Ua, if we require all 
primes used to be primitive divisors. However, there is no necessity to avoid primes that 
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are not primitive divisors since our main concern is the periods of these primes, which 
are used as moduli in the coverings. Nevertheless, it is still unclear whether this approach 
would be successful for every such value of a. In particular, can a suitable covering be 
built for any integer a ≥ 1?

An additional complication is that we also require the sequence Va−k to be primefree. 
Because of this added restriction, we need to build two coverings: C+ = {(ri,mi)} for 
the sequence Va + k, and C− = {(si, ti)} for the sequence Va − k. The coverings C+ and 
C− must be compatible in the sense that if mi = ti, and if we use the same prime p when 
we solve for k using each of the congruences (ri,mi) and (si, ti), then we must have

usi ≡ −uri (mod p).

As an example, suppose that a = 9, and that we use the prime p = 19. The cycle of V9
modulo p = 19 is

[2, 9, 7, 15, 9, 1, 18, 11, 3, 0, 3, 8, 18, 18, 9, 4, 7, 10] (3.1)

so that P19 = 18. Since the residue ρ = 9 appears at locations 1, 4 and 14, we can use the 
three congruences (1, 18), (4, 18) and (14, 18) to build one of the coverings C+ or C−. If we 
choose to use these congruences for C+, then we can use only the congruence (17, 18) for 
C− in this situation, since 17 is the only location in the cycle (3.1) for which the residue 
−ρ = −9 ≡ 10 (mod 19) appears. Of course, we are not forced here into choosing these 
particular congruences. There are other possibilities. One such alternative is that we 
could use the congruence (9, 18) in both C+ or C−, since the residue is 0 at location 9 of 
(3.1).

Proof of Theorem 1.1. In light of item (1) of Remark 2.2, we can restrict our attention 
to a ≥ 0. We begin with the case a = 0, which is somewhat trivial and misleading due 
to the fact that

V0 = (2, 0, 2, 0, . . .)

has period 2 with cycle [2, 0] modulo any odd prime. Consequently, we have

C+ = C− = {(0, 2), (1, 2)} .

We choose to use the primes 3, 5, 7 and 11 for C+, and the primes 3, 5, 13 and 19 for C−, 
where 3 and 5 correspond to the congruence (1, 2) in both coverings. This choice gives 
us the following system of congruences for k:

k ≡ 0 (mod 3) k ≡ 5 (mod 7) k ≡ 2 (mod 13)
k ≡ 0 (mod 5) k ≡ 9 (mod 11) k ≡ 2 (mod 19).
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To ensure that k is odd (to avoid a trivial situation), we add the congruence k ≡ 1
(mod 2) to the system. Solving this system gives k ≡ 4695 (mod 570570). Then it is 
easy to see that |±k| and |2 ± k| are all divisible by at least two primes from the set 
{3, 5, 7, 11, 13, 19}.

Now we let a ≥ 1, and we focus first on the primefree part of the theorem. We treat 
the cases a ∈ {1, 2, 3, 4} individually.

Suppose first that a = 1. We use the list of primes

P = [2, 3, 5, 7, 17, 19, 23, 47, 107, 103681],

and the corresponding list of periods

P = [3, 8, 4, 16, 36, 18, 48, 32, 72, 144]

as moduli to build the coverings. Note that the least common multiple of these moduli 
is 288. Examining the cycles produced by these primes, and using the strategy outlined 
earlier in this section, we build the coverings:

C+ = {(1, 3), (2, 3), (2, 8), (6, 8), (3, 4), (4, 16), (12, 16), (21, 36),

(33, 36), (9, 18), (8, 32), (24, 32), (0, 72), (48, 144), (96, 144)} ,

C− = {(1, 3), (2, 3), (2, 8), (6, 8), (1, 4), (4, 16), (12, 16),

(15, 36), (3, 36), (9, 18), (0, 48), (8, 32), (24, 32)} .

From these coverings, we create the following system of congruences for k:

k ≡ 1 (mod 2) k ≡ 0 (mod 19)
k ≡ 0 (mod 3) k ≡ 2 (mod 23)
k ≡ 1 (mod 5) k ≡ 0 (mod 47)
k ≡ 0 (mod 7) k ≡ 105 (mod 107)
k ≡ 4 (mod 17) k ≡ 1 (mod 103681)

Using the Chinese remainder theorem to solve this system gives

k = 37906473446751

as the smallest positive solution.
Next, suppose that a = 2. In this case, to avoid the trivial situation of having every 

term in the shifted sequences divisible by 2, we cannot use the prime 2. The construction 
of the covering then becomes a bit more difficult. We use the list of primes

