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1. Introduction

One of the main research themes in recent years in the theory of automorphic forms 
is the problem of mass distribution. Let X = Γ\H, where H is the upper half complex 
plane and Γ = SL2(Z). In his PhD thesis, Spinu [Sp] obtained the following type of weak 
equidistribution result: ∫

X

|EA(z, 1
2 + iT )|4dμz � T ε, (1.1)

where dμ(z) = dxdy
y2 and EA(z, s) is the truncated Eisenstein series, which on the fun-

damental domain equals E(z, s) for Im(z) ≤ A, and E(z, s) minus its constant term for 
Im(z) > A. See the next section for a more careful definition. Spinu’s result (see also 
[Lu] for a closely related result) is in line with a much more general conjecture, called 
the Random Wave Conjecture. This conjecture was made for Eisenstein series in [HR, 
section 7.3]. In terms of moments this implies: for any even integer p ≥ 0 and any nice 
compact Ω ⊂ X, we should have

lim
T→∞

1
vol(Ω)

∫
Ω

∣∣∣EA(z, 1
2 + iT )√

2 log T

∣∣∣pdμz = cp
vol(X)p/2

, (1.2)

where cp is the pth moment of the normal distribution N (0, 1). The same conjecture is 
also made for E(z, 12 +iT ). As we will see below, 

√
2 log T roughly equals ‖EA(·, 12 +iT )‖2.

One would of course like to go beyond Spinu’s upper bound and prove an asymptotic 
for the fourth moment of Eisenstein series. In [BK], this was achieved, conditional on 
the Generalized Lindelöf Hypothesis, for Hecke Maass forms of large eigenvalue when 
Ω = X, and agreement was found with the RWC. Thus in analogy one would expect 
(1.2) to also hold for p = 4 and Ω = X, and one may hope that the statement in this case 
can be proven unconditionally. After all, such problems can be a bit easier for Eisenstein 
series – for example, recall that the case p = 2 of (1.2) was first proven for Eisenstein 
series [LS] before the analogue was proven for Hecke Maass forms [Li,So].

What would the proof of such an asymptotic entail? The starting point in [BK] is to 
relate the fourth moment of an L2-normalized Hecke Maass form f to L-functions. One 
uses the spectral decomposition and Plancherel’s theorem to write

〈f2, f2〉 =
∑
j≥1

|〈f2, uj〉|2 + . . . , (1.3)

where the inner product is the Petersson inner product, {uj : j ≥ 1} is an orthonormal 
basis of Hecke Maass forms, and the ellipsis denotes the contribution of the Eisenstein 
spectrum and constant eigenfunction. Next one can use Watson’s triple product formula 
to relate the squares of the inner products on the right hand side to central values of 
L-functions. Thus the problem is reduced to one of obtaining a mean value of L-functions. 
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If one tries to mimic this set up for E(z, 12 + iT ) in place of f , the first obvious difficulty 
encountered is that the left hand side of (1.3) does not even converge. To circumvent 
this, Spinu worked with the truncated EA(z, 12 + iT ), which decays exponentially at the 
cusp. However a major drawback is that EA(z, 12 + iT ) is not automorphic, so Spinu 
could not obtain a precise relationship with L-functions. He could only obtain an upper 
bound [Sp, section 4.2].

The goal of this paper is to reformulate entirely the fourth moment problem for 
Eisenstein series. To make sense of 〈E2(·, 12 + iT ), E2(·, 12 + iT )〉, we contend that it is 
more natural2 to use Zagier’s regularized inner product [Za], which does converge. The 
basic idea of Zagier’s method is that to kill off the growth of an automorphic form, one 
should not subtract off the constant term like Spinu does, but rather subtract off another 
Eisenstein series in such a way that the final object is square integrable and automorphic. 
This way we will end up with a precise relationship between a regularized fourth moment 
and L-functions. This is the first goal of our paper, and we will prove

Theorem 1.1 (Regularized fourth moment in terms of L-functions). Let {uj : j ≥ 1}
denote an orthonormal basis of even and odd Hecke Maass cusp forms for Γ, ordered 
by Laplacian eigenvalue 1

4 + it2j , and let Λ(s, uj) denote the corresponding completed 
L-functions. Let ξ(s) denote the completed Riemann ζ function. As T → ∞, we have

reg∫
X

|E(z, 1/2 + iT )|4dμ(z)

= 24
π

log2 T +
∑
j≥1

cosh(πtj)
2

|Λ(1
2 + 2Ti, uj)|2Λ2(1

2 , uj)
L(1, sym2uj) |ξ(1 + 2Ti)|4 + O(log5/3+ε T ),

for any ε > 0.

This result is potentially very useful. We could try to obtain an asymptotic for the 
mean value of L-functions on the right hand side (and we will return to this problem 
in a future paper), thereby obtaining an asymptotic for the regularized fourth moment. 
This would be nice, but how would we know whether or not our answer is in agreement 
with the RWC? Thus the purpose of our second result is to translate the RWC to the 
setting of the regularized fourth moment. As defined in the next section, DA is the part 
of the fundamental domain with Im(z) ≤ A.

Theorem 1.2 (RWC for the regularized fourth moment of Eisenstein series). Suppose that 
(1.2) holds for p = 4 and Ω = X, and p = 4 and Ω = DA for some A = A(T ) which 

2 We thank Matthew Young for suggesting this approach to us.
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tends to ∞ as T → ∞. Then we have

reg∫
X

|E(z, 1
2 + iT )|4dμ(z) ∼ 72

π
log2 T.

We have already explained above why (1.2) should be expected for p = 4 and Ω = X, 
even though for general p we must restrict to compact sets. The other possibility Ω = DA

is already included in the RWC when A is fixed. But it is reasonable to conjecture that 
some effective error term will exist in (1.2), so that taking A which grows arbitrarily 
slowly should be permissible.

Both of our main results are based on careful calculations arising from the regularized 
inner product. The point is to offer a new viewpoint for the fourth moment and carefully 
put into place all leading constants, so that the relevant conjecture might be verified in 
the future using the theory of L-functions.

2. Eisenstein series

We recall the definition of Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ
Im(γz)s = 1

2y
s

∑
c,d∈Z

(c,d)=1

1
|cz + d|2s , z ∈ H,

where Γ∞ is the stabilizer of the cusp ∞ in Γ. The series is absolutely convergent in 
the half-plane Re(s) > 1 where it defines an automorphic function satisfying ΔE(z, s) =
s(1 − s)E(z, s), for the hyperbolic Laplacian Δ = −y2( ∂2

∂x2 + ∂2

∂y2 ).
The Eisenstein series can be meromorphically continued to the whole s-plane and 

E(z, s) has the following Fourier expansion (for s �= 0, 12 , 1)

E (z, s) = ys + ϕ(s)y1−s + 2
ξ(2s)

∑
n �=0

τs−1/2(|n|)
√
yKs−1/2(2π|n|y)e(nx).