P = [3, 5, 7, 11, 17, 73, 97, 179, 197, 199, 577, 1009, 1153, 13729, 1523089],

and the corresponding list of periods
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P = [8, 12, 6, 24, 16, 72, 96, 72, 36, 18, 32, 144, 48, 96, 144]

as moduli to build the coverings. As in the case a = 1, the least common multiple of 
these moduli is 288. We proceed as before to build the coverings:

C+ = {(2, 8), (6, 8), (0, 12), (1, 12), (5, 12), (3, 6), (23, 24), (4, 16), (12, 16), (43, 72),

(32, 96), (64, 96), (7, 72), (23, 36), (31, 36), (1, 18), (8, 32), (24, 32),

(11, 144), (35, 48), (16, 96), (80, 96), (107, 144)} ,

C− = {(2, 8), (6, 8), (7, 12), (11, 12), (3, 6), (0, 24), (1, 24), (4, 16), (12, 16),

(29, 72), (16, 96), (80, 96), (65, 72), (5, 36), (13, 36), (17, 18), (8, 32), (24, 32),

(133, 144), (13, 48), (32, 96), (64, 96), (37, 144)} .

From these coverings, we create a system of congruences for k. To completely avoid 
values of k such that every term in the shifted sequences is even, we add the additional 
congruence k ≡ 1 (mod 2):

k ≡ 1 (mod 2) k ≡ 59 (mod 179)
k ≡ 0 (mod 3) k ≡ 82 (mod 197)
k ≡ 3 (mod 5) k ≡ 197 (mod 199)
k ≡ 0 (mod 7) k ≡ 0 (mod 577)
k ≡ 2 (mod 11) k ≡ 915 (mod 1009)
k ≡ 0 (mod 17) k ≡ 96 (mod 1153)
k ≡ 40 (mod 73) k ≡ 13728 (mod 13729)
k ≡ 1 (mod 97) k ≡ 110880 (mod 1523089)

Using the Chinese remainder theorem to solve this system gives

k = 45902855345456873184678819298233

as the smallest positive solution.
Next, suppose that a = 3. We use the primes P = [2, 3, 5, 13], together with the 

corresponding periods P = [3, 2, 12, 4] as moduli, and proceed as before to construct the 
coverings:

C+ = {(1, 3), (2, 3), (1, 2), (0, 12), (2, 4)} ,

C− = {(1, 3), (2, 3), (1, 2), (6, 12), (0, 4)} .

These coverings give rise to the following system of congruences for k:

k ≡ 1 (mod 2) k ≡ 3 (mod 5)
k ≡ 0 (mod 3) k ≡ 2 (mod 13).
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Table 1
Indices N , primitive divisors F and generic periods P̂.

N F P̂
2 x2 + 2 8
3 x2 + 3 6
4 x4 + 4x2 + 2 16
6 x4 + 4x2 + 1 24
8 x8 + 8x6 + 20x4 + 16x2 + 2 32
9 x6 + 6x4 + 9x2 + 3 18
12 x8 + 8x6 + 20x4 + 16x2 + 1 48
18 x12 + 12x10 + 54x8 + 112x6 + 105x4 + 36x2 + 1 72
36 x24 + 24x22 + 252x20 + 1520x18 + 5814x16 + 14688x14 144

+24752x12 + 27456x10 + 19305x8 + 8008x6 + 1716x4 + 144x2 + 1

Table 2
Non-primitive divisors Gi and 
their generic periods P̂.

i Gi P̂
1 x2 + 1 12
2 x2 + 4 4
3 x6 + 6x4 + 9x2 + 1 36

Solving this system, using the Chinese remainder theorem, produces the solution k ≡ 93
(mod 390). It is interesting to note (and easy to show) that k = 93 is actually the smallest 
positive integer such that both of the sequences V3 ± k are primefree.

Now suppose that a ≥ 4. We use the ideas of generic cycle and generic primitive 
divisor from Section 2 to aid in the construction of two “generic” coverings Ĉ+ and Ĉ−. 
These coverings are actual coverings of the integers, but they are generic in the sense 
that they can be used to achieve the desired result upon specialization at any particular 
value of a. To complete these coverings, we also require the use of three generic moduli, 
G1, G2 and G3, that are not generic primitive divisors of any term of V̂x.

For each index Ni in the list

N = [2, 3, 4, 6, 8, 9, 12, 18, 36], (3.2)

we calculate the generic primitive divisor Fi := fNi
(x) of v̂Ni

, and the generic period 
P̂i := P̂Fi

for each i with 1 ≤ i ≤ 9. This information is provided in Table 1. Note that, 
by the restrictions on a, we have avoided the exceptional cases, as given in Corollary 2.4, 
in the list (3.2). Observe that the additional polynomials Gi required to complete the 
coverings are listed in Table 2.