Here for complex α, τα(n) =
∑

ab=n(a/b)α is the generalized divisor sum and the scat-
tering function ϕ(s) can be explicitly expressed as

ϕ(s) = ξ(2s− 1)
ξ(2s) , where ξ(s) = π−s/2Γ

(s
2

)
ζ(s).

We will denote with e(y, s) := ys + ϕ(s)y1−s the constant term of the Eisenstein series.
We denote with D = {z ∈ H | |z| ≥ 1, |x| ≤ 1

2} the standard fundamental domain for 
Γ\H and recall that its volume with respect to dμ is vol(X) = vol(D) = π

3 .
For a parameter A > 1 we denote with DA := {z ∈ D | Im(z) ≤ A} the corresponding 

truncated domain and with CA = D −DA the corresponding cuspidal region.
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The truncated Eisenstein series

EA(z, s) =
{

E(z, s), z ∈ DA

E(z, s) − e(y, s), z ∈ CA

is now rapidly decreasing in the cusp. Calculation of the L2-norm of this truncated 
Eisenstein series is done in [Sp], Section 2.3, both in the case of the whole fundamental 
domain and in the case of the cuspidal region, as follows:

∫
D

|EA(z, 1
2 + iT )|2dμz = −ϕ′

ϕ
(1
2 + iT ) + 2 logA +

A2iTϕ(1
2 − iT ) −A−2iTϕ(1

2 + iT )
2iT

= 2 log T + 2 logA + O((log T )2/3+ε)∫
CA

|EA(z, 1
2 + iT )|2dμz = 6

Aπ
log T + O(A−1(log T )2/3+ε)

+ O(A−1 logA), T → ∞. (2.1)

Therefore in the compact truncated domain DA, since E = EA on DA, we have as 
T → ∞

∫
DA

|E(z, 1
2 + iT )|2dμz ∼

(
π

3 − 1
A

)
6 log T

π
= vol(DA) 2 log T

vol(X) ,

as long as 1 < A � log T say. In other words, if we normalize the Eisenstein series as

Ẽ(z, 1
2 + iT ) :=

E(z, 1
2 + iT )√

2 log T
,

we have

lim
T→∞

1
vol(DA)

∫
DA

|Ẽ(z, 1
2 + iT )|2dμz = 1

vol(X) . (2.2)

If we denote eiθ(T ) := ξ(1+2iT )
|ξ(1+2iT )| , then the function eiθ(T )Ẽ(z, 12 + iT ) is real-valued, 

and the Random Wave Conjecture, as extended in [HR], predicts that eiθ(T )Ẽ(z, 12 + iT )
tends to Gaussian N (0, vol(X)−1/2) in distribution, when restricted to any compact and 
sufficiently regular subset Ω ⊂ X. In particular, for the fourth moment (c4 = 3), the 
conjecture predicts

lim
T→∞

1
vol(Ω)

∫
|Ẽ(z, 1

2 + iT )|4dμz = 3
vol(X)2 .
Ω
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By heuristic considerations and numerical experiments in [HR], the same limits should 
hold also for the normalized truncated Eisenstein series

ẼA(z, 1
2 + iT ) :=

EA(z, 1
2 + iT )√

2 log T
.

As explained, this should also include the case Ω = X, in which case the conjecture is

∫
X

|EA(z, 1
2 + iT )|4dμz ∼ 36

π
log2 T, as T → ∞. (2.3)

3. Regularized inner product and regularized Plancherel formula

We will make use of the regularization process given by Zagier in [Za]. An adelic version 
with a representation theoretic interpretation and with an alternate way of defining 
regularization is recently given in [MV].

Let F (z) be a continuous Γ-invariant function on H. It is called renormalizable (in 
Zagier’s terminology, or of controlled increase in the terminology of [MV]) if there is a 
function Φ(y) on R>0 of the form

Φ(y) =
l∑

j=1

cj
nj !

yαj lognj y, (3.1)

with cj , αj ∈ C and nj ∈ Z≥0, such that

F (z) = Φ(y) + O(y−N )

as y → ∞, and for any N > 0.
If F (z) =

∑∞
n=−∞ an(y)e(nx) is the Fourier expansion of F at the cusp ∞, in partic-

ular if a0(y) is its 0-term, and if no αj equals 0 or 1, then the function

R(F, s) :=
∞∫
0

(a0(y) − Φ(y))ys−2dy,

where the defining integral converges for sufficiently large Re(s), can be meromorphically 
continued to all s and has a simple pole at s = 1. Then one can define the regularized 
integral with

reg∫
F (z)dμ(z) := π

3 Ress=1R(F, s). (3.2)

Γ\H
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Moreover, then the function F (z)E(z, s) with s �= 0, 1 is also renormalizable and in 
particular, it can be shown that

reg∫
Γ\H

F (z)E(z, s)dμ(z) = R(F, s).

It can be shown (see [Za]) that the regularized integral can be written also as

reg∫
Γ\H

F (z)dμ(z) =
∫
DA

F (z)dμ(z) +
∫
CA

(F (z) − Φ(y))dμ(z) − Φ̂(A), (3.3)

where the right-hand side is independent of the value of the parameter A > 1 and Φ̂(y)
is in the case αj �= 1 for all j, given by the following explicit expression

Φ̂(y) =
l∑

j=1
cj

yαj−1

αj − 1

nj∑
m=0

logm y

m!(1 − αj)nj−m
.

Under the assumption that no αj = 1, let EΦ(z) denote a linear combination of Eisen-
stein series E(z, αj) (or suitable derivatives thereof) corresponding to all the exponents 
in (3.1) with Re(αj) > 1/2, i.e. such that F (z) − EΦ(z) = O(y1/2). Then the third, 
equivalent definition of regularization is given by

reg∫
Γ\H

F (z)dμ(z) =
∫

Γ\H

(F (z) − EΦ(z))dμ(z). (3.4)

For example Zagier showed in [Za] that for s1, s2 ∈ C \{0, 1}, s1 �= s2, 1 −s2, we have

reg∫
Γ\H

E(z, s1)E(z, s2)dμ(z) = 0. (3.5)

On the other hand, for the regularized product of the three Eisenstein series, Zagier 
[Za, p. 431] obtained

reg∫
Γ\H

E(z, 1
2 + s1)E(z, 1

2 + s2)E(z, 1
2 + s3)dμ(z) = (3.6)

=
ξ(1

2 + s1 + s2 + s3)ξ(1
2 + s1 − s2 + s3)ξ(1

2 + s1 + s2 − s3)ξ(1
2 + s1 − s2 − s3)

ξ(1 + 2s1)ξ(1 + 2s2)ξ(1 + 2s3)
.