We now construct the coverings Ĉ+ and Ĉ− using as our moduli the elements of the 
complete list of generic periods:

P̂ = [8, 6, 16, 24, 32, 18, 48, 72, 144, 12, 4, 36].

Observe that the least common multiple of the elements in P̂ is 288. To construct Ĉ+

and Ĉ−, we begin with the elements Fi of Table 1 and examine for each i what residues 
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Table 3
Generic residues in Γ4.

Location Generic residue
0 2
1 x
2 x2 + 2
3 x3 + 3x
4 1
5 x3 + 4x
6 0
7 x3 + 4x
8 −1
9 x3 + 3x
10 −x2 − 2
11 x

Location Generic residue
12 −2
13 −x
14 −x2 − 2
15 −x3 − 3x
16 −1
17 −x3 − 4x
18 0
19 −x3 − 4x
20 1
21 −x3 − 3x
22 x2 + 2x
23 −x

appear, and where they appear, in the generic cycle Γi := ΓFi
of V̂x modulo Fi. For 

example, for i = 1, we have

Ni = N1 = 2, Fi = F1 = x2 + 2 and P̂i = P̂1 = 8.

Then

Γ1 = [2, x, 0, x,−2,−x, 0,−x].

Since the residue ρ = 0 appears in the locations 2 and 6 in Γ1, we can, and do, use the 
congruences (2, 8) and (6, 8) to build both Ĉ+ and Ĉ−. As a second example, for i = 4, 
we have

Ni = N4 = 6, Fi = F4 = x4 + 4x2 + 1 and P̂i = P̂4 = 24.

The generic cycle Γ4 of V̂x modulo F4 is given in Table 3, with the location in Γ4 of 
each generic residue. We can, and do, use the two congruences (8, 24) and (16, 24) to 
build Ĉ+, since in both locations 8 and 16 of Γ4, the residue is the same, namely ρ = −1. 
We could, although we choose not to, use the two congruences (4, 24) and (20, 24) to 
build Ĉ−, since in both locations 4 and 20 of Γ4, the residue is −ρ = 1. We continue in 
this manner with the remainder of the elements in Table 1. Note that, for any value of 
a ≥ 4, Fi|x=a has at least one odd primitive divisor pi, and that these primes are all 
distinct by the definition of primitive divisor.

After examining all elements Fi of Table 1, we move to the elements Gi of Table 2. 
Let qi be an odd prime divisor of Gi|x=a. To see that such primes exist, we examine the 
solutions to the Diophantine equations Di : Gi = 2y. We see that D1 has no solutions 
modulo 4, and so the only solution to D1 is (x, y) = (1, 1). Similarly, reduction modulo 
16 shows that the only solution to D2 is (x, y) = (2, 3); and finally, reduction modulo 
2 shows that the only solution to D3 is (x, y) = (0, 0). Hence, the existence of the 
primes qi are guaranteed here since a ≥ 4. Moreover, it is straightforward, although 
somewhat tedious, to show that the odd primes qi are distinct, and also different from 
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the odd primes pi. There are only 30 pairs that need to be checked since we already 
know that the primes pi are distinct. We give an example to illustrate how this process 
is accomplished. We know that some odd prime q2 divides a2 + 4 and some odd prime 
p3 divides a4 + 4a2 + 2. Suppose that d = gcd(a2 + 4, a4 + 4a2 + 2). Then d divides 
(a2 + 4)2 − (a4 + 4a2 + 2) = 4a2 + 12, and hence d divides 4(a2 + 4) − (4a2 + 12) = 4. 
Thus, we can conclude that q2 �= p3.

Then, we examine the generic cycles of V̂x modulo the polynomials Gi. For example,

vn ≡ −a (mod G1) for n ≡ 7, 11 (mod 12) and

vn ≡ a (mod G1) for n ≡ 1, 5 (mod 12).

Consequently, we add the congruences (7, 12) and (11, 12) to C+, and the congruences 
(1, 12) and (5, 12) to C−. Continuing in this manner yields the coverings:

C+ = {(2, 8), (6, 8), (3, 6), (4, 16), (12, 16), (8, 24), (16, 24), (8, 32), (24, 32), (3.3)

(6, 18), (12, 18), (0, 144), (7, 12), (11, 12), (1, 4)} ,

C− = {(2, 8), (6, 8), (3, 6), (4, 16), (12, 16), (8, 32), (24, 32), (16, 48), (32, 48), (3.4)

(24, 72), (48, 72), (1, 12), (5, 12), (3, 4), (0, 36)} .