The right-hand side is of course symmetric in s1, s2, s3 because of the functional equation 
ξ(1 − s) = ξ(s).
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Since we are interested in the regularized product of 4 Eisenstein series, one can try 
to apply the definition (3.2) directly. But already Zagier in [Za, p. 431] discussed that 
in this case there is no useful closed-form expression for the result, as is for the product 
of 3 Eisenstein series in (3.6). Therefore, we must proceed indirectly via a regularized 
Plancherel formula.

Now, let G(z) be another renormalizable Γ-invariant function such that G(z) = Ψ(y) +
O(y−N ) as y → ∞ for any N > 0, where Ψ(y) =

∑l1
k=1

dk

mk!y
βk logmk y with dk, βk ∈ C. 

Then the product F (z)G(z) is also a renormalizable Γ-invariant function and if αj +
βk �= 1, for all αj and βk appearing in Φ and Ψ respectively, the regularized inner 
product of F and G can be defined as

〈F,G〉reg :=
reg∫

Γ\H

F (z)G(z)dμ(z) =
∫

Γ\H

(F (z)G(z) − EΦΨ(z))dμ(z).

It is easy to see from (3.3) that this regularized product is a Hermitian form.

The regularized Plancherel formula from [MV] is much more general, but for our 
purposes we will state and derive it entirely in classical situation of Zagier’s paper 
[Za], much in the spirit of Lemma 4.1 from [Yo]. Because of the cumbersome formu-
las, we will use the shorthand notation Es(z) := E(z, 12 + s), and remind the reader 
not to confuse this with the truncated Eisenstein series EA(z, s) which still have 2 argu-
ments.

Proposition 3.1 ([MV]). Let F (z) and G(z) be renormalizable functions on Γ\H such that 
F −Φ and G −Ψ are of rapid decay as y → ∞, for some Φ(y) =

∑l
j=1

cj
nj !y

αj lognj y and 

Ψ(y) =
∑l1

k=1
dk

mk!y
βk logmk y. Moreover, let αj �= 1, βk �= 1, Re(αj) �= 1

2 , Re(βk) �= 1
2 , 

αj + βk �= 1 and αj �= βk, for all j, k. Then the following formula holds:

〈F (z), G(z)〉reg =

= 〈F,
√

3/π〉reg〈
√

3/π,G〉reg +
∑
j

〈F, uj〉〈uj , G〉 + 1
4π

∞∫
−∞

〈F,Eit〉reg〈Eit, G〉regdt

+ 〈F, EΨ〉reg + 〈EΦ, G〉reg.

Proof. Because of the assumption Re(αj) �= 1
2 , Re(βk) �= 1

2 , there exists some δ > 0 such 
that F1(z) := F (z) − EΦ(z) = O(y1/2−δ) and G1(z) := G(z) − EΨ(z) = O(y1/2−δ). For 
these F1(z) and G1(z) we have F1(z)G1(z) ∈ L1(Γ\H) and hence 〈F1, G1〉reg = 〈F1, G1〉
(the usual Petersson inner product), while also F1(z), G1(z) ∈ L2(Γ\H) and hence one 
can apply the usual Plancherel formula for 〈F1(z), G1(z)〉, obtaining
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〈F (z), G(z)〉reg = 〈F1(z) + EΦ(z), G1(z) + EΨ(z)〉reg =

= 〈F1,
√

3/π〉〈
√

3/π,G1〉 +
∑
j

〈F1, uj〉〈uj , G1〉 + 1
4π

∞∫
−∞

〈F1, Eit〉〈Eit, G1〉dt

+ 〈F1, EΨ〉reg + 〈EΦ, G1〉reg + 〈EΦ, EΨ〉reg.

Under our restrictions on the parameters αj, βk, all the inner products on the right hand 
side are well-defined and moreover because of (3.5), we have that 〈EΦ, EΨ〉reg = 0, which 
also implies that 〈F1, EΨ〉reg = 〈F, EΨ〉reg and 〈EΦ, G1〉reg = 〈EΦ, G〉reg. Furthermore, 
for the products with cusp forms uj we have 〈F1, uj〉 = 〈F, uj〉 − 〈EΦ, uj〉 = 〈F, uj〉, 
the product with constant function is 〈F1, 1〉 = 〈F − EΦ, 1〉 = 〈F, 1〉reg by definition of 
regularization and 〈F1, Eit〉 = 〈F − EΦ, Eit〉reg = 〈F, Eit〉reg since 〈EΦ, Eit〉reg = 0, by 
(3.5). This finishes the proof. �
4. Proof of Theorem 1.1

We want to apply this formula for the product of four Eisenstein series. By calculating 
the constant term of F (z) := E(z, 12 + s1)E(z, 12 + s2), we find that

EΦ(z) = E(z, 1+s1 +s2)+ c1E(z, 1−s1 +s2)+ c2E(z, 1+s1−s2)+ c1c2E(z, 1−s1−s2)

where

cj = ϕ

(
1
2 + sj

)
= ξ(2sj)

ξ(1 + 2sj)
,

and we have the similar formula for EΨ(z) corresponding to G(z) := E(z, 12 +s3)E(z, 12 +
s4). Hence, under the conditions on the parameters sj, 1 ≤ j ≤ 4, described in Proposi-
tion 3.1 (αj = 1 ± s1 ± s2, βk = 1 ± s3 ± s4), we get

〈Es1Es2 , Es3Es4〉reg = (4.1)

=
〈
E(z, 1

2 + s1)E(z, 1
2 + s2), E(z, 1

2 + s3)E(z, 1
2 + s4)

〉
reg

=

= 3
π
〈Es1Es2 , 1〉reg〈1, Es3Es4〉reg +

∑
j≥1

〈Es1Es2 , uj〉 〈uj , Es3Es4〉

+ 1
4π

∞∫
−∞

〈Es1Es2 , Eit〉reg 〈Eit, Es3Es4〉reg dt

+ 〈Es1Es2 , E 1
2+s3+s4 + c3E 1

2−s3+s4 + c4E 1
2+s3−s4 + c3c4E 1

2−s3−s4〉reg

+ 〈E 1
2+s1+s2 + c1E 1

2−s1+s2 + c2E 1
2+s1−s2 + c1c2E 1

2−s1−s2 , Es3Es4〉reg.
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For the cusp forms uj , the triple products 〈Es1Es2 , uj〉 can be evaluated by the stan-
dard unfolding argument (see Section 2 of [LS]):

Lemma 4.1. Let uj(z) be a Hecke–Maass cusp form for the group Γ, that is an eigenvalue 
of the Laplace operator Δuj = (1

4 + t2j )uj and of all Hecke operators Tnuj = λj(n)uj, 
for all n ≥ 1, which satisfies also T−1uj(z) = uj(−z) = εjuj(z), εj = ±1. Then it has 
the Fourier expansion uj(z) = ρj(1) 

∑
n �=0 λj(n)√yKitj (2π|n|y)e(nx) with λj(−n) =

εjλj(n). Let L(s, uj) be the L-function associated to uj, defined by analytic continuation 
from the Dirichlet series 

∑
n≥1 λj(n)n−s. Then for s1, s2 �= ±1/2, if uj is even (εj = 1) 

we have

〈E(·, 1/2 + s1)E(·, 1/2 + s2), uj〉 = ρj(1)
2

Λ(1
2 + s1 + s2, uj)Λ(1

2 + s1 − s2, uj)
ξ(1 + 2s1)ξ(1 + 2s2)

, (4.2)

where Λ(s, uj) := π−sΓ( s+itj
2 )Γ( s−itj

2 )L(s, uj) is the completed L-function corresponding 
to uj. In the case of odd uj (i.e. εj = −1), the triple product is 0.

Remark. The right hand side in (4.2) is symmetric in s1, s2, since for even uj , we have 
the functional equation Λ(s, uj) = Λ(1 − s, uj). Moreover, we have the following formula 
relating the normalizing factor ρj(1) with the symmetric square L-function:

|ρj(1)|2 = 2 cosh(πtj)
L(1, sym2uj)

.

Further, for s1 �= ±s2 and s3 �= ±s4, by (3.5) the first term on the right-hand side in 
(4.1) vanishes. Finally, using (3.6) for all regularized triple products of Eisenstein series, 
we arrive at

〈Es1Es2 , Es3Es4〉reg (4.3)

=
∑
j≥1
εj=1

cosh(πtj)
2

Λ(1
2 + s1 + s2, uj)Λ(1

2 + s1 − s2, uj)Λ(1
2 + s3 + s4, uj)Λ(1

2 + s3 − s4, uj)
L(1, sym2uj)ξ(1 + 2s1)ξ(1 + 2s2)ξ(1 + 2s3)ξ(1 + 2s4)

+ 1
4π

∞∫
−∞

∏
δ1,δ2∈{±1} ξ(

1
2 + ti + δ1s1 + δ2s2)ξ(1

2 + ti + δ1s3 + δ2s4)
|ξ(1 + 2ti)|2ξ(1 + 2s1)ξ(1 + 2s2)ξ(1 + 2s3)ξ(1 + 2s4)

dt

+
∏

δ1,δ2∈{±1} ξ(1 + δ1s1 + δ2s2 + s3 + s4)
ξ(1 + 2s1)ξ(1 + 2s2)ξ(2 + 2s3 + 2s4)

+ c3

∏
δ1,δ2∈{±1} ξ(1 + δ1s1 + δ2s2 − s3 + s4)
ξ(1 + 2s1)ξ(1 + 2s2)ξ(2 − 2s3 + 2s4)

+ c4

∏
δ1,δ2∈{±1} ξ(1 + δ1s1 + δ2s2 + s3 − s4)

ξ(1 + 2s1)ξ(1 + 2s2)ξ(2 + 2s3 − 2s4)
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+ c3c4

∏
δ1,δ2∈{±1} ξ(1 + δ1s1 + δ2s2 − s3 − s4)
ξ(1 + 2s1)ξ(1 + 2s2)ξ(2 − 2s3 − 2s4)

+
∏

δ1,δ2∈{±1} ξ(1 + s1 + s2 + δ1s3 + δ2s4)
ξ(2 + 2s1 + 2s2)ξ(1 + 2s3)ξ(1 + 2s4)

+ c1

∏
δ1,δ2∈{±1} ξ(1 − s1 + s2 + δ1s3 + δ2s4)
ξ(2 − 2s1 + 2s2)ξ(1 + 2s3)ξ(1 + 2s4)

+ c2

∏
δ1,δ2∈{±1} ξ(1 + s1 − s2 + δ1s3 + δ2s4)
ξ(2 + 2s1 − 2s2)ξ(1 + 2s3)ξ(1 + 2s4)

+ c1c2

∏
δ1,δ2∈{±1} ξ(1 − s1 − s2 + δ1s3 + δ2s4)
ξ(2 − 2s1 − 2s2)ξ(1 + 2s3)ξ(1 + 2s4)

.

Let us denote the last eight terms (quotients of products of ξ-functions, coming from 
the regularization process) on the right hand side of (4.3) with Ξj , 1 ≤ j ≤ 8, respectively 
with the order of appearance in (4.3).

Now, let us choose for sj the following values: s1 = iT , s2 = iT + ν, s3 = iT and 
s4 = iT + η, with complex parameters ν and η satisfying 0 < Re(ν) < Re(η) < 1

4 . For 
these values all the conditions from Proposition 3.1 are satisfied. From (3.4), we see that 
〈EiTEiT+ν , EiTEiT+η〉reg is continuous in ν, η, and therefore, if we first let ν → 0 in 
(4.3), keeping η fixed, we get

〈E2
iT , EiTEiT+η〉reg (4.4)

=
∑
j≥1
εj=1

cosh(πtj)
2

Λ(1
2 + 2Ti, uj)Λ(1

2 − 2Ti + η, uj)Λ(1
2 , uj)Λ(1

2 − η, uj)
L(1, sym2uj) ξ2(1 + 2Ti)ξ(1 − 2Ti)ξ(1 − 2Ti + 2η)

+ 1
4π

∞∫
−∞

ξ2(1
2 + ti)

∏
± ξ(1

2 + ti± 2Ti)ξ(1
2 + ti± 2Ti∓ η)ξ(1

2 + ti± η)
|ξ(1 + 2ti)|2ξ2(1 + 2Ti)ξ(1 − 2Ti)ξ(1 − 2Ti + 2η) dt

+
8∑

j=1
Ξj(T, η),

where

Ξ1(T, η) = ξ(1 + η)ξ2(1 − 2Ti + η)ξ(1 − 4Ti + η)
ξ2(1 + 2Ti)ξ(2 − 4Ti + 2η) =: ξ(1 + η)F1(η),