From these coverings, we derive the following system of congruences for k:

k ≡ 0 (mod p1) k ≡ −1 (mod p7)
k ≡ 0 (mod p2) k ≡ −1 (mod p8)
k ≡ 0 (mod p3) k ≡ −2 (mod p9)
k ≡ 1 (mod p4) k ≡ a (mod q1)
k ≡ 0 (mod p5) k ≡ −a (mod q2)
k ≡ 1 (mod p6) k ≡ 2 (mod q3).

(3.5)

We add the congruence k ≡ 1 (mod 2) to the system (3.5) to avoid the trivial situation 
in which all terms of the shifted sequences are divisible by 2. Then, for any specific value 
of a, we can use the Chinese remainder theorem to solve this system to get an infinite 
arithmetic progression of odd values of k such that each term in both sequences Va ± k

is divisible by at least one prime from the set

Pa := {p1, p2, p3, p4, p5, p6, p7, p8, p8, p9, q1, q2, q3} .

Since there are infinitely many values of k in this arithmetic progression such that 
|vn − k| > p and |vn + k| > p for all n, where p = maxp∈Pa

{p}, the proof that the 
sequences Va ± k are primefree is complete.

We turn now to showing that there exist infinitely many values of k such that every 
term of both of the sequences Va ± k has at least two distinct prime divisors. The case 
a = 0 has already been addressed, so assume that a ≥ 1 is fixed, and that k is an element 
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of an arithmetic progression such that both sequences Va ± k are primefree. If not every 
term of the sequences Va ± k has at least two distinct prime divisors, then

k = |vn ± pm|

for some term vn ∈ Va, some prime p ∈ Pa and some integer m ≥ 2. Since vn = αn +βn, 
where α =

(
a +

√
a2 + 4

)
/2 and β =

(
a−

√
a2 + 4

)
/2, we have

k = αn
∣∣1 ± α−npm

∣∣ + o(1),

since |β| < 1. Note that α−npm �= ±1. Therefore, we can apply Theorem 2.10, with 
ξ1 = α, ξ2 = p, b1 = −n and b2 = m, to the expression |1 ± α−npm| to get

k 	 max {αn, pm}
max{m,n}C , (3.6)

for some constant C. If T ≥ k is some large real number, then logT 	 max {m,n}
from (3.6), and so there are only O

(
(log T )2

)
such possibilities for k. Since k is in an 

arithmetic progression, there are 	 T values for k up to T . Thus, for T sufficiently large, 
there exists some value of k such that k �= |vn ± pm| for all n, m and primes p ∈ Pa, and 
the theorem is established. �
Remark 3.1. The part of the proof of Theorem 1.1 for a ≥ 4 actually works for a = 3
as well, but we presented the case a = 3 separately since that special treatment led to 
the determination of the smallest such positive value of k that works for a = 3, namely 
k = 93.

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 3.2. For all integers a, Conjecture 1.2 is true for the Lucas sequences Va.

We give an example to illustrate Theorem 1.1 when a ≥ 4.

Example 3.3. a = 5
We use the coverings (3.3) and (3.4), together with the list

P = [3, 7, 727, 11, 528527, 19603, 264263, 937, 147639149571513601, 13, 29, 17]

of primes p1, . . . , p9, q1, q2, q3. Note that when there was more than one choice of a prime 
pi as a primitive divisor of Fi|x=5, or a prime qi as a divisor of Gi|x=5, we chose only the 
smallest such prime to construct the list P . For example, although v18 ∈ V5 has the two 
primitive divisors 937 and 136691, we choose to use only 937. Then, with the addition 
of the congruence k ≡ 1 (mod 2), we use the Chinese remainder theorem to solve the 
resulting system (3.5) of congruences for k to get an infinite arithmetic progression of odd 
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positive values of k such that both of the sequences V5 ±k are simultaneously primefree. 
The smallest positive value of k in this arithmetic progression is

k = 785752477092532495678103253704193081314976951.

4. Final comments

Since the only primitive divisor of v̂Ni
in V̂x is Fi, we could only use a single primitive 

divisor for each Ni to build the coverings Ĉ+ and Ĉ− in the proof of Theorem 1.1. 
However, this situation represents a worst-case scenario in Va. Quite often, in practice, 
Fi(a) will have more than a single prime factor that is a primitive divisor of vNi

in Va. 
In this case, we can reuse the modulus Pi with the new primitive divisor, which yields 
a smaller covering system with a smaller least common multiple, and quite possibly, a 
smaller positive value of k. Additionally, it can happen that there are better choices 
for the residues in Γf |x=a with which to build the covering. This phenomenon can also 
reduce the smallest positive value of k.

A natural question to ask is whether the “generic” process used in the proof of Theo-
rem 1.1 can be extended to handle more general sequences. It seems that if the periods 
of the sequence modulo the primes are “well-behaved”, then it is conceivable that such 
techniques could be used successfully. However, we leave this possibility for future re-
search.
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