Ξ2(T, η) = ξ2(1 + η)ξ(1 + 2Ti + η)ξ(1 − 2Ti + η)
ξ(1 − 2Ti)ξ(1 + 2Ti)ξ(2 + 2η) =: ξ2(1 + η)F2(η),

Ξ3(T, η) = ξ2(1 − η)ξ(1 + 2Ti− η)ξ(1 + 2Ti− 2η)ξ(1 − 2Ti− η)
ξ2(1 + 2Ti)ξ(1 − 2Ti + 2η)ξ(2 − 2η) =: ξ2(1 − η)F3(η),

Ξ4(T, η) = ξ(1 − η)ξ2(1 + 2Ti− η)ξ(1 + 2Ti− 2η)ξ(1 + 4Ti− η) =: ξ(1 − η)F4(η),

ξ(1 + 2Ti)ξ(1 − 2Ti)ξ(1 − 2Ti + 2η)ξ(2 + 4Ti− 2η)
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Ξ5(T, η) = ξ(1 + η)ξ(1 + 2Ti− η)ξ(1 + 2Ti + η)ξ(1 + 4Ti− η)
ξ(2 + 4Ti)ξ(1 − 2Ti)ξ(1 − 2Ti + 2η)

=: ξ(1 + η)F5(η),

Ξ6(T, η) = Ξ7(T, η) = ξ(1 − η)ξ(1 + η)ξ(1 + 2Ti− η)ξ(1 − 2Ti + η)
ξ(2)ξ(1 + 2Ti)ξ(1 − 2Ti + 2η)

=: ξ(1 − η)ξ(1 + η)F6(η),

Ξ8(T, η) = ξ(1 − η)ξ(1 − 2Ti− η)ξ(1 − 2Ti)ξ(1 − 2Ti + η)ξ(1 − 4Ti + η)
ξ2(1 + 2Ti)ξ(1 − 2Ti + 2η)ξ(2 − 4Ti)

=: ξ(1 − η)F8(η).

Each of Ξj has a pole at η = 0, but the whole sum 
∑8

j=1 Ξj has a removable singularity 
at η = 0. This can be seen by grouping together Ξ1 with Ξ8, Ξ4 with Ξ5, and Ξ2 + Ξ3
with 2Ξ6 = Ξ6 + Ξ7. More explicitly, if we denote with

ξ(s) = 1
s− 1 + a + b(s− 1) + O((s− 1)2) (4.5)

the Laurent expansion of ξ(s) around s = 1, we get the following expansions of Ξj(η):

Ξ1(η) = F1(0)
η

+F ′
1(0) + aF1(0) +O(η),

Ξ2(η) = F2(0)
η2 +F ′

2(0) + 2aF2(0)
η

+ (a2 + 2b)F2(0) + 2aF ′
2(0) + 1

2F
′′
2 (0) +O(η),

Ξ3(η) = F3(0)
η2 +F ′

3(0) − 2aF3(0)
η

+ (a2 + 2b)F3(0) − 2aF ′
3(0) + 1

2F
′′
3 (0) +O(η),

Ξ4(η) = −F4(0)
η

−F ′
4(0) + aF4(0) +O(η),

Ξ5(η) = F5(0)
η

+F ′
5(0) + aF5(0) +O(η),

Ξ6(η) = Ξ7(η) = −F6(0)
η2 −F ′

6(0)
η

+ (a2 − 2b)F6(0) − 1
2F

′′
6 (0) +O(η),

Ξ8(η) = −F8(0)
η

−F ′
8(0) + aF8(0) +O(η).

But, F2(0) = F3(0) = F6(0) = 1
ξ(2) , so the polar terms with 1

η2 cancel out in the sum. 
Further, F1(0) = F8(0), F4(0) = F5(0) and one calculates

F ′
2(0) = 2

ξ(2)

[
Reξ

′

ξ
(1 + 2Ti) − ξ′

ξ
(2)

]
, F ′

3(0) = 2
ξ(2)

[
ξ′

ξ
(2) − 3Reξ

′

ξ
(1 + 2Ti)

]

and

F ′
6(0) = − 2 Reξ

′
(1 + 2Ti),
ξ(2) ξ
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from which it follows that F ′
2(0) + F ′

3(0) − 2F ′
6(0) = 0, a.e. the coefficient in front of 1

η

also vanishes. Therefore we can take η → 0 in (4.4) and after calculation of all the other 
required derivatives appearing in

lim
η→0

8∑
j=1

Ξj(T, η) = a(F1(0) + F4(0) + F5(0) + F8(0)) + a2(F2(0) + F3(0) + 2F6(0))

+ F ′
1(0) − F ′

4(0) + F ′
5(0) − F ′

8(0) + 2a(F ′
2(0) − F ′

3(0)) + 1
2F

′′
2 (0) + 1

2F
′′
3 (0) − F ′′

6 (0),

we obtain the following exact evaluation of the regularized fourth power of Eisenstein 
series:

Proposition 4.2. For any nonzero real T , we have:

reg∫
Γ\H

|E(z, 1/2 + iT )|4dμ(z) = 〈E2
iT , E

2
iT 〉reg (4.6)

=
∑
j≥1
εj=1

cosh(πtj)
2

Λ(1
2 + 2Ti, uj)Λ(1

2 − 2Ti, uj)Λ2(1
2 , uj)

L(1, sym2uj) |ξ(1 + 2Ti)|4

+ 1
4π

∞∫
−∞

ξ4(1
2 + ti)ξ2(1

2 + ti + 2Ti)ξ2(1
2 + ti− 2Ti)

|ξ(1 + 2ti)|2|ξ(1 + 2Ti)|4 dt

+ 4
ξ(2)

[
Reξ

′′

ξ
(1 + 2Ti) + 2

∣∣∣∣ξ′ξ (1 + 2Ti)
∣∣∣∣
2

+ Re(ξ′)2

ξ2 (1 + 2Ti)

+ 4(a− ξ′

ξ
(2))Reξ

′

ξ
(1 + 2Ti) + 2(ξ′)2

ξ2 (2) − ξ′′

ξ
(2) − 2aξ

′

ξ
(2) + a2

]

+ ξ2(1 + 2Ti)ξ(1 + 4Ti)
ξ2(1 − 2Ti)ξ(2 + 4Ti)

[
2a + 4ξ

′

ξ
(1 + 2Ti) − 2ξ

′

ξ
(2 + 4Ti)

]

+ ξ2(1 − 2Ti)ξ(1 − 4Ti)
ξ2(1 + 2Ti)ξ(2 − 4Ti)

[
2a + 4ξ

′

ξ
(1 − 2Ti) − 2ξ

′

ξ
(2 − 4Ti)

]
,

where a = lims→1(ξ(s) − (s − 1)−1).

Remark. The exact value of the constant a is C0
2 − ln π

2 − ln 2 = −0.9769 . . . , where 
C0 = 0.57721 . . . is Euler’s constant. This is a consequence of the following two formulas: 
ζ(s) = 1

s−1 + C0 + O((s − 1)) and Γ′

Γ (1/2) = −C0 − 2 ln 2. Also we recall that ξ(2) = π
6 .

Using Stirling’s approximations |Γ(σ + it)| = e−π|t|/2|t|σ− 1
2
√

2π{1 + O(|t|−1)} and 
Γ′

Γ (s) = log s + O(|s|−1) valid in a fixed vertical strip when |t| → ∞, and classical esti-
mates for the Riemann zeta-function on the edge of the critical strip [MoV, section 6.3],
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(log t)−2/3(log log t)−1/3 � ζ(s) � (log t)2/3 and

ζ ′

ζ
(s) � (log t)2/3(log log t)1/3 (4.7)

for

s = σ + it, 1 − σ � (log t)−2/3(log log t)−1/3,

one obtains first that ξ
′

ξ (1 ± 2Ti) � log T and then that the contribution of the terms 
in the last two lines in the formula (4.6) is O( log2 T

T 1/2 ). Therefore the contribution on the 
right-hand side of (4.6) coming from the regularization process is

24
π

[
Reξ

′′

ξ
(1 + 2Ti) + 2

∣∣∣∣ξ′ξ (1 + 2Ti)
∣∣∣∣
2

+ Re(ξ′)2

ξ2 (1 + 2Ti)
]

+ O(log T ).

Since ξ
′

ξ (s) = − log π
2 + 1

2
Γ′

Γ ( s2 ) + ζ′

ζ (s), from Stirling’s approximation and (4.7) we obtain 
further that when T → ∞

2
∣∣∣∣ξ′ξ (1 + 2Ti)

∣∣∣∣
2

+ Re(ξ′)2

ξ2 (1 + 2Ti) = 3
4 log2 T + O(log5/3+ε T ),

for any ε > 0.

Lemma 4.3. As t → ∞, we have

ζ ′′

ζ
(1 + ti) � log4/3+ε t.

Proof. We can use (4.7) and the Borel–Carathéodory lemma [MoV, Lemma 6.2] to get 
the bound (

ζ ′

ζ

)′
(1 + ti) � log4/3+ε t.

This and (4.7) again imply the stated bound for ζ
′′

ζ (1 +ti) = ( ζ
′

ζ )′(1 +ti) +( ζ
′

ζ (1 +ti))2. �
From

ξ′′

ξ
(s) = log2 π

4 + 1
4

Γ′′

Γ (s2) + ζ ′′

ζ
(s) − log π

2
Γ′

Γ (s2) − (log π)ζ
′

ζ
(s) + Γ′

Γ (s2)ζ
′

ζ
(s),

using (4.7), Lemma 4.3 and another well-known approximation Γ′′

Γ (1
2 + Ti) = log2 T +

O(log T ), we obtain also the asymptotic

Reξ
′′
(1 + 2Ti) = 1 log2 T + O(log5/3+ε T ).
ξ 4
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On the other hand, the contribution of the continuous spectrum in (4.6) i.e. the 
integral on the right-hand side is of a smaller size, being bounded by the integral in the 
following Lemma:

Lemma 4.4. For T ≥ 1 we have:

∞∫
−∞

|ξ(1
2 + ti)|4|ξ(1

2 + ti + 2Ti)|2|ξ(1
2 + ti− 2Ti)|2

|ξ(1 + 2ti)|2|ξ(1 + 2Ti)|4 dt � T−1/6,

for some absolute implicit constant.

Proof. This is exactly Proposition 3.4 in [Sp]. For completeness we briefly repeat here the 
argument. After employing Stirling’s asymptotic formula for Gamma functions and after 
splitting the integral 

∫ +∞
−∞ = 2 

∫ 3T
0 +2 

∫ +∞
3T , one can see easily that the contribution in 

the range 
∫ +∞
3T decays exponentially with T . Therefore, one needs to bound the integral

3T∫
0

|ζ(1
2 + ti)|4

(1 + |t|) ·
|ζ( 1

2 + (t + 2T )i)|2
(1 + |t + 2T |)1/2 ·

|ζ(1
2 + (t− 2T )i)|2

(1 + |t− 2T |)1/2 · e
π
2 (4T−|t−2T |−|t+2T |)

|ζ(1 + 2ti)|2|ζ(1 + 2Ti)|4 dt.

By (4.7) the fourth ratio can be bounded by T ε, the third ratio can be bounded by 
convexity bound, while the second ratio can be bounded using the subconvexity bound 
ζ(1

2 + ti) � (1 + |t|)θ+ε for some θ < 1
6 , which is available and sufficient. The bound 

follows by the fourth moment estimate 
∫ 3T
0

|ζ( 1
2+ti)|4
1+|t| dt � T ε, for any ε > 0. �

Therefore after putting together everything in this section, we obtain the asymptotic 
formula in Theorem 1.1. Note that the theorem has dropped the condition εj = 1. This 
is fine because when εj = −1, we have Λ(1

2 , uj) = 0 and the summand vanishes.

5. Proof of Theorem 1.2

The regularized fourth moment of Eisenstein series E(z, 1/2 + iT )

〈E2
iT , E

2
iT 〉reg =

reg∫
Γ\H

|E(z, 1
2 + iT )|4dμ(z)

can also be expressed directly using (3.3). The corresponding function Φ(y) is given by

Φ(y) = |e(y, 1/2 + iT )|4 = c2y2−4Ti + 4cy2−2Ti + 6y2 + 4cy2+2Ti + c2y2+4Ti

where c = ϕ(1/2 + iT ) = ξ(1−2Ti) , so in particular |c| = 1. Hence we get
ξ(1+2Ti)
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reg∫
Γ\H

|E(z, 1
2 + iT )|4dμ(z) =

=
∫
DA

|E(z, 1/2 + iT )|4dμ(z) +
∫
CA

(|E(z, 1/2 + iT )|4 − |e(y, 1/2 + iT )|4)dμ(z) − Φ̂(A),

with Φ̂(A) given explicitly by

Φ̂(A) = c2
A1−4Ti

1 − 4Ti + 4c A
1−2Ti

1 − 2Ti + 6A + 4c A
1+2Ti

1 + 2Ti + c2
A1+4Ti

1 + 4Ti .

In particular, Φ̂(A) � A. This will be an admissible error for all the values of the 
truncation parameter in the range 1 < A � log T .

Hence the difference between the regularized integral of |E|4 and the integral ∫
X
|EA|4dμ with the truncated Eisenstein series considered in [Sp] is

reg∫
Γ\H

|E(z, 1
2 + iT )|4dμ(z) − ‖EA(·, 1

2 + iT )‖4
4

=
∫
DA

|E|4dμ +
∫
CA

(|EA + e|4 − |e|4)dμ− Φ̂(A) −
∫
DA

|E|4dμ−
∫
CA

|EA|4dμ

=
∫
CA

(e2E
2
A + e2E2

A + 4|e|2|EA|2)dμ + 2
∫
CA

(|EA|2EAe + |EA|2EAe)dμ− Φ̂(A), (5.1)

since 
∫
CA

EAe|e|2dμ =
∫
CA

EAe|e|2dμ = 0.
Here, the first integral in the cuspidal region can be explicitly computed. From the 

integral representation

Kν(y) =
+∞∫
0

e−y cosh t cosh(νt)dt, Re(ν) > −1
2 ,

we see that KiT (y) is real for y > 0, T ∈ R and hence for z ∈ CA

ξ(1 + 2Ti)EA(z, 1/2 + iT ) = 4
∞∑

n=1
τiT (n) y 1

2KiT (2πny) cos(2πnx) (5.2)

is also real-valued. Using this and the functional equation for ξ(s), after a short calcula-
tion one gets that the first integral in (5.1) is equal to

∫ (
12y

|ξ(1 + 2Ti)|2 + 6y1+2Ti

ξ2(1 − 2Ti) + 6y1−2Ti

ξ2(1 + 2Ti)

)
ξ2(1 + 2Ti)E2

A(z, 1/2 + iT )dμ(z).

CA
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Therefore we need to calculate the twisted integrals of the second moment of the 
truncated Eisenstein series in the cuspidal region

Iη :=
∫
CA

y1+ηξ2(1 + 2Ti)E2
A(z, 1/2 + iT )dμ(z),

for the values of parameter η ∈ {0, ±2Ti}. Substituting here the Fourier expansion (5.2)
we obtain

Iη = 16
+∞∫
A

1∫
0

y1+η

( ∞∑
n=1

τiT (n) y 1
2KiT (2πny) cos(2πnx)

)2
dxdy

y2

= 8
∞∑

n=1
τ2
iT (n)

∞∫
A

K2
iT (2πny)yηdy = 8

∞∑
n=1

τ2
iT (n)(2πn)−1−ηg(2πAn),

where

g(x) :=
∞∫
x

K2
iT (y)yηdy.

The Mellin transform of this function is equal to

G(s) :=
∞∫
0

g(x)xs dx

x
= 1

s

∞∫
0

K2
iT (x)xη+sdx

= 2η−2+s

sΓ(1 + η + s)Γ2
(

1 + η + s

2

)
Γ
(

1 + η + s

2 + iT

)
Γ
(

1 + η + s

2 − iT

)

by integration by parts and the Mellin–Barnes formula [GR], 6.576.4

∞∫
0

Kμ(y)Kν(y)ys
dy

y
= 2s−3

Γ(s)
∏
±,±

Γ
(
s± μ± ν

2

)
.

By the inverse Mellin transform we have g(x) = 1
2πi

∫
(3) G(s)x−sds (where the integration 

is over the line Re(s) = 3) and so we get

Iη = 8
(2π)1+η

1
2πi

∫
(3)

G(s)(2πA)−s
∞∑

n=1

τ2
iT (n)

ns+1+η
ds.

Here, since τiT (n) = σ2iT (n)n−iT , we have by Ramanujan’s identity

∞∑ τ2
iT (n)

ns+1+η
= ζ2(s + 1 + η)ζ(s + 1 + η + 2Ti)ζ(s + 1 + η − 2Ti)

ζ(2s + 2 + 2η) ,

n=1
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which then gives

Iη = 1
2πi

∫
(4)

A1−s

s− 1
ξ2(s + η)ξ(s + η + 2Ti)ξ(s + η − 2Ti)

ξ(2s + 2η) ds.

The integrand is rapidly decreasing in vertical strips and it is regular on the line 
Re(s) = 1

2 (for all three values of the parameter η), so we can shift the line of inte-
gration from Re(s) = 4 to Re(s) = 1

2 :

Iη = Rη + 1
2πi

∫
(1/2)

A1−s

s− 1
ξ2(s + η)ξ(s + η + 2Ti)ξ(s + η − 2Ti)

ξ(2s + 2η) ds, (5.3)

where Rη =
∑

P Rη,P is the sum of residues Rη,P of the poles P that we encounter.

In the case η = 0, the integrand has two simple poles at s = 1 ±2Ti with the residues

R0,1−2Ti = −A2Tiξ2(1 − 2Ti)ξ(1 − 4Ti)
2Ti ξ(2 − 4Ti) and R0,1+2Ti = A−2Tiξ2(1 + 2Ti)ξ(1 + 4Ti)

2Ti ξ(2 + 4Ti)

and the triple pole at s = 1 with residue

R0,1 = |ξ(1 + 2Ti)|2
ξ(2) ·

[∣∣∣∣ξ′ξ (1 + 2Ti)
∣∣∣∣
2

+ Reξ
′′

ξ
(1 + 2Ti) + 1

2 log2 A

− 2(logA)Reξ
′

ξ
(1 + 2Ti) + 2

(
ξ′

ξ
(2) − a

)(
logA− 2Reξ

′

ξ
(1 + 2Ti)

)

+ 4
(
ξ′

ξ
(2)

)2

− 4aξ
′

ξ
(2) + a2 + 2b− 2ξ

′′

ξ
(2)

]
,

where the constants a and b are as in (4.5).

In the case η = 2Ti, the integrand has the simple pole at s = 1 −4Ti with the residue

R2Ti,1−4Ti = −A4Tiξ2(1 − 2Ti)ξ(1 − 4Ti)
4Ti ξ(2 − 4Ti)

and two double poles at s = 1 and s = 1 − 2Ti with the corresponding residues

R2Ti,1 = ξ2(1 + 2Ti)ξ(1 + 4Ti)
ξ(2 + 4Ti)

×
[
a− logA + ξ′

ξ
(1 + 4Ti) + 2ξ

′

ξ
(1 + 2Ti) − 2ξ

′

ξ
(2 + 4Ti)

]
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and

R2Ti,1−2Ti = −A2Tiξ(1 + 2Ti)ξ(1 − 2Ti)
2Ti ξ(2)

×
[
2Reξ

′

ξ
(1 + 2Ti) − logA + 1

2Ti + 2a− 2ξ
′

ξ
(2)

]
.

In the case η = −2Ti, the integrand has the simple pole at s = 1 + 4Ti with the 
residue

R−2Ti,1+4Ti = A−4Tiξ2(1 + 2Ti)ξ(1 + 4Ti)
4Ti ξ(2 + 4Ti)

and two double poles at s = 1 and s = 1 + 2Ti with the corresponding residues

R−2Ti,1 = ξ2(1 − 2Ti)ξ(1 − 4Ti)
ξ(2 − 4Ti)

×
[
a− logA + ξ′

ξ
(1 − 4Ti) + 2ξ

′

ξ
(1 − 2Ti) − 2ξ

′

ξ
(2 − 4Ti)

]

and

R−2Ti,1+2Ti = A−2Tiξ(1 + 2Ti)ξ(1 − 2Ti)
2Ti ξ(2)

×
[
2Reξ

′

ξ
(1 + 2Ti) − logA− 1

2Ti + 2a− 2ξ
′

ξ
(2)

]
.

In particular, we have

1
ξ2(1 ± 2Ti)R∓2Ti � (log T )2T−1/2,

when T → ∞.
The contribution of the integrals on the shifted line in (5.3) is bounded in the following 

Lemma:

Lemma 5.1. For any η ∈ {0, ±2Ti} with T > 1, we have

∞∫
−∞

∣∣∣∣∣A
1
2−ti

1
2 − ti

·
ξ2(1

2 + ti + η)ξ(1
2 + ti + η + 2Ti)ξ(1

2 + ti + η − 2Ti)
ξ2(1 + 2Ti)ξ(1 + 2ti + 2η)

∣∣∣∣∣ dt � A1/2T−1/6,

with an absolute implicit constant.
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Proof. The analysis is similar to that in Lemma 4.4. The case η = 0 was treated in 
[Sp], section 4.3.2, where the bound O(A1/2T−1/6) is obtained. Here, we treat the case 
η = 2Ti (for η = −2Ti, the value of the integral is the same). Using Stirling’s formula, 
we see that the integrand is bounded by

A1/2 e
π
4 (4T−|t|−|t+4T |)

(1 + |t|)5/4(1 + |t + 2T |)1/2(1 + |t + 4T |)1/4

×
∣∣∣∣ζ(1

2 + ti) ζ2(1
2 + (t + 2T )i) ζ(1

2 + (t + 4T )i)
ζ2(1 + 2Ti) ζ(1 + (2t + 4T )i)

∣∣∣∣ .
Using subconvexity estimate ζ(1/2 + ti) � (1 + |t|)θ+ε, for all ε > 0 and some θ < 1

6 for 
the zeta-functions in the numerator and (4.7) for the zeta-functions in the denominator, 
this is further bounded by

A1/2T ε e
π
4 (4T−|t|−|t+4T |)

(1 + |t|) 5
4−θ−ε(1 + |t + 2T |) 1

2−2θ−ε(1 + |t + 4T |) 1
4−θ−ε

.

We split the integration into 3 ranges: 
∫∞
−∞ =

∫ −4T
−∞ + 

∫ 0
−4T + 

∫∞
0 . In the first and the 

third range we have an exponential decay of the integrand and so we have that in these 
ranges the integrals are bounded respectively by

∞∫
0

� A1/2T ε

∞∫
0

e−
π
2 t

(1 + |t|) 5
4−θ−εT

1
2−2θ+ 1

4−θ
dt � A1/2T−1/4

and

−4T∫
−∞

� A1/2T ε

−4T∫
−∞

e
π
2 (t+4T )

T
5
4−θ+ 1

2−2θ(1 + |t + 4T |) 1
4−θ−ε

dt � A1/2T−5/4.

In the middle range the integral is bounded by

� A1/2T ε

0∫
−4T

dt

(1 + |t|) 5
4−θ(1 + |t + 2T |) 1

2−2θ(1 + |t + 4T |) 1
4−θ

� A1/2T θ− 1
4+ε

0∫
−2T

dt

(1 + |t|) 5
4−θ(1 + |t + 2T |) 1

2−2θ � A1/2T 3θ− 3
4+ε � A1/2T−1/4.

Therefore, in the cases η = ±2Ti, we get an even better bound O(A1/2T−1/4). �
After we collect everything together, and use asymptotic formulas for ξ

′

ξ (1 +2iT ) and 
ξ′′

ξ (1 +2iT ) already seen in the previous section, we get that the contribution of the first 
integral in (5.1) is
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12
|ξ(1 + 2Ti)|2 I0 + 6

ξ2(1 − 2Ti)I2Ti + 6
ξ2(1 + 2Ti)I−2Ti

= 12
|ξ(1 + 2Ti)|2R0 + 6

ξ2(1 − 2Ti)R2Ti + 6
ξ2(1 + 2Ti)R−2Ti + O(A1/2T−1/6)

= 36
π

log2 T + O(log
5
3+ε T ), (5.4)

for the range 1 < A � log T . The main contribution is coming from R0,1.
Putting together all our calculations in this section, we end up with the following 

Proposition:

Proposition 5.2. When T → ∞, for any value of the truncation parameter 1 < A � log T
we have

reg∫
X

|E(z, 1
2 + iT )|4dμ(z) =

∫
X

|EA(z, 1
2 + iT )|4dμ(z) + 36

π
log2 T + 2

∫
CA

(|EA|2EAe + |EA|2EAe)dμ + O(log
5
3+ε T ).

(5.5)

The first integral on the right hand side of (5.5) is asymptotic to 36
π log2 T under 

assumption (2.3). The integral over cuspidal region CA in (5.5) is bounded by

4
∫
CA

∣∣∣∣E3
A(z, 1

2 + Ti)e(y, 1
2 + Ti)

∣∣∣∣ dμ(z) ≤ 4

⎛
⎝ ∫

CA

|EA|4dμ

⎞
⎠

1/2 ⎛
⎝ ∫

CA

|eEA|2dμ

⎞
⎠

1/2

.

(5.6)

The second integral on the right hand side of (5.6) is ∼ 6
π log2 T ; this is implicit in the 

calculation of the first integral in (5.1). Under the RWC, the first integral on the right 
hand side of (5.6) can be bounded by∫

X

|EA|4dμ−
∫
DA

|EA|4dμ � (vol(X) − vol(DA)) log2 T � A−1 log2 T,

which is o(log2 T ) if A grows arbitrary slowly to infinity as T → ∞. This way the right 
hand side of (5.5) is asymptotic to 72

π log2 T .
